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Abstract

Identifying the libraries used by a web application is an important
task for sales intelligence, website profiling, and web security anal-
ysis. Recent work uses tree structures to represent the property
relationships of the library at runtime, realizing automatic library
identification without pinpointing versions. But when assessing
the security risks associated with these web libraries or conducting
fine-grained software analysis, it becomes essential to determine
the specific version of the library in use. However, existing tree-
based methods are not directly applicable to version detection due
to the huge storage requirements for maintaining separate trees for
a large number of versions. This paper proposes a novel algorithm
to find the most unique structure out of each tree in a forest so
that the footprint of the features can be greatly minimized. We
implement this algorithm into a web library detection tool. Ex-
perimental evaluations on 556 web libraries, encompassing 30,810
versions, reveal that our tool reduces space requirements by up to
99%, achieves more precise version detection compared to existing
tools, and detects 190 vulnerabilities on 200 top-traffic websites.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; • Security and privacy→Web application security; •
Mathematics of computing→ Trees.
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1 Introduction

With the increase in the variety of sophisticated web applications,
the demand for web libraries continues to grow. To illustrate this
growth, consider Cdnjs, the largest CDN (Content Delivery Net-
work) that serves websites. Cdnjs now contains 6,056 different web
JavaScript libraries1, almost twice as many as one year ago. With
the staggering growth in web libraries, there is an equal need for
automatic library detection. Web library techniques are frequently

1Data source: https://cdnjs.com (Nov. 2024)
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used for competitor analysis, sales intelligence, security analysis,
and website profiling.

Version detection is a crucial component in the library detection
task, especially with regard to security analysis. Many websites rely
on outdated versions of these libraries, which may contain known
vulnerabilities. For instance, in 2020, two Cross-Site Scripting (XSS)
vulnerabilities2 were discovered in jQuery versions prior to 3.5.0.
These vulnerabilities allowed attackers to inject malicious scripts
into web pages, potentially compromising user data or hijacking
sessions. Websites using outdated versions of jQuery are exposed
to these vulnerabilities, leaving them open to attacks. Many sites
were slow to update, either due to a lack of awareness or compati-
bility concerns – based on the jQuery usage statistics published by
BuiltWith3, about 42% of the sites are still using jQuery versions
prior to 3.5.0.

Facing potential security risks posed by web libraries, version
detection technique is required to enable organizations to take
proactive approaches. By identifying the versions of libraries de-
ployed on websites, they can assess the potential risks and prioritize
updates or patches. In addition, many industries are subject to reg-
ulatory requirements that mandate the use of secure software com-
ponents [2, 13, 26]. Version detection techniques provide a means to
audit websites and ensure compliance with these standards. More-
over, when a new vulnerability is discovered, security teams can
quickly determine how many downstream websites are affected, al-
lowing them to take targeted remediation steps and prevent further
exploitation.

Additionally, library version detection has broader applications
in facilitating a deeper understanding of the code-level behavior
of websites. Accurate program analysis for web applications is
widely admitted as a challenging task [17, 28, 35] partly due to
the highly dynamic nature of JavaScript and the difficulty of the
analysis of prevalent web libraries. Even for the most commonly
used library, jQuery, the versions that can be effectively analyzed
using traditional methods are limited to versions prior to 2.0.0, a
version that was released 11 years ago [3, 18, 27]. Knowing the
loaded library version provides new possibilities for analyzing web
applications: (1) For static analysis, the behavior of libraries could be
separately modeled in advance, thus leading to more reliable static
analysis results [35]; (2) For dynamic analysis, version information
allows researchers to instrument the correct version of the library,
so that information flows can be traced when the library API is
invoked.

Although web library detectors exist, determining the version of
a detected library remains a non-trivial challenge. Current library

2CVE-2020-11022 and CVE-2020-11023
3jQuery Usage Statistics: https://trends.builtwith.com/javascript/jQuery
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detectors depend on manually collecting version patterns for each
library, which limits their scalability: the most widely used detec-
tor, LDC, is capable of recognizing versions for only 123 libraries.
The most accurate detector, PTdetector [21], employs tree struc-
tures to automate library feature extraction but faces difficulties in
version detection due to the substantial storage requirements for
maintaining separate trees for a large number of versions. And this
approach results in considerably slow version detection speeds.

In this paper, we follow the idea of using tree structures as the
detection feature and propose a novel algorithm – unique subtree

mining – to minimize trees used in library detection. Our idea is to
extract the most unique sub-structure out of each tree in the forest,
reducing the content being saved and used for runtime detection.
We implemented this algorithm as a tool named PTV ( shortened
for “Pinpointing the Version”) to enable tree-based version detec-
tion for web JavaScript libraries. PTV can detect 556 libraries with
30,810 versions. We evaluate the version detection capability of
PTV against existing methods, and the results demonstrate that
PTV reduces the memory footprint by 99.32% and achieves supe-
rior detection precision compared to existing tools. Moreover, PTV
identifies 190 vulnerabilities across 200 top-traffic websites caused
by using outdated libraries, surpassing other tools by 37.7%. In
summary, our paper makes the following contributions:

(1) a novel algorithm to mine unique subtrees, which is not
limited to the JavaScript library version detection problem
and can be applied to any similar tree-based detection task.

(2) an implementation of our algorithm in PTV to realize web li-
brary version detection. The tool is published on the Chrome
Web Store [1] and the source code is publicly available on
GitHub [15].

(3) a comprehensive evaluation of PTV on 556 real-world li-
braries and 200 top-traffic websites, where PTV exhibited
a more precise version detection capability and identified
more vulnerabilities compared to other tools.

2 Background and Motivation

2.1 Web Library

Web libraries are commonly designed to wrap their APIs in objects
that are registered in the global context of the browser runtime
during the library initialization stage, allowing the APIs to be glob-
ally available. In this section, we take Chart.js4, a commonly used
web charting library, as the example. Listing. 1 shows the simplified
initialization code of Chart.js (v2.9.3).

1 (function () {

2 // Initialize

3 var core_controller = function () {

4 this.construct ();
5 return this;
6 };

7 // Define properties

8 core_controller.Animation = ...;

9 core_controller.controllers = ...;

10 core_controller.defaults = ...;

11 ...

12 // Export chart

13 window.Chart = core_controller;

4https://www.chartjs.org/

14 }.call(this));

Listing 1: Simplified Chart.js Browser Initialization Steps.

In Listing. 1, line 1 defines an anonymous function to wrap all the
code, which will execute immediately after its declaration. Line 3
defines the function core_controller, which will return an initial-
ized object. Note that a function is also an object in JavaScript. Then,
in lines 8 - 11, various APIs (Animation, controller, defaults,
and others) are registered as core_controller object properties.
Finally, in line 13, the core_controller object is exposed to the
identifier Chart in the global context, i.e., registered as a property
of window5.

2.2 The Need for Version Detection

One practical application of library version detection is identifying
the use of risky outdated libraries on the web. In 2020, a prototype
pollution vulnerability was found in Chart.js versions prior to 2.9.4,
which is marked as high severity on the Snyk database6 – it will
tamper with the application source code to force the code path
that the attacker injects, thereby leading to remote code execution.
Based on the library request data provided on jsdeliver7, Chart.js
receives 441,346,805 requests per month from the web, of which
43,769,543 (9.9%) correspond to versions prior to 2.9.4.

