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Increasing studies have shown bugs in multi-language software as a critical loophole in modern software quality
assurance, especially those induced by language interactions (i.e., multilingual bugs). Yet existing tool support
for bug detection/localization remains largely limited to single-language software, despite the long-standing
prevalence of multi-language systems in various real-world software domains. Extant static/dynamic analysis
and deep learning (DL) based approaches all face major challenges in addressing multilingual bugs. In this paper,
we present xLoc, a DL-based technique/tool for detecting and localizing multilingual bugs. Motivated by results
of our bug-characteristics study on top locations of multilingual bugs, xLoc first learns the general knowledge
relevant to differentiating various multilingual control-flow structures. This is achieved by pre-training a
Transformer model with customized position encoding against novel objectives. Then, xLoc learns task-specific
knowledge for the task of multilingual bug detection/localization, through another new position encoding
scheme (based on cross-language API vicinity) that allows for the model to attend particularly to control-flow
constructs that bear most multilingual bugs during fine-tuning. We have implemented xLoc for Python-C
software and curated a dataset of 3,770 buggy and 15,884 non-buggy Python-C samples, which enabled our
extensive evaluation of XLoc against two state-of-the-art baselines: fine-tuned CodeT5 and zero-shot ChatGPT.
Our results show that xLoc achieved 94.98% F1 and 87.24%@Top-1 accuracy, which are significantly (up to
162.88% and 511.75%) higher than the baselines. Ablation studies further confirmed significant contributions
of each of the novel design elements in xLoc. With respective bug-location characteristics and labeled bug
datasets for fine-tuning, our design may be applied to other language combinations beyond Python-C.
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1 INTRODUCTION

A number of prior studies [6, 8, 33, 45, 46, 49, 59, 76] have revealed that software developed in
multiple, interacting programming languages (i.e., multi-language software' ) is prevalent, both
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in industry [25] and the open-source world [13, 62], and their dominance (over single-language
software) continues to grow [34, 45, 63]. Intuitively, this prevalence and dominance is justifiable
given the impetus (e.g., benefits or even necessity) of multilingual software development [1, 8, 75].
Indeed, different languages have their own peculiar strengths and weaknesses [11, 49]. Thus,
combining various languages could be a natural consideration by developers for building software
that requires capabilities each best offered by one of the languages [49, 64].

Meanwhile, compared to single-language systems, multilingual software is generally much more
complex [2, 20], not just due to the sheer aggregation of complexities from individual languages used,
but more because of the complications from interoperations among heterogeneous language units
(i.e., code components each written in one single language) [4, 46]. Intuitively, the greater complexity
leads to potentially more bugs in multi-language software [20, 26], especially those induced by
cross-language information flow as a result of language interfacing/interactions (i.e., multilingual
bugs) [29-31]. Multi-language software is also subject to bugs contained in each language unit
alone [31, 35]. Yet those bugs can be addressed by the respective single-language testing/debugging
tools, which are richly available for many languages. By contrast, multilingual bugs are more of a
loophole in testing and fault diagnosis of modern software systems (which are mostly multilingual).

In response, techniques that aspire to address this loophole have emerged, including those based
on static/dynamic analysis and deep learning (DL) [7, 24, 29, 30, 35, 36, 74]. Static techniques, however,
generally suffer from excessive impression [70] in addition to unsoundness due to the prevalence of
dynamic language constructs in real-world programs [30]. In particular, to overcome the semantics
disparity of different languages [4], existing static techniques for multi-language software rely
on heavy language-specific analyses (e.g., computing abstract summaries of native code [29, 55]
or defining semantic rules for each interoperation API [77]), which requires much engineering
work for each particular language combination hence is difficult to extend to other combinations.
Dynamic techniques can be much more precise, but they rely on existing tests which are usually
limited in terms of code coverage [5, 30, 72]. Moreover, test cases are commonly lacking, especially
for real-world multi-language systems [35]. Generating more tests helps, but it either needs quite
some manual work [24] or often ends up finding no bugs after extensive exploration due to the
random nature of the technique [35]. Also, some of these dynamic techniques [14, 15, 17, 22, 42]
essentially only test one language unit at a time, not directly addressing multilingual bugs.

In this context, DL-based approaches have gained increasing momentum in recent years. Leverag-
ing existing bug datasets, these data-driven techniques avoid much of the limitation of static/dynamic
techniques. They also tend to more extensible to various language combinations, as they do not
have to rely on much language-specific analysis. However, even with respect to the rich relevant
literature, developing a DL-based technique that effectively detects and localizes multilingual bugs
faces at least two key challenges. First, DL-based fault localization techniques commonly rely on
(failed) test cases that can reveal bugs [78]. These test executions provide essential guidance for the
DL model to (learn to) differentiate buggy from non-buggy code entities [27, 36-38, 44, 48]. However,
as noted earlier, test cases are often lacking for multi-language software in the wild [35] and those
that reveal multilingual bugs are rarely available. Without the guidance, learning to locate bugs
based on code alone is much more difficult (Challenge 1). Second, building an effective DL model
typically needs a large set of (quality) training (especially labeled buggy) samples [51, 53], which
are unavailable. Fine-tuning a pre-trained model demands much less task-specific samples, which
is also a popular approach adopted by numerous DL-based software engineering techniques [69].
However, even if we can manually curate such a task-specific dataset, it is most likely to be small
due to the great cost of manual labeling. For effectively fine-tuning with such a small dataset, the
pre-trained model would need to have general knowledge that is relevant to the downstream task
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(i.e., detecting/localizing multilingual bugs in our case). Yet such a pre-trained model does not exist
and it is unclear how to learn the general knowledge for our task (Challenge 2).

To address these challenges, we developed xLoc, a DL-based technique that aims to detect and
localize multilingual bugs based solely on the source code of multi-language software. Immediately
informed by our study on the characteristics of 200+ real-world multilingual bugs, especially
concerning where those bugs are located, xLoc is enabled by three major novel design elements.
First (Design 1), to overcome the lack of test-execution guidance, xLoc customizes the Transformer
model [65] to attend to different control flow structures of multilingual code. The attentions serve
as guidance to help the model learn to generally detect (a buggy function) and further localize (buggy
statements in the buggy function), realized via control-flow-based absolute and relative position
encoding, respectively, hence addressing Challenge 1. Second (Design 2), to actually learn the
general knowledge, xLoc pre-trains the customized Transformer against two novel pre-training
objectives that supervise the model to attend to control flow constructs that tend to bear most
multilingual bugs, on a large code corpus of each of the languages used. Third (Design 3), to
fine-tune the pre-trained model for our downstream task, xLoc follows the similar insights for the
pre-trained model customization but computes the absolute and relative position encoding so as to
help the model learn to detect and localize multilingual bugs in particular. Then, to actually learn
the task-specific knowledge, XxLoc trains this fine-tuning model against the downstream task on
the small labeled buggy dataset. These last two design elements together address Challenge 2.

To validate our design, we have implemented xLoc for software written in Python and C as
primary languages (i.e., Python-C software), given the high impact of this language combina-
tion [31-34] (e.g.., underlying all major machine-learning frameworks) while the majority of
existing multilingual bug-diagnosis tools target Java-C [4, 24, 29, 72]. We also curated a labeled
Python-C dataset including 3,770 buggy and 15,884 non-buggy samples, largely manually albeit
assisted by a tool we developed for identifying the buggy samples. With this dataset and implemen-
tation, we evaluated xLoc for (function-level) detection and (line-level) localization of multilingual
bugs. Without an immediate peer tool, we chose as baselines CodeT5 [68] (fine-tuned on the same
dataset as for xLoc), a pre-trained Transformer with many successes in enabling various similar
tasks before, and GPT-3.5/ChatGPT [54] (in the zero-shot setting) given the acclaimed performance
of LLMs with a range of software engineering tasks. Our results show that xLoc achieved promising
accuracy for multilingual bug detection (94.42% precision, 95.54% recall, and 94.98% F1), which
are 3.73~13.37% higher than fine-tuned CodeT5 and 0.40~327.28% higher than ChatGPT. For the
more challenging task of multilingual fault localization, XLoc exhibited even greater advantages
(87.24%@Top-1 and 91.09%@Top-3/5 accuracy), 4.41~24.59% higher than fine-tuned CodeT5 and
511.75~3965.42% higher than ChatGPT. We further conducted ablation studies which demonstrated
the significant contribution of each of the three design elements of xLoc.

