
Exploring and Improving Real-World Vulnerability Data
Generation via Prompting Large Language Models

Guangbei Yi∗
Washington State University

guangbei.yi@wsu.edu

Yu Nong
University at Buffalo, SUNY

yunong@buffalo.edu

Minzhang Li
Washington State University

minzhang.li@wsu.edu

Haipeng Cai†
University at Buffalo, SUNY

haipengc@buffalo.edu

Abstract
Data-driven approaches have proven to be promising for vulner-
ability analysis, contingent on quality and sizable training data
being available. Several dedicated vulnerability data generation
techniques have demonstrated strong merits, yet they are limited to
simple (single-line injection induced) vulnerabilities only and suffer
from overfitting to seed samples. Large language models (LLMs)
may overcome these fundamental limitations as they are known
to be effective at generative tasks. However, it remains unclear
how they would perform on the task of vulnerable sample gen-
eration. In this paper, we explore the potential and gaps of seven
state-of-the-art (SOTA) LLMs for that task via prompting.

We reveal that the LLMs are capable of injecting vulnerabilities,
with advanced prompting strategies such as few-shot in-context
learning and our new vulnerability-introducing code-change se-
mantics (VICS) guided prompting boosting the effectiveness, achiev-
ing up to 93% success rate on a synthetic dataset and 88% on real-
world code. The LLMs can effectively perform both single- and
multi-line injections, addressing a key limitation of prior work.
Notably, they exhibit a strong preference for replacement edits,
different from ground-truth patterns, and their effectiveness varies
across CWE types. Furthermore, LLMs, particularly with VICS, out-
perform existing SOTA vulnerability generators with success rate
improvements of up to 210%-343%. Crucially, the LLM-generated
data substantially improves the performance of downstream DL-
based vulnerability analysis models, especially with multi-line in-
jections, boosting their accuracy by up to 70.1%. The generated
samples also enhance the effectiveness of other LLMs for vulnera-
bility analysis via RAG, with multi-line-injected samples yielding
up to 16.5% gains. Most importantly, our findings reveal that, aug-
menting existing DL models with high-quality, LLM-generated data
can lead to vulnerability analysis performance (up to 67.50% accu-
racy) superior to that of even the most advanced LLMs performing
the same analysis (up to 27.40%), indicating the usefulness of the
LLM-generated vulnerability data at present and in the longer term.

∗The author participated in this work primarily as an REU student.
†The corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/3744916.3773176

CCS Concepts
• Security and privacy→ Software security engineering.

Keywords
vulnerability analysis, data augmentation, deep learning, large lan-
guage models, prompting, code generation
ACM Reference Format:
Guangbei Yi, Yu Nong, Minzhang Li, and Haipeng Cai. 2026. Exploring
and Improving Real-World Vulnerability Data Generation via Prompting
Large Language Models. In 2026 IEEE/ACM 48th International Conference on
Software Engineering (ICSE ’26), April 12–18, 2026, Rio de Janeiro, Brazil.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3744916.3773176

1 Introduction
The dependability of the cyber world is widely afflicted by security
vulnerabilities in the software which underlies its critical opera-
tions [14, 15, 30, 57]. Thus, defending against software vulnera-
bilities, which continue to grow in number and impact [32], has
become increasingly critical and urgent [19, 56]. Among various
response solutions, data-driven approaches have been gaining ris-
ing momentum for a variety of vulnerability analysis tasks [11, 13,
24, 25, 29, 36, 38, 40, 60, 65] due to their promise to overcome key
(e.g., imprecision and/or low-coverage) limitations of traditional,
code-analysis-based techniques [7, 35, 44].

By its nature, like any data-driven solutions, data-driven (e.g.,
deep-learning (DL) or large-language-model (LLM) based) vulner-
ability analysis relies on quality and sizable vulnerability data to
train its model in order to be effective [46, 47]. Intuitively, the model
would not be able to deal with a vulnerability unless similar ones
have been seen in its training data, including vulnerable and non-
vulnerable (normal) code samples. Normal samples are widely and
richly available, while high-quality, labeled vulnerable samples are
relatively scarce—and they are expensive to curate. Yet the model’s
knowledge about vulnerabilities is learned mainly from vulnerable
samples. In fact, the dearth of such samples has been recognized and
the problem has been studied in the last few years [11, 16, 18, 48],
corroborating the critical need for, yet the present lack of, more
vulnerability data (of good quality).

Yet manually curating large, quality vulnerability datasets is
clearly undesirable and not scalable. Thus, researchers have ex-
plored automated techniques for generating vulnerable samples
through vulnerability injection (i.e., injecting vulnerabilities from a
given, relatively small set of seed samples to the widely available
normal programs to generate vulnerable samples at scale [45–47].

1

https://orcid.org/0009-0009-6679-5153
https://orcid.org/0000-0002-8598-5181
https://orcid.org/0009-0003-0474-260X
https://orcid.org/0000-0002-5224-9970
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3773176
https://doi.org/10.1145/3744916.3773176

Indeed, such automated generated vulnerable samples have proven
to be quite conducive to boosting the performance of data-driven
(especially DL-based) vulnerability analysis [46, 47] by augmenting
the training of respective DL models. Yet despite their impressive re-
sults, state-of-the-art (SOTA) techniques dedicated to vulnerability
sample generation suffer from two fundamental limitations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

BigVul DiverseVul

Single‐line edit
Multi‐line edit

Figure 1:Real-world
vuln. complexity.

First, they are designed to only inject
vulnerabilities through single-line ed-
its [45–47]: i.e., the vulnerabilities need
just changing one line of code to be in-
jected. As a result, the generated sam-
ples represent relatively simple scenar-
ios, which are expected to mainly help
downstream DL (e.g., vulnerability de-
tection) models deal with (e.g., detect)
simple vulnerabilities too, but less likely
to help them deal with more complex vulnerabilities (that would
need multi-line edits to inject). On the other hand, our motivating
study shows that the vast majority of real-world vulnerabilities
are in the more-complex category. As depicted in Figure 1, in both
BigVul [22] and DiverseVul [12], two of the currently largest and
most diverse real-world vulnerability datasets, over 65% of the vul-
nerabilities are out of scope (i.e., requiring multi-line injections) for
the existing most powerful vulnerable sample generators [45, 47].
Thus, the bigger part of the data problem remains unaddressed—we
are still in critical need for complex (multi-line) vulnerability data to
augment data-driven models so that they may detect such complex
vulnerabilities, which are more urgent to detect.

Second, these SOTA solutions extract vulnerability-injection
patterns from a given set of (seed) vulnerable samples and their
paired fixed versions. Thus, their effectiveness is limited and likely
overfit to those seed samples, which are generally small in size. The
latest, dedicated vulnerability data generation technique, VGX [45],
mitigates this limitation by manually deriving and diversifying
those patterns, which compromises its scalability. Apparently, this
second limitation is hard to overcome, so is the first one, due to the
nature of the core design. A new direction ought to be sought.

In this paper, we explore such a new direction in automated
vulnerability data generation—by leveraging LLMs. Recently, LLMs
appear to be promisingly capable of (code) generation. Thus, it
is valuable to exploit the generative power of LLMs to crack the
critical data challenge in data-driven vulnerability analysis.

We examine the potential and gaps of seven LLMs of different
kinds (general vs. code-oriented, and generative vs. reasoning),
using both a synthetic and a real-world dataset so that we can
comparatively assess the challenge of generating synthetic ver-
sus realistic vulnerabilities with LLMs. For each LLM, we adopt
three prompting strategies: standard, few-shot in-context learn-
ing (ICL), and our specifically designed vulnerability-introducing
code-change semantics (VICS) guided prompting which is based on
the idea of chain-of-thought (CoT). Across these LLMs, the success
rates on the synthetic and real-world dataset range from 34–91%
and 20–72% with standard prompting. Few-shot ICL helps, rais-
ing the success rates to 49–93% and 62–84%, while VICS further
boosts them to 56–94% and 68–88%, on the synthetic and real-world
datasets, respectively, demonstrating their consistent effectiveness
in improving the quality of generated samples.

Beyond assessing the overall effectiveness of LLMs in injecting
vulnerabilities, our study delves deeper into the characteristics of
these injections, examining the types of code edits (additions, dele-
tions, replacements), their complexity (single-line vs. multi-line),
and their performance across different CommonWeakness Enumer-
ation (CWE) categories. We also conduct a comparative analysis
against existing state-of-the-art vulnerability generation techniques
to benchmark LLMs’ capabilities. To examine whether the gener-
ated vulnerability samples are practically useful and effective for
boosting data-driven vulnerability analysis performance, we use
the LLM-generated data to augment the training datasets of SOTA
DL-based vulnerability analysis models. Besides, we also explore
whether these generated samples can enhance the effectiveness of
other LLMs when used for the same vulnerability analysis task.

Among other findings, our study reveals that:
• LLMs are highly effective at injecting vulnerabilities. With
VICS, the seven studied LLMs achieve vulnerability injection
success rates of up to 94% on synthetic datasets and 88% on
real-world datasets.

• LLMs inject vulnerabilities with diverse characteristics.
LLMs demonstrate the ability to generate both simple and com-
plex multi-line vulnerabilities, which better reflect real-world
flaws and are more typical of real-world vulnerable code, aligning
with ground-truth patterns. Success rates varied across CWEs,
indicating varying effectiveness on different vulnerability types.
Furthermore, LLMs exhibit a strong preference to replacement
edits, different from ground-truth vulnerability-introducing code-
change patterns which tend to delete code more often.

• LLMs remarkably outperform existing vulnerability-inject-
ion techniques. Compared to SOTA, dedicated vulnerability
generators VulGen [47] and VGX [45] as baselines, LLMs with
VICS demonstrate superior performance (210%-343% higher suc-
cess rates). This merit is particularly due to LLMs’ capability of
multi-line injections and their diverse modification patterns.

• LLM-generated vulnerable samples substantially improve
downstream DL-based vulnerability detection. When added
to the training sets of DL-based (line-level) detectors FVD-DPM
and LineVul, LLM-generated samples lead to huge performance
gains. For instance, GPT-4o’s multi-line-injection resulting sam-
ples boost FVD-DPM’s Top-1 accuracy by 36.21% and LineVul’s
Top-1 accuracy by 70.08%. This highlights the critical role of
high-quality, LLM-generated data in enhancing the capabilities
of specialized DL models for vulnerability analysis.

• LLM-generated data improves the effectiveness of other
LLMs for vulnerability analysis through Retrieval Aug-
mented Generation (RAG).When LLMs are augmented with
LLM-generated data via RAG, their vulnerability analysis per-
formance improves too. For example, Llama-3’s Top-10 accuracy
increased from 14.8% to 31.3%, and Claude-3.5’s from 22.9% to
28.5% with the LLM-generated samples. This indicates that LLMs
themselves benefit from access to high-quality vulnerability data
generated by other LLMs.

• LLM-generated data enables existingmodels to outperform
direct LLM vulnerability analysis. Importantly, our findings
reveal that augmenting existing DL models with high-quality,
LLM-generated data can yield vulnerability analysis performance

2

(up to 67.50% Top-10 accuracy) superior to those of even the most
advanced LLMs performing the same analysis directly (up to
27.40% Top-10 accuracy), indicating the usefulness of the gener-
ated vulnerability data even in the era of LLMs.

Based on our findings, we propose several actionable recommen-
dations to advance LLM-based vulnerability data generation. In
particular, we suggest to:
(1) Enhance CoT reasoning and ICL techniques so that LLMs can

more accurately capture the transformation patterns between
secure and vulnerable code. This may involve fine-tuning on
vulnerability-specific datasets to improve both code generation
and instruction following.

