
A Control-Theoretic Approach to Auto-Tuning
Dynamic Analysis for Distributed Services

Chandan Dhal
Washington State University, USA

chandan.dhal@wsu.edu

Xiaoqin Fu
Washington State University, USA

xiaoqin.fu@wsu.edu

Haipeng Cai
Washington State University, USA

haipeng.cai@wsu.edu

Abstract—Traditional dynamic dependence analysis ap-
proaches have limited utilities for continuously running dis-
tributed systems (i.e., distributed services) because of their low
cost-effectiveness. A recent technique, SEADS, was developed to
improve the cost-effectiveness by adjusting analysis configura-
tions on the fly using a general Q-learning algorithm. However,
SEADS is unable to utilize the user budget as far as needed
for pushing up precision. To overcome this problem, we propose
CADAS, an adaptive dynamic dependency analysis framework for
distributed services. To realize the adaptation, we are exploring
a control-theoretical method which uses a feedback mechanism
to predict optimal analysis configurations. Then, we evaluated
CADAS against six real-world Java distributed services. We
compared CADAS against SEADS as the baseline and show that
CADAS outperforms the baseline in both precision and budget
utilization. Our results suggest a new door opening for future
research on adaptive dynamic program analysis.

Index Terms—Distributed system, dynamic analysis, control
theory, dependence analysis, cost-effectiveness, auto-tuning

I. INTRODUCTION

Continuously running distributed systems (i.e., distributed
services) play crucial roles in our society and daily lives.
Thus, the quality (e.g., maintainability, stability, and security)
of distributed services is important. Dependence modeling and
analysis support different code-based quality-assurance tools,
such as system measurement [1] and security defense [2].
Different from static approaches, a dynamic dependence anal-
ysis approach focuses on specific program executions; thus, it
generally has higher effectiveness (e.g., precision) in nature.

However, developing a practical dynamic dependence analy-
sis often faces scalability and cost-effectiveness challenges [3],
even for centralized programs [4], [5]. These challenges be-
come greater for most real-world distributed services because
of their typically great complexities and large scales [6].
Other factors (e.g., the non-determinism of long-term even
infinite executions and uncertainties in runtime environments
of distributed services) further aggravate such challenges [7].

In this context, we recently developed SEADS [8], a frame-
work that overcomes the above challenges by adjusting anal-
ysis configurations at runtime according to the dependence
computation time costs of specific configurations through
a general Q-learning (QL) algorithm. With the better cost-
effectiveness it achieved, SEADS made an important first step
in scaling dynamic dependence analysis to large distributed
services. However, SEADS suffers low precision and then low
cost-effectiveness for not being able to utilize as much of the
user budget as possible. The reason is that SEADS uses a

general QL reward function for all distributed services under
analysis (SUAs) rather than adapting for a particular SUA.

Thus, we are developing CADAS, a control-based adaptive
distributed online dynamic dependency analysis for distributed
services, to address the limitations of SEADS hence reach the
goal of utilizing as much analysis time budget as possible
to gain as much in precision as possible. As surveyed in [9],
control methods have been widely used and shown to be effec-
tive for adapting software systems. Since a program analysis
is also a kind of software, intuitively the analysis should be
beneficial from those methods too, especially when adaption
is a design goal as in CADAS. Yet so far control-theoretical
approaches are rarely seen as applied to adapt a program
analysis. Specifically, CADAS uses the time costs of various
analysis configurations as well as the knowledge about the
precision of the analysis at different configurations as control
objectives. Then, leveraging the relationships between those
objectives and the analysis configuration items (as control
parameters) as observed in sample executions of the SUA
(as training samples), CADAS builds a feedback controller
to achieve adaptation of its analysis algorithm to optimized
balance between analysis cost and effectiveness (precision).

We implemented CADAS and applied it to six real-world
industry-scale distributed SUAs. Our results revealed its cost-
effectiveness and scalability advantages over a conventional
dynamic analysis (with fixed configuration chosen), at least
for the dynamic dependence computation at method level [10].
With 10 randomly chosen queries for each execution, CADAS
responded with dependency results within acceptable time and
under the budget. Compared to SEADS, CADAS achieved a
higher budget utilization rate (87% versus 56.37%) and higher
precision (87% versus 81.5%) on overall average.

II. APPROACH

CADAS works in four phases for its dependence analysis:
pre-training, instrumentation, adaptation, and user interaction.
There are three inputs from the user: the distributed (exe-
cutable) SUA D with tests, a user budget B (i.e., a response
time constraint for the analysis), and a dependence query Q.

Firstly, CADAS generates the training data (the relative
precision and time costs) for refining its control-based model
in the first phase (pre-training). In the second phase (instru-
mentation), CADAS creates an instrumented version D′ of D,
by inserting probes to monitor the entry (i.e., program control
entering a method) and returned-into (i.e., program control

1



returning from a callee into a caller) events of each executed
method as in [11]. Then, in the third phase (adaptation), D′

continuously runs and CADAS continually performs adaptation
for the dependence computation by tuning the analysis con-
figuration via a control-based method. After the computation
has finished, dependencies related to Q are delivered to a
querying interface attached to each process of the SUA. In
the last phase (user interaction), relevant dependencies are
received from the respective querying interface as the final
result to answer Q. Among these phases, instrumentation and
user interaction are similar to the original design of respective
modules in SEADS. CADAS also considers the same analysis
configuration design as SEADS does. Next, we elaborate the
other two phases that differentiate our approach from SEADS.