Our results highlighted the peculiar merits of xLoc over the two competitive baselines in that
the advantages were much greater in more challenging situations (e.g., localization over detection
and @Top-1 over @Top-3/5 localization). Moreover, the overwhelming superiority over ChatGPT
revealed that for challenging tasks like multilingual bug detection/localization, general LLMs may
not be ready yet and developing a task-specific DL model remains a meritorious option.

To the best of our knowledge, xLoc is the first DL-based technique/tool for multilingual bug
detection and localization, as well as the first practical tool for locating multilingual bugs in Python-
C software without relying on any test case or other execution information. The challenges identified
for multilingual bug detection/localization (especially when using DL approaches) and the proposed
novel designs for overcoming those challenges can be potentially applied to language combinations
beyond Python-C, for which our open-source implementation of xLoc may facilitate. The curated
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Python-C buggy dataset may also benefit other researchers for conducting future multilingual bug
studies and developing multilingual fault diagnosis tools.

2 BACKGROUND AND MOTIVATION

We describe background on multilingual bugs, and then our motivating study and design insights.

2.1 Multilingual Development and Multilingual Bugs

Multilingual development refers to the software practice of developing one software project with
two or more programming languages that interact. This practice is ubiquitous and there is an
increasing number of multilingual software systems in the real world [13, 25, 34, 45, 59, 62, 63].
This underscores the critical need to ensure the quality of such systems. While this approach
often enhances the software development process in different ways [1, 8], such as leveraging the
advantages of each language to promote code reuse [49, 64], it also introduces extra complexity to
the software. This leads to a higher likelihood of bugs [2].

In this work, we focus on
multilingual bugs, which are the
bugs that are caused by the in-
teraction of different program-
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2.2 Characteristics of Multilingual Bugs

To find the prevalence and the characteristics of multilingual bugs, we did a motivating study on
popular open-source projects on GitHub. We collected 2,631 multi-language projects written in C
and Python. We collected a set of cross-language functions based on the project documentation
and filtered the commits where the changed code has control flow relationship with (reachability
to/from) these cross-language functions, named inter-language commits. We further filtered the
commits with their issue types. If the issue type is relevant to bugs, the commit corresponds to one
or more multilingual bugs. For the details of data collection process, please refer to Section 4.1.1.

Table 1 provides the numbers of multilingual bugs in the top-5 projects that have the most stars.
Despite these projects’ popularity and presumably rigorous development processes, each of these
projects has encountered multilingual bugs. The numbers range from as high as 162 bugs in NumPy
to 14 bugs in Cython. The presence of multilingual bugs in such esteemed projects underscores the
pervasive nature of such bugs. The data serves as a testament to the imperative need for enhanced
tools and methodologies to address multilingual bugs.
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We randomly sampled 200 real-world multilingual-bug-fixing commits. Then, we conducted
comprehensive manual analyses of these commits and derived novel insights into the code locations
of prevalent multilingual bugs in practical scenarios.

As shown in Figure 1, our analysis revealed that

Table 1. #multilingual bugs in popular projects many of these multilingual bug locations exhibit char-
#stars #forks #bugs  acteristics that reflect various control flow struc-

NumPy [23] 24,587 8,577 162  tures (e.g., loop, return, and true/false branch). This
CPython [16] 55,856 27,722 134  pattern suggests that control flow plays a pivotal role

kitty [19] 19,925 862 48  in the introduction of these bugs. Note that these loca-
SciPy [66] 11,727 4,855 33  tions are where bugs appeared/manifested, attending
Cython [9] 8,388 1,461 14 to which aligns with our bug-localization task—fault

localization typically identifies bug-appearing loca-
tions, rather than root causes. For example, the "Return” category refers to bugs occurring at return
sites, either in C (including native functions) or Python—yet, in both cases, on cross-language
information-flow paths. Cross-language interfacing/interactions are carried via such paths, which
include, but not consist solely of, cross-language API calls—(return sites in) pure C or Python
functions invoking and/or invoked by those APIs can also be included. Given these findings, and
the evident importance of control flow in multilingual code semantics, we are prompted to advocate
for the integration of control-flow-based position encoding in deep learning-based models for
bug hunting. Such an approach potentially enhances the model’s ability to detect and localize
multilingual bugs rooted in control flow discrepancies.

I Characteristic 1: control flow plays a pivotal role in introducing multilingual bugs.

Besides, we notice that the multilingual bugs were mostly introduced at cross-language API call
sites. Among the various sources of multilingual bugs, the cross-language API call site stands out
as the most significant. Our analysis indicates that nearly a quarter of all multilingual bugs can be
traced back to this specific location. Indeed, they are usually the root causes of the multilingual
bugs since they are the interaction sites of different languages. This observation underscores a
pronounced correlation between multilingual bugs and the cross-language API call sites. Such a
strong association suggests that particular attention should be directed towards these call sites
when addressing multilingual bugs.

I Characteristic 2: cross-language API callsites tend to be primary multilingual-bug locations.

Finally, we notice that function calls (beyond the calls to cross-language APIs) and assignments
(which are also on cross-language information flow paths) emerge as two pivotal bug-introducing
locations in multilingual software. Therefore, when analyzing multilingual bugs, these statements
should be paid extra attention as well.

Characteristic 3: (non-cross-language) function callsites and assignment statements are also
major multilingual-bug locations.

2.3 Design Motivation and Insights

Based on the prevalence of multilingual bugs and their big potential impacts on multilingual
software quality, precisely detecting and locating multilingual bugs is crucial. Therefore, we develop
a novel approach for this task. Given the three characteristics of multilingual bugs above, we hope
that our multilingual bug detection and localization technique can (1) incorporate control flow
relationships between statements; (2) trace the potential bugs back to the causal locations
which are mostly the cross-language API callsites; (3) be sensitive to the other function
callsites and assignment statements which are also key multilingual bug locations.
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To satisfy the three requirements above, we did a literature review on the existing code analysis
techniques that may be used for multilingual bug detection and localization. Existing popular code
analysis techniques include dynamic analysis [5, 30, 72], static analysis [29, 55], and learning-based
analysis [36]. However, dynamic analysis is limited to finding bugs that can be triggered by test
inputs which are either provided with the testing data or generated by fuzzing tools. Based on our
literature review, few of the multilingual bug datasets provide test inputs, while fuzzing is uncertain
and subject to randomness which may take long time but cannot find bugs. In contrast, static
analysis is impeded by disparate semantics of heterogeneous languages. In this case, we choose
to develop a learning-based approach just based on the code to overcome the challenges
of building test inputs and manual engineering effort on detection/localization rules.