(2) Refine prompt design and exemplar selection strategies to min-
imize false positives and improve the stability of generated
vulnerabilities. This will ensure that the generation/injection is
not only syntactically correct but also effectively simulates real-
world vulnerability patterns without altering functionalities—
our results show even with continuous advancement of LLMs,
carefully designed, task-specific prompting strategies matter.

(3) Expand the context window during inference to allow LLMs
to process and generate longer, more complex code samples,
thereby better handling multi-line vulnerabilities given their
much greater prevalence in real-world vulnerable programs.

(4) Leverage LLM-generated samples for data augmentation in
training DL–based vulnerability detectors. Augmenting these
models with high-quality synthetic data has been shown to
boost detection performance significantly.

Through this study, we initiate a new direction for addressing the
critical data needs in data-driven vulnerability analysis through
transferring/distilling vulnerability knowledge from LLMs to smaller
DL models or other LLMs. Our results demonstrated the merits of,
as well as suggesting future work needed in, this new direction.

2 Methodology
We elaborate on the design of our study, including the research
questions (§2.1) as well as the datasets (§2.2, metrics (§2.3), LLMs
(§2.4), and prompting strategies (§2.5) used for answering the RQs.

2.1 Research Questions
Our study is governed by five main research questions (RQs) as
outlined and justified as follows.
• RQ1. How effective are LLMs in vulnerability data gener-
ation? To start with, we gauge the overall potential of LLMs for
addressing the data needs in data-driven vulnerability analysis, by
injecting vulnerabilities into non-vulnerable code samples.

• RQ2. What are the characteristics of LLMs’ vulnerability
injection edits? By examining the types (add/delete/replace)
and complexities (single- vs. multi-line change) of these code
edits, we aim to uncover how LLMs generate vulnerable samples,
dissecting their behavioral patterns during vulnerability injection,
both across and for specific vulnerability types (CWEs).

• RQ3. Are LLMs better than existing techniques for vulner-
ability generation? By comparing the LLMs to SOTA dedicated
data-generation techniques in terms of injection effectiveness, we
aim to assess whether LLMs represent a more promising direction
in real-world vulnerability data generation.

• RQ4. Can the LLM-generated data improve DL-based vul-
nerability analysismodels? Bymeasuring if and howmuch the
generated data boost the performance of SOTA DL-based models
via training augmentation, we aim to evaluate the practical use-
fulness of LLM-based vulnerability data generation, comparatively
to SOTA dedicated data-generation techniques.

• RQ5. Do the LLM-generated data improve LLM-based vul-
nerability analysis? By examining whether LLMs’ vulnerability
analysis effectiveness can also be enhanced by the data gener-
ated by other LLMs, we aim to assess the longer-term merits of
LLM-based vulnerability data generation even in the era of LLMs
being increasingly used for vulnerability analysis.

2.2 Datasets
To enable comprehensive and comparative exploration, we use two
complementary datasets: one synthetic and one real-world.

For the synthetic dataset, we consider SARD [9], a large set of
vulnerable code samples and corresponding fixed versions. We only
use samples written in C, (1) for a focused study, without dealing
with language related confounding factors and (2) because C is the
most vulnerable language [17, 51]. Further considering the cost
of LLMs and our study scale, we randomly sampled 500 pairs of
samples, covering the five most dominating types of vulnerabilities
(CWEs-121, 190, 191, 134, 124, and others—accounting for 27.95%,
23.74%, 18.88%, 12.65%, 11.91%, and 4.87% of the 500, respectively)
in entire SARD. These samples have on average 31.59 lines of code
and 4.91 changed lines between each pair.

For the real-world dataset, we also randomly sampled 500 pairs,
from CVEFixes [8] and PrimeVul [21] combined, also covering
its five most dominating CWEs (125, 190, 416, 476, and 787, each
accounting for 20% of the 500). These samples have on average
86.33 lines of code and 3.30 changed lines between each sample
pair. We refer to this combined real-world dataset as CVE.

These two datasets are mainly used for RQ1, RQ2, and RQ3,
where the above scale limit and CWE scope restrictions are set to
enable in-depth analysis. For RQ4 and RQ5, we focus on real-world
samples, where the datasets used are further described in §6.

2.3 Metrics
To evaluate LLMs’ performance on vulnerability data generation,
we consider two effectiveness metrics, defined and justified below:
• Vulnerable: The generated code sample is indeed vulnerable.
Since we aim at injecting vulnerabilities, the basic criterion of
successful injection is that the resulting sample is vulnerable.

• Stable: The generated code sample preserves the functionality of
the input non-vulnerable version.Without this constraint, vulner-
ability injection could be trivial and make the vulnerable sample
disconnect from the non-vulnerable version—the resulting data
would be much less useful for vulnerability analysis.

2.4 Large Language Models
We selected LLMs in our study based on the following criteria:

(1) Affordability: The models should be practical for ordinary
users to access and run, in terms of computing power and mone-
tary budget. For open-source LLMs to run on local hardware, we
selected those fitting our machines (with AMD Threadripper Pro
5595WX 4.5GHz processor, 4 RTX A6000 GPUs, and 512GB RAM).
For commercial LLMs accessed via paid APIs, we set a cost limit,

3

only choosing models charging ≤$3 per million tokens, to ensure
the entire study’s total cost is within what we can afford.

(2) Instruction-following: The models must be able to follow
non-trivial instructions (i.e., those of the complexity in our study, es-
pecially with ICL and VICS) as is required for generating vulnerable
code samples per our requirements which are not trivial.

(3) Effectiveness: The models must be effective in generating
syntax-correct code based on the instructions. Therefore, we prefer
the high-ranking models in the latest LLM leaderboard [2].

(4) Coverage: To enable comprehensive analysis, we also aim to
include both general-purpose and code-oriented LLMs, and both
generative and reasoning LLMs.

With these criteria, we chose GPT-4o [58], Claude-3.5-Sonnet [5],
Llama3-70B [4], Qwen2.5-32B-Instruct [63], CodeLlama-34B-Instruct
[3], DeepSeek-Coder-33B-Instruct [28], and DeepSeek-R1-70B [27].

To reduce randomness and ensure consistent, stable, and re-
producible behavior/outputs across repeated trials of these LLMs
during code generation, we fixed their decoding temperature at 0.1.

2.5 Prompting Strategies
How LLMs are prompted is known to have major impact on their
performance. Thus, we consider two popular existing strategies, and
a new strategy we proposed specifically for vulnerability injection.

2.5.1 Standard Prompting. With this strategy, we directly instruct
an LLM to inject a specific type of vulnerability to given code.

PromptConstruction. The prompt is carefully designed, asking
for code change and explanation to facilitate manual validation.
Q: As an example to illustrate {CWE_ID} vulnerabilities for educational
purposes, inject a vulnerability of this type into the following non-
vulnerable code. Indicate your code change with explanation. {input_code}

2.5.2 Few-Shot ICL. This strategy uses a few carefully chosen
exemplars to guide LLMs in vulnerability injection, in three steps:

(1) Exemplar Data Curation. For each targeted CWE, we
selected 100 sample pairs relevant to the CWE from the BigVul
dataset [22]. Each pair is manually verified to ensure that the code
changes inject vulnerabilities, used as an exemplar which includes:
• V1: The original, normal (non-vulnerable) version of the code.
• V2: The corresponding vulnerable version of the code.
(2) Exemplar Selection. Typically, exemplars are selected man-

ually in few-shot ICL. To automate our study pipeline, we propose
an adaptive exemplar selection approach. Given a normal code sam-
ple and a CWE id, candidate exemplars of that CWE are retrieved.
Then, to maximize relevance, exemplars are selected as follows:
(1) The normal code given and each exemplar’s V1 are compared

by the LLM, asking if the vulnerability in the exemplar can
be introduced similarly to the given code, along with a code-
structure similarity score in [1,10].

(2) The model’s response is parsed to extract a binary decision
(“yes” or “no”) along with the score.

(3) Exemplars receiving a “yes” response are considered, and up
to three top-scored (i.e., most similar) candidates are chosen—
there may be less than three with a “yes” response.

(3) Vulnerability Injection. With the selected exemplars, the
LLM is prompted to inject vulnerabilities to the input normal code.
First, to help it better follow the exemplars, we instruct the model
to summarize the patterns of code changes between the code pairs.

Q: For educational illustration purposes, summarize the pattern of code
changes that inject {CWE_ID} vulnerabilities to V1 to result in V2 in
the code pairs below, without including reasoning. IMPORTANT: The
summary must describe the vulnerability injection mechanism.
Example 1: V1: {exemplar V1 code} V2: {exemplar V2 code}
Example 2: V1: {exemplar V1 code} V2: {exemplar V2 code}
Example 3: V1: {exemplar V1 code} V2: {exemplar V2 code}
Then, based on the summary, we prompt the LLM to inject the

vulnerability into the input code.
Q: Based on the following summary: {summary}, for the V1 version of input
code below, generate the corresponding changed version V2. Indicate your
code change with explanation. V1: {input_code}

2.5.3 VICS. Neither of the previous two prompting strategies is
specifically designed for the task of vulnerability injection. Thus,
to better assess the potential of prompting LLMs, we propose
vulnerability-introducing code-Change semantics guided prompt-
ing (VICS), a new, task-specific strategy based on chain-of-thought
(CoT) reasoning. VICS is aimed at enhancing vulnerability injec-
tion by leveraging explicit reasoning about code transformations,
capturing the semantic differences between normal and associated
vulnerable versions of code. Unlike traditional few-shot prompting
relying solely on exemplar demonstration, VICS explicitly generates
and utilizes detailed explanations of how vulnerabilities are delib-
erately introduced, offering clear and focused guidance to LLMs
for vulnerability injection. It works in three steps.

(1) Automatic Reasoning Generation. Based on CoT, VICS
needs the reasoning steps in exemplars. It automatically generates
these steps using the LLM itself, with the prompt template below:

Q: You are an expert in software security and vulnerability injection. Given
the following code pairs V1 and V2 where V2 introduces a {CWE_ID}
vulnerability to V1, your job is to explain how the vulnerability was delib-
erately introduced when transforming V1 (normal) to V2 (vulnerable).
Key requirements: (1) focus on how V2 introduces the vulnerability
(what unsafe change was made and why it causes vulnerable behaviors);
(2) focus on the technical mechanism (e.g., buffer overflow, out-of-bounds
access, dangling pointer) of vulnerability introduction; (3) do not describe
V1 as ’correct’, ’secure’, or ’fixed’; treat V1 as a neutral starting point; (4)
do not describe V2 as a ’mistake’, ’oversight’, or ’error’; it is a deliber-
ate weakening; (5) avoid using phrases like ’prevents’, ’fixes’, ’ensures’,
’improves’, ’mitigates’, ’protects’, etc. V1: {v1 code} V2: {v2 code}

The resulting “reasoning” steps explicitly detail the semantic
changes and the process through which the normal/secure code
(V1) is transformed into its vulnerable counterpart (V2). These steps,
along with the code samples used to generate them, are then utilized
as exemplars in Step (3) below.

(2) Exemplar Selection. We follow the same Exemplar Selection
approach as in Few-shot ICL, selecting top three exemplars.

(3) Vulnerability Injection.With the selected exemplars, we
prompt the LLMs to summarize code-change patterns in the exem-
plars and follow the patterns to transform the given V1 of input
code to its V2, as in few-shot ICL. Differently, here each exemplar
includes the reasoning steps, which guide the LLMs to both sum-
marize the patterns and realize the transformation more effectively.