Current tools can identify websites that utilize Chart.js; however,
they are unable to determine the specific version of it, and as a
result, they cannot ascertain whether a website is impacted by this
vulnerability. In the subsequent subsections, we will use Chart.js as
the detection target to illustrate the existing detection mechanisms,
discuss the challenges associated with version identification, and
present the insights of our solution.

2.3 Exsiting Detection Methods

Many web JavaScript library detectors exist on the market. Most
of them act as browser extensions that detect loaded libraries by
checking specific properties at runtime. In Sec. 2.3.1 we use the
most popular open-source detector, Library-Detector-for-Chrome
(LDC), to illustrate their detection mechanism on libraries and
versions, as well as their drawbacks. In response to the problems of
these traditional detectors, PTdetector is proposed in [21]. This
tool makes use of the runtime property tree structure to enable
automated feature extraction and more accurate library detection,
which is discussed in Sec. 2.3.2.

2.3.1 Library-Detector-for-Chrome (LDC). LDC has 600+ stars on
GitHub [14] and 10,000+ users on the Chrome Extension Store [34].
As a browser extension, LDC uses dynamic methods to detect li-
braries. Listing. 2 is the simplified LDC code used to detect Chart.js.

1 function testChartjs () {

2 if ( window.Chart ) return true;
3 else return false;
4 }

Listing 2: LDC identifies Chart.js by examining whether a

property named “Chart” is registered in the global context.

5Code running in a web page shares a single global object window.
6CVE-2020-7746: https://security.snyk.io/vuln/SNYK-JS-CHARTJS-1018716
7Chart.js CDN by jsDelivr: https://www.jsdelivr.com/package/npm/chart.js?tab=stats
(Data collected in February 2025)

https://www.chartjs.org/
https://security.snyk.io/vuln/SNYK-JS-CHARTJS-1018716
https://www.jsdelivr.com/package/npm/chart.js?tab=stats
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Figure 1: pTree illustration of Chart.js.

Some libraries will store their version tag in a string variable. For
example, when LDC detects jQuery, it will read its version directly
from the property window.$.fn.jquery. We call such property
containing version information as the version label, and the library
version with a version label as explicit-labeled. Most detectors on
the market today use similar detection methods. However, Chart.js
does not provide a version label that can be readily accessed, and
this is not an uncommon scenario. We conducted an analysis of the
600 most popular libraries from Cdnjs and found that only 98 of
them have all versions explicitly labeled, while 205 have partial ver-
sion labeling, and the remaining libraries lack any version labeling.
Furthermore, as demonstrated in our experiments (Sec. 5.3), version
labels, in some cases, even provide incorrect version information.

2.3.2 PTdetector. PTdetector [21] introduces a new concept named
pTree, which refers to a tree formed by the property relationships
between JavaScript variables in a runtime frame. Each vertex in
a pTree is assigned the variable’s name, type, and value. Every
pTree is rooted at the global variable window. Fig. 1 shows a pTree
generated from the Listing. 1.

PTdetector takes a JavaScript file and its dependency informa-
tion as input and automatically extracts the runtime pTree as the
detection feature using a trivial localhost client, and uses a weight-
based tree-matching algorithm to score the existence of libraries
on a web page. The rich details provided by the tree structure allow
PTdetector to distinguish libraries more accurately. This approach
has several advantages over traditional methods; however, it does
not support version detection.

2.4 Our Solution: pTree-based Version Detection

A naive, straightforward approach to enable pTree-based version
detection is to generate a pTree for every version of each library.
Following this idea, at browser runtime, we first use the pTree of
the latest version of the library to determine if the library is loaded
on the web page, as is done in PTdetector. After confirming the
loaded library name and the loaded location in the browser pTree,
we then conduct tree matching against the pTrees of all versions
of this library to determine which version has the best match. We
discuss two challenges of this solution in the subsections below.

2.4.1 Correctness. Suppose that Chart.js has only three versions –
𝐴, 𝐵, and𝐶 . Fig. 2 shows the pTrees for these versions. Consider that
if all vertices and edges of the pTree representing library version 𝐴

are detected at runtime, can we conclude that the loaded version is
𝐴? Counter-intuitively, the answer is no. Consider that all vertices
and edges in the pTree of version𝐴 also exist in the pTree of version
𝐶 . Thus, we cannot tell if the loaded version of Lodash is 𝐶 or 𝐴.
We call the pTree of version 𝐶 a supertree8 of the pTree of version

8Similar to a superset. The formal definition of supertree will be given in Sec. 3.1

𝐴. This situation is rather common in library version detection due
to the high similarity in structures between library versions. One
pTree may have multiple supertrees. In Sec. 3.2, we will reason
about supertrees and introduce an algorithm to correctly identify
the version.

Figure 2: Example of pTrees of different versions of Chart.js.

2.4.2 Memory Footprint. Today, there are 2,509,859 library ver-
sions on Cdnjs. According to the memory overhead estimation in
the PTdetector paper, if we set the pTree size limit as 50, then
over 8 GB of space is needed to store all pTrees. Unfortunately, even
a pTree with a maximum of 50 vertices is not enough to distinguish
the subtle differences between the versions.

Our insight is to extract the most unique structure from each
pTree, reducing the content being saved and used for runtime de-
tection. For example, in Fig. 2, we can observe that the property
window.Chart.Animation appears in all versions; thus, this prop-
erty does not serve any distinguishing purpose in version detection
and should be discarded. In contrast, the property window.Chart.
canvas only appears in version 𝐵 and the property window.Chart.
controllers only appears in version 𝐶 . Such a property can com-
pletely substitute the functionality of the original pTree, being able
to uniquely characterize the version. In other words, if the prop-
erty window.Chart.canvas is detected during runtime, we have
confidence that the full pTree of version 𝐵 can be detected. We call
such a structure a unique subtree. Following this intuition, we are
able to design a method to minimize every pTree without affecting
the detection ability. In Sec. 3.3, we will present the algorithm to
find the unique subtree of each tree.

3 Algorithm Design

In this section, we describe the core algorithms needed for JavaScript
library version detection. Sec. 3.1 gives basic definitions. Sec. 3.2
and Sec. 3.3 provide the solutions to the two challenges introduced
in Sec. 2.4 respectively. A complexity analysis is given in Sec. 3.4.

3.1 Basic Definition

3.1.1 Labeled Tree. We denote a labeled tree as 𝑇 = (𝑉 , 𝐸, Σ, 𝐿),
consisting of a vertex set 𝑉 , an edge set 𝐸, an alphabet Σ for vertex
labels, and a labeling function 𝐿 : 𝑉 → Σ. The size of 𝑇 is the
number of vertices in the tree.