Pre-training. This phase creates the precision and time costs
for each of the analysis configurations that, when switching
among them, the analysis cost-effectiveness would have the
greatest variations. CADAS will use those sampled precision
and time cost values as control conditions to compute new
configurations via a feedback adaptive controller as follows.

Adaptation. The intuition behind our control-theoretical ap-
proach is that at any given time we have access to the user
budget, hence via feedback we can leverage this information
with insights from the training data to determine the optimal
configuration. In particular, we design a simple feedback
controller to predict a set of optimal configurations for the
requested user budget. The novelty in our approach is that it
incorporates human knowledge to design such a controller.

During the adaptation process, we analyzed the linearity and
time-invariability (LTI) properties of the dependence analysis
and found that the dependence computation time costs are
constant for purely-dynamic configurations (i.e., those with
which no static SUA information is utilized). This LTI nature
of the dependence analysis is then exploited to a hierarchical
model. More specifically, for each SUA, we first derive a
hierarchy of time cost of the analysis under each configuration,
which is used to realize a feedback control algorithm to predict
the optimal cost-effectiveness for any specified user budget.
Currently, this feedback control is simply a greedy algorithm
searching on the hierarchy for configuration under which the
analysis cost is closest to the budget (but not surpassing it)
while analysis precision is the highest possible.

III. RESULTS

We have successfully applied CADAS against six industry-
scale distributed Java services, including xSocket, Thrift,
OpenChord, Voldemort, ZooKeeper, and Netty, along with the
test inputs representing their typical operations (as detailed
in [8]). These services cover different architectures, applica-
tion domains, and scales. In each test, at least two server/-
client instances were involved. Beyond SEADS, we considered
DODA [12], a traditional dynamic dependence analysis without
automatic configuration tuning, as another baseline.

Effectiveness. With the acceptably longer query response
time (197 seconds) by average, CADAS was able to scale

to real-world enterprise-scale distributed services with higher
precision and user budget utilization rates (both more than
87%) than the better baseline (81.5% and 56.4% respectively).
Learning from the pre-training data through statistical methods
for specific executions and configurations, CADAS gained an
advantage over the baseline SEADS for the cost-effectiveness.
CADAS also had the scalability advantage over the baseline
DODA which is too heavy to scale oftentimes.
Efficiency. CADAS had generally longer query response time
than SEADS. For the SUAs and their executions that DODA
can scale to, CADAS incurred about 4.6x runtime slowdown,
compared to DODA causing 2–6x slowdown, with greater
advantages on larger-scale systems. The reason is that CADAS
immediately triggers the dependence computation when re-
ceiving a query. Overall, CADAS achieved significantly higher
cost-effectiveness than both baselines.

IV. CONCLUSION

We gave a recap about CADAS, a self-adaptive dynamic
dependency analysis for continuously running distributed ser-
vices with concurrent, decoupled, and distributed processes.
When compared to a state-of-the-art peer technique, CADAS
achieved higher precision and budget utilization rate through a
simple control-based method refined from pre-training samples
(i.e., the relative precision and analysis time costs for some
configurations). Also, CADAS has effectiveness, efficiency,
and scalability advantages over a conventional dynamic anal-
ysis without automatic analysis configuration tuning, at least
for method-level dynamic dependence computation. Through
the results, we demonstrated how control-theoretical methods
could be leveraged to automatically tune dynamic analysis.

ACKNOWLEDGMENT

This research was supported in part by Office of Naval
Research (ONR) under Grant N000142212111.

REFERENCES

[1] X. Fu and H. Cai, “Measuring interprocess communications in dis-
tributed systems,” in ICPC, 2019, pp. 323–334.

[2] ——, “Flowdist: Multi-staged refinement-based dynamic information
flow analysis for distributed software systems.” in USENIX Security
Symposium, 2021, pp. 2093–2110.

[3] H. Cai and R. Santelices, “A framework for cost-effective dependence-
based dynamic impact analysis,” in SANER, 2015, pp. 231–240.

[4] X. Zhang et al., “Dynamic Slicing Long Running Programs Through
Execution Fast Forwarding,” in FSE, 2006, pp. 81–91.

[5] H. Cai, R. Santelices, and D. Thain, “DiaPro: Unifying dynamic impact
analyses for improved and variable cost-effectiveness,” TOSEM, 2016.

[6] X. Fu and H. Cai, “Scaling application-level dynamic taint analysis
to enterprise-scale distributed systems,” in ICSE-Companion, 2020, pp.
270–271.

[7] X. Fu, H. Cai, and L. Li, “Dads: Dynamic slicing continuously-running
distributed programs with budget constraints,” in ESEC/FSE, 2020, pp.
1566–1570.

[8] X. Fu, H. Cai, W. Li, and L. Li, “Seads: Scalable and cost-effective
dynamic dependence analysis of distributed systems via reinforcement
learning,” TOSEM, vol. 30, no. 1, pp. 1–45, 2020.

[9] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: A systematic literature review,” TSE,
vol. 44, no. 8, pp. 784–810, 2018.

[10] H. Cai and R. Santelices, “Diver: Precise dynamic impact analysis using
dependence-based trace pruning,” in ASE, 2014, pp. 343–348.

[11] H. Cai and D. Thain, “DistIA: a cost-effective dynamic impact analysis
for distributed programs,” in ASE, 2016, pp. 344–355.

[12] H. Cai and X. Fu, “D2Abs: A framework for dynamic dependence
analysis of distributed programs,” TSE, vol. 48, no. 12, pp. 4733–4761,
2021.

2


	Introduction
	Approach
	Results
	Conclusion
	References

