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ABSTRACT 
When detecting moving shadow for video-based virtual reality 
interaction (VBVRI), we need not concern the original moving 
object that casts the shadow. It is based on this feature of 
application that a novel algorithm of moving shadow detection is 
proposed in this paper, which primarily introduces a two-step 
shadow discriminator and an improvement upon the classical 
Gaussian Mixture Model (GMM). The new algorithm markedly 
enhances the real-time performance of shadow detection opposed 
to that of GMM, and exhibits an outstanding resistance against the 
disturbance that arises from abrupt lighting changes. 

Categories and Subject Descriptors 
I.4.8 [Image Processing and Computer Vision]: Scene Analysis 
–  motion, tracking, color.  

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
Human Factors, Verification. 

Keywords 
Keywords are your own d Shadow detection, Virtual reality 
interaction, Shadow discriminator, GMM. 

1. INTRODUCTION 
The aim of either moving targets detection in video streams or 
motion-based segmentation of video objects is to extract the 
moving objects from the original motion images, as is the 
fundamental and crucial part in the motion tracking or the 
recognition and hence analysis of behavior of the moving targets. 
The shadow arising from scene lighting and occlusion between 
objects, however, often impedes the detection, and the shadow 
detection therefore is always regarded by researchers as the key 

step within the overall framework of motion detection algorithms. 

For the purpose of detecting, suppressing and further eliminate the 
moving shadows in video images so as to enhance the quality of 
motion segmentation, many relevant original algorithms and 
improvements upon them have been proposed. According to the 
classification in terms of introduction of decision process and 
reference to uncertainty by Andrea Prati et al.[2], most of these 
proposed approaches can be categorized into two main classes: 
statistical approaches, which describe the pixel’s class 
membership by way of probabilistic function, and deterministic 
approaches, which indicates the membership simply by an on/off 
switch. In their sub-classification, statistical methods are further 
divided into the parametric and the non-parametric, and 
deterministic methods the model based and the non-model based. 
Friedman and Russel present a model based parametric approach 
in [3] through which parameters are learned by certain samples 
and each pixel is thus modeled using Gaussian mixture, with the 
parameters being updated by use of the membership probability of 
the pixel. This approach is also exploited for detecting shadows in 
traffic video streams by Mikic et al. in [4]. Concentrating on 
shadows in static scenes, T. Horprasert et al.[5] put into use an 
non-parametric approach, utilizing the brightness distortion and 
chromaticity distortion to construct a computational color model, 
to implement background subtraction and shadow extraction. 
Another method is employed in [6], which makes use of the 
height information of moving objects against the road plane to 
remove the shadow areas in the road scene under the assistance of 
two cameras, with the image inversely projected by one camera to 
the road plane being transformed to the view from the other, and 
this method belongs to the model based deterministic category[1]. 
Besides, recently more and more approaches solve shadow 
detection and elimination by use of the chromatic feature of 
shadow opposed to the corresponding background. Xiao et al.[7] 
use Canny operator to extract the edge of real moving foreground 
objects so as to remove shadow implicitly. In [8], the HSV color 
information of pixel is exploited to improve the shadow 
suppression. As an example of yet another approach, the method 
presented in [9] achieves shadow detection by utilizing the 
similarity between little textured patches. 

In the VBVRI control, shadow detection serves not to reduce or 
eliminate the side effects of shadows but rather to help locate the 
shadow-projecting objects and thus provides critical information 
like positions and paths of those interactive objects for the 
interaction control. Since only the shadows rather than the 
interactive objects themselves lie within the video frame, this 
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information can be acquired indirectly by shadow detection. In 
[12], a type of VBVRI application offering CSCW features is 
discussed from an engineering point of view; it is actually 
implemented by use of shadow detection. In a sense, the fact that 
the motion images include not the projecting objects but merely 
the shadows they cast make it reasonable to view the shadow 
detection simply as special motion detection. The straightforward 
exploitation of motion detection algorithms, such as the most 
popular GMM approach, however, proves invalid to serve the 
shadow detection. Firstly, per-pixel modeling and hence pixel-
level model updating of GMM both entails expensive 
computation, and then greatly undermines the real-time 
performance of the detection. On the other hand, GMM is fairly 
weak in adapting to lighting changes, especially abrupt changes, 
which is rightly awfully pervasive in the VBVRI applications. 