A path is a sequence of vertices 𝑝 = (𝑣1, 𝑣2, ..., 𝑣𝑛) ∈ 𝑉𝑛 such
that 𝑣𝑖 is adjacent to 𝑣𝑖+1 for 1 ≤ 𝑖 < 𝑛. When the path’s first vertex
is root and the last vertex is a leaf, we call it a full path. For a tree
𝑇 , we use 𝑇 .𝑃 to represent the set of all paths in 𝑇 , and 𝑇 .𝑃𝑓 to
represent the set of all full paths in 𝑇 .
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3.1.2 Induced Subtree. For a tree 𝑇 with vertex set 𝑉 and edge set
𝐸, we say that a tree 𝑇 ′ with vertex set 𝑉 ′ and edge set 𝐸′ is an
induced subtree of𝑇 , denoted as𝑇 ′ ⪯ 𝑇 , if and only if (1)𝑉 ′ ⊆ 𝑉 , (2)
𝐸′ ⊆ 𝐸, (3) The labeling of 𝑉 ′ is preserved in 𝑇 ′. If 𝑇 ′ ⪯ 𝑇 , we also
say that𝑇 is a supertree of𝑇 ′. Intuitively, an induced subtree𝑇 ′ can
be obtained by repeatedly removing leaf vertices in 𝑇 , or possibly
the root vertex if it has only one child. For simplicity, all occurrences
of “subtree” in the latter text refer to the induced subtree.

We say two trees𝑇1 and𝑇2 are isomorphic to each other, denoted
as𝑇1 = 𝑇2, if there is a one-to-one mapping from the vertices of𝑇1 to
the vertices of 𝑇2 that preserves vertex labels and adjacency. Based
on the definition, it is easy to see that relation ⪯ is antisymmetric
and transitive, i.e., 𝑇1 ⪯ 𝑇2 and 𝑇2 ⪯ 𝑇1 imply 𝑇1 = 𝑇2; 𝑇1 ⪯ 𝑇2 and
𝑇2 ⪯ 𝑇3 imply 𝑇1 ⪯ 𝑇3. We use the symbol 𝑇1 ≺ 𝑇2 when 𝑇1 ⪯ 𝑇2
but 𝑇1 ≠ 𝑇2.

3.2 Supertree Exclusion

For a library with 𝑛 versions, we use the labeled tree set Γ =

{𝑇1,𝑇2, ...,𝑇𝑛} to represent pTrees for each version. The labeled
tree is used because each vertex in the pTree will carry extra infor-
mation – name, value, and type – which are represented as labels
mapping to vertices.

For a given library loaded at runtime, we have a pTree repre-
sented by the labeled tree 𝜙 . A simple strategy to determine the
version of a loaded library is to iterate through the trees in Γ and
check whether they are subtrees of 𝜙 . If a given tree is not a subtree,
meaning that the web page runtime does not contain the com-
plete pTree information of this library version, then the version
corresponding to this tree is not the correct one.

If we find one tree in Γ that is a subtree of 𝜙 , however, we still
cannot immediately conclude the version. Assume tree𝑇 is a subtree
of 𝜙 , then according to the transitivity of relation ⪯, all trees in Γ
that are subtrees of 𝑇 are also subtrees of 𝜙 . In real-world libraries,
the relation ⪯ between pTrees from different versions is frequent.
This occurs because the action of adding variables and methods in
a JavaScript program when updating the version is reflected in the
pTree by adding vertices to the original tree. Thus, the old pTree is
a subtree of the new one. As a result, when we find that one tree is a
subtree of 𝜙 , it is essential to further ensure that all the supertrees9
of this tree are not subtrees of 𝜙 . Based on this observation, we
construct the version detection algorithm shown in Algo. 1.

Before diving into the algorithm, two new definitions need to
be introduced to help in its formalization. First, we use the symbol
S(𝑇 ) to represent the set of all supertrees of𝑇 contained in Γ, named
supertree set. In other words, S(𝑇 ) = {𝑇 ′ ∈ Γ |𝑇 ⪯ 𝑇 ′}. Similarly, we
define the strict supertree set S𝑠𝑡 (𝑇 ) = {𝑇 ′ ∈ Γ | 𝑇 ≺ 𝑇 ′}. Moreover,
we define the equivalence class of a tree 𝑇 with respect to Γ as the
set of all trees in Γ that are isomorphic to 𝑇 , denoted as [𝑇 ], where
[𝑇 ] = {𝑇 ′ ∈ Γ | 𝑇 ′ = 𝑇 }. Both supertree set and the equivalence
class can be calculated through trivial tree comparison. Fig. 3 is an
example of these definitions.

Algo. 1 shows the algorithm to determine the library version
during web page runtime. The inputs are labeled trees set Γ, web
runtime pTree 𝜙 , together with strict supertree set and equivalence

9Strictly speaking, here should be referred to as strict supertrees rather than supertrees,
since every tree is its own supertree.

Figure 3: Assume Γ consists of six trees in the plot, we have

the𝑇1’s supertree set S(𝑇1) = {𝑇1,𝑇2,𝑇3,𝑇6}, strict supertree set
S𝑠𝑡 (𝑇1) = {𝑇2,𝑇6}, and equivalence class [𝑇1] = {𝑇1,𝑇3}. Easy
to see that S(𝑇1) = S𝑠𝑡 (𝑇1) ∪ [𝑇1].

Algorithm 1 Determine Library Version

Input: library version pTrees set Γ, web runtime pTree 𝜙 , S𝑠𝑡 (𝑇 )
and [𝑇 ] for each tree 𝑇 ∈ Γ

Output: possible pTrees loaded in 𝜙

1: for each 𝑇 ∈ Γ do

2: if 𝑇 ⪯ 𝜙 then

3: for each 𝑇 ′ ∈ S𝑠𝑡 (𝑇 ) do
4: if 𝑇 ′ ⪯ 𝜙 then

5: go to 9
6: end if

7: end for

8: return [𝑇 ]
9: end if

10: end for

class for each tree in Γ. The algorithm iterates through pTrees in Γ
to check whether one of them is a subtree of 𝜙 (line 2). If so, then
check whether all strict supertrees of this pTree are not subtrees of
𝜙 (lines 3-7). If so again, return the equivalence class of this tree as
the algorithm output (line 8). Here algorithm returns [𝑇 ] instead of
a single tree 𝑇 because the pTree-based detection algorithm is not
able to distinguish between versions whose pTrees are equivalent.

3.3 Unique Subtree Mining

3.3.1 Goal. Although we have given a deterministic algorithm
to find the base tree, in our practical application scenarios, the
library version pTrees (trees in Γ) are usually large and numer-
ous. If the algorithm in the previous section is used for runtime
detection, the time and space costs are unaffordable. As a result, in
this section, we propose an algorithm to minimize the size of trees
in Γ through unique subtree mining and ensure that the previous
algorithm remains valid. Formally put, given Γ = {𝑇1,𝑇2, ...,𝑇𝑛},
we define its minimized labeled trees set Γ𝑚 = {𝑀1, 𝑀2, ..., 𝑀𝑛},
where 𝑀1 ⪯ 𝑇1, 𝑀2 ⪯ 𝑇2, · · · , 𝑀𝑛 ⪯ 𝑇𝑛 . Our goal is to find a mini-
mum10 Γ𝑚 that satisfies replacing Γ with this new Γ𝑚 in the input
to Algo. 1 will not change the algorithm output, i.e., Algorithm1(Γ,
𝜙) = Algorithm1(Γ𝑚 , 𝜙).