To illustrate, Figure 5 shows a complete VICS workflow for inject-
ing a CWE-416 (Use-After-Free) vulnerability. After automatically
selecting suitable exemplars and their auto-generated reasoning,
the LLM first summarizes the transformation patterns, identifying
the core flaw as unsafe resource management. Guided by this sum-
mary, the model successfully injects the vulnerability into the input

4

Table 1: Comparison between ICL and VICS prompting
Main Step ICL (Few-Shot) VICS (Semantic Reasoning)

1. Exemplar Curation vulnerable/non-vulnerable code pairs per CWE Same curated pool

2. Adaptive Selection Input compared with each exemplar, scored (1–
10) with yes/no judgment; top-3 selected.

Same, but each exemplar also includes auto-generated
reasoning-steps.

3. Prompting LLM sees exemplars and a brief summary of
code-change patterns, then applies them to the
input normal code.

LLM sees exemplars with reasoning, first summarizes
vulnerability-introducing-change semantics, then applies
them to the input normal code.

4. Example Output
(LLM Response)

Figure 3: Unsafe indexing added→vulnerability
injected, but functionality broken (unstable).

Figure 5: remote_address_.reset() commented out→use-
after-free injected, functionality preserved (stable).

Table 2: Reliability of labeling LLM-generated samples
Model Fleiss’ Kappa Randolph’s Kappa
GPT-4o 0.678 0.838

Claude-3.5 0.895 0.956
CodeLlama 0.909 0.928
Qwen2.5 0.859 0.905
Llama3 0.885 0.939

DeepSeek-R1 0.891 0.946
DeepSeek-Coder 0.710 0.775

normal code by commenting out the remote_address_.reset() line,
creating a use-after-free condition.

Table 1 further outlines the key steps of our ICL and VICS prompt-
ing strategies while comparing them, with example LLM responses.

3 RQ1: LLM Effectiveness in Sample Generation
We evaluate the effectiveness of LLMs in injecting vulnerabilities
into 1,000 normal samples in SARD and CVE, by manually vali-
dating if each LLM-generated sample is vulnerable and stable. To
ensure reliability of our manual process, three of the paper authors,
who have 3-5 years of experience in software security, first engaged
in discussions to establish a unified evaluation standard. Then, each
rater independently performed manual code auditing and evalua-
tion of every sample, followed by resolving any disagreements via
negotiation until reaching a consensus on the sample.

To measure the reliability, we quantify inter-rater agreements
using Fleiss’ Kappa and Randolph’s Kappa [39]. Fleiss’ Kappa mea-
sures agreement among multiple raters beyond chance, with values
ranging from 0 (no agreement) to 1 (perfect agreement), where
higher values indicate stronger reliability. Randolph’s Kappa, on
the other hand, assumes a uniform distribution of ratings across
categories, which is useful when class distributions are imbalanced.
A Fleiss’ Kappa value above 0.6 is generally considered substan-
tial agreement among raters. As shown in Table 2, our manual
validation was highly reliable for different LLMs.

In our study, the input code samples are non-vulnerable. This is
ensured in two ways: (1) the datasets we use label normal samples
as fixed versions of known vulnerable code, suggesting that they
are non-vulnerable; (2) to verify that, we manually inspected the
500 input samples from each dataset, confirming they were non-
vulnerable while validating the injected versions as noted above.

3.1 Overall Effectiveness
Table 3 summarizes the effectiveness of the LLMswith three prompt-
ing strategies on the two datasets, where the highest success rates
on each dataset are highlighted: SARD and CVE. While the LLMs
show considerable potential for vulnerability injection, their ef-
fectiveness varies notably depending on the model choice and the
prompting strategy employed—an injection is a success if the result-
ing sample is both vulnerable (Vuln) and stable. The peak perfor-
mance is strong. For instance, the top-performing model, GPT-4o,
successfully generates stable and vulnerable samples for up to 93%
of the 500 normal samples in the SARD dataset and 88% in the

Table 3: Effectiveness of LLMs for vulnerability injection
LLM Prompting Dataset

%Stable %Unstable
%Vuln %Non-Vuln %Vuln %Non-Vuln

GPT-4o
Standard SARD 91 7 2 0

CVE 71 9 18 2
Few-shot SARD 93 3 4 0

CVE 82 8 10 0
VICS SARD 93 7 0 0

CVE 88 6 6 0

Claude-3.5
Standard SARD 78 1 11 10

CVE 71 1 28 0
Few-shot SARD 86 8 6 0

CVE 78 7 14 1
VICS SARD 94 3 3 0

CVE 83 7 9 1

Llama3
Standard SARD 56 7 35 2

CVE 54 10 36 0
Few-shot SARD 70 27 3 0

CVE 68 12 20 0
VICS SARD 76 24 0 0

CVE 74 12 14 0

CodeLlama
Standard SARD 34 36 21 9

CVE 20 48 24 8
Few-shot SARD 49 45 6 0

CVE 64 24 10 2
VICS SARD 56 38 6 0

CVE 68 22 8 2

Qwen2.5
Standard SARD 71 8 21 0

CVE 46 52 2 0
Few-shot SARD 83 12 5 0

CVE 62 26 12 0
VICS SARD 88 7 5 0

CVE 68 22 10 0

DeepSeek-R1
Standard SARD 86 7 7 0

CVE 72 4 23 1
Few-shot SARD 93 6 1 0

CVE 84 4 12 0
VICS SARD 93 5 2 0

CVE 88 4 8 0

DeepSeek-Coder
Standard SARD 75 12 13 0

CVE 62 11 27 0
Few-shot SARD 81 12 7 0

CVE 74 12 14 0
VICS SARD 89 8 3 0

CVE 78 11 11 0

more complex, real-world CVE dataset. In contrast, other models
(e.g., CodeLlaMa, Llama-3) exhibit much lower performance, overall
forming a clear hierarchy of capability among the LLMs.

Few-shot ICL brought consistent and notable improvement for
all LLMs, boosting their generation of stable and vulnerable sam-
ples while markedly reducing their incidences of unstable/non-
vulnerable code changes. The benefits are most pronounced for
the mid- and lower-tier models, which see their success rates in-
crease by 10-30%. These gains suggest that providing even a few
high-quality examples (i.e., ICL exemplars) is crucial for guiding
the LLMs toward correct injections.

The VICS prompting strategy we propose elevates performance
even further by explicitly guiding the models to reason about the
semantic changes required to introduce a vulnerability. With VICS,
unstable outputs are almost entirely eliminated across the board,
and the models become overwhelmingly consistent in producing
the intended stable and vulnerable transformations. This semantics-
focused approach allows weaker models to catch up substantially,
while top-tier models consolidate their lead, indicating that ad-
vanced, task-specific prompting can improve the effectiveness and
reliability of any LLM for the task (of vulnerability injection).

A consistent contrast is that the real-world dataset poses a greater
challenge than the synthetic one, resulting in lower overall success
rates for every model and prompting strategy on the CVE dataset.
However, the proportional performance uplift gained by moving
from standard prompting to few-shot ICL and then to VICS prompt-
ing remains just as strong. This indicates that while real-world
code complexity makes the task inherently harder, the benefits of
advanced prompt engineering are universal and crucial for maxi-
mizing the success of vulnerability injection.
Finding 1: Among the LLMs, GPT-4o achieves the best overall ef-
fectiveness. The real-world dataset is generally more challenging
to inject vulnerabilities, as expected. Across LLMs and datasets,
more advanced prompting consistently helps push up the effec-
tiveness, with VICS leading to most successful sample generation.

5

Table 4: Categories and distribution of failed injections
LLM Dataset %Failed Cases

%Hallucination %Semantic Complexity
GPT-4o SARD 97 3

CVE 54 46
Claude-3.5 SARD 61 39

CVE 38 62
Llama3 SARD 93 7

CVE 48 52
CodeLlama SARD 84 16

CVE 66 34
Qwen2.5 SARD 57 43

CVE 71 29
DeepSeek-R1 SARD 69 31

CVE 47 53
DeepSeek-Coder SARD 74 26

CVE 48 52
Q: As an example to illustrate CWE_125 vulnerabilities for educational pur-
poses, inject a vulnerability of this type into the following non-vulnerable
code. Indicate your code change with explanation.
...if (GetPixelReadMask(image ,p) == 0){

SetPixelBackgoundColor(splice_image ,q);p+= GetPixelChannels(image);
q+= GetPixelChannels(splice_image);continue ;}...

Model Response:
...if (GetPixelReadMask(image ,p) == 0){// CWE125 OutofBounds Read injected

SetPixelBackgoundColor(splice_image ,q);p+= GetPixelChannels(image);
q+= GetPixelChannels(splice_image);continue ;}...

Figure 2: A stable, non-vulnerable code sample generated by
GPT-4o with standard prompting.

3.2 Case Analysis
To better understand what happens behind the performance num-
bers, we looked into each successful and failed injection. In particu-
lar, for the failed cases (represented in the last 3 columns of Table 9),
we examined the reasons of the failure. We found that these failures
are mainly due to two reasons: (1) hallucination—the LLMs claim
injection as succeeded yet without making any code changes and
(2) semantic complexity—the LLMs cannot reason about complex
code-semantics as required for successful injections.

Table 4 shows the distribution of these two failure reason cat-
egories across the two datasets and studied LLMs, where the per-
centage of failed cases of dominating reasons for each LLM and
dataset is highlighted. As shown, hallucination accounts for an
overwhelming majority of failures on the simpler SARD dataset,
while semantic-complexity is the more prevalent reason of failed
injections in the more complex CVE dataset. This consistent trend
across various LLMs highlights the distinct challenges posed by
real-world code semantics compared to synthetic examples.

Next, we illustrate the strengths/limitations of different models
under various prompting strategies with specific examples. Due to
space limits, only changed code regions are shown; the rest of the
code and model’s output on code changes/explanations are omitted.

Figure 2 shows an example of GPT-4o’s unsuccessful injection
with standard prompting: the generated code is not vulnerable.
Although the LLM claimed to have introduced a vulnerability by in-
jecting “OutOfBounds Read", our inspection reveals that the model
hallucinates—it did not make any change.

Figure 3 shows an example of Llama3’s failed injection with
few-shot ICL prompting—the generated code is vulnerable but not
stable. The LLM introduced an out-of-bounds array access, creating
a buffer overflow vulnerability but also disrupting the input code’s
original functionality (i.e., unstable injection).

Figure 4 shows an example of DeepSeek-Coder’s failure with
standard prompting. The generated sample is unstable and non-
vulnerable. The model added a statement that disrupted the original
functionality yet without introducing an exploitable flaw.

Figure 5 exemplifies successful sample generation by GPT-4o
with VICS prompting while also illustrating the complete workflow

Q: Based on the following summary: "The core behavior is to deliberately
remove or weaken critical security validation logic before the program processes
data. This is demonstrated by actions such as: deleting checks that verify if
a data packet is sufficiently large before it is parsed; eliminating constraint
functions that ensure an index is within a valid range before it’s used to
access an array; and removing initial checks that confirm an input value is
within expected bounds before being passed to a complex algorithm. These
removed safeguards, which were the final line of defense against processing
malicious or malformed data, are what allow the program to attempt reading
from memory regions it should not access, directly resulting in an out-of-
bounds read vulnerability", for the V1 version of input code below, generate
the corresponding changed version V2. Indicate your code change with
explanation. V1:
... Quantum cbcr [4]; ... // omitted code due to space
case 1:{ quantum =(size_t) (ScaleShortToQuantum ((unsigned short)
(((pixel >> 12) & 0x3ff) << 6))); break ;}...