To satisfy the requirement of incorporating control flow relationships between statements and
tracing the potential bugs back to the root causes which are usually cross-language API calls, we
hope that our learning-based technique can incorporate the control flow information as well as
build connection between the root causes, which are usually the cross-language API calls, and the
statements that have control flow relationships to the root causes. Therefore, we did a literature
review on learning-based software engineering (SE) techniques. Recently, deep learning (DL) based
models are widely leveraged for SE tasks and they achieve big successes [43]. Popular DL models for
SE include recurrent neural network (RNN) [47], graph neural network (GNN) [79], convolutional
neural network (CNN) [40], and Transformer [65]. Among them, Transformer uses the self-attention
mechanism to learn the attentions between different elements (e.g., code tokens) in the model
inputs [65]. There are different designs for the self-attention mechanism. The original Transformer
uses the encoding of the absolute position of the elements to bias the attention [65]. Shaw et
al. [60] propose relative position encoding which uses the difference between token indexes to
bias the attention. To make Transformer work better on programming languages, Peng et al. [57]
propose TPTrans which integrates the paths on the abstract syntax tree (AST) of the code to bias
the attention. Given the flexibility of the Transformer attention mechanism design which
allows the technique to incorporate the control flow information and build attention
between cross-language API calls and statements that have control flow relationships
to the control flow API calls, we choose to develop our multilingual bug detection and
localization technique with the Transformer architecture.

To satisfy the requirement of being sensitive to the function call and assignment statements, we
hope that the Transformer model understands the code syntactic and semantic information because
function call and assignment statements are important syntactic structures and involve important
semantic information. However, making DL models understand syntax and semantics of different
programming languages requires a large amount of training data. Yet, existing multilingual bug
training data we can collect (<20K) cannot satisfy the need of data. Luckily, Transformer can be
pre-trained on general tasks with a large amount of corpus available in the wild before training on
the specific tasks. This is proved to be effective on different domains of tasks (e.g., natural language
processing [12], code understanding [50], code generation [61]). Therefore, we choose to pre-
train our Transformer-based bug detection and localization model to make it sensitive to
the function call and assignment statements.

Based on the choices above, we designed xLoc, a DL-based multilingual bug detection and
localization technique based on a pre-trained Transformer model. XLoc is pre-trained on five
pre-training objectives which enable the model to understand multilingual code syntactic and
semantic information and be sensitive to the function call and assignment statements. During the
pre-training, xLoc incorporates the control flow information by a control-flow-based position
encoding. To make the model be able to trace the potential bugs back to the root causes which
are usually cross-language API calls, xLoc fine-tunes the model with cross-language-API-aware
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Fig. 2. Overview of our multilingual bug detection and localization technique xLoc.

position encoding. For our control-flow-based position encoding and cross-language-API-aware
position encoding, we leverage both absolute position encoding and relative position encoding
based on control flow graphs. The absolute position encoding helps locate relevant control-flow
constructs within the entire function and differentiate among different functions—hence helping
with (function-level bug) detection. The relative position encoding helps differentiate among
statements/tokens within the function, which helps with (line-level bug) localization. By
enhancing both the position encoding schemes, xLoc pays greater attention to relevant control-
flow constructs in multilingual code towards helping detect and locate multilingual bugs. Which
kinds of bugs xLoc can detect/localize is intuitively affected by those covered in the fine-tuning
dataset—the one we used includes both crash and semantic bugs. xLoc can detect/localize both
kinds, and other kinds it is fine-tuned against.

3 TECHNICAL APPROACH

We start with an overview of xLoc’s design and then describe the details of each module and step.

3.1 Overview

Figure 2 shows the overview of xLoc. With the design motivation and insights above, our designed
xLoc achieves the goal of multilingual bug localization with three step: (1) control-flow-aware
pre-training, (2) cross-language-API-aware fine-tuning, and (3) detection and localization. Each
step also comes with a preprocessing module which preprocesses the code samples into the formats
that each step can utilize.

In the module preprocessing, xLoc tokenizes the source code into a sequence of tokens, as the
Transformer model processes the data as a sequence. Since xLoc incorporates the multilingual-
specific information with control flow information, the preprocessing module also parses the source
code into control flow graphs (CFGs) for each step to utilize. The token sequences and the parsed
CFGs are further utilized in each of the three main steps.

In Step 1: control-flow-aware pre-training, xLoc learns to understand the code syntax and
semantics of multiple programming languages by pre-training the Transformer model on a large
scale code corpus. It first preprocesses the pre-training code corpus which is in a large scale (>100k
pre-training samples). Then, it traverses the parsed CFGs from the preprocessing module and
obtains the CFG-based absolute and relative positions for each token or each pair of tokens. The
CFG-based absolute position of a token indicates the control flow position of the statement that the
token is in. The CFG-based relative position of a pair of tokens indicates the control flow distance of
the two statements that two tokens are in. Then, CFG-based absolute and relative positions, along
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with the token sequences, are fed into a customized Transformer which has a specific-designed
control-flow-based position encoding. This makes the model control-flow aware, which is crucial
for multilingual bug detection and localization. With the processed pre-training code corpus, xLoc
pre-trains the customized Transformer with five pre-training objectives: masked span prediction
(MSP), masked identifier prediction (MIP), identifier tagging (IT), function call statement prediction
(FCP), and assignment statement prediction (ASP). The five pre-training objectives makes the
Transformer model understand the code syntactic and semantic information and be sensitive to the
function call and assignment statements, which significantly reduces the needs of large amounts of
training data for multilingual detection and localization.

In Step 2: cross-language-API-aware fine-tuning, xLoc fine-tunes the pre-trained model
which can understand the code syntax and semantic of multiple programming languages from Step
1 for multilingual bug detection and localization. It first preprocesses the existing multilingual bug
training data into token sequences and CFGs. To make the Transformer model focus on the cross-
language API calls which are usually the root causes of the multilingual bugs, and the statements
that have close control flow relationships to the cross-language API calls, xLoc filters the set of
CFGs and only reserve the CFG nodes that involve cross-language API calls (CAs), named CA
nodes. Then, it traverses the CFG with only CA nodes remaining to get a set of cross-language API
relative and absolute positions. The cross-language API positions, along with the token sequences,
are fed into the customized pre-trained Transformer for multilingual bug detection and localization
fine-tuning. This makes the model more focused on the cross-language APIs which are usually the
root causes of multilingual bugs. After the fine-tuning, the customized Transformer is expected to
detect and locate multilingual bugs given new programs.

In Step 3: detection and localization, xLoc takes the fine-tuned model from Step 2 for mul-
tilingual bug detection and localization. Similar to Step 2, the multilingual bug testing data is
preprocessed and filtered CA nodes. Then, the fine-tuned model takes the token sequences and
cross-language API positions to detect and locate the possible multilingual bugs in the given
program. To better evaluate the performance of localization for practical use, we leverage beam
search which allows the model to output multiple candidate buggy lines, as developers may want
to check multiple predictions to find the really buggy one. We evaluate the effectiveness of xLoc
by validating the predicted buggy lines with the ground truths.

3.2 Preprocessing

To enable the control-flow-aware pre- 775id useApI(int x){

training and cross-language-API-aware 2 Hint ¥ 2 X ¥+ B
fine-tuning in the customized Transformer | f(y<=0) T
model, we first preprocess the source code ! y=0;
into a sequence of tokens and CFGs so that {>  €lse postion: 3
the model can accept them. Among tools
that can parse the code and construct its
CFG, we choose Joern [75] because: (D it ™3 "6 ol oo Tanguage AP call control flow.
can parse the code and get the control flow
graphs without compiling the whole projects, which saves much time and storage for us; (2) Joern
supports parsing different programming languages which allows us to do multilingual code analysis.
Given a code sample, its CFG is a multi-edge graph ¢g(V, E), where V is a set of nodes which
represent the statements in the sample, and E is a set the edges connecting the nodes in V, which
represent the control flow relationship between different statements. Particularly, the graph starts
from the program entry, branches at the conditional statements (e.g., if, for, while, switch) and
terminates at the program exit. Figure 3 shows an example. The code is parsed into its CFG using

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 97. Publication date: July 2024.



Learning to Detect and Localize Multilingual Bugs 97:9

Joern. The number in each CFG node indicates the line in the source code. We can see that because
of the if-else statement, the CFG has branches for lines 4 and 6.