3.3.2 Observations. For a tree 𝑇 ∈ Γ, suppose 𝑡 is a subtree of 𝑇 (𝑡
is not required to be contained in Γ), we say 𝑡 is a unique subtree of
𝑇 if it is not a subtree of other trees in Γ, i.e., ∀𝑇 ′ ∈ Γ − {𝑇 }, 𝑡 ⪯̸ 𝑇 ′.
Consider that 𝑡 only appears in the structure of 𝑇 , so the existence
of 𝑡 during the version detection process indicates the existence of𝑇 .

10The word “minimum” here means the number of all vertices in Γ𝑚 is minimum.
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As a result, our strategy is to calculate the minimum unique subtree
for each tree in Γ, and use these unique subtrees to constitute the
new labeled trees set Γ𝑚 . In other words, for a tree𝑇𝑖 in Γ, we choose
its minimum unique subtree as𝑀𝑖 in Γ𝑚 . The uniqueness property
of these subtrees ensures that the detection algorithm output is
unchanged. However, it is easy to induce that for any tree 𝑇 which
has a supertree other than itself, it does not exist a unique subtree,
because any subtree of 𝑇 is also a subtree of 𝑇 ’s supertrees. As a
result, in all subsequent discussions of unique subtrees, supertrees
are excluded. It is safe to do so because supertrees are also excluded
in Algo. 1.

To find the unique subtree, we define the mapping 𝑅𝑒𝑐 : 𝑝 →
P(Γ) to record the occurrences of paths in other trees. Concretely
speaking, for a path 𝑝 of tree 𝑇 ∈ Γ, 𝑅𝑒𝑐 (𝑝) maps to the set of all
trees in Γ − S(𝑇 ) that contain the same path 𝑝 . Namely, 𝑅𝑒𝑐 (𝑝) =
{𝑇 ′ ∈ Γ − S(𝑇 ) | 𝑝 ∈ 𝑇 ′ .𝑃}. In addition, we use the symbol R(𝑇 )
to represent the collection of 𝑅𝑒𝑐 values of all full paths in tree 𝑇 .
In other words, R(𝑇 ) = {𝑅𝑒𝑐 (𝑝) | 𝑝 ∈ 𝑇 .𝑃𝑓 }. Notice that R(𝑇 ) is a
multiset because different paths in a tree may have the same 𝑅𝑒𝑐
value.

Take the tree𝑇1 in Fig. 3 as an example to illustrate the definition
of 𝑅𝑒𝑐 and R. The tree𝑇1 has the following three full paths – (1,2,3),
(1,2,4), and (1,2,5). For each full path, we check its occurrences in Γ−
S(𝑇1) = {𝑇4,𝑇5}. Observed that the path (1,2,3) only appears in 𝑇4,
we can get 𝑅𝑒𝑐 ((1, 2, 3)) = {𝑇4}. Similarly, 𝑅𝑒𝑐 ((1, 2, 4)) = {𝑇4} and
𝑅𝑒𝑐 ((1, 2, 5)) = {𝑇5}. Finally, we have R(𝑇1) = {{𝑇4}, {𝑇4}, {𝑇5}}.

Now we give a key proposition about the 𝑅𝑒𝑐 collection R.

Proposition 3.3.1. For any tree 𝑇 ∈ Γ, ∩R(𝑇 ) = ∅.

Proof. Suppose ∩R(𝑇 ) is not an empty set, then there is at least
one tree 𝑇 ′ in Γ satisfying 𝑇 ′ ∈ ∩R(𝑇 ), which means that all the
full paths of 𝑇 also occur in 𝑇 ′. Hence, 𝑇 ′ is a supertree of 𝑇 , i.e.,
𝑇 ′ ∈ S(𝑇 ). This is contradictory to the definition of 𝑅𝑒𝑐 , where we
exclude the path recording in S(𝑇 ). So ∩R(𝑇 ) = ∅. □

Prop. 3.3.1 shows that the full paths in tree 𝑇 will not appear
together in any single tree contained in Γ − S(𝑇 ). In other words,
𝑇 is a unique subtree of itself. To take it a step further, if we can
find a subset 𝐶 ⊆ R(𝑇 ) which still holds ∩𝐶 = ∅, then the tree
constructed from the paths in𝐶 is a unique subtree of𝑇 . Taking the
𝑇1 in Fig. 3 as an example,𝐶 = {{𝑇4}, {𝑇5}} is the smallest subset of
R(𝑇1) that satisfies ∩𝐶 = ∅. Then we can construct the minimum
unique subtree of 𝑇1 by combining a path with 𝑅𝑒𝑐 value of {𝑇4}
and a path with 𝑅𝑒𝑐 value of {𝑇5}. As shown in Fig. 4, the first
subtree of 𝑇1 is the combination of path (1, 2, 3) and (1, 2, 5); the
second one is the combination of path (1, 2, 4) and (1, 2, 5). Both of
them are unique – not subtrees of any tree in Γ − S(𝑇1) = {𝑇4,𝑇5}.

Figure 4: Tree𝑇1 in Fig. 3 has two minimum unique subtrees.

Finding the smallest subset 𝐶 whose intersection is empty is
equivalent to a well-known NP-complete problem – the set cover
problem – which is described as follows:

Given a set of elements {1, 2, . . . , 𝑛} (called the uni-
verse) and a collection 𝑆 of𝑚 sets whose union equals
the universe, the set cover problem is to identify the
smallest sub-collection of 𝑆 whose union equals the
universe.

The set cover problem can be solved within approximate poly-
nomial time by a famous greedy algorithm shown in Algo. 2. At
each stage, it chooses the set with the largest number of uncovered
elements. This algorithm achieves an approximation ratio of 𝐻 (𝑠),
where 𝑠 is the size of the set to be covered. In other words, it finds a
set covering that may be 𝐻 (𝑛) times as large as the minimum one,
where 𝐻 (𝑛) is the n-th harmonic number:

𝐻 (𝑛) =
𝑛∑︁

𝑘=1

1
𝑘
≤ ln𝑛 + 1 (1)

Algorithm 2 MinCoverSet

Input: a set collection: 𝑆 = {𝜔1, 𝜔2, ..., 𝜔𝑛}, where 𝜔𝑖 ⊆ Γ
Output: a set 𝐼 ⊆ {1, 2, ..., 𝑛}, such that

⋃
𝑖∈𝐼 𝜔𝑖 = ∪𝑆

1: Initialization: 𝐼 ← ∅, 𝐶 ← ∅
2: while 𝐶 ≠ 𝑈 do

3: Find the 𝑖 ∈ {1, 2, ..., 𝑛} − 𝐼 , such that |𝐶 ∪ 𝜔𝑖 | is largest
4: 𝐼 ← 𝐼 ∪ {𝑖}
5: 𝐶 ← 𝐶 ∪ 𝜔𝑖

6: end while

3.3.3 The algorithm. In the previous section, we introduce three
new concepts: unique subtree, path record mapping 𝑅𝑒𝑐 , and record
collection R. We elaborate their relationship and then provide a
greedy algorithm to calculate an approximated smallest subset 𝐶
of R to satisfy ∩𝐶 = ∅, which can help us generate a minimum
unique subtree. This section formalizes our observations into the
unique subtree mining algorithm shown in Algo. 3.