Model Response:
... Quantum cbcr [4]; ... // omitted code due to space
case 1:{ quantum =(size_t) (ScaleShortToQuantum ((unsigned short)
(((pixel >> 12) & 0x3ff) << 6))); cbcr[i]=cbcr [100]; break;}
// Introduced vulnerable indexing operation ...

Figure 3: An unstable, vulnerable code sample generated by
CodeLlama with few-shot ICL.

Q: As an example to illustrate CWE_787 vulnerabilities for educational pur-
poses, inject a vulnerability of this type into the following non-vulnerable
code. Indicate your code change with explanation.
...p = pixels;
q = GetAuthenticPixels(image ,0,row ,image ->columns ,1,exception);
if (q == (Quantum *) NULL) return MagickFalse ;...

Model Response:
...image ->columns += 1; p = pixels; // add an additional index to be read

beyond the allocated array , simulating a CWE -125 vulnerability
q = GetAuthenticPixels(image ,0,row ,image ->columns ,1,exception);
if (q == (Quantum *) NULL) return MagickFalse ;...

Figure 4: An unstable, non-vulnerable code sample generated
by DeepSeek-Coder with standard prompting.

of our VICS approach. From the CoT exemplars that demonstrate
the reasoning about the vulnerability injectionmechanism, the LLM
captures the patterns of vulnerability-introducing code changes. It
then correctly follows the patterns to inject the vulnerability to the
given input code, resulting in a stable and vulnerable sample.
Finding 2: Under standard prompting, LLMs sometimes hallu-
cinate—claiming to inject vulnerabilities without actually do-
ing so—resulting in unstable and/or non-vulnerable code. VICS
prompting can help mitigate this issue.

4 RQ2: Characteristics of LLM Edits
We now look into the characteristics of the vulnerability injections
made by the LLMs to understand the underlying model behav-
iors/preferences, including the distribution of code injection edit
types (add, delete, and replace), the complexity of the edits (single-
line vs. multi-line), and the effectiveness across different CWEs.

The results are shown in Table 5, with dominant types (>50%)
highlighted and long terms abbreviated (PS: prompting strategy,
Cmpl.: complexities, SL: single-line, ML: multi-line, GTh: ground-
truth, add: add line(s) only, del: delete line(s) only). Each number cell
shows the proportion of edits over all attempts with the success rate
in the parenthesis. For example, with standard prompting, GPT-4o’s
single-line edits on the CVE dataset consist of 48% code additions
with a success rate of 70%, 7% deletions with a success rate of 68%,
and 45% replacements with a success rate of 72%.

The LLMs overwhelmingly prefer to replace existing lines when
injecting vulnerabilities, and this remains true acrossmodels, prompt-
ing strategies, and datasets. The dominance is even stronger on
the simpler SARD dataset and for multi-line injections. Addition-
only attempts are less common and deletion-only ones are the least

6

Q: For educational illustration purposes, summarize the pattern of code
changes that inject CWE-416 vulnerabilities to V1 to result in V2 in
the code pairs below, without including reasoning. IMPORTANT: The
summary must describe the vulnerability injection mechanism.
Example 1:
V1:

IndexedDBCursor ::~ IndexedDBCursor () {
if (transaction_) {transaction_ ->UnregisterOpenCursor(this);}
Close();

}
......

V2:
(removed): if (transaction_) {transaction_ ->UnregisterOpenCursor(this);}

.....

(Reasoning:) Removing the transaction call intentionally breaks a critical
safety mechanism. This change prevents a cursor object from notifying
its associated transaction upon deletion, leaving the transaction with a
dangling pointer. This creates a use-after-free vulnerability, where the
transaction might later attempt to access the freed memory of the deleted
cursor.
Example 2:......
Example 3:......
Model Response: The pattern of code changes that inject CWE-416 vulner-
abilities involves a targeted modification that disrupts an object’s lifecycle
management, causing it to be deallocated prematurely while a reference to
it is still held. This is accomplished by altering a single, critical function
call responsible for tracking the object’s liveness. The specific injection
mechanisms include removing an object’s deregistration call from its de-
structor, omitting a necessary trace call to hide the object from the garbage
collector, or replacing a safe, reference-counting function with an unsafe
equivalent that breaks the object’s lifecycle logic.
Q: Based on the following summary: "[the model response above]", for
the V1 version of input code below, generate the corresponding changed
version V2. Indicate your code change with explanation. V1:
...int UDPSocketLibevent :: InternalConnect(const IPEndPoint& address) {

......
remote_address_.reset(new IPEndPoint(address));
...

Model Response:
...int UDPSocketLibevent :: InternalConnect(const IPEndPoint& address) {

......
// remote_address_.reset(new IPEndPoint(address));
...

Figure 5: A stable, vulnerable (i.e., success) code sample gen-
erated by GPT-4o with VICS.

Table 5: Edit types and complexities of LLM injections
LLM PS Dataset Cmpl. %add %del %replace LLM PS Dataset Cmpl. %add %del %replace

GP
T-
4o

St
an
da
rd SARD SL 0 (0) 0 (0) 100 (91)

Q
w
en
2.5

St
an
da
rd SARD SL 2 (68) 9 (65) 89 (72)

ML 1 (90) 0 (0) 99 (91) ML 2 (68) 2 (65) 96 (72)
CVE SL 48 (70) 7 (68) 45 (72) CVE SL 20 (45) 0 (0) 80 (46)

ML 56 (70) 5 (60) 39 (74) ML 15 (45) 0 (0) 85 (46)

IC
L SARD SL 0 (0) 0 (0) 0 (0)

IC
L SARD SL 0 (0) 16 (81) 84 (83)

ML 72 (92) 0 (0) 28 (96) ML 4 (78) 18 (80) 78 (85)
CVE SL 19 (79) 13 (75) 68 (84) CVE SL 17 (60) 49 (61) 34 (65)

ML 43 (80) 0 (0) 57 (85) ML 10 (60) 18 (59) 72 (64)

VI
CS

SARD SL 5 (88) 2 (85) 93 (94)

VI
CS

SARD SL 3 (82) 8 (80) 89 (90)
ML 40 (90) 0 (0) 60 (95) ML 2 (82) 1 (80) 97 (89)

CVE SL 50 (86) 10 (80) 40 (91) CVE SL 19 (65) 0 (0) 81 (69)
ML 48 (87) 0 (0) 52 (89) ML 15 (65) 0 (0) 85 (69)

Cl
au
de
-3
.5

St
an
da
rd SARD SL 17 (76) 0 (0) 83 (78)

D
ee
pS

ee
k-
R1

St
an
da
rd SARD SL 5 (82) 9 (80) 86 (87)

ML 0 (0) 1 (70) 99 (78) ML 7 (84) 1 (80) 92 (86)
CVE SL 15 (68) 19 (69) 66 (72) CVE SL 14 (70) 29 (70) 57 (74)

ML 17 (70) 0 (0) 83 (71) ML 17 (70) 2 (65) 81 (73)

IC
L SARD SL 5 (82) 10 (83) 85 (87)

IC
L SARD SL 1 (88) 16 (91) 83 (94)

ML 14 (84) 4 (80) 82 (87) ML 3 (89) 31 (92) 66 (94)
CVE SL 24 (75) 11 (72) 65 (80) CVE SL 0 (0) 100 (84) 0 (0)

ML 6 (74) 7 (70) 87 (79) ML 9 (80) 28 (81) 63 (86)

VI
CS

SARD SL 3 (90) 4 (88) 93 (95)

VI
CS

SARD SL 8 (90) 32 (91) 60 (95)
ML 40 (92) 4 (85) 56 (96) ML 9 (90) 32 (91) 59 (95)

CVE SL 10 (80) 34 (81) 56 (85) CVE SL 7 (85) 79 (88) 14 (91)
ML 1 (80) 40 (82) 59 (84) ML 10 (86) 38 (87) 52 (90)

Ll
am

a3

St
an
da
rd SARD SL 50 (55) 0 (0) 50 (57)

D
ee
pS

ee
k-
Co

de
r St
an
da
rd SARD SL 13 (72) 8 (70) 79 (76)

ML 19 (54) 0 (0) 81 (57) ML 5 (72) 1 (70) 94 (75)
CVE SL 20 (52) 16 (50) 64 (55) CVE SL 36 (60) 0 (0) 64 (63)

ML 21 (52) 5 (50) 74 (55) ML 7 (60) 0 (0) 93 (62)

IC
L SARD SL 1 (65) 20 (68) 79 (71)

IC
L SARD SL 7 (78) 4 (75) 89 (82)

ML 0 (0) 24 (68) 76 (71) ML 2 (78) 0 (0) 98 (81)
CVE SL 12 (65) 45 (67) 43 (70) CVE SL 14 (70) 10 (68) 76 (76)

ML 5 (65) 21 (66) 74 (69) ML 9 (71) 2 (68) 89 (75)

VI
CS

SARD SL 0 (0) 18 (74) 82 (77)

VI
CS

SARD SL 0 (0) 0 (0) 100 (89)
ML 0 (0) 21 (74) 79 (77) ML 2 (85) 1 (85) 97 (90)

CVE SL 9 (70) 41 (72) 50 (77) CVE SL 25 (75) 0 (0) 75 (79)
ML 8 (70) 29 (72) 63 (76) ML 14 (76) 4 (74) 82 (79)

Co
de
Ll
am

a

St
an
da
rd SARD SL 0 (0) 0 (0) 100 (34)

N/A GT
h

SARD
SL 1 85 15ML 0 (0) 0 (0) 100 (34) 85

CVE SL 23 (18) 4 (15) 73 (21)
ML 56 (19) 2 (12) 42 (22)

ML 0 0 100

IC
L SARD SL 10 (45) 0 (0) 90 (50) 100

ML 2 (45) 0 (0) 98 (49)
CVE SL 28 (60) 5 (58) 67 (66)

CVE
SL 18 72 10ML 19 (62) 0 (0) 81 (65) 72

VI
CS

SARD SL 4 (52) 3 (50) 93 (57)
ML 4 (53) 0 (0) 96 (56)

ML 13 52 35CVE SL 20 (65) 10 (62) 70 (70) 52
ML 18 (66) 0 (0) 82 (69)

prevalent. When we look only at the edits that succeed (i.e., com-
pile and manifest the intended weakness), replacements continue
to dominate. Deletion-led success cases are relatively fewer. No-
tably, this LLM editing preference diverges from the ground-truth
vulnerability-inducing changes, which rely more on removing code.
Finding 3: LLMs exhibit a strong preference for replacement
edits, especially for multi-line injections, diverging from ground-
truth vulnerability patterns which tend to delete code.
The complexity of an injection (single-line vs. multi-line) influ-

ences the type of edits performed by LLMs. Compared to single-line
edits, many models exhibit a higher proportion of addition edits in
multi-line cases, a tendency that becomes even more pronounced in
successful multi-line injections. This suggests that, for complex vul-
nerabilities, LLMs are more inclined to insert new vulnerable blocks
of code than for injecting simpler (single-line) flaws. In contrast, the
ground-truth (GTh) data shows that multi-line vulnerabilities are
predominantly caused by replacements in the SARD dataset and by
deletions in the CVE dataset, highlighting a distinct machine-driven
pattern in how LLMs create complex vulnerabilities.
Finding 4: LLMs favor different edit strategies for injecting vul-
nerabilities of different levels of complexity.
Table 6 breaks down LLMs’ injection edit complexity per CWE

category. To facilitate observations, only numbers >80% are high-
lighted. For example, with standard prompting, GPT-4o’s CWE-190
injections in SARD consist of 86% single-line edits with 90% success
rate and 14% multi-line edits with 92% success rate.