To tokenize the source code into token sequences, we choose to use tree-sitter [41] because: (1)
it supports multiple programming languages; (2) it is fast and easy to set up; (3) it does not need
input code to be compilable. After the tokenization, the source code is parsed into sequences of
tokens that can be accepted by the Transformer input embedding layer.

3.3 Control-Flow-Aware Pre-Training

In this step, XLoc learns to understand the code syntax and semantics of multiple programming
languages by pre-training our customized Transformer that is control-flow-aware, with a large scale
code corpus (>100k pre-training samples). We separately describe the graph traversal, customized
Transformer, and pre-training objectives in details:

3.3.1  Graph Traversal. To make the customized Transformer control-flow-aware, we first traverse
the CFGs parsed from the preprocessing module to get the absolute and relative positions on
CFG. To get the absolute position on CFG, we traverse each single CFG node on the graph and
compute the shortest path to the root node of the CFG (the definition line of the function) with the
breadth-first search (BFS) algorithm. The length of the shortest path to the root node is the absolute
position of the node. To get the relative position on CFG, we traverse each pair of nodes on the
CFG and compute the shortest path between them. The length of the shortest path is the relative
position of the pair of nodes. Figure 3 shows an example of the absolute and relative positions
on the CFG. Take line 6 as an example, the shortest path to the root node of the CFG is 3, thus
its absolute position is 3. The pair of line 2 and line 6 has the shortest path with 2 steps, thus the
relative position of the pair line 2 and line 6 is -2 (because line 2 is before line 6; in contrast, the
relative position of the pair line 6 and line 2 is +2).

Then, the relative/absolute position information on the CFG, along with the token sequences
from the preprocessing module, is fed into the customized Transformer.

3.3.2  Customized Transformer. In a typical Transformer model with traditional absolute and
relative position encoding, self-attention is one of the core components. In short, the self-attention
module uses key and value pairs to query a dictionary which can be computed as follows:

. QKT
Attention(Q,K,V) = softmax(=——)V (1)
Vd
where Q, K,V are the previous layer hidden representations of query, key, and value respectively
and d is the dimension of the representations. For simplicity, we rewrite and expand the equation
to better explain it:

_ exp(al]) % 1%

where a; j is the attention between the 1-th token and the j-th token and can be further expanded as

= WO W+ 1)+ () (@) )

In Equation (2) and (3), we have added the traditional absolute position encoding which are
represented as aQ and aK as well as the traditional relative position encoding which are represented

asr), ;; and r . The tradltlonal absolute encoding and relative position encoding are based on the

indexes of the tokens in the input sequence. Specifically, absolute position encoding has a? = piAQ
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and af = p;AK where p; and p; are the sine and cosine functions of the positions i and j and A? and
AK are the weight matrices of the encoding [65]. The relative position encoding has rl.‘; =(i-j)RV

and rg = (i — j)RK where RV and RX are the weight matrices of the encoding [68].

Since the traditional position encoding directly uses token indexes to compute the encoding, the
attention layer may not be able to capture the syntactic and semantic position relationship between
the tokens in the code. In Section 3.1, we discussed that control flow is a good representation for
code syntactic and semantic information. Thus, we add our control-flow-based absolute and relative
position encoding to the model.

exp(a;;
zZi = #(XJWV + ri‘; + ri‘;CFG) )
= 2=y exp(aij)

ajj = L(X-WQ)(X-WK +rK+rKCFG)T+ L (aQ)(aK)T+ 1 (aQCFG)(aKCFG)T )

LV i J ii i ; N . '

Vad BT g ) T g
where rl.V.CF G and riK.CF G are the control-flow-based relative position encoding, and aiQCF ¢ and af" G

are the control-flow-based absolute position encoding. We define them as follows:

rl.‘;CFG = ctrl_dist (i, j)R'<FS (6)
rfjcm = ctrl_dist (i, j)RKcre )
alQCFG = ctrl_dist(i, 0)A9cre (8)
afcm = ctrl_dist(j, 0)AKere (9)

where RYF6 and RKCFG are the weight matrices of the control-flow-based relative position encoding.
AQcré and AKerG are the weight matrices of the control-flow-based absolute position encoding.
ctrl_dist(i, j) is the control flow distance between two statements that enclose the i-th and j-
th tokens. Figure 3 shows an example. All the tokens in line 2 (in cyan) have absolute position
ctrl_dist(i,0) = 1 and relative position ctrl_dist(i, j) = —2 to the token Py_ABS (in green) at line 6.

3.3.3  Pre-Training Objectives. With the customized Transformer which is control-flow-aware, we
perform pre-training before fine-tuning to gain the model awareness of the syntax and semantics of
different programming languages. We use three existing general-purpose programming language-
oriented objectives from CodeT5 [68]: MSP, IT, and MIP;and two new objectives that are relevant
to multilingual bug detection and localization: FCP and ASP. We separately describe the five pre-
training objectives below.

CodeT5 Objectives. To make the model learn general code syntax and semantics for different
programming languages comprehensively, CodeT5 utilizes three pre-training objectives. The first
one is mask span prediction (MSP), where the code tokens in an input are randomly masked
for the model to recover. The second objective is identifier tagging (IT), where the model
learns to tag the tokens in the code that are identifiers. The third objective is masked identifier
prediction (MIP), where the model learns to recover the identifiers in the code based on the
code semantics. For more details, please refer to the original CodeT5 paper [68].

Function Call Statement Prediction (FCP). Based on our motivating study in Section 2, we
found that the multilingual bugs mostly happened in function call statements. Therefore, we hope
that the model pays more attention to the function call statements. Therefore, we introduce the
function call statement identification (FCP) pre-training objective. In this objective, we
randomly mask a statement that involves a function call. Then, the model learns to recover the
masked statement based on the context semantics of the code.
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Assignment Statement Prediction (ASP). In our motivating study, we also notice that mul-
tilingual bugs often happen in assignment statements. Thus, similar to FCP, we also pre-train
the model for assignment statement prediction (ASP). Again, we randomly mask a statement that
involves a variable assignment. Then, the model learns to recover the masked statement based on
the context semantics of the code.

To effectively pre-train the model, we first load the pre-trained CodeT5 model which is available
on HuggingFace [71]. We then pre-train ASP and finally FCP as multilingual bugs are more likely
to happen in function calls (see Figure 1). After the pre-training, the model is used for the cross-
language-API-aware fine-tuning.

3.4 Cross-Language-APIl-Aware Fine-Tuning.

In this step, xLoc fine-tunes the pre-trained model from step 1 for multilingual bug detection
and localization. Similar to step 1, the multilingual bug detection and localization data used for
fine-tuning is preprocessed to get the CFGs and the token sequences. Based on our motivating
study in Section 2, we notice that most of the multilingual bugs happen at the cross-language API
calls or the statements which have close control flow relationships to them. Thus, we hope that
the model focuses more attention on these statements rather than all the statements on the CFGs.
Therefore, for fine-tuning, given a code sample, we filter the nodes in the CFG and only get the
CFG nodes that involve cross-language API calls (CA nodes). Then, we traverse the CFG like what
we do in step 1, but only the CA nodes and the nodes that have direct control flow relationship to
the CA nodes are used for control-flow-based position encoding.

Specifically, for control-flow-based absolute position encoding, only the CFG nodes/statements
involving cross-language API calls (i.e., CA nodes) as well as the nodes/statements between the CA
nodes and the root node are used for the encoding. For example, in Figure 3, line 6 is used for the
absolute position encoding because it has a cross-language API call Py_ABS. Line 2 is also used for
the absolute position encoding because it is on the path of line 6 to the root of the CFG. However,
line 7 is not used because it is neither of the two conditions above. For relative position encoding,
only the pairs of statements where at least one of them involving cross-language API calls are used
for the encoding. For example, the pair of line 2 and line 6 and the pair of line 6 and line 7 are used
for the relative position encoding because they involve a cross-language API call Py_ABS, but the
pair line 2 and line 7 is not used because the pair does not involve cross-language API call. This
removes the control-flow attention on those statements not relevant to cross-language API calls,
making the model more focused on the parts that are most likely to have multilingual bugs.