Algorithm 3 Unique Subtree Mining

Input: the labeled trees set Γ = {𝑇1,𝑇2, ...,𝑇𝑛}
Output: the minimized set Γ𝑚 = {𝑀1, 𝑀2, ..., 𝑀𝑛}
1: Initialization: Γ𝑚 ← ∅
2: for each 𝑇𝑖 ∈ Γ do

3: calculate R(𝑇𝑖 )
4: 𝐼 ← 𝑀𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑆𝑒𝑡 ({Γ − 𝑟 | 𝑟 ∈ R(𝑇𝑖 )})
5: 𝑀𝑖 ← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒𝐹𝑟𝑜𝑚𝑃𝑎𝑡ℎ (𝑇𝑖 , 𝐼 )
6: Γ𝑚 ← Γ𝑚 ∪ {𝑀𝑖 }
7: end for

For each tree in Γ, Algo. 3 first calculates its path record collection
R. Then in line 4, Algo. 2 is invoked. Notice that the function input
is set R with each element taking the complement, so that, by De
Morgan’s laws, finding the smallest subset 𝐶 of R converts to the
set cover problem. The function returns an index set 𝐼 . In line 5,
the unique subtree𝑀𝑖 is built based on the index set 𝐼 , and is then
appended to the set Γ𝑚 in line 6.

Algo. 4 shows the detail of unique subtree construction. The
input to the algorithm is a tree 𝑇 and an index set 𝐼 . We select the
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full path whose index appears in the index set 𝐼 to construct the
tree.

Algorithm 4 BuildTreeFromPath

Input: a tree𝑇 with a full path set𝑇 .𝑃𝑓 = {𝑝1, 𝑝2, ..., 𝑝𝑘 }, an index
set 𝐼 ⊆ {1, 2, ..., 𝑘}

Output: the unique subtree𝑀
1: Initialization:𝑀 ← ∅
2: for each 𝑖 ∈ 𝐼 do
3: Add path 𝑝𝑖 to the tree𝑀
4: end for

If we take trees in Fig. 3 as the input to Algo. 3, the output will
be Γ𝑚 constituted by unique subtrees displayed in Fig. 5.

Figure 5: The minimized labeled tree set Γ𝑚 , consisting of

minimum unique subtrees of trees in Fig. 3.

3.4 Algorithm Time Complexity

For the unique subtree mining stage, calculating the path record
collection R has the highest complexity. In this step (Algo. 3 line
3), the algorithm needs to check the existence of every full path in
all other trees in Γ, so the time complexity is 𝑂 (𝑛 · 𝑁 2), where 𝑛
represents the number of trees in Γ, and 𝑁 represents the number
of vertices in Γ.

When the isomorphism exists between pTrees in large numbers,
prioritizing the computation of equivalence classes can effectively
decrease time spent on calculating the path record collection R.
Prior work [16] shows that at most 𝑛2/𝑚 + 𝑛 equality comparisons
are sufficient to find all equivalence classes for 𝑛 elements, where
𝑚 is the largest size among all equivalence classes. Using their
algorithm, we can shrink the value of 𝑛 and 𝑁 in the complexity of
path record calculation, and the correctness of the algorithm will
not be affected.

The time complexity to determine the library version (Algo. 1)
using minimized tree set Γ𝑚 is 𝑂 (𝑛) because each tree in Γ𝑚 needs
to be compared with 𝜙 at most once. In other words, 𝑛 times subtree
relationship examinations are enough to get the algorithm output.

4 Implementation

We implemented our algorithm into a Chrome extension published
on the Chrome Web Store [1]. Fig. 6 shows the overall workflow
of PTV library feature generation and web runtime library version
detection. PTV is built on top of PTdetector.

4.1 Feature Generation Stage

The feature generation stage is completed offline using a trivial local
web server. For a library with 𝑛 versions, we first load every version

of the library file in an empty web page, and use PTdetector to
generate the pTree for each library version, represented as Γ =

{𝑇1,𝑇2, ...,𝑇𝑛}.
Inner dependency and outer dependency of each version are

required as input to PTdetector to eliminate the dependency im-
pact 11. Outer dependencies can be easily fetched from libraries’
official sites, while inner dependencies can only be inferred by read-
ing the library’s raw code, which is time-consuming. However, for
version detection usage, inner dependencies will not only have no
impact on the accuracy of the detection, but will also provide more
information to allow us to differentiate versions. So, for each ver-
sion of a library, we only provide its outer dependency information.
In addition, we made some modifications to the pTree generation
process. In the pTree generated by PTdetector, the vertex of the
“array/set/map” type is stored with the number of elements as the
value to avoid generating large trees. Since this strategy does not
consider the actual elements of the data structure it represents,
it does not provide effective differentiation among such types of
vertices. To account for the values stored in such data structures in
the pTree, we modify PTdetector to use the MD5 checksum value
of JSON stringified “array/set/map” variable as the vertex value.

Then we use the unique subtree mining algorithm (Algo. 3) to
generate the minimized pTrees set Γ𝑚 and save it in a local file for
PTV runtime version detection. The original pTree of the library’s
latest version will be stored for PTdetector library detection.

4.2 Detection Stage

The detection part of PTdetector is implemented as a Chrome
extension that identifies libraries in the browser at runtime. We
modify its workflow to enable version detection in PTV as given
in the right part of Fig. 6. For a target web page, PTdetector
will make use of libraries’ latest version pTree to identify loaded
libraries and their root locations X in the browser runtime pTree.
Then we apply Algo. 1 using the minimized pTrees set Γ𝑚 as input
to identify the specific library version. Another input 𝜙 to Algo. 1
is the pTree rooted at X. The detected version information will be
displayed in the PTV extension popup menu.

5 Evaluation

5.1 Experiment Setup

All the experiments are conducted on macOS Sonoma (V 14.1.1)
with an Apple M1 chip and 8 GB of memory. All the web pages are
opened in Chrome 118.0.5993.88 (Official Build) (arm64).

5.2 RQ1: How effective is the minimization of

PTV?

To set up an experimental dataset, we crawled Cdnjs to gather 700
libraries with the highest number of GitHub stars. From the top
700 libraries, we removed those that are not designed to run on
the web front-end and those which cannot be loaded successfully
due to unknown missing dependencies. We also excluded four
frameworks – React, Vue, Next.js, and Preact. As explained in the
PTdetector [21], the code for these frameworks mounted on CDN

11More discussion about inner dependency and outer dependency can be found in
[21] Sec.III.C.(1).
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Figure 6: PTV library version feature generation and runtime detection workflow.

is their runtime debugging tool and we do not consider them in our
experiments.