Overall, across all prompting strategies, the LLMs exhibit an
inherent preference to perform multi-line injections. The distribu-
tion of edit complexities of the LLMs closely mirrors ground-truth
vulnerability complexity patterns and remains overall consistent
regardless of CWEs. This indicates that LLMs can well follow real-
world vulnerability patterns and inject more complex and realistic
vulnerabilities with multi-line edits.
Finding 5: LLMs prefer performing multi-line vulnerability in-
jections, which is close to the ground-truth patterns.
Notably, the results reveal substantial variations in success rates

across both CWE categories and models. The LLMs performed best
on vulnerabilities that can be introduced through local, syntactic
edits and struggle as the task requires non-local, semantic reasoning
about program state or object lifecycles.

For arithmetic and boundary errors, which can be injected via
local edits, the models generally exhibited high injection success.
For example, on CWE-190 in the SARD dataset, GPT-4o with VICS
achieved an over 90% success rate. However, the success rate dropped
for more complex data-handling and control-flow vulnerabilities,
where multi-line edits are required; even though LLMs consistently
attemptmulti-line transformations, success remainsmodest, as seen
for CWE-787. The most difficult cases involvememory-management
and lifecycle-related bugs: on the CVE dataset, Llama-3 with VICS
frequently used multi-line edits for CWE-416 and CWE-476, yet
overall success remained low.

These findings collectively indicate that, despite improved prompt-
ing strategies, current LLMs are far more capable of injecting cer-
tain types of vulnerabilities than other types, highlighting their
limitations in modeling deeper semantic program behaviors.

7

Table 6: LLMs’ injection-edit complexity for different CWEs
LM PS Edits SARD CVE

CWE121 CWE190 CWE191 CWE134 CWE124 CWE125 CWE190 CWE416 CWE476 CWE787

GP
T-
4o

Standard %SL 100 (93) 86 (90) 71 (88) 100 (92) 86 (89) 72 (73) 59 (68) 17 (70) 73 (75) 0 (0)
%ML 0 (0) 14 (92) 29 (90) 0 (0) 14 (88) 28 (72) 41 (74) 83 (69) 27 (70) 0 (0)

ICL %SL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 29 (80) 50 (85) 38 (81) 71 (83) 29 (79)
%ML 100 (94) 100 (92) 100 (95) 100 (90) 100 (93) 71 (83) 50 (80) 62 (85) 29 (78) 71 (82)

VICS %SL 50 (95) 14 (91) 29 (92) 50 (94) 14 (90) 50 (90) 14 (86) 29 (89) 50 (88) 14 (85)
%ML 50 (92) 86 (94) 71 (93) 50 (91) 86 (95) 50 (89) 86 (87) 71 (90) 50 (86) 86 (88)

Cl
au
de
-3
.5 Standard %SL 10 (79) 0 (0) 0 (0) 0 (0) 5 (75) 20 (70) 39 (73) 13 (68) 33 (72) 0 (0)

%ML 90 (78) 100 (80) 100 (76) 100 (79) 95 (77) 80 (72) 61 (69) 87 (74) 67 (70) 100 (68)

ICL %SL 19 (88) 21 (85) 12 (83) 11 (87) 15 (86) 22 (79) 33 (76) 20 (80) 28 (77) 12 (75)
%ML 81 (85) 79 (87) 88 (88) 89 (84) 85 (86) 78 (80) 67 (77) 80 (75) 72 (79) 88 (78)

VICS %SL 15 (95) 13 (92) 6 (93) 6 (96) 11 (94) 19 (85) 26 (81) 15 (80) 13 (84) 9 (82)
%ML 85 (94) 87 (95) 94 (92) 94 (96) 89 (93) 81 (82) 74 (84) 85 (81) 87 (85) 91 (83)

Ll
am

a3

Standard %SL 3 (58) 0 (0) 0 (0) 0 (0) 0 (0) 31 (56) 18 (52) 9 (55) 33 (53) 0 (0)
%ML 97 (55) 100 (57) 100 (58) 100 (54) 100 (56) 69 (52) 82 (55) 91 (56) 67 (53) 100 (51)

ICL %SL 62 (72) 72 (68) 0 (0) 96 (71) 94 (70) 22 (69) 31 (65) 38 (70) 41 (67) 23 (68)
%ML 38 (69) 28 (72) 100 (68) 4 (70) 6 (67) 78 (67) 69 (70) 62 (66) 59 (68) 77 (65)

VICS %SL 42 (78) 63 (75) 0 (0) 94 (77) 86 (76) 22 (75) 17 (72) 0 (0) 0 (0) 27 (76)
%ML 58 (75) 37 (78) 100 (76) 6 (74) 14 (77) 78 (73) 83 (76) 100 (0) 100 (0) 73 (74)

Co
de
Ll
am

a Standard %SL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 20 (22) 63 (18) 27 (21) 60 (19) 0 (0)
%ML 100 (35) 100 (32) 100 (36) 100 (33) 100 (34) 80 (19) 37 (23) 73 (18) 40 (20) 100 (21)

ICL %SL 48 (50) 43 (47) 0 (0) 33 (51) 43 (48) 27 (65) 38 (62) 27 (66) 33 (63) 60 (64)
%ML 52 (48) 57 (51) 100 (49) 67 (47) 57 (50) 73 (63) 62 (66) 73 (62) 67 (65) 40 (61)

VICS %SL 35 (58) 48 (55) 0 (0) 18 (57) 33 (54) 18 (69) 46 (66) 0 (0) 0 (0) 14 (70)
%ML 65 (55) 52 (58) 100 (56) 82 (54) 67 (57) 82 (67) 54 (70) 100 (0) 100 (0) 86 (68)

Q
w
en
2.5

Standard %SL 53 (73) 36 (68) 43 (70) 67 (72) 15 (71) 38 (48) 67 (45) 50 (47) 0 (0) 12 (44)
%ML 47 (70) 64 (72) 57 (69) 33 (71) 85 (73) 62 (47) 33 (44) 50 (46) 100 (45) 88 (48)

ICL %SL 88 (85) 78 (81) 0 (0) 96 (84) 92 (82) 40 (60) 32 (64) 37 (61) 43 (63) 49 (62)
%ML 12 (82) 22 (84) 100 (83) 4 (81) 8 (85) 60 (63) 68 (61) 63 (64) 57 (60) 51 (62)

VICS %SL 73 (90) 67 (87) 0 (0) 91 (88) 80 (86) 23 (69) 41 (66) 0 (0) 0 (0) 41 (70)
%ML 27 (86) 33 (89) 100 (88) 9 (87) 20 (90) 77 (67) 59 (70) 100 (0) 100 (0) 59 (68)

D
ee
pS

ee
k-
R1 Standard %SL 19 (88) 11 (85) 42 (87) 71 (84) 20 (86) 21 (74) 17 (70) 0 (0) 38 (73) 10 (71)

%ML 81 (85) 89 (87) 58 (86) 29 (84) 80 (88) 79 (71) 83 (73) 100 (70) 62 (74) 90 (72)

ICL %SL 53 (95) 37 (91) 0 (0) 78 (94) 62 (92) 0 (0) 0 (0) 11 (86) 0 (0) 0 (0)
%ML 47 (92) 63 (94) 100 (93) 22 (91) 38 (95) 100 (83) 100 (86) 89 (84) 100 (85) 100 (82)

VICS %SL 32 (94) 29 (91) 34 (92) 92 (95) 65 (93) 0 (0) 27 (90) 0 (0) 0 (0) 31 (86)
%ML 68 (92) 71 (94) 66 (93) 8 (90) 35 (91) 100 (87) 73 (89) 100 (0) 100 (0) 69 (88)

D
ee
pS

ee
k-
Co

de
r

Standard %SL 10 (76) 10 (73) 0 (0) 17 (77) 12 (74) 53 (60) 60 (64) 17 (61) 50 (63) 50 (62)
%ML 90 (74) 90 (77) 100 (75) 83 (73) 88 (76) 47 (63) 40 (61) 83 (60) 50 (64) 50 (62)

ICL %SL 18 (83) 29 (79) 0 (0) 31 (82) 28 (80) 24 (75) 20 (72) 13 (76) 30 (73) 45 (74)
%ML 82 (80) 71 (83) 100 (81) 69 (79) 72 (82) 76 (73) 80 (76) 87 (74) 70 (72) 55 (75)

VICS %SL 11 (91) 21 (88) 0 (0) 37 (90) 28 (87) 12 (79) 35 (76) 0 (0) 0 (0) 23 (80)
%ML 89 (88) 79 (90) 100 (89) 63 (87) 72 (91) 88 (77) 65 (80) 100 (0) 100 (0) 77 (78)

N
/A GTh %SL 3 24 19 5 1 53 47 70 84 59

%ML 97 76 81 95 99 47 53 30 16 41

Table 7: Effectiveness comparison with SOTA, dedicated base-
lines (SV: Stable Vulnerable, SNV: Stable Non-Vulnerable, UV:
Unstable Vulnerable, UNV: Unstable Non-Vulnerable)

Approach Dataset %SV (success rate) %SNV %UV %UNV
best with LLM SARD 93 7 0 0

(GPT-4o with VICS) CVE 88 6 6 0
VGX SARD 30 (210%↑) 67 2 1

CVE 28 (214%↑) 60 3 9
VulGen SARD 21 (343%↑) 67 0 12

CVE 20 (340%↑) 64 0 16

Finding 6: LLMs have varying effectiveness in injecting vulnera-
bilities of different types and complexities, and the variations are
not consistently impacted by prompting strategies used.

5 RQ3: Comparison to SOTA Baselines
We compare the LLMswithVulGen [47] andVGX [45] as baselines,
because they are representative SOTA techniques dedicated for
vulnerability data generation. Both of them generate vulnerable
samples by injecting vulnerabilities to input non-vulnerable code,
a similar methodology to what we explore in this paper, hence
directly comparable to our approach. Specifically, VulGen combines
pattern-based and fine-tuned DL models for vulnerability injection.
VGX is similar to VulGen but more advanced with semantics-aware
contextualization and human-knowledge enhanced edit pattern
formation. More details can be found in respective papers.

As Table 7 shows, the best LLM-based vulnerability data gener-
ation (GPT-4o with VICS) outperforms by 210% and 343% on the
SARD dataset, and 214% and 340% on the CVE dataset, compared to
the two SOTA baselines, respectively—↑ indicates the percentage of
increases. While VGX holds an edge over its predecessor VulGen,
consistent with their earlier comparison [45], both only managed
to achieve a modest rate of success. By contrast, with our advanced
prompting strategy VICS, the most capable LLM delivers a substan-
tially higher yield of usable vulnerability data samples. In fact, with

VICS, any of the other LLMs studied also notably surpasses these
SOTA approaches specialized for the same task (see Table 3).

A key reason lies in the gap between the complexity of vulner-
abilities and the critical limitations of both baselines. As Table 6
shows, a considerable portion of vulnerable samples in both datasets
requires multi-line code changes to inject the vulnerabilities. Yet
VGX and VulGen are both constrained to simple injection (single-
line code changes). In contrast, the LLMs are naturally capable of
multi-line injection, while also handling single-line cases well.

Moreover, LLM-based generation excels at noise suppression.
The LLMs, with any prompting strategy, produced much fewer
(mostly 30% or lower) non-vulnerable and/or unstable samples,
whereas the SOTA baselines suffer from a great fraction (over 60%)
of failed injections resulting in unusable samples.

Notably, advanced prompt engineering (through few-shot and
VICS) pushed the LLMs to much higher levels of sample generation
effectiveness on both datasets. This demonstrates that, beyond their
base generation capacity, carefully crafted prompts are essential for
boosting both the success and robustness of LLMs for both single-
and multi-line vulnerability injection.
Finding 7: LLM-based vulnerability data generation achieves
much higher success rates compared to existing approaches, with
up to 210%-343% improvements, which VICS helped substantially.