For fine-tuning, we collect a dataset for multilingual bug detection and localization D = {(f;,s;)}
where each sample is a buggy or non-buggy function f; and its prediction ground truth s;. If the
function is buggy, s; is the ground-truth buggy line. If the function is non-buggy, s; is a token 0.
Both f; and s; are in text form to fit the Transformer. To fine-tune the model with parameters 0, we
minimize the following negative log-likelihood loss to maximize the likelihood estimation:

N
L(D;6) =} ~log p(silfi:0) (10)
. o i=1
3.5 Detection and Localization

After the fine-tuning, xLoc is expected to detect the multilingual bugs and output the buggy line if
the given function is buggy. Given a code sample, xLoc preprocesses the code sample, filters CA
nodes, and traverses the CFG to get the cross-language API relative/absolute positions and the
token sequence like what it does in step 2. Then, the model predicts whether the code sample is
buggy, and if so, which line is the buggy line. Since the model is probabilistic, it allows to predict
multiple buggy lines with beam search size greater than 1. When setting the beam search size K,
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Fig. 4. The workflow of our data collection process.

xLoc output K lines that are the most likely ones to be buggy. Later we will use different beam
search sizes to evaluate xLoc and the baseline techniques.

4 EVALUATION

In this section, we evaluate the effectiveness of xLoc for detecting and localizing multilingual bugs.
We seek to answer the following research questions:

e RQ1: How effective is xLoc in multilingual bug detection compared to other approaches?
e RQ2: How effective is xLoc in multilingual bug localization compared to other approaches?
e RQ3: How much does each of the design elements of xLoc contribute to its performance?

We first describe the evaluation dataset, metrics, and the setup. Then, we answer these questions.

4.1 Experimental Design

4.1.1 Dataset. We utilize two distinct datasets; one is employed for the pre-training of the model,
while the other dataset is used for the model’s fine-tuning and evaluation.

Pre-training. We build the pre-training datasets by using the C and Python programs from IBM
CodeNet [58]. We select 137,864 C programs and 171,358 Python programs. Since the file-level
programs may be too long for the model to learn, we extract the functions in these programs and
obtain 385,447 samples. These function-level samples are the actual data for pre-training.

Fine-tuning & evaluation. Due to the absence of multilingual bug datasets, collecting such
datasets is paramount for model training. We collect data from GitHub, given its prominence
in software development and its vast repository of real-world code and metadata. We choose to
focus on Python and C, because of two reasons: (1) both Python and C are top-10 languages with
extensive developer communities; (2) C is renowned for its high performance and efficient memory
management, while Python is celebrated for its simplicity and readability. Python and C, when
combined, have a large ecosystem of libraries and modules that can be used for various tasks, such
as machine learning (ML) and artificial intelligence (AI).

Figure 4 shows the workflow of the data collection process. We first scrape 2,631 Python-C
repositories from GitHub in descending order based on the number of stars. Then, from these
repositories, we extract the multilingual commits which are the commits involving interactions
between different languages. To get the multilingual commits, we do the following two steps:

Since not all the projects written in Python and C involve interactions between the two languages,
the first step is to identify the multilingual projects with language interactions. To do so, we employ
a state machine from PolyFax [32] to detect Python-C interactions: the state machine determines
whether a project has language interaction by recognizing the presence of interaction types (e.g.,
ctypes, Cython, SWIG) in the project. For more details, please refer to the original PolyFax paper [32].

After filtering the projects involving language interactions, the second step is to filter the
multilingual commits. We define multilingual commits as the commits whose changed code lines
can reach or can be reached by the cross-language API calls on the control flow graph. To do so,
we built a tool based on Joern [73], and enhanced it with whole-program control flow reachability
analysis, to automate this process.
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Then, we filter the multilingual bug-fixing commits from these multilingual commits, because not
all the commits are bug fixing. To do so, we get the linked issue posts of the multilingual commits
on Github. Each issue has a classification label. We filter the multilingual commits with the issue
labels related to bugs. Our bug-related labels include: *error’, ’bug’, ’defect’, ’patch’,
'mistake’, ’fault’, ’failure’, ’fix’, ’issue’, ’incorrect’, ’flaw’. Finally, the
resulting commits are still likely to be false positives as multilingual bug-fixing commits. Thus, we
followed a manual confirmation process in which each commit was checked to confirm that it is
a multilingual bug-fixing commit—which fixes the faulty underlying cross-language information
flow. We finally obtained 1,789 potential multilingual-bug-fixing commits from 56 repositories.

Each bug commit is a pair of code which involves the versions before and after the commit.
Based on this, we use the diff command provided by Git to get the lines modified and the modified
lines are the buggy lines we want to locate. The commits are based on whole source code files
and the code in the files is usually very long (e.g., > 5000 tokens). Since the Transformer model
is sensitive to the input text length [10, 52], inputting the whole files is not feasible. Thus, we
extract the respective functions where the modified lines are in. Then, we only keep the functions
that contain cross-language interactions, and thus the buggy functions are the actual inputs to
the model. For each buggy sample, the expected output (ground truth) is the buggy line in the
function. If there are multiple buggy lines, we use the first buggy line as the ground truth since it is
usually the most important one and the rest of the lines may be directly located after it [37]. As
for non-buggy functions, we extract the function from the commit without the buggy tag in the
previous step. For each non-buggy sample, the expected output (ground truth) is 0.

We finally collect 19,654 samples, including 3,770 buggy samples and 15,884 non-buggy samples
in C and Python. We split this dataset 8:1:1 for training (fine-tuning), validation, and testing.

4.1.2  Metrics. Following other prior bug detection/localization studies [36, 37], we use recall,
precision, and F1 as the metrics to evaluate the detection effectiveness of xLoc and the baselines.
We use top-K as the metric to evaluate the localization effectiveness of xLoc and the baselines.
Specifically, when we set the beam search size as K, xLoc outputs K predictions. For detection,
we only check the first prediction, no matter what k is: if the prediction is 0, the code sample is
predicted as non-buggy, otherwise, it is predicted as buggy and the output should be the first line
of the buggy code. If the code sample is predicted as buggy, we check all the k predictions which
are most likely to be the buggy lines. Once one of the predictions matches the ground truth, we
mark that sample to be a correct case. The percentage of correct cases in all the testing samples is
the accuracy at top-K. We report top-1, top-3, and top-5 following the prior works [36, 37].

4.1.3  Setup. We use the pre-trained CodeT5 on HuggingFace [71] as the base and develop xLoc by
directly modifying its source code. We use the default hyper-parameters of CodeT5 for training and
testing. We perform our experiments on a workstation with an AMD Ryzen Threadripper 3970X
(3.7GHz) CPU with 32 Cores, an Nvidia GeForce RTX 3090 GPU, and 256GB memory.

4.1.4 Baselines. We assess the effectiveness of xLoc over two baselines:

e GPT-3.5 Turbo is one of the latest Large Language Models (LLMs), which is trained with
175 billion parameters. It is characterized by its ability to process up to 16,385 tokens in a
single context. We use this model in the zero-shot setting as zero-shot LLMs recently showed
very-promising performance for bug diagnosis [56], while it is not clear yet how LLMs can
be better prompted for multilingual bug detection/localization.

e CodeT5 [68] is a cutting-edge pre-trained encoder-decoder Transformer model specifically
designed for code understanding and generation tasks. With xLoc, we aim to demonstrate
how to leverage a pre-trained code language model for multilingual bug detection/localization
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Table 2. Effectiveness of xLoc and the baselines for detection and localization.