In this paper, we extend motion detection under the background 
subtraction framework by introducing a two-step shadow 
discriminator and improving the model initialization and 
adaptation in order to enhance the overall real-time performance 
and robustness of shadow detection. On the basis of this extension 
and improvement, we propose a new shadow detection algorithm 
for VBVRI application (called MSDVRI), and our experimental 
results substantiate the effectiveness and efficiency of the novel 
algorithm. 

2. THE BASIC GMM AND SHADOW 
DISCRIMINATOR 

2.1 GMM Approach 
The basic GMM method[10] describes the RGB value ( , , )i i ir g b of 

pixel ( , )t
t i ix x y= within the video frame I as a random 

variable ( , , )r g bX x x x= using a probability mixture consisting of 
K Gaussian components, where K is closely related to spacial and 
temporal complexity of the algorithm based upon it and is usually 
within [3,5], and t indicates the time variance of the video 
sequence. Letting , , , , , ,, , ( )i t i t t i t i tXμ η μ∑ ∑ symbolize the 
mean, co-variance matrix and probability density function (PDF) 
of the ith component at time t respectively, the K-Gaussian 
Mixture of tx  is formulated as 
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where ,i tω  is the component weight, and the PDF of the ith 
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with n being the dimension of vector tX .Under the assumption of 
independency between the three chromatic channels, the 3D 
normal random variable , , ,( , , )t r t g t b tX x x x= can be regarded 
as the union of three independent variables of same distribution, 
therefore the co-variance matrix will be simplified 
as 2

, , , 1, 2,...,i t i t I i kδ∑ = = . During the detection process, 
model match is judged by whether the difference between pixel’s 
value and component’s mean is no more than the standard 

variance of the same component times 2.5. The model adaptation 
is defined, introducing (0 1)α α≤ ≤  as user-defined model 
parameter learning rate and , , ,( | )t i t i txρ αη μ σ=  as the 
parametric learning rate, for the ith component using following 
equations 

, , 1 ,(1 )i t i t i tMω α ω α−= − +                          () 

, , 1(1 )i t i t txμ ρ μ ρ−= − +                          () 
2 2

, , 1 , ,(1 ) ( ) ( )T
i t i t t i t t i tx xσ ρ σ ρ μ μ−= − + − −   () 

wherein the match tag ,i tM  is evaluated as 1 when the 
corresponding component matches tx and 0 otherwise. In the 
model updating, components not matching tx  will hold their 
means and variances unchanged with their weights being 
decreased to some extent. For those pixels that match none of 
their components, we need to resume their components with the 
least weight to hold a larger variance, lower weight and same 
mean opposed to the latest updated mixture, and leave all other 
components unchanged in terms of ,i tμ and ,i tσ , while updating 
their weights as , , 1(1 )i t i tω α ω −= − . Then the normalized ,i tω s 
will be used to sort all components of each pixel by descending 
order in terms of the value of , ,/i t i tω σ . After B predominant 
components, as together signify the background model, are 
selected from the ordered mixture according 
to

1
arg min ( )b

b swkk
B Tw=
= >∑ , whether the pixel belongs to 

the background or foreground can be determined simply by 
judging the math tag using components of the background model: 
if at least one of these components matches tx , the pixel will be 
categorized into background, otherwise it is viewed as part of 
foreground. In this equation, swT  is the weight sum threshold that 
is supposed to be evaluated as a constant. 

