
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Scaling Application-Level Dynamic Taint Analysis to
Enterprise-Scale Distributed Systems
Xiaoqin Fu

Washington State University
Pullman, WA, USA
xiaoqin.fu@wsu.edu

Haipeng Cai
Washington State University

Pullman, WA, USA
haipeng.cai@wsu.edu

ABSTRACT
With the increasing deployment of enterprise-scale distributed
systems, effective and practical defenses for such systems against
various security vulnerabilities such as sensitive data leaks are
urgently needed. However, most existing solutions are limited to
centralized programs. For real-world distributed systems which are
of large scales, current solutions commonly face one or more of
scalability, applicability, and portability challenges. To overcome
these challenges, we develop a novel dynamic taint analysis for
enterprise-scale distributed systems. To achieve scalability, we use
a multi-phase analysis strategy to reduces the overall cost. We infer
implicit dependencies via partial-ordering method events in dis-
tributed programs to address the applicability challenge. To achieve
greater portability, the analysis is designed to work at application
level without customizing platforms. Empirical results have shown
promising scalability and capabilities of our approach.

CCS CONCEPTS
• Security and privacy→ Distributed systems security; Soft-
ware security engineering.

KEYWORDS
Distributed systems, dynamic taint analysis, scalability, new bugs
ACM Reference Format:
Xiaoqin Fu and Haipeng Cai. 2019. Scaling Application-Level Dynamic
Taint Analysis to Enterprise-Scale Distributed Systems. In Proceedings of
the 42nd International Conference on Software Engineering (ICSE 2020), May
23–29, 2020, Seoul, South Korea. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3338906.3342506

1 PROBLEM AND MOTIVATION
With increasing demands for various computational tasks, more and
more enterprise-scale software systems are becoming distributed.
These systems suffer from peculiar security vulnerabilities (e.g.,
data leaks across processes) due to their great complexity, large
scale, and distributed design. For instance, if sensitive data (e.g.,
username and password) leak, there may be serious resulting losses
and damages. In this context, we need an appropriate technique,
such as a taint analysis, to detect sensitive information flows across

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE 2020, May 23–29, 2020, Seoul, South Korea
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3342506

multiple decoupled processes of a distributed program to defend
distributed software against security vulnerabilities. However, there
are multiple challenges to most existing taint analyses when ap-
plied to real-world, enterprise-scale distributed software systems,
including (1) scalability challenge because of the high complexity
and large code size of those systems, (2) applicability challenge due
to the implicit dependencies among their decoupled (distributed)
processes as in common distributed programs, and (3) portability
challenge resulting from the platform customizations often required
by the analyses.

2 BACKGROUND AND RELATEDWORK
Most early taint analyses [12, 14–16] are static and suffer from
imprecision because of the nature of static analysis. They are also
unsound for modern languages with dynamic features [11]. In ad-
dition, traditional static analyses can hardly apply to distributed
programs because of exacerbated inaccuracies due to implicit de-
pendencies among decoupled components of distributed programs,
and thus these static analyses face applicability challenges. On the
other hand, since most existing dynamic analyses [8, 9, 17] need cus-
tomized platforms or architecture-specific emulators/frameworks,
they face portability challenges. In particular, while the approach
in [3] could compute inter-process dependencies, it has not been
implemented nor evaluated on enterprise-scale distributed systems,
and its (heavyweight) design implies scalability challenges. Several
other dynamic approaches [1, 2] target JavaScript programs and do
not work with common distributed systems either.

3 APPROACH
Based on Soot [10], we have developed an application-level dynamic
taint analysis scalable to enterprise-scale distributed programs. Our
approach computes statement-level taint paths as the final results
after a rapid but rough computation of method-level results in a
pre-analysis phase to balance the analysis precision and overheads
while attaining high scalability. The overall workflow of our solu-
tion is depicted in Figure 1. It takes three inputs from the user: a
distributed program 𝐷 under analysis, the program input 𝐼 for 𝐷 ,
and a user configuration𝐶 including two message-passing API lists
of sources and sinks.

Our technique works in three phases. In the first phase (pre-
analysis), it computes approximated method-level taint paths ac-
cording to the source/sink pairs in 𝐶 . Then, in the second phase
(coverage-analysis), it creates a statement coverage only for exe-
cuted methods on the method-level taint paths from the first phase.
Finally, in the third phase (refinement), the technique derives all
valid statement-level taint paths, where the statements are covered
and on associated method-level paths, as the final results.

1

https://doi.org/10.1145/3338906.3342506
https://doi.org/10.1145/3338906.3342506
https://doi.org/10.1145/3338906.3342506

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2020, May 23–29, 2020, Seoul, South Korea Xiaoqin Fu and Haipeng Cai

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

User Configuration C

Method-level

taint paths
Program Input I

User Inputs

Outputs

Distributed Program D
Phase 1: Pre-analysis

computing method-level

taint flow paths

Phase 2: Coverage analysis

profiling statement

coverage

Phase 3: Refinement

computing statement-level

taint flow paths

 Statement

coverage

Statement-level

taint paths

Figure 1: The overall workflow of the proposed technique for dynamic taint analysis of enterprise-scale distributed software.