GPT-3.5-turbo CodeT5 xLoc
Recall 94.04% (0.40% 1)  84.27% (13.37% 1) 95.54%
Precision 22.36% (327.28% 1) 91.02% (3.73% 1)  94.42%
F1 36.13% (162.88% 1) 87.51% (8.53% 1)  94.98%
Top1 2.14% (3965.42% 1)  70.02% (24.59% 1) 87.24%
Top3 4.96% (1736.49% 1) 81.89% (11.23% T) 91.09%
Top5 14.89% (511.75% 1) 87.24% (4.41% 1)  91.09%

through model customization and further pre-training, for which the model should be open-
source and architecture-modifiable. CodeT5 is such a model widely adopted in AI4SE [3, 28, 67]
(often via fine-tuning). Thus, we chose CodeT5 as a baseline.

In particular, for GPT-3.5 (i.e., ChatGPT), we used two prompt templates both starting with the
objective and followed by the output requirements. The first aims at bug detection:
Given the following code, tell whether the code is buggy: [CODE]

Output: *YES’ or 'NO’; no explanations.

where [CODE] refers to the code in each testing sample. If the response was *YES’, indicating the
presence of a bug, we continue to ask the LLM to localize the bug with the second prompt template:

Given the previous code, identify the top-5 most likely buggy locations.
Output: each location with the probability it’s buggy as {code line, probability}; no explanations.

In the case of positive bug detection, we query the LLM for the top-5 bug locations so that we
can compute the model’s bug localization performance in terms of the metrics defined earlier (i.e.,
top-1, top-3, and top-5 accuracy), as for the other baseline CodeT5 and our technique xLoc.

4.2 Results

4.2.1 RQI: Detection Effectiveness of xLoc. Table 2 delineates the efficacy of xLoc in comparison
to baseline methods on 1912 test samples. The recall, precision, and F1 score achieved by xLoc
are 95.54%, 94.42%, and 94.98%, respectively. The commendable precision underscores the high
quality of the generated samples, while the recall of 95.54% attests to its universality in supporting
large-scale bug detection. An F1 score of 94.98% further manifests the overall effectiveness of xLoc.

Columns 2 and 3 of Table 2 present the effectiveness of two baseline methods, with the figures
in parentheses indicating the relative improvement of xLoc over these baselines. In terms of recall,
precision, and F1 score, xLoc exhibits advantages of 0.40%, 327.28%, and 162.88% over the LLM
GPT-3.5, respectively. Despite GPT-3.5 being an expansive and potent large language model, it
lacks the requisite fine-tuning for bug detection. Its recall is nearly indistinguishable from xLoc,
which we surmise results from its heightened sensitivity to bugs, leading to the misclassification of
numerous negative samples as positive. Compared to CodeT5, xLoc surpasses in recall, precision,
and F1 score by 13.37%, 3.73%, and 8.53%, respectively. This is attributed to xLoc’s utilization of
CFG-based pre-training with FCP/ACP objectives and CFG-based fine-tuning.

4.2.2  RQ2: Localization Effectiveness of xLoc. The last three rows of Table 2 depict the capability of
each model in terms of localization. The top1’ metric represents the accuracy of each model when
only one localization prediction is permissible. “Top3’ and 'top5’ metrics, on the other hand, denote
the accuracy when models provide three and five predictions, respectively. With only one prediction,
xLoc successfully pinpoints 87.24% of bugs, indicating its prowess in swiftly locating the majority
of bugs. When xLoc offers three and five predictions, the accuracy escalates to an impressive 91.09%.
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Table 3. Effectiveness of xLoc and the baselines for localization for various bug locations

Bug location #samples xLoc codeT5 GPT-3.5-turbo
Top1l Top3 Top5 Topl Top3 Top5 | Topl Top3 Top5
Cross-Language API Callsite 114 91.23% 96.49% 96.49% | 82.46% 83.33% 84.21% | 2.63% 6.14% 18.42%
Function Call 58 86.21% 91.38% 91.38% | 72.41% 74.14% 74.14% | 0.00% 0.00% 6.90%
Assignment 63 80.95% 84.13% 84.13% | 76.19% 79.37% 79.37% | 0.00% 6.35% 17.46%
True/False Branch 38 71.05% 76.32% 76.32% | 60.53% 63.16% 63.16% | 2.63% 7.89% 28.95%
Return 20 65.00% 75.00% 75.00% | 65.00% 75.00% 75.00% | 0.00% 0.00% 5.00%
Following a Foreign Function Calll 13 84.62% 92.31% 92.31% | 92.31% 92.31% 92.31% | 15.38% 15.38% 15.38%
Conditional Expression 12 75.00% 75.00% 75.00% | 58.33% 58.33% 58.33% | 0.00% 8.33% 33.33%
Loop 2 50.00% 100.00% 100.00% | 50.00% 50.00% 50.00% | 0.00% 0.00% 50.00%
Other 11 72.73% 81.80% 81.82% | 72.73% 72.73% 72.73% | 0.00% 0.00% 0.00%

This accentuates xLoc’s formidable capacity in bug localization. The consistent accuracy between
’top3’ and ’top5’ suggests that the top three predictions already furnish substantial reference value.

In bug localization, xLoc exhibits a large su-
periority over GPT-3.5, leading by staggering
margins of 3965.42%, 1736.49%, and 511.75%.
xLoc markedly eclipses the performance of
GPT-3.5 in this task. One plausible explanation
for this disparity is each model’s inherent train-
ing methodologies, with xLoc potentially lever-

1 static long long_hash(PyLongObject *v)
2 {

3 unsigned long x;

4 Py_ssize_t i3

5 int sign;

6 Foreign function

A vz

8 switch(1) {

9 case -1:
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24.59%, 11.23%, and 4.41%. The advantages of if (1 < 0) { <—Buggy location predicted by xLoc
. . , s s s sign = -1;
xLoc, particularly in the ’top1’ and ’top3’, are = -(1);
palpable. Notably, the improvement observed &hue (i »= 8) I
in the ’top1’ metric is twice as pronounced as x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS)
that in the ’top3’ metric. This differential is o ‘V(_zozidig?f[{ﬁ'j RS L S
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crues during its pre-training and fine-tuning
phases. Such specialized knowledge, embedded

within xLoc, equips it with a more nuanced }
understanding of multilingual bugs, thereby Fig. 5. An example where xLoc failed to locate a bug
enhancing its localization capabilities. of the "Return” category (i.e., at a return site).

For a closer look into the localization performance of xLoc against the two baselines, Table 3
gives its effectiveness for each of the possible bug-location categories considered (Figure 1). As
shown, xLoc performed the best (as highlighted in boldface) in all cases except for one category,
Following a Foreign Function Call (which accounts for only 13/331=4% of all the positive
within-function testing samples), for top-1 accuracy.

Across the nine location categories, in terms of top-1 accuracy only, xLoc performed the worst
for bugs of the "Loop" category (with top-1 accuracy of 50%). Meanwhile, overall, locating bugs at
"Return” sites was the most challenging for xLoc. These worst cases can be attributed to (1) our
design focus for XLoc’s pre-training and fine-tuning phases and (2) the relationships between the
multilingual-bug locations as we categorized.

First, our model is pre-trained to pay more attention to two primary kinds of locations, (cross-
language and other) function callsites and assignment, while then fine-tuned to attend more to
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Table 4. Description of ablated Versions
| FCP/ASP | API-aware FT | FCP/ASP + API-aware FT | xLoc

pre-training with FCP/ASP ‘ 4 ‘ X ‘ 4 ‘ 4
CFG-based position encoding in FCP/ASP ‘ X ‘ X ‘ X ‘ 4
Cross-language-API-aware position encoding in fine-tuning ‘ X ‘ 4 ‘ v ‘ v

Table 5. Performance of the ablated versions of xLoc for detection and localization.