6 RQ4: Augmenting DL-based Models
To assess the usefulness of LLM-generated samples, we use them to
augment the training of DL-based vulnerability detection models
and evaluate the performance improvement they can bring.

For rigorous effectiveness evaluation (RQ1), we manually labeled
each LLM-produced sample. That may not be feasible/scalable in
realistic use scenarios of such samples. Yet as shown in Table 3,
LLMs did not always succeed in sample generation even in the
best case (GPT-4o with VICS). Thus, we need an automated filter
to reduce data noise, for which we use CodeQL [1], a widely used
security-focused code analyzer. Only LLM-generated samples that
are considered vulnerable by CodeQL are kept and used.

Augmentation Datasets. Specifically, from all the real-world
non-vulnerable code samples in CVEFixes [8] and PrimeVul [21]
combined, we randomly selected one to feed GPT-4o with VICS,
keeping the resulting sample if it passes the CodeQL filter; we then
repeated this process until we obtained 500 samples due to single-
line injection and 500 due to multi-line injection. We made this
decision for two reasons. First, considering the scale of generation
(about 1,000 samples) in prior work [47] and the cost of LLMs, we
aim at 1,000 generated samples to use eventually. Second, we want
to assess the usefulness of single- and multi-line injection induced
samples separately to further validate the merits of overcoming the
single-line injection limitation of the baselines; for a fair compari-
son, an equal size of both sets is preferred. We also drop the CWE
scope restrictions as there is no reason to restrict here where we
evaluate the usefulness in a practical data-production mode.

For comparison, we feed all the input normal samples used for
obtaining the 500 single-line-injected samples to VulGen and VGX,
each producing a set of vulnerable samples. Thus, we obtained four
augmentation datasets, noted asGPT-single,GPT-multi,VulGen-
set, and VGX-set. Then, w.r.t the size ratio between vulnerable and

8

Table 8: Top-k accuracy (%) of DL models before (Base) and
after augmentation using each augmentation dataset
DLModel Metric Base GPT-multi GPT-single VulGen-set VGX-set

FVD-DPM
Top-1 28.69 39.08 (36.21↑) 37.48 (30.64↑) 31.27 (8.99↑) 32.88 (14.60↑)
Top-3 45.70 50.80 (11.16↑) 48.44 (5.99↑) 46.61 (1.99↑) 47.26 (3.41↑)
Top-10 57.04 67.50 (18.33↑) 66.07 (15.83↑) 59.62 (4.52↑) 61.23 (7.35↑)

LineVul
Top-1 3.71 6.31 (70.08↑) 6.02 (62.26↑) 5.47 (47.44↑) 6.05 (63.07↑)
Top-3 17.80 22.90 (28.65↑) 20.54 (15.39↑) 18.71 (5.11↑) 19.36 (8.76↑)
Top-10 32.90 43.36 (31.79↑) 41.94 (27.48↑) 35.48 (7.84↑) 37.10 (12.76↑)

non-vulnerable sample set adopted in the baselines [45, 47] and
the need to keep the class balance in the original DL models’ train-
ing set, we took 2,000 non-vulnerable samples from the PrimeVul
dataset [21] for its high quality and added them to each of the four
augmentation datasets (each covers 140 CWEs).

Task Selection.We target line-level vulnerability detection as
the downstream task, rather than coarse-grained vulnerability de-
tection at function level, for two reasons. First, pinpointing the exact
line(s) containing a flaw provides more insights into where/how
vulnerabilities occur. Second, the fine-grained locations give devel-
opers immediate, actionable guidance for patching.

DLModel Selection.We select FVD-DPM [55] and LineVul [24],
as they are SOTA DL-based line-level vulnerability detectors, while
based on different architectures (hence favoring coverage). Also,
they reported very high accuracy, intuitively not easy to improve
further. LineVul is a Transformer-based model specifically designed
for line-level vulnerability prediction. FVD-DPM [55] is a most
recently published, fine-grained vulnerability detection model that
employs a conditional diffusion probabilistic framework to predict
vulnerable code at both slice-level and statement-level.

Procedure/Metrics. For each DL model, we add the augmen-
tation dataset to its training/fine-tuning set. We then test the aug-
mented model on a testing set built from the VulTrigger dataset [37]:
we used its 310 samples where the vulnerable locations are within
single functions per the working scope of both DL models. We
consider VulTrigger as it offers a high-quality dataset that actually
has correct labels for vulnerability locations while separately la-
beling patch locations—other relevant datasets often treat patch
locations as vulnerable locations, which is not rigorous. In the re-
sulting testing set, the average number of lines per code sample is
141.59, reasonably challenging to localize flaws from.

We report Top-1, Top-3, and Top-10 accuracy as done typically in
prior line-level vulnerability detection.

Results.Table 8 summarizes how different augmentation datasets
boost the vulnerability analysis performance for both DL models,
where best improvement across the four datasets is highlighted.
Numbers in parentheses indicate differences from base accuracies.
For instance, when LLM’s multi-line-injected samples are added,
the top-1 accuracy of FVD-DPM increases by over one-third com-
pared to the original model, and the improvement nearly doubles at
the more lenient top-3 and top-10 thresholds relative to what VGX
and VulGen can help. LineVul, which begins with a much lower
base accuracy, sees an even greater increase: multi-line-injection
augmentation multiplies its localization success several-fold.

By contrast, LLM’s single-line-injected data augmentation, al-
though clearly raising the base accuracies, achieves notably lower
improvement than multi-line samples. This contrast indicates the
lesser potential of merely simple (single-line) injections as the two
SOTA data-generation baselines are limited to.

Between the two baselines, VGX-produced data outperformed
VulGen’s generated samples, consistentwith earlier comparisons [45].
Meanwhile, the LLM-produced data shows notable advantages over
both SOTA baselines. In fact, even when constrained to single-line
injections, the LLM’s advantages still hold strongly.
Finding 8: LLM-generated vulnerability samples substantially
enhance DL-based vulnerability detection models, especially for
multi-line injections. Over SOTA data-generation baselines, the
LLM shows clear merits, even just for single-line injections.

7 RQ5: Augmenting LLMs
In RQ4, we examine if vulnerable data generated by our method
can improve traditional smaller-scale DL models (via re-training).
To further assess the usefulness of the LLM-generated data, in this
RQ we utilize the data to augment (other) LLMs for vulnerability
analysis. We use the same augmentation datasets, same testing set,
same evaluation metrics, and for the same task, all as for RQ4.

Detection LLM Selection. As we used GPT-4o to generate GPT-
multi and GPT-single, we consider (all) the other LLMs in our study
as (line-level) vulnerability detection models.

Procedure.We augment each detection LLM via retrieval aug-
mented generation (RAG). Specifically, we build an RAG knowledge
base using each augmentation dataset. In the base experiments, we
directly query the LLM for the vulnerable lines given the testing
sample (i.e., standard prompting). In the augmented experiments,
we use BM-25 [53], a widely used algorithm for code similarity com-
parison [26, 42], to retrieve the three most similar (to the testing
sample) samples and their vulnerable lines from the RAG knowl-
edge base to build the exemplars. Then, we use these exemplars
to conduct few-shot learning for the detection LLM to query the
vulnerable lines for the same testing sample.

Results. Table 9 shows the (base) accuracies of each detection
LLM and how much the base performance is changed (↑ for in-
creases and ↓ for decreases) by using each of the augmentation
datasets to augment the LLM. Overall, the GPT-4o generated data
pushed up all the detection LLMs’ base accuracies notably. In par-
ticular, the LLM’s multi-line-injected samples (GPT-multi) offered
much greater gains than single-line-injected samples. In fact, GPT-
multi not only doubles localization accuracy at the strictest (top-1)
threshold but also amplifies relative improvements even further at
more lenient (top-3 and top-10) cutoffs. This pattern holds true from
heavyweight architectures like Llama3 and Claude-3.5—where the
headroom for improvement is already smaller—to lighter-weight
systems such as Qwen2.5 and DeepSeek-Coder, which exhibit the
steepest learning curves when provided with richer examples.

While the LLM’s single-line-injected samples did improve local-
ization over the original detection LLMs’ performance, especially at
the more forgiving top-10 level, its incremental uplift becomes less
pronounced as the threshold tightens. This contrast consolidates
our earlier observation in RQ4 about the cruciality of more complex
(multi-line) injections in vulnerability data generation.

The data produced by two SOTA data-generation baselines made
much smaller improvements overall, compared to the LLM-generated
datasets. In a number of cases, their (VulGen/VGX’s) generated
data even decreases the base performance, mainly due to the much
higher noise levels in the generated samples (see Table 6)—e.g.,

9

Table 9: Top-k accuracy (%) of LLMs before (Base) and after augmentation using each augmentation dataset
Model Base GPT-multi GPT-single VulGen-set VGX-set

Top-1 Top-3 Top-10 Top-1 Top-3 Top-10 Top-1 Top-3 Top-10 Top-1 Top-3 Top-10 Top-1 Top-3 Top-10
GPT-4o 2.3 11.6 27.4 – – – – – – – – – – – –

Claude-3.5 2.3 10.3 22.9 3.2 (0.9↑) 16.8 (6.5↑) 28.5 (5.6↑) 3.2 (0.9↑) 9.7 (0.6↓) 25.8 (2.9↑) 1.6 (0.7↓) 8.4 (1.9↓) 14.2 (8.7↓) 1.9 (0.4↓) 10.0 (0.3↓) 17.1 (5.8↓)
Llama3 3.5 11.6 14.8 4.5 (1.0↑) 13.9 (2.3↑) 31.3 (16.5↑) 3.2 (0.3↓) 12.3 (0.7↑) 25.8 (11.0↑) 2.3 (1.2↓) 6.8 (4.8↓) 15.5 (0.7↑) 2.9 (0.6↓) 8.4 (3.2↓) 18.7 (3.9↑)

CodeLlama 0.3 6.1 7.7 2.3 (2.0↑) 7.7 (1.6↑) 14.8 (7.1↑) 1.9 (1.6↑) 6.5 (0.4↑) 12.9 (5.2↑) 1.9 (1.6↑) 5.2 (0.9↓) 9.0 (1.3↑) 2.3 (2.0↑) 6.1 (0.0↑) 10.6 (2.9↑)
Qwen2.5 2.3 8.7 12.6 3.2 (0.9↑) 12.6 (3.9↑) 22.6 (10.0↑) 2.6 (0.3↑) 9.7 (1.0↑) 19.4 (6.8↑) 2.3 (0.0↑) 5.8 (2.9↓) 12.3 (0.3↓) 2.6 (0.3↑) 7.1 (1.6↓) 14.5 (1.9↑)

DeepSeek-R1 1.3 5.5 11.0 1.6 (0.3↑) 9.7 (4.2↑) 14.8 (3.8↑) 1.3 (0.0↑) 6.5 (1.0↑) 11.3 (0.3↑) 1.3 (0.0↑) 3.9 (1.6↓) 6.5 (4.5↓) 1.6 (0.3↑) 4.8 (0.7↓) 7.4 (3.6↓)
DeepSeek-Coder 0.0 1.3 2.3 1.6 (1.6↑) 4.8 (3.5↑) 10.0 (7.7↑) 0.6 (0.6↑) 3.9 (2.6↑) 9.4 (7.1↑) 0.6 (0.6↑) 1.9 (0.6↑) 4.2 (1.9↑) 1.0 (1.0↑) 2.9 (1.6↑) 5.5 (3.2↑)

the incorrectly labeled samples could mislead the detection LLMs
during the few-shot learning.