After the exclusions, our dataset consists of 556 libraries with
30,810 versions. We load each on our local server and generate a
pTree for each version, setting the depth limit as four and the size
limit as 1000 12. Our results show that the average size of generated
pTrees is 323, so the limit of 1000 is reasonable. During generation,
a total of 1,304 (4.2%) library versions reached either the pTree size
limit or the depth threshold. After applying the PTV unique subtree
mining algorithm, we generate minimized pTrees for every library,
with the average size of the pTree being 3.4. Our algorithm reduces
the total size of required pTrees for all 556 libraries from 10,654,002
to 72,950. Thus, we are able to reduce the memory footprint by
99.32%. On average, 8 bytes are required to store one pTree vertex
in zipped JSON format. With minimization, to store all pTrees
needed for version detection for all libraries currently on Cdnjs,
2, 509, 859 × 3.4 × 8𝐵 = 65.45𝑀𝐵 of space is required. The detection
precision is not affected by this reduction, as will be shown in
subsequent research questions (RQs).

Table 1 shows the time overhead breakdown of each algorithm
stage during PTV minimization. In total, generating minimized
pTrees for 556 libraries takes 1886.7 seconds (about half an hour),
and a single library takes 3.4 seconds on average. Calculating the
path record takes up the vast majority of the time (95.0%), while
the equivalence class calculation stage takes only 4.9% of the time.

Table 1: Time overhead to generate feature information for

556 libraries.

Equivalence class Path Record Other Total

Refer [16]
Theorem 1

Algo. 3
line 3 - -

Time 93.2 s 1791.0 s 2.5 s 1886.7 s
avg. Time 0.2 s 3.2 s 4.5 ms 3.4 s
Percentage 4.9% 95.0% 0.1% 100%

Answer to RQ1: PTV greatly reduces the size of the needed
pTrees for version detection (99.32%), thus making pTree-based
version detection possible. 65 MB is sufficient for all libraries on
Cdnjs and the time overhead of PTV minimization workflow is
acceptable.

12It is not hard to infer that when every pTree of one library is trimmed based on the
same depth limit, all the properties of the minimization still hold. However, this is
not true for the size limit trimming. In practice, we need a size limit to avoid extreme
cases.

5.3 RQ2: Is the result of PTV correct?

In this research question, we apply detectors on our hand-made web
pages and compare PTV with the most popular open-source tool
Library-Detector-for-Chrome (LDC) and one of the best commer-
cial tools Wappalyzer13. Wappalyzer has 2,000,000+ users on the
Chrome web store. Both LDC andWappalyzer are hard to automate
for testing, so we have to manually open the web pages and record
the detection results. To properly measure their version detection
ability, some definitions should be introduced in advance.

5.3.1 Definitions of measurement. When a library is detected on
a web page, detectors will give out a range of versions as the de-
tection result14. We use the symbol D to represent the set of all
versions suggested by a detection result (note one detection repre-
sents one library). Every element in D may be the true version of
this library. Suppose D1 and D2 represent the detection result sets
of two different tools applied on the same library, depending on
the relationship between D1 and D2, we specify five relationships
shown in Table 2 to compare the detection abilities of the two tools
for this library.

Table 2: Five different detection ability relationships.

(D1,D2 ≠ ∅)

Relationship between D1 and D2 Statement
D1 = D2 D1 and D2 are consistent
D1 ⊂ D2 D1 is more precise than D2
D1 ⊃ D2 D1 is less precise than D2
D1 ∩ D2 = ∅ D1 and D2 are inconsistent
otherwise D1 and D2 are partly consistent

We expect that the detection results should be as precise as possi-
ble. In the best case, there is only one element in the result set – the
correct version value. Sometimes the detection results of different
tools are inconsistent or partly consistent if the symmetric differ-
ence of result sets is not empty. In such cases, we cannot directly
compare which tool performs better.

For users, the detection results are normally not shown in the set
format, and we need to induce D based on the result description
displayed by the tool. To illustrate, suppose there are five versions
of core-js in our experiment dataset – “2.7.0”, “2.8.0”, “2.9.0”, “3.0.0”,
and “3.1.0” – which are loaded separately into five empty web pages.
13https://www.wappalyzer.com/
14PTV gives a range only when there exist isomorphic pTrees of different versions.
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Then we apply a tool marked 𝐴 to detect the version of core-js on
each web page and collect the detection results. Here, we useD𝐴 to
represent the result set of tool 𝐴, and D𝐺 to represent the ground
truth set. Table 3 demonstrates the value of D𝐴 under different
result descriptions.

Table 3: An example to show how to induce D𝐴 based on the

detection result descriptions.

D𝐺 Result description of 𝐴 D𝐴

{2.7.0} library not detected ∅
{2.8.0} unknown version {2.7.0, 2.8.0, 2.9.0, 3.0.0, 3.1.0}
{2.9.0} 2.9.0 {2.9.0}
{3.0.0} ≥ 3.0.0 {3.0.0, 3.1.0}
{3.1.0} < 3.0.0 {2.7.0, 2.8.0, 2.9.0}

As shown in Table 3, when the library fails to be detected, D𝐴

is ∅; when the detection result is “unknown” for the version but
the library is correctly identified, D𝐴 is the set of all versions, i.e.,
all versions may be true; other cases follow naturally. Based on the
statements in Table 2, we can describe the detection ability of 𝐴
on core-js as: 𝐴 fails to detect core-js on “2.7.0”; 𝐴 is less precise
than the ground truth on “2.8.0” and “3.0.0”; 𝐴 is consistent with
the ground truth on “2.9.0”; 𝐴 is inconsistent with the ground truth
on “3.1.0”.

In some cases, detectors do not provide a result consistent with
the ground truth. It is satisfactory enough if the true version is
contained in the detection result set, and we call such detection
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 . Formally put, for one detection on version 𝑣 , D is correct
if 𝑣 ∈ D. Based on this definition, if several tools have inconsistent
results in one detection, then at most one of them is sound.

5.3.2 Correctness. Determining whether the PTV are capable of
producing correct version detection results is crucial. To test this, we
select 64 libraries (encompassing 3,533 versions) that can be version-
detected by both LDC and Wappalyzer, set up an empty local web
page to load each version of these libraries sequentially, and record
the detection results of three tools on this web page. Controlling
which version is loaded allows us to establish the ground truth. If
the detection result does not contain the correct loaded version, we
mark this detection as incorrect.

Figure 7: The mislabeled version number of 23 libraries.

Our results show that 151 versions are incorrectly identified by
LDC; 190 by Wappalyzer; while PTV correctly identifies all 3,533
versions. This is not surprising as PTV guarantees correct results
at the algorithm level, i.e., the correct version must be contained
in the result. Wappalyzer has more incorrect detections than LDC
due to uncertain technical defects15. For LDC, we find that all
incorrect results stem from mislabeling. Recall that LDC identifies
versions by reading labels, but sometimes library developers forget
to update the version label in a newer version. We call such an
explicit-labeled version that is assigned an incorrect version label a
mislabeled version. PTV is effective in finding mislabeling. Among
the total of 2,710 explicit-labeled library versions in the 64 libraries,
151 (5.6%) of them are mislabeled, coming from 23 different libraries.
Fig. 7 displays the number of mislabeled versions.