2.2 Shadow Discriminator 
The Gaussian background model adopts a per-pixel modeling and 
model updating, and thus incurs a relatively high computational 
complexity. While detecting moving shadows in terms of their 
motions using GMM, we can utilize the appreciable chromatic 
difference between pixels in background and that in foreground to 
preliminarily determine pixels that are possibly within the shadow 
areas, and merely take those possible shadow pixels as the input 
of later motion detection algorithmic procedure. This approach 
will not only enhance the real-time performance of the detection, 
and also conduces to overcoming disturbances stemming from 
either the abrupt lighting changes or disruptive repetitive motions 
in the background. 
In the RGB color space, when the value of a pixel is changed with 
the ratio R:G:B being left unchanged, the pixel’s brightness will 
deviate but its chrominance will hold. Usually there is a definite 
ratio between shadow pixels and pixels of background, which is 
formulated as[12] 

s s s s

b b b b
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wherein , , ,s s s sR G B Gray indicates the channel value and gray of 
shadow pixel and , , ,b b b bR G B Gray is the value and gray of the 
corresponding background pixel. In addition, the candidate 
shadow pixel has also smaller brightness than the related 



background pixel in each channel. In accordance with this 
quantitative relation, we may precede the shadow motion 
detection an initial filter to exclude pixels that are unlikely to be 
within shadow areas. Symbolizing the three channel values of 
background pixel corresponding to tx with , ,r g bb b b , and the gray 
range with ,s lT T respectively, the formula representation of this 
filter is as follows 

1
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After shadow pixel filtering with 1SP , there will still left lots of 
specious shadow pixels that are in practice not in shadow areas, 
especially for the occasion under which the detected scene 
contains various non-shadow regions of lower gray, or the scene 
is itself of lower gray due to weather conditions like night and 
cloudy days. Therefore, we can go further to adopt shadow sifting 
to save computation to a higher measure. Considering the fact that 
a pixel’s brightness merely changes little when it is cast by certain 
shadow, although its saturation might decrease appreciably, we 
refer to the conclusion presented in [13,2] about pixel’s HSV 
color characteristics to introduce the second step of the proposed 
shadow discriminator as 
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where ( ), ( ), ( )H S V
t t tB x B x B x and ( ), ( ), ( )H S V

t t tI x I x I x are 
the HSV channel values of tx  in the background and that of 
corresponding pixel assumed to be in shadow areas respectively. 
Additionally, α should be evaluated with proportion to the 
intensity of solar light, β  is introduced to help avoid classifying 
the background pixels that are impacted by noises falsely as 
shadow pixels, and thresholds ,S HT T can be selected and adjusted 
according to practical needs, and especially, ST should never be 
of positive values. 

3. THE MSDVRI ALGORITHM 
On the basis of motion detection by way of GMM background 
modeling and real-time performance enhancement through the 
two-step shadow discriminator to cut away redundant 
computation, the following presents the overall algorithmic 
framework of the novel MSDVRI approach. 

3.1 Model Initialization Through Parameters 
Learning 

In order the model parameters to correctly describe the dynamic 
background model; we adopt the learning policy by samples 
training of the basic GMM algorithms to initialize all components 
in the Gaussian mixture for each pixel. Firstly all components can 
be initialized on the part of their means with the RGB channel 

values of each pixel in the first sample frame, then for the later 
incoming samples we just perform the same procedure as that for 
the formal shadow detection, i.e. the model match and adaptation. 
Letting the sample volume is V, the algorithm will stay in the 
learning period until all pixels successfully match the background 
model for exactly V-1 frames on end, and then the overall 
background model is regarded as having been initialized steadily 
and correctly. Otherwise, the learning procedure should be 
resumed. 