Finding 9: The LLM-generated datasets generally improved all
the detection LLMs’ localization performance considerably, es-
pecially with its multi-line-injected samples, substantially more
than the SOTA data-generation baselines could improve.

8 Discussion
In this section, we provide insights and recommendations based on
our experimental results across the research questions.

8.1 Potential and Gaps of LLMs for
Vulnerability Data Generation

To explore how effectively LLMs inject new vulnerabilities into non-
vulnerable code, we conducted extensive experiments on both syn-
thetic (SARD) and real-world (CVE) datasets. We reveal strengths
and limitations in LLM-generated vulnerability samples with the
following observations:

(1) Balancing Vulnerability vs. Stability. While some LLMs ef-
fectively inject vulnerabilities, their edits often disrupt program
logic, resulting in unstable code. In contrast, models such as GPT-
4o tend to better preserve functionality while introducing security
flaws. This highlights a clear trade-off between achieving high
vulnerability-injection success rates and maintaining code (func-
tional) semantics. Moreover, the performance of LLMs varies across
different CWE types, suggesting that selecting an appropriatemodel
based on the target vulnerability category may be fruitful.

(2) Prompting Sensitivity. The prompting strategy has a decisive
effect on injection quality. Standard, zero-shot prompts frequently
produce incomplete or flawed edits that fail to introduce valid
vulnerabilities, whereas both few-shot ICL and the VICS approach
substantially raise success rates and effectively eliminate unstable
outputs. In practice, this means that careful prompt engineering is
critical to achieving consistent, reliable vulnerability injections.

8.2 Comparison of LLMs to Existing
Vulnerability Data Generation Approaches

Our evaluation results corroborate that (even general-purpose)
LLMs, especially when guided by advanced prompting, can outper-
form existing, SOTA dedicated vulnerability injection techniques
like VulGen and VGX tremendously, with success rate improve-
ments of up to 210%-343%. Among other reasons, this superiority is
notably contributed by their inherent ability to perform coherent,
multi-line edits, allowing them to generate more realistic and com-
plex vulnerabilities that mirror the patterns of real-world flaws—a
capability that overcomes the critical limitations of existing ap-
proaches to simple, single-line injections.

3.50 4.50

39.08

11.60 16.80

50.80

27.40 31.30

67.50

0

25

50

75

100

Top−1 Top−3 Top−10

A
cc

ur
ac

y
(%

) Best LLM w/o augmentation
Best LLM w. augmentation
Best DL w. augmentation

Figure 6: Comparison between LLM without augmentation,
LLM with augmentation, and DL model with augmentation
for line-level vulnerability detection, in best cases.

The practical value of the resulting, higher-quality data is sub-
stantial: when used to augment DL-based detectors (RQ4), LLM-
generated samples lead to far greater improvements in detection
accuracy than data from the existing SOTA generators. Similarly,
when integrated into RAG frameworks to enhance other LLMs
(RQ5), this data serves as a powerful knowledge source that dramat-
ically boosts vulnerability localization. In essence, LLMs produce
fundamentally better samples that are more diverse and context-
rich, making them a far more effective resource for augmenting
both DL- and LLM-based security analysis models.

8.3 Comparison of Augmented DL Models &
LLMs with Original LLMs

Our study reveals a crucial insight: augmenting existing models
with high-quality, LLM-generated data can yield vulnerability de-
tection capabilities superior to those of even the most advanced
LLMs performing the same task directly. Figure 6 demonstrates this
with a comparison between the best LLM without augmentation,
best LLM with augmentation, and best DL model with augmenta-
tion. The contrasts suggest that the more effective use of LLMs in
this domain may be as data generators than as direct detectors.

Specifically, as shown in Table 8, the FVD-DPM model, when
augmented with our GPT-multi dataset, achieves a Top-10 localiza-
tion accuracy of 67.50%. This performance largely surpasses that
of the best LLM unaugmented in our experiments, where GPT-4o
reached a Top-10 accuracy of only 27.4% (Table 9). The performance
of the augmented DL model is more than double that of the best-
performing LLM, underscoring that a focused model trained on
diverse, high-quality examples can develop a far more nuanced and
effective capability for this specific task than a general-purpose
LLM can achieve through in-context reasoning alone.

This principle of leveraging generated data also holds true within
the LLM ecosystem itself. As shown in Table 9, when Llama-3
is augmented with the GPT-multi dataset through RAG, its Top-
10 accuracy is up to 31.3%, outperforming the best unaugmented
LLM analysis from GPT-4o (27.4%). This confirms that providing
an LLM with access to a curated knowledge base of high-quality
vulnerability examples is significantly more effective than relying
solely on its internal, pre-trained knowledge for directly serving
the same vulnerability analysis.

10

Taken together, these findings suggest a powerful and efficient
paradigm. Rather than relying on a single LLM directly used for
vulnerability detection, a more effective strategy involves a "distil-
lation" of knowledge. In this approach, the generative prowess of
a state-of-the-art model like GPT-4o is used to create a rich, high-
fidelity dataset. This dataset can then be used to train or augment
more specialized models like a DL-based detector such as FVD-DPM
or a different LLM such as Llama-3 in a RAG setup. Such findings
emphasize the usefulness of LLM-based vulnerability data gener-
ation, pointing toward a direction of more scalable and powerful
automated vulnerability analysis.

8.4 Applicability to Other Languages
While our study is focused on C code, our contributions may ex-
tend beyond that, although the degree of applicability to another
programming language L depends on the prompting strategy used.

Under standard prompting, the study process/methodology re-
mains unchanged for L; the primary variation lies in how effec-
tively the LLM can inject vulnerabilities into code written in L
when given direct instructions. Because this strategy requires no
language-specific exemplars, its success is driven largely by the
LLM’s inherent cross-language code generation capability.

For few-shot in-context learning (ICL), the process also generalizes
naturally, but it requires normal code snippets and paired vulnerable
versions written in L. The resulting performance would depend
on how well the LLM leverages these few-shot demonstrations to
perform controlled vulnerability injection in L.

Our VICS prompting strategy follows the same overall approach
as the few-shot ICL, but with an additional layer: each exemplar
includes LLM-generated reasoning describing the vulnerability-
introducing change semantics. In particular, to apply VICS to L,
one would prepare exemplars in L along with the corresponding
semantic rationales. The LLM then uses these exemplars to guide
its injection behavior. Again, performance will vary depending on
how well the model can transfer and operationalize this explicit
reasoning within the syntax and idioms of L.

Overall, our methodology is extensible to other programming
languages as long as relevant code samples in those languages
are available. While the absolute effectiveness may differ across
languages, the increasing generalizability of frontier LLMs, partic-
ularly their strong multilingual code competencies, suggests that
similar potential should hold for languages beyond C.

8.5 Threats to Validity
One internal threat to validity of our results lies in our manual
evaluation: the results are subject to human biases/errors. To mit-
igate this threat, we employed a rigorous inter-rater negotiated
agreement protocol and evaluated the reliability of the process.

Another internal threat is that to evaluate the usefulness of our
LLM-generated data in an automated, production mode, we used
CodeQL as a filter to improve the data quality. Yet CodeQL is known
to suffer both imprecision and imperfect recall, which may have
led to misled observations regarding the comparative merits of
datasets generated by different approaches. The ethics controls in
the studied LLMs that cannot be fully disabled may have occluded
their real potential, confounding our results.

The exemplar selection in ICL and VICS strategies may be subject
to the randomness of LLMs. Thus, we ran pilot tests on subsets of
our datasets, showing little variation across multiple runs per LLM.
Thus, for the official study, we used single-run exemplar selection to
manage LLM costs, which may still suffer from instability, though.

A main external validity threat lies in our limited coverage of
LLMs and size of input and testing sample sets. For instance, the
SARD and CVE datasets used may not fully reflect real-world vul-
nerabilities. Thus, our findings and conclusions may not necessarily
generalize to all LLMs and any input/testing sample.

9 Related Work
DL-based vulnerability detection. Numerous such approaches
have emerged in recent years [13, 24, 36, 38, 40, 54, 60, 64]. Nong
et al. [48] noted that many of these exhibit a gap between reported
performance and real-world accuracy, often due to limited training
data quality and size. To address data imbalance, Saikat et al. [11]
proposed minority oversampling, while later studies emphasized
the effectiveness of data augmentation [46]. Our work also explores
data augmentation to enhance downstream vulnerability detection.
Vulnerability data generation. Beyond DL-based approaches [10,
45, 47, 49], VulScribeR [18] introduced an LLM-based approach
using RAG to produce both single- and multi-line vulnerabilities.
In comparison, we explored a novel prompting strategy, differential
merits of multi- versus single-line injections, and the usefulness of
generated data for augmenting not only DL models but also LLMs.
LLMs for code generation. LLMs have been applied to bug re-
pair [20, 23, 33, 34, 59, 61, 62] and vulnerability patching [6, 41, 43,
50, 52]. Recent work has also explored using LLMs to inject bugs
for benchmarking [31]. In contrast, we leverage LLMs to generate
realistic vulnerable code for data augmentation and evaluate its
impact on improving downstream vulnerability detection models.

10 Conclusion
We investigate vulnerability data generation using seven diverse
and widely adopted LLMs. Through experiments on both syn-
thetic and real-world datasets, we demonstrate the strong poten-
tial of LLMs in generating vulnerable code samples. Our findings
show that LLMs can effectively address key limitations of existing
vulnerable-sample generation techniques, producing higher-quality
samples and significantly enhancing downstream tasks, specifically,
improving the performance of DL-based vulnerability line-level
detection models and RAG-based LLM vulnerability localization. At
the same time, we identify and discuss several challenges and limi-
tations in using LLMs for vulnerability injection, offering insights
and actionable recommendations for developing more effective
LLM-based vulnerability data generation methods.

Our entire study artifact, including used and resulting datasets,
is available at https://figshare.com/s/20d2cae2cda2142999cb.

Acknowledgment
We thank the reviewers for their constructive comments, which
helped us improve our original manuscript. This research was sup-
ported by the Army Research Office (ARO) via grant W911NF-21-1-
0027, National Science Foundation (NSF) via grant CCF-2505223,
and Office of Naval Research (ONR) via grant N000142512252.

11

https://figshare.com/s/20d2cae2cda2142999cb

References
[1] 2021. CodeQL Documentation. https://codeql.github.com/docs/.
[2] 2022. LLM Leaderboard - Comparison of over 100 AI models from OpenAI,

Google, DeepSeek and others. https://artificialanalysis.ai/leaderboards/models.
[3] 2023. Meta Code Llama. https://www.llama.com/code-llama/.
[4] 2023. Meta-Llama-3-70B. https://huggingface.co/meta-llama/Meta-Llama-3-70B.
[5] 2024. Introducing Claude-3.5-Sonnet. https://www.anthropic.com/news/claude-

3-5-sonnet.
[6] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond

Pearce. 2023. Fixing Hardware Security Bugs with Large Language Models. arXiv
preprint arXiv:2302.01215 (2023).

[7] Andrew Austin, Casper Holmgreen, and Laurie Williams. 2013. A comparison of
the efficiency and effectiveness of vulnerability discovery techniques. Information
and Software Technology 55, 7 (2013), 1279–1288.

[8] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated
collection of vulnerabilities and their fixes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering (PROMISE). 30–39.

[9] Paul E Black et al. 2017. SARD: A Software Assurance Reference Dataset. https:
//samate.nist.gov/SARD/. In Anonymous Cybersecurity Innovation Forum.().