FCP/ASP API-aware FT FCP/ASP + API-aware FT xLoc

Recall 94.65% 91.69% 93.17% 95.54%
Precision 92.73% 95.37% 96.02% 94.42%
F1 93.68% 93.49% 94.57% 94.98%
Top1 84.5% 82.78% 85.16% 87.24%
Top3 90.80% 86.35% 88.42% 91.09%
Top5 90.80% 88.42% 88.42% 91.09%

locations close to cross-language function callsites. Second, a detailed examination of our datasets
revealed that other kinds of location (e.g., “true/false branches”, “conditional expression”) often
incorporate or are located near those primary focus areas. This explains why xLoc, although
not directly pre-trained/fine-tuned on those other kinds of location, still worked reasonably well
for those bug locations. However, return sites and loop statements typically do not encapsulate
function calls or assignments (at least in our dataset). Also, in all of our failure cases, the actual faulty
"Return"/"Loop" locations are neither very close to function calls/assignments nor to cross-language
functions. Figure 5 illustrates one of such failure cases, where the bug is actually at line 31 (a return
site), yet incorrectly located at line 17 by xLoc. The cross-language (foreign) function callsite is
at line 7, significantly distant from the buggy line 31. This considerable distance, given xLoc’s
pre-training and fine-tuning focus, diminishes xLoc’s sensitivity to the bug at the return site.

4.2.3 RQ3: Ablation Studies. In this section, we do ablation studies by comparing our full design
with three ablated versions shown in Table 4:

e FCP/ASP: We pre-train the FCP/ASP tasks based on CodeT5 without CFG-based position
encoding and fine-tune the model without the cross-language-API-aware position encoding.

e API-aware FT: We fine-tune the model with cross-language-API-aware position encoding
based on CodeT5 without pre-training on FCP/ASP.

o FCP/ASP + API-aware FT: We pre-train the FCP/ASP tasks based on CodeT5 without
CFG-based position encoding, but we fine-tune the model with cross-language-API-aware
position encoding.

As shown in Table 5, the FCP/ASP version shows commendable performance, particularly in
terms of recall, where it attains 94.65%, closely tailing the xLoc’s leading 95.54%. However, despite
its robust pre-training with FCP/ASP, FCP/ASP does not utilize CFG-based position encoding in the
pre-training and cross-language-API-aware position encoding in the fine-tuning. This absence is
evident in the TopN, where xLoc takes the lead, particularly in the Top1 classification with 87.24%
against FCP/ASP’s 84.5%. Given xLoc’s comprehensive integration of both pre-training techniques
- CFG-based positional encoding and FCP/ASP, it demonstrates a more rounded performance.

CFG-based FT stands out for its precision, achieving a significant 95.37% against XLoc’s 94.42%.
It leverages fine-tuning with CFG-based positional encoding, which likely bolsters its precision
in detection. However, in other metrics, particularly the recall and TopN, xLoc exhibits superior
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performance. The primary distinguishing factor appears to be xLoc’s simultaneous use of pre-
training with CFG-based positional encoding and FCP/ASP, which CFG-based FT lacks, hinting at
this combination’s possible advantage.

In terms of performance, the FCI/ASI + pyl @analyzer_for(getattr(WindowsError. _init__,
CFG-based FT version almost parallels xLoc. o ERNGE ) GO R

. L. py2 def WindowsError_init(s_self, *args):>\

It boasts the highest precision of 96.02%, i3 ;. N
marginally edging out xLoc. This version’s uti- py4 ... i

lization of both pre-training with FCP/ASP and .~~~ " toooommmmmemmee g
. . . cl static int * WindowsError_init(...){ <«
fine-tuning with CFG-based positional encod- . Y
ing seems pivotal to its high precision. However, c3 if (EnvironmentError_init((...)...) == -1
c4 return -1; =~

despite these strengths, xLoc still manages to - ' o
lead Shghtly in F1 and dec131ve1y in the TOPN c6 static int EnvironmentError_init(){
metrics. This performance edge is attributed <7 ...
to xLoc’s unique combination of pre-training <6 |Uf (Pyfuple GET SIZE(args) <= 1) {|y )
. . c1 e c9 return 0;} Ground-truth buggy location
techniques, which provide it with a more com- c19 ...
prehensive multilingual-specific foundation. cll  subslice = PyTuple_GetSlice(args, 0, 2);
In essence, while each ablated version has 2 *° U [EEEC T R B B
. ; o X ) cl3 Py_DECREF(self->args);
its strengths, xLoc’s holistic combination of 14 self-sargs = subslice;
pre-training strategies, complemented by fine- SLZ , ——> control flow
tuning with CFG-based positional encoding, _: ) )
facilitates its consistent tob-tier berformance Fig. 6. An example where xLoc succeeded in locating
o bot p-hierp the bug while CodeT5 did not.
across the board.
xLoc is also efficient in terms of time cost. It took 2.13 hours (7,666 seconds) in total for bug

detection and localization across our testing dataset, hence an average cost of 4 seconds per sample.

5 DISCUSSION

In this section, we showcase a selection of cases that underscore the efficacy of the innovative
components integrated into xLoc and delve into the underlying causes for such outcomes. We also
provide observations about the advantage of xLoc compared to CodeT5 and GPT-3.5. Finally, we
discuss how the methodology xLoc instantiates for Python-C in this paper may be applied to bug
detection/localization for other language combinations.

Figure 6 displays an example where xLoc accurately identifies line ¢8 (marked in green) as the
buggy line, while the original CodeT5 points to line c13 (marked in yellow) as the line with the
bug. The bug is at line c8 because it is caused by not correctly checking the returned value of
PyTuple_GET_SIZE(args). The returned value not only needs to be less than or equal to one but
also needs to check the upper bound. xLoc correctly pinpoints line c8 as the multilingual error
point by leveraging the control flow relationship between lines py1 and ¢8 (shown in black dashed
line). Since line c8 contains a cross-language API call (PyTuple_GET_SIZE), xLoc can accurately
locate this bug line with its heightened sensitivity to cross-language APIs. However, the original
CodeT5 lacks CFG-based knowledge, leading to its failure in this instance.

From the first case, xLoc demonstrates a superior capability to accurately pinpoint the exact line
of code with a bug, as evidenced by correctly identifying the buggy line in the given example, in
contrast to CodeT5. xLoc is adept at recognizing incorrect API usage, and effectively utilizes the
control flow relationships between lines of code. It identifies errors even when they are indirectly
related to other lines.

Figure 7 presents another example where xLoc accurately identifies line c11 as the buggy line,
while the CFG-based FT model points to line c17 incorrectly. The mistake is evident on line c13 due
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to the incorrect usage of the API, PyTuple_ GET_ITEM. The ’char’ type variable 'name’ is used to
store individual characters. However, PyTuple_ GET_ITEM typically returns a pointer pointing to
PyObject. Attempting to assign a pointer to a char’ type variable results in an error due to a type
mismatch. Moreover, line c13, which tries to assign NULL to a 'char’ type, is also problematic. The
CFG-based FT model entirely overlooks this bug. Since line c13 invokes the cross-language API,
PyTuple_GET_ITEM, xLoc correctly pinpoints line c11 as the multilingual error point by leveraging
the control flow relationship between lines c11 and c13. Furthermore, as xLoc is pre-trained on the
FCP/ASP objective with CFG-based position encoding, it can pay more attention to assignment
statements through the CFG path. Lacking of this pre-training is the reason for the failure of the
CFG-based FT model in this instance.
From the second case, we know the model py1 import ctypes
through pre-training on the FCP/ASP objective "'~

py3 cygwinl = ctypes.CDLL("/usr/bin/cygwinl.dll")

with CFG-based pOSitiOl’l encoding can accu- Py4 cygwin_conv_path_proto = ctypes.CFUNCTYPE(...)
. . . py5 cygwin_conv_path = cygwin_conv_path_proto(
rately identify and locate multilingual bugs, es- / (“cygwin_conv_path”, cygwinl),...)