In Fig. 7, most libraries have fewer than ten mislabeled versions,
while libraries “YUI 3” and “FlotCharts” have rather high numbers of
mislabeled versions – 37 and 40, respectively. We inspected each of
these versions manually. The version management of both libraries
is quite chaotic – more than half of the versions are stored with
incorrect version information. Besides, mislabeling appears in both
small libraries with less than 4k Github stars – “Rapha&euml;l”,
“Moment Timezone”, “Processing.js”, and well-maintained libraries
with more than 40k Github stars – “Lo-Dash”, “core-js”, “Pixi.js”.
One conclusion is that incorrectly labeled version information is
common among web libraries, and determining the version by the
version property is not reliable.

Table 4: Version detection comparison between PTV and LDC

/ Wappalyzer / ground truth on the 64 libraries test suite.

(Only considering correct results)

PTV Frequency
versus LDC versus Wappalyzer versus D𝐺

consistent 2246 (66.0%) 1208 (36.1%) 2503 (70.8%)
less precise 50 (1.5%) 26 (0.8%) 1030 (29.2%)
more precise 1106 (32.5%) 2109 (63.1%) 0

partly consistent 0 0 0
sum 3402 3343 3533

Table 4 displays the detection result comparison of PTV against
two tools and the ground truth D𝐺 on 64 libraries after excluding
incorrect results. We can see that to a very large extent (around
99%), the results of PTV are consistent with or more precise than
LDC andWappalyzer. There are only a small number of cases where
PTV is less precise. These cases are caused by identical pTrees. In
these PTV will provide less precise but correct results if the pTrees
of mislabeled versions are identical. In 70.8% of cases, PTV gives an
accurate single version number consistent with the ground truth. In
29.2% of cases, PTV gives a version range as the result, which is less
precise than the ground truth. This occurs because some pTrees of
different versions are isomorphic. As a result, pTree-based methods
are theoretically unable to distinguish between these versions and
will output all of them as potential candidates.

Overall, the correctness of our approach is grounded in the theo-
retical soundness of our detection algorithm. It ensures conservative

15It is hard to reason about this since the source code and the implementation details
of Wappalyzer are not publicly available.
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detection: if multiple versions are indistinguishable, it reports a
version range instead of a potentially incorrect single version.

5.3.3 Bundling. To evaluate whether PTV can effectively detect
libraries that have been wrapped by bundlers, we conducted a pre-
liminary experiment testing various bundling configurations. We
selected ten of the most popular libraries in our dataset—based on
GitHub star counts—that have up-to-date counterparts on npm. The
latest versions of these libraries were imported from npm, bundled
using Webpack16 (v5.99.9) in “production” mode, and deployed on
our minimal test website.

In the first configuration, we explicitly exposed each library to
the global scope using the Webpack expose-loader17. Under this
setting, PTV successfully identified all ten libraries. In contrast,
when using the default Webpack configuration — without expose-
loader — PTV was able to detect seven out of the ten libraries:
three.js, jQuery, Lo-Dash, Leaflet, Backbone, Underscore, and core-js.
The remaining three libraries — Bootstrap, D3, and Moment.js —
were not detected.

By default, Webpack employs Immediately Invoked Function
Expressions (IIFEs) to isolate libraries in local scopes, preventing
them from leaking into the global namespace. However, we found
that the seven detected libraries explicitly register their identifiers
on the global window object when they find the browser environ-
ment. This behavior leaves a detectable memory footprint that PTV
can leverage for identification. This design choice aligns with the
intended usage model of many web libraries: they are meant to
provide globally accessible APIs that remain available throughout
the entire lifecycle of a web page to handle user interactions dynam-
ically, rather than acting as temporary variables that are discarded
after page initialization.

Answer to RQ2: PTV correctly identified all the library versions
in our experiment set, while LDC andWappalyzer did not. Among
64 libraries, 23 of them have mislabeled versions leading to in-
correct detection by LDC and Wappalyzer. Besides, PTV exhibits
partial effectiveness on detecting bundled libraries.

5.4 RQ3: How does PTV perform in the wild?

To answer this question, we evaluated PTV using the 200 top-traffic
websites dataset introduced in the PTdetector paper [21], and
compared its results with those of LDC and Wappalyzer. We aimed
to assess PTV’s performance in one of its most direct applications:
identifying vulnerabilities across these websites.

5.4.1 Library Identification. We extend PTdetector to be able
to detect 556 libraries (the same ones used in RQ1) – this system
is equivalent to PTV with version detection turned off. Table 5
presents the number of detectable libraries, detected libraries, and
detected library occurrences across four tools on the homepages
of 200 top websites. We can see that the original PTdetector,
which contains the feature information of only 83 libraries, shows a
similar library detection ability compared to LDC and Wappalyzer.
But our extended PTdetector detects 79 different libraries with 413
occurrences, almost twice the number of other tools. Furthermore,

16Webpack, a widely-used module bundler for web: https://webpack.js.org/
17Webpack expose-loader: https://webpack.js.org/loaders/expose-loader/

all library occurrences detected by other tools are also detected by
our tool. The breakdown of occurrences for each library detected
by our tool is shown in Fig. 8.

Table 5: Numbers of libraries detected by different tools on

the top 200 web pages.

LDC Wappalyzer PTdetector extended

PTdetector

Detectable Libraries 123 unknown 83 556

Detected Libraries 32 35 36 79

Library Occurrences 238 237 289 413

Figure 8: Library occurrences number detected by extended

PTdetector.

5.4.2 Vulnerability Assessment. We collected the version detection
results from LDC, Wappalyzer, and PTV (built on the extended
PTdetector) and cross-referenced them with the Snyk database,
which specifies the impacted version ranges of libraries, enabling
us to assess the number of vulnerabilities present on these web-
sites. When counting the number of vulnerabilities, we adopt a
conservative approach: a vulnerability is considered detected only
if the version range identified by the detection tool falls entirely
within the impacted version range specified for the vulnerability.
Note that we are not confirming whether the vulnerable code has
been actively used on the site but are highlighting the presence of
vulnerable libraries, which inherently pose a security risk.

Out of the 200 websites analyzed, 77 were found to include at
least one library, and more than half of these (44 sites) had at least
one vulnerability due to using identified outdated libraries. Ta-
ble 6 provides a breakdown of the number of known web library
vulnerabilities identified by the three tools, categorized into nine
vulnerability classes. In summary, PTV detects the highest number
of vulnerabilities, encompassing all those identified by LDC and
Wappalyzer, and is the only tool that uncovers a critical vulnerabil-
ity. This vulnerability was found on the U.S. government website
www.noaa.gov, which uses an outdated version of the JavaScript
template library “handlebars.js”18. LDC and Wappalyzer detected

18CWE-1321: A prototype pollution, affecting handlebars.js versions <3.0.8 or >=4.0.0
<4.5.3. The version used on www.noaa.gov is 4.0.4.

https://webpack.js.org/
https://webpack.js.org/loaders/expose-loader/
www.noaa.gov
www.noaa.gov
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Table 6: Vulnerabilities found by each detector. For each tool we show the severity of the identified vulnerabilities: critical (C),

high (H), medium (M), low (L), and their total number (T). The winning numbers of PTV are flagged using gray boxes.