3.2 Match The Background Model 
In the GMM implementation described in [11,15], when the 
difference between current values of a pixel and the mean of one 
of its components is no more than D times of the variance of the 
component, the component is viewed as a match for the pixel. In 
our approach, all computations concerning variance are omitted in 
order to simplify the model match and other parts of the algorithm 
as far as possible. Introducing a constant threshold Tσ , the 
model match tag ,i tM can be defined as 

,
,
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1 , t i t
i t
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                            () 

Where ,i tM will equal 1 only if tx matches the ith component, 
and Tσ needs to be adjusted in experiment and application by 
reference to an initial real variance acquired through certain 
number of samples. Since we no longer concern model variances, 
the components sorting will also be eliminated. For the shadow 
pixel judgment, we instead adopt a more simplified approach, in 
which  
we first, by formula-(), figure out all the matched components, 
and then sum up the weights of these components, and shadow 
pixel judgment will then be made in terms of whether the weight 
sum surpasses a constant threshold that is also empirically 
evaluated. 
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3.3 Model Adaptation 
Model updating should be performed according to model match 
tag for each pixel. Meanwhile, for the variance-related 
computation has been dismissed, model adaptation will not 
concern any variances. If the ith component matches pixel tx , 
its mean ,i tμ will be updated by formula-(), or the mean keeps 
unchanged. As to weight updating, if there exists component 
matching tx , all weights of the pixel’s components will be 
updated by formula-(), otherwise we need find the component 
with the least weight and re-initialize it, assigning to it a lesser 
weight and current color value as new mean, and for other 
components updating is in accordance with 
equation , , 1(1 )i t i tω α ω −= − . In addition, we calculate the 
parametric learning rate involved in the updating in a simplified 
way as , ,/i t i tρ α ω= instead. 



Figure 2. Shadow detection and interactive control based 
on it on the snow ground ((a) original snow 
background; (b) shadow detected of a single interacting 
person; (c) virtual footprint produced based on 
detected shadow; (d) detection error of GMM arising 
from abrupt lighting changes; (e) detection delay of 
GMM arising) . 

3.4 Overall Algorithmic Flow 
With the improved GMM algorithm being as overall framework, 
and the shadow discriminator preceding the model match and 
parameter updating, foregoing discussions lead to the novel 
MSDVRI procedure. The parameter learning policy through a 
group of training samples will be employed to steadily initialize 
the background model in the first place. Then, by figuring out the 
two-step shadow filter upon each pixel, we only input those pixels 
that are preliminarily considered being in shadow area into the 
improved GMM motion detection flow and thus finally determine 
whether the pixel belongs to shadow area or not. Figure-1 shows 
the detailed flow of the integral MSDVRI algorithm. 

4. EXPERIMENTAL RESULTS 
The proposed novel approach is tested on a Pentium®4 2.4GHz 
processor with 512MB DDR, with all the video frames being read 
in a real-time manner from a video capture card connected to a 
camera, which snaps motion images of a predefined interactive 
region on the ground. The algorithm is programmed on VC 7.0 
under the assistance of SDK provided along with the video card, 
and it handles with 352 × 288 frames at rate of 25fps. Main 
variables and thresholds used in our algorithm are evaluated as 
follows: V = 100, K = 3, α = 0.005, Tσ =10, swT = 0.8. Among 
the following results, the comparisons between GMM and 

MSDVRI, in terms of the motion detection and interaction control 
based on it, corroborate the essentiality of introducing the shadow 
discriminator and simplifying certain steps in the original GMM 
procedures. 
Figure 2 displays a group of results of shadow detection and the 
VBVRI effects implemented using information it provides. 2(a) is 
the static snow background without any lighting and interactive 

objects, and in 3(b) the light is switched on and a single person is 
coming into the interactive region that is snapped by the camera, 
this picture shows the shadow cast by the person. 2(c) is one of 
the frame sequence in which the virtual interactive footprints have 
been added. 2(d) and 2(e) illustrate the flaws of GMM in 
detection error due to jerky lighting changes and in detection 
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Figure 1. The overall algorithmic flow of MSDVRI 