pecially in complex scenarios where other mod- Pv®

py7 cygwin_conv_path(what, fro, to, size)=<

els overlook or misidentify. The model exhibits pys ... B

. e e o i
heightened sensitivity to cross-language API 0 00t T e

.. . . . g

calls, allowing it to pinpoint bugs associated <2 ... “

. . . c3) callargs = _build_callargs(...);===al
with incorrect API usage more effectively. By ., """ ’ ~
utilizing the control flow relationship between CZ static PyObject * _build_callargs(...) {4
. . . C SR
lines of code, the model can accurately identify 7 for (i = 0; i < len; ++1) ¢
the origins Ofbugs even When they manifest c8 PyObject *item = PyTuple_GET_ITEM(paramflags, i);
. ] > c9 PyObject *ob;
in subsequent lines. 10 int flag;

cll char *name = NULL;‘(—Ground-truth buggy location
Additional Observations. It was observed c12
. cl3 name = tsize > 1 ?
that the advantage of xLoc in terms of detec- PyTuple GET ITEM(item, 1) : ]
tion is not significantly greater than CodeT5. <4 defval Stee 2 imw( s )
. . yTuple M( item, : ;
However, as for localization, xLoc notably out- c1s .. ’
: : . St cl6 dict = PyType_stgdict(ob);

performs. While locating the buggy line within ¢~ S . ocation predicted by

the top-5 predictions is difficult, narrowing it 18 . CFG-based FT model

. cl9 } ——3control flow
down to the exact top-1 is markedly more chal Fig. 7. An example where xLoc succeeded in locating

lenging. Impressively, in this stringent top-1 . bug while CFG-based FT model did not.
scenario, xLoc surpasses CodeT5 by a margin

of 24.59%. xLoc possesses a more refined capability in precise localization tasks. Such ability can
be invaluable in practical applications, potentially reducing the time and effort developers invest in
debugging. It further implies that the position encoding of xLoc makes it more adept at discerning
the intricacies of multilingual code structures.

While GPT-3.5/ChatGPT is recognized as a relatively mature Language Model, its performance in
both detection and localization tasks (at least for multilingual bugs in Python-C software) appeared
to be overshadowed by xLoc. Notably, xLoc’s proficiency in localization is multiple times superior
to GPT-3.5. Presently, while LLMs are experiencing rapid advancements, it is pivotal not to dismiss
the value of task-specific models. This suggests that even as general language models continue
to evolve and show promise in various scenarios, there remains a distinct advantage in models
developed for specific tasks against task-specific datasets. Such specialized models, like xLoc, can
learn task-specific knowledge that may not be well captured by general models like GPT-3.5.

Applicability to other language combinations. Our methodology for the task of multilingual
bug detection/localization is to (1) pre-train a language model with customized position encoding
on objectives specific to this task, followed by (2) fine-tuning the pre-trained model against labeled
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bug datasets also specific to this task, where the model customization and objective design are
immediately based on the characteristics of bug locations obtained from (3) a characterization
study. We believe this methodology is applicable to working reasonably well for other language
combinations, although the xLoc implementation may not immediately be. To evaluate our approach
on another language combination, we would repeat (1)—(3) for it, especially collecting the respective
bug dataset which would be the most tedious and costly step. We currently demonstrate our
approach for Python-C given the impactful role of Python applications which commonly use native
code in C (e.g., popular ML and scientific-computing frameworks like NumPy, PyTorch, TensorFlow,
and even the Python language-runtime’s standard implementation CPython itself). Also, while we
do not have full bug-location distribution data for other language combinations, cross-language
function callsites are the primary bug locations for some other combinations too (e.g., Java-C [21]).

6 THREATS TO VALIDITY

Threats to internal validity. The code of our tools and models is a critical component in ensuring
the validity of our evaluation results. Despite our efforts to avoid bugs and errors through code
reviews, there is still a possibility that undetected errors could exist in the code. These errors might
have affected the performance of the tools and models and led to incorrect results or conclusions.

Another internal validity threat is that the case studies in the motivating study on the charac-
teristics of multilingual bugs may have resulted in inaccurate findings/conclusions due to manual
biases/errors. To mitigate this threat, three of the authors followed an inter-rater agreement pro-
cedure to resolve any dissents, which help reduce human biases via cross checking. Specifically,
each of these authors independently analyzed each of the bug cases. After the individual analyses,
the three authors compared their initial results in a comprehensive review session. The degree of
agreement among the authors was quantified in terms of kappa scores, which were 0.83, 0.84, and
0.79 between the first and the second, the first and the third, and the second and the third authors,
respectively. These scores reflect a substantial level of agreement among the raters, underscoring
a high degree of consistency in the assessment process, thereby reinforcing the credibility and
validity of the evaluation outcomes. Through thorough deliberation and exchange of perspectives,
the authors were able to reconcile their differences and ultimately reach a unanimous agreement
on the presented study findings.

Threats to external validity. The main external validity threat is that the Python and C code
corpus used for pre-training our xLoc model may not be representative of all real-world code
in these two languages. To mitigate this threat, we expressly used as much pre-training data for
each language as our computing capacities permit. Similarly, the task-specific dataset we used for
fine-tuning the pre-trained model may not represent all real-world multilingual bugs in arbitrary
Python-C software. Indeed, our ultimate bug dataset is relatively small. Thus, our results should be
best interpreted with respect to the bugs represented by the dataset.

On a similar note, the process of curating this bug dataset is subject to human biases/errors since
the bug labels were confirmed manually at the last step of the process. To reduce these biases/errors
throughout the labeling process, three of the authors performed cross validation by following a
similar inter-rater agreement procedure to that applied during the motivating case studies.

7 RELATED WORK

Software fault detection and localization. Existing approaches in this line are either mainly
based on program analysis or largely data-driven (e.g., based on machine/deep learning (DL)).
The first category predominantly focuses on JNI (i.e., Java-C) programs as one particular case
of multilingual software [4, 5, 24, 29, 72], with fewer ones targeting Python-C software [30, 35]
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which are dynamic techniques. The second category is represented on emerging DL-based fault
localization techniques [18, 36-38]. In comparison with most of these existing techniques, which
cannot work with multilingual (e.g., Python-C) code as the only input (e.g., they require test cases),
xLoc is a Transformer-based Python-C bug detector and localizer that only needs source code
as the single input. By nature/definition, spectrum-based and mutation-based fault localization
techniques require test cases as well.

Although the technique in [39] does not require test cases, it needs to construct CFG and data flow
graph via heavy language-specific static analyses, which immediately impedes their application
to multilingual code. Likewise, information-retrieval (IR) based fault localization does not require
test cases either; yet it needs quality bug reports that also are often not available to multilingual
systems in the wild—and it typically only locates a buggy file, not a function or code line.
Multilingual code analysis and testing. The mutation testing tool described in [22] facilitates
mutant generation across different languages via regular-expression-based transformations. On
the other hand, Amleto[15] and Gillian[17] are testing platforms that operate by translating VHDL,
SystemC, and various languages into a common intermediate representation (IR). Commonly, none
of these tools are designed to handle programs composed of multiple language units simultaneously.

On a similar note, FANS [42] specializes in testing Android native system services, predominantly
written in C++, which may invoke Java code. However, despite its capability to indirectly trigger
Java exceptions, FANS itself functions primarily as a single-language (C++) testing tool. Likewise,
Favocado [14] targets the testing of JavaScript engines, with a primary focus on their binding layer,
which is written in one language. On the other hand, techniques like