[10] Haipeng Cai, Yu Nong, Yuzhe Ou, and Feng Chen. 2023. Generating Vulnerable
Code via Learning-Based Program Transformations. In AI Embedded Assurance
for Cyber Systems. Springer International Publishing, 123–138.

[11] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet? IEEE Transactions
on Software Engineering (TSE) 48, 9 (2021), 3280–3296.

[12] Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun Chen, and David Wagner.
2023. DiverseVul: A new vulnerable source code dataset for deep learning based
vulnerability detection. In Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses. 654–668.

[13] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2022. Neural transfer
learning for repairing security vulnerabilities in c code. IEEE Transactions on
Software Engineering 49, 1 (2022), 147–165.

[14] CNBC. 2019. DDoS attack caused interruptions in power system opera-
tions. https://www.cnbc.com/2019/05/02/ddos-attack-caused-interruptions-in-
power-system-operations-doe.html.

[15] CNN. 2021. US warns hundreds of millions of devices at risk from newly revealed
software vulnerability. https://www.cnn.com/2021/12/13/politics/us-warning-
software-vulnerability/index.html.

[16] Roland Croft, M Ali Babar, and Mehdi Kholoosi. 2023. Data Quality for Software
Vulnerability Datasets. arXiv preprint arXiv:2301.05456 (2023).

[17] Cybersecurity and Infrastructure Security Agency (CISA), Open Source Secu-
rity Foundation (OpenSSF), FBI, Australian Signals Directorate, and Canadian
Cyber Security Center. 2024. Exploring Memory Safety in Critical Open Source
Projects. https://www.cisa.gov/resources-tools/resources/exploring-memory-
safety-critical-open-source-projects. Accessed: 2025-07-10.

[18] Seyed Shayan Daneshvar, Yu Nong, Xu Yang, Shaowei Wang, and Haipeng Cai.
2025. VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs.
ACM Transactions on Software Engineering and Methodology (TOSEM) (2025).

[19] DARPA. 2023. DARPA AI Cyber Challenge Aims to Secure Nation’s Most Critical
Software. https://www.darpa.mil/news-events/2023-08-09.

[20] Pantazis Deligiannis, Akash Lal, NikitaMehrotra, andAseemRastogi. 2023. Fixing
Rust Compilation Errors using LLMs. arXiv preprint arXiv:2308.05177 (2023).

[21] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun
Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen. 2024.
Vulnerability detection with code language models: How far are we? arXiv
preprint arXiv:2403.18624 (2024).

[22] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (MSR). 508–512.

[23] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469–1481.

[24] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: a transformer-based
line-level vulnerability prediction. In Proceedings of the 19th International Confer-
ence on Mining Software Repositories (MSR). 608–620.

[25] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 935–947.

[26] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
and Michael R Lyu. 2023. What makes good in-context demonstrations for code
intelligence tasks with llms?. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 761–773.

[27] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-R1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[28] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When the
Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196 (2024).

[29] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. 2022. LineVD:
statement-level vulnerability detection using graph neural networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories
(MSR). 596–607.

[30] Huntsman. 2023. Cyber risks in transportation sector. https://huntsmansecurity.
com/blog/cyber-risks-in-transportation-sector/.

[31] Ali Reza Ibrahimzada, Yang Chen, Ryan Rong, and Reyhaneh Jabbarvand. 2023.
Automated bug generation in the era of large language models. arXiv preprint
arXiv:2310.02407 (2023).

[32] Information Technology Laboratory at NIST. 2023. National Vulnerability Data-
base (NVD) Dashboard. https://nvd.nist.gov/general/nvd-dashboard.

[33] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. 2023. Inferfix: End-to-end program repair with LLMs.
arXiv preprint arXiv:2303.07263 (2023).

[34] Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen,
and Ivan Radiček. 2023. Repair is nearly generation: Multilingual program repair
with LLMs. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37.
5131–5140.

[35] Peng Li and Baojiang Cui. 2010. A comparative study on software vulnerability
static analysis techniques and tools. In International Conference on Information
Theory and Information Security. 521–524.

[36] Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Vulnerability detection with
fine-grained interpretations. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 292–303.

[37] Zhen Li, Ning Wang, Deqing Zou, Yating Li, Ruqian Zhang, Shouhuai Xu, Chao
Zhang, and Hai Jin. 2024. On the effectiveness of function-level vulnerability
detectors for inter-procedural vulnerabilities. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (ICSE). 1–12.

[38] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021.
SySeVR: A framework for using deep learning to detect software vulnerabilities.
IEEE Transactions on Dependable and Secure Computing (TDSC) 19, 4 (2021), 2244–
2258.

[39] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282.

[40] Yisroel Mirsky, George Macon, Michael Brown, Carter Yagemann, Matthew
Pruett, Evan Downing, Sukarno Mertoguno, and Wenke Lee. 2023. VulChecker:
Graph-based Vulnerability Localization in Source Code. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 6557–6574.
https://www.usenix.org/conference/usenixsecurity23/presentation/mirsky

[41] Emanuele Antonio Napoli and Valentina Gatteschi. 2023. Evaluating ChatGPT for
Smart Contracts Vulnerability Correction. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC). IEEE, 1828–1833.

[42] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-based prompt
selection for code-related few-shot learning. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2450–2462.

[43] YuNong,MohammedAldeen, Long Cheng, HongxinHu, Feng Chen, andHaipeng
Cai. 2024. Chain-of-thought Prompting of Large Language Models for Discover-
ing and Fixing Software Vulnerabilities. arXiv preprint arXiv:2402.17230 (2024).

[44] Yu Nong, Haipeng Cai, Pengfei Ye, Li Li, and Feng Chen. 2021. Evaluating
and comparing memory error vulnerability detectors. Information and Software
Technology 137 (2021), 106614.

[45] Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and
Haipeng Cai. 2024. VGX: Large-Scale Sample Generation for Boosting Learning-
Based Software Vulnerability Analyses. In IEEE/ACM International Conference on
Software Engineering (ICSE). 149:1–149:13.

[46] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2022. Gen-
erating realistic vulnerabilities via neural code editing: an empirical study. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1097–1109.

12

https://codeql.github.com/docs/
https://artificialanalysis.ai/leaderboards/models
https://www.llama.com/code-llama/
https://huggingface.co/meta-llama/Meta-Llama-3-70B
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://www.cnbc.com/2019/05/02/ddos-attack-caused-interruptions-in-power-system-operations-doe.html
https://www.cnbc.com/2019/05/02/ddos-attack-caused-interruptions-in-power-system-operations-doe.html
https://www.cnn.com/2021/12/13/politics/us-warning-software-vulnerability/index.html
https://www.cnn.com/2021/12/13/politics/us-warning-software-vulnerability/index.html
https://www.cisa.gov/resources-tools/resources/exploring-memory-safety-critical-open-source-projects
https://www.cisa.gov/resources-tools/resources/exploring-memory-safety-critical-open-source-projects
https://www.darpa.mil/news-events/2023-08-09
https://huntsmansecurity.com/blog/cyber-risks-in-transportation-sector/
https://huntsmansecurity.com/blog/cyber-risks-in-transportation-sector/
https://nvd.nist.gov/general/nvd-dashboard
https://www.usenix.org/conference/usenixsecurity23/presentation/mirsky

[47] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2023. VulGen:
Realistic Vulnerable Sample Generation via Pattern Mining and Deep Learning.
In IEEE/ACM International Conference on Software Engineering (ICSE). 2527–2539.
doi:10.1109/ICSE48619.2023.00211

[48] Yu Nong, Rainy Sharma, Abdelwahab Hamou-Lhadj, Xiapu Luo, and Haipeng
Cai. 2022. Open science in software engineering: A study on deep learning-based
vulnerability detection. IEEE Transactions on Software Engineering (TSE) 49, 4
(2022), 1983–2005.

[49] Yu Nong, Haoran Yang, Feng Chen, and Haipeng Cai. 2024. VinJ: An Automated
Tool for Large-Scale Software Vulnerability Data Generation. In Companion Pro-
ceedings of the 32nd ACM International Conference on the Foundations of Software
Engineering. 567–571.

[50] Yu Nong, Haoran Yang, Long Cheng, Hongxin Hu, and Haipeng Cai. 2025. AP-
PATCH: Automated Adaptive Prompting Large Language Models for Real-World
Software Vulnerability Patching. In 34th USENIX Security Symposium (USENIX
Security 25). 4481–4500.

[51] Office of the National Cyber Director (ONCD) and IBM. 2024. Memory-Safe
Programming Languages Could Eliminate 70% of Security Bugs. https://www.
ibm.com/think/news/memory-safe-programming-languages-security-bugs. Ac-
cessed: 2025-07-10.

[52] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large language
models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2339–2356.

[53] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[54] Deepika Shanmugasundaram, Pallavi Arivukkarasu, Huaming Chen, andHaipeng
Cai. 2025. Deep Learning Representations of Programs: A Systematic Literature
Review. ACM Computing Surveys (CSUR) (2025).

[55] Miaomiao Shao and Yuxin Ding. 2024. {FVD-DPM}: Fine-grained Vulnerability
Detection via Conditional Diffusion Probabilistic Models. In 33rd USENIX Security
Symposium (USENIX Security 24). 7375–7392.

[56] Team Ninja. 2024. IT Horror Stories: How Unpatched Software Hurts
Businesses. https://www.ninjaone.com/blog/it-horror-stories-why-unpatched-
software-hurts-business/.

[57] The Record. 2023. HHS warns of ‘Citrix Bleed’ attacks after hospital outages.
https://therecord.media/hhs-warns-of-citrix-bleed-bug.

[58] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F Bissyandé. 2023. Is ChatGPT the Ultimate Programming
Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

[59] Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. Copiloting the
Copilots: Fusing Large LanguageModels with Completion Engines for Automated
Program Repair. arXiv preprint arXiv:2309.00608 (2023).

[60] YuemingWu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. 2022. Vul-
CNN: An image-inspired scalable vulnerability detection system. In Proceedings
of the 44th International Conference on Software Engineering. 2365–2376.

[61] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association
for Computing Machinery.

[62] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

[63] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115 (2024).

[64] Haoran Yang, Yu Nong, Tao Zhang, Xiapu Luo, and Haipeng Cai. 2024. Learning
to Detect and Localize Multilingual Bugs. Proceedings of the ACM on Software
Engineering 1, FSE (2024), 2190–2213.

[65] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in Neural Information Processing
Systems (NeurIPS) 32 (2019).

13

https://doi.org/10.1109/ICSE48619.2023.00211
https://www.ibm.com/think/news/memory-safe-programming-languages-security-bugs
https://www.ibm.com/think/news/memory-safe-programming-languages-security-bugs
https://www.ninjaone.com/blog/it-horror-stories-why-unpatched-software-hurts-business/
https://www.ninjaone.com/blog/it-horror-stories-why-unpatched-software-hurts-business/
https://therecord.media/hhs-warns-of-citrix-bleed-bug

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Datasets
	2.3 Metrics
	2.4 Large Language Models
	2.5 Prompting Strategies

	3 RQ1: LLM Effectiveness in Sample Generation
	3.1 Overall Effectiveness
	3.2 Case Analysis

	4 RQ2: Characteristics of LLM Edits
	5 RQ3: Comparison to SOTA Baselines
	6 RQ4: Augmenting DL-based Models
	7 RQ5: Augmenting LLMs
	8 Discussion
	8.1 Potential and Gaps of LLMs for Vulnerability Data Generation
	8.2 Comparison of LLMs to Existing Vulnerability Data Generation Approaches
	8.3 Comparison of Augmented DL Models & LLMs with Original LLMs
	8.4 Applicability to Other Languages
	8.5 Threats to Validity

	9 Related Work
	10 Conclusion
	References