Figure 3. Shadow detection and the virtual interaction 
based on it on the undulating water surface ((a) 
original water background; (b) shadow detected of two 
interacting persons; (c) the virtual interactive effects 
produced based on detected shadow; (d) detection 
error of GMM arising from lighting changes; (e) 
detection delay of GMM for the poor real-time 



delay because of the poorer real-time performance, compared to 
MSDVRI, respectively. In terms of the detection delay, when 
using GMM, it takes on average 1.5s to detect a moving 
interactive object, while using MSDVRI, the time is merely about 
0.25s on average. The group in figure 3 illustrates a set of similar 
results with only a different background, an undulating sea water 
surface. 
As to the further detailed contrast of effectiveness and real-time 
performance between GMM and MSDVRI, table 1 lists a set of 
quantitative test results concerning the capability of resisting 
lighting disturbance and the temporal efficiency of the whole 
shadow detection of the two algorithms. In order to obtain test 
data, we artificially add periodical blocks of shadow points to the 
original frames before they enter into the detection procedure, and 
designate their positions and moving paths as well, so that we 
have a definitely correct control to analyze and evaluate our novel 
approach. For the contrast of real-time performance between the 
two algorithms, a timer is employed in the test program to assess 
the time expense from the entrance of the interactive objects into 
the projecting area to the completion of virtual effects rendering. 
The variable tΔ  denoted in the table indicates time intervals 
between two times of additions of artificial shadow points. 
Compared to the basic GMM, according to data in this table, it 
can be figured out that the MSDVRI algorithm proposed 
decreases the average miss rate of detection by 78.72%, and 
lowers the average detection delay by as much as 82.9%. 

In addition, certain computational simplification adopted in the 
discussion above, the omission of component’s variance in the 
shadow judgment, say, should be carefully considered for the 
purpose of some practical uses. These simplifications help reduce 
considerably the overall algorithmic complexity without salient 
losses of effectiveness and reliability though, raise novel 
problems as well, such as the difficulty in choosing proper value 
of Tσ for the highly dynamic video scene, which, under this 
occasion, might cause appreciable loss of algorithmic reliability. 
For these cases, the original model initialization and adaptation 
can be employed: an initial variance for each pixel to initialize 
each component of its Gaussian mixture can be calculated through 
real computation upon a set of sample frames, an then the 
variance is to be updated during the model adaptation, and the 
match judgment will also refer to the on-line variance. Yet 
another consideration will involve the size of the Gaussian 
mixture. In our experiments and application, 3-Gaussian mixture 
is enough for modeling the video scene background. It is 
reasonable to use as less as possible components in practice, since 
the larger the mixture, the higher the computational complexity 
involved, and thus the poorer the overall real-time performance of 
the algorithm based on this mixture. For those video scenes of 
complex background, however, a relatively larger mixture will be 
required to model the background more correctly and robustly. 

5. CONCLUSION 
The approach to shadow detection within the integral framework 
of modern motion detection algorithm can illuminate what shall 
be exploited and improved about related algorithm to overcome 
the vital shortcomings of some classical methods, such as the 
classical GMM, and thus better serve applications like that of the 
VBVRI. We propose a novel method of detecting shadow specific 
for these applications, in which the improved global GMM 
procedure, mainly the computational simplification on the part of 
background modeling and model adaptation, and the effective 
two-step shadow discriminator combine to enhance the resistance 
against detrimental lighting changes and real-time performance of 
the shadow detection. Our experimental results and test data 
analysis adequately substantiate that the novel MSDVRI approach 
can effectively facilitate the reliable and efficient implementation 
of the VBVRI applications, and it will reasonably provide strong 
support for other similar applications as well. 

Algorithms Number of 
shadow points 

Average number of error shadow points Average miss 
detection rate 

Average 
delay(ms) tΔ =2s tΔ =5s tΔ =10s 

GMM 

1000 34 95 35 5.5% 1526 

4000 262 271 279 6.7% 1337 

8000 973 994 964 12.2% 1719 

Overall average 8.13% 1527 

MSDVRI 

1000 29 31 27 2.9% 203 

4000 37 49 62 1.2% 223 

8000 88 97 102 1.1% 359 

Overall average 1.73% 261 

 

 
(a) 
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(c) 

 
(d) 

 
(e) 

Table 1 contrasts of error and delay of shadow detection between GMM and MSDVRI 
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