Our tool reuses relevant code from previous work [4–7, 13]
for method execution profiling, hybrid dependence abstraction,
and threading-induced dependence analysis. It greatly reduces
the overall cost by narrowing down the scope of the fine-grained
(statement-level) analysis according to the intermediate results,
hence overcoming the scalability challenge. To solve the applica-
bility challenge, it computes implicit inter-process dependencies
derived from happens-before relations among executed method
events. To achieve portability, it is designed as an application-level
solution without any platform customizations.

4 EVALUATION
We implemented our technique as an open-source tool and applied
it to eight Java distributed system subjects of various application
domains, architectures, and scales. The executions analyzed were
driven by integration, load, system tests coming along with these
systems. All possible pairs of (24) sources and (39) sinks manually
curated were considered as taint-flow queries. With this setup, we
assessed the scalability and effectiveness of our approach.
Scalability. Our technique was shown as promisingly scalable and
efficient for enterprise-scale distributed systems. It took, on average
per subject execution, 7 seconds to answer each individual query
beyond a 15-minute one-time cost for all possible queries, with an
almost-negligible storage cost (only 81MB) and an acceptable (less
than 1x) run-time overhead.

Table 1: New vulnerabilities discovered by our technique
Subject Vulnerability Status #Cases #Confirmed

Netty Issue 9456 Fixed 1 1

Thrift

Issue 4924 Confirmed

5 4

Issue 4926 Confirmed
Issue 4928 Confirmed
Issue 4929 Pending
Issue 4930 Confirmed

Voldemort

Issue 505 Pending

4 0
Issue 506 Pending
Issue 507 Pending
Issue 508 Pending

xSocket Bug 25 Pending 1 0

Effectiveness. Our empirical results also revealed promising capa-
bilities of the proposed solution in terms of effectiveness. Beyond
finding 16 out of 22 existing real-world information flow vulnerabili-
ties (that are documented as publicly disclosed CVEs), our approach
successfully discovered 11 new security vulnerabilities, as outlined
in Table 1. These new bugs are related to several enterprise-scale
distributed systems (e.g., Netty, Thrift, Voldemort, and xSocket).
All of these 11 cases have been confirmed by our own manual
inspection. Furthermore, 5 of these have been confirmed by the
developers/maintenainers of respective systems, including one case
(on Netty) already fixed after a relevant pull request was opened,

and a new branch, including the fixed code, was merged to the
master branch of the project’s repository.

5 CONCLUSION
We developed a scalable application-level dynamic taint analysis for
enterprise-scale distributed systems, addressing several challenges
faced by existing peer techniques via a multi-phase, refinement-
based analysis strategy working purely at application level (hence
avoiding any platform customizations). We implemented our tech-
nique for Java and applied it to eight distributed systems against
diverse executions. Our empirical results demonstrated its promis-
ing scalability for enterprise-scale distributed systems and the ca-
pability of finding both existing and new security vulnerabilities.

REFERENCES
[1] Thomas H Austin and Cormac Flanagan. 2009. Efficient purely-dynamic infor-

mation flow analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security. ACM, 113–124.

[2] Thomas H Austin and Cormac Flanagan. 2010. Permissive dynamic information
flow analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security. ACM, 3.

[3] Soubhagya Sankar Barpanda and Durga PrasadMohapatra. 2011. Dynamic slicing
of distributed object-oriented programs. IET software 5, 5 (2011), 425–433.

[4] Haipeng Cai. 2018. Hybrid Program Dependence Approximation for Effective
Dynamic Impact Prediction. IEEE Transactions on Software Engineering 44, 4
(2018), 334–364.

[5] Haipeng Cai and Raul Santelices. 2014. DIVER: Precise Dynamic Impact Analysis
Using Dependence-based Trace Pruning. In Proceedings of International Confer-
ence on Automated Software Engineering. 343–348.

[6] Haipeng Cai, Raul Santelices, andDouglas Thain. 2016. DiaPro: UnifyingDynamic
Impact Analyses for Improved and Variable Cost-Effectiveness. ACM Transactions
on Software Engineering and Methodology (TOSEM) 25, 2 (2016), 18.

[7] Haipeng Cai and Douglas Thain. 2016. DistIA: A cost-effective dynamic impact
analysis for distributed programs. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering. 344–355.

[8] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. ACM, 196–206.

[9] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[10] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. Soot - a Java
Bytecode Optimization Framework. In Cetus Users and Compiler Infrastructure
Workshop.

[11] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. Commun.
ACM 58, 2 (2015), 44–46.

[12] Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 228–241.

[13] Venkatesh Prasad Ranganath and John Hatcliff. 2007. Slicing concurrent Java
programs using Indus and Kaveri. International Journal on Software Tools for
Technology Transfer 9, 5-6 (2007), 489–504.

[14] Sanjay Rawat, Laurent Mounier, andMarie-Laure Potet. 2011. Static taint-analysis
on binary executables.

[15] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.

[16] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2008. Still: Exploit code
detection via static taint and initialization analyses. In 2008 Annual Computer
Security Applications Conference (ACSAC). IEEE, 289–298.

[17] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall.
2011. TaintEraser: Protecting sensitive data leaks using application-level taint
tracking. ACM SIGOPS Operating Systems Review 45, 1 (2011), 142–154.

2

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Approach
	4 Evaluation
	5 Conclusion
	References