Class Affected libraries
Vulnerability occurrences found

by LDC by Wappalyzer by PTV
H M L T H M L T C H M L T

Cross-site Scripting (XSS) 14 2 76 19 97 77 19 96 11 100 24 135

Prototype Pollution 6 20 4 24 20 4 24 1 25 7 33

ReDoS 3 2 10 12 2 10 12 3 10 13

Code Injection 1 4 4 4 4 4 4

Content Injection 1 1 1 1 1 1 1

DoS 1 0 0 1 1

Remote Code Execution 1 0 0 1 1

Template Injection 1 0 0 1 1

Arbitrary Code Execution 1 0 0 1 1

TOTAL 19 28 91 19 138 26 92 19 137 1 46 119 24 190

the presence of this library, but they failed to determine its spe-
cific version due to the lack of manually collected version patterns,
resulting in the oversight of this critical vulnerability; while PTV
can pinpoint the version through matching the unique features
automatically extracted from each version of the library.

5.4.3 Overhead Analysis. For every web page, we record the time
starting from clicking the tool button until detection results are
displayed. For each tool, we repeat the recording three times and
take the average as the overhead value to mitigate the impact of
network fluctuations. Fig. 9 uses box plots to depict the overhead
distributions of four tools.

Figure 9: Runtime overhead distribution of different tools

on 200 web pages.

We can observe that Wappalyzer has the fastest response time
despite showing the poorest version detection ability. Then comes
the original PTdetector, whose response time mostly ranges from
0.95 to 1.75 seconds. The third one is LDC, with a slightly higher
response time than PTdetector. Our tool PTV is based on the
extended PTdetector, having the highest response time because
the number of libraries it integrates is much larger than other tools
(556 compared to ∼100). For most of the web pages, our tool can
complete detection within five seconds, which is acceptable for
average users. In addition, our tool provides an option for users to
control the number of libraries they wish to add to the scanning
queue, so users can tailor the response time to fit their use cases.

Answer to RQ3: Our extended version of PTdetector is capable
of detecting significantly more libraries on web pages. Compared
to existing tools, PTV identifies 52 (37.7%) additional vulnerabili-
ties while maintaining a reasonable performance overhead.

6 Related Work

Tree and Forest Algorithms. In the program analysis field, tree
algorithms are often applied to structures such as abstract syntax
trees (ASTs) [7, 10, 12, 32]. These works focus on identifying sim-
ilarities or differences between two trees, rather than addressing
the multiple-to-one matching problem introduced in our paper. Re-
garding forest algorithms, prior work mainly centered on mining
frequent subtrees from databases of labeled trees. To the best of our
knowledge, we are the first to address the problem of identifying
the unique substructure of each tree in the forest and to apply this
approach to a real-world detection task. Here we list some key prior
works. [40] developed the TreeMiner algorithm for mining frequent
ordered embedded subtrees. [4] proposed the FREQT algorithm.
[5, 24] extended to the general case in which siblings may have
the same labels. [36, 39] first applied the path join approach to the
mining. [9] introduced the FreeTreeMiner, which applied mining to
labeled free trees and was extended by [31]. [8] gave a systematic
overview of works in this field.

Library Detection. Library detection aims to find the code reuse
in software. PTdetector [21] is the first academic tool proposed for
web applications. Prior to it, many approaches have been proposed
to detect third-party libraries for desktop and Android applications.
Various research [6, 20, 22, 25, 33, 37, 42] tried to extract features
of libraries and use different techniques to identify libraries and
their versions. Xian Zhan et al. [41] conducted the first empirical
study on Android library detection techniques. However, all of these
methods are static analysis, which cannot identify libraries that
are dynamically loaded at runtime or are with dynamic behaviors,
which is a common case for web libraries.

Web Library Analysis.Many different kinds of library analysis
works have been done. [11] presented a pragmatic approach to
check the correctness of TypeScript files with respect to JavaScript
library implementations. [19] explored the concept of a reasonably
most general client and introduced a new static analysis tool for
TypeScript verification. [29] presented an automated method to
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detect JavaScript libraries’ conflicts and showed that one out of
four libraries is potentially conflicting. [23] developed the tool Tapir
that finds the relevant locations in the client code to help clients
adapt their code to the breaking changes. [38] proposed a tool to
programmatically detect hidden clones in npm and match them
to their source packages. Their tool utilizes a directory tree as a
detection feature, which does not apply to the front-end library.
[30] conducted a large-scale empirical analysis of bundled web
libraries and assessed their posture with regards to software supply
chain security. However, due to the absence of an advanced version
detection tool, they only identified the version for one library —
Lodash — resulting in coarse vulnerability analysis.

7 Threats to Validity

The first threat concerns our evaluation in RQ2, where we construct
a controlled set of synthetic web pages to isolate and assess the
correctness of library version detectors. While this setup enables
fine-grained validation on individual versions, it may not fully cap-
ture the complexity of real-world deployments – factors such as the
presence of library versions released after our feature generation
stage may lead to incorrect results when applied to live websites.
Moreover, the 64 libraries selected for evaluation are primarily
widely used libraries, which tend to have richer pTree representa-
tions, allowing PTV to more effectively differentiate versions. For
less popular libraries with smaller or less distinctive pTrees, PTV
can still produce correct results but probably with reduced precision
compared to the performance observed in our experiments.

Another threat to validity is that the RQ3 results based on the
top-traffic websites may not be able to be generalized to other
websites. Although we believe that the top-traffic websites provide
a good overview of the web, our experiment results may not be
reproducible on more specialized and niche websites, as they may
utilize more specialized libraries.

For the vulnerabilities identified, we did not conduct an in-depth
analysis to determine whether they could be practically exploited.
This paper primarily focuses on validating the feasibility of the pro-
posed algorithm. A comprehensive security analysis would require
substantial additional effort and is therefore left for future work.

8 Limitations

One limitation of our approach is the requirement of retraining –
going through the feature generation workflow every time a new
library version is released. To mitigate this limitation, we have
fully automated the PTV workflow. The cost to generate features
from scratch is reasonable — half an hour for 556 libraries. This
automation enables PTV to periodically crawl all libraries, generate
up-to-date detection features, and ensure coverage of the latest
versions. We picked 1 week as the crawling interval, but this can
be changed to better mirror the release schedule of libraries.

Another limitation of PTV is its inability to detect all libraries that
are wrapped within bundlers, as mentioned in RQ2. To enable pTree-
based detection for libraries hidden in local scopes, a promising
direction is the use of static instrumentation techniques to explicitly
expose library objects to the global context prior to runtime analysis.
For example, the method proposed by Rack and Staicu [30] can be
employed to locate import statements in the bundled code — such

as “var t = n(692);” — and inject a line like “window.scope01
= { t };” to make the library object globally accessible. This
approach can be further integrated as a preprocessing toolchain
within PTV.

9 Conclusion

To enable pTree-based web library version detection, this paper
introduces an algorithm to extract unique features out of each tree
in the forest of pTrees, one for each version. This significantly
reduces the space required for version detection.

Conceptually, the JavaScript execution environments across web
and npm platforms are similar, both of which support pTree-based
analysis. Thus, we believe our tool, with minor modifications, could
be applied on the npm platform. Besides, the algorithm proposed in
this paper is not limited to just library version detection; we believe
our algorithm will be a handy tool for any detection problem whose
features can be represented as a tree structure.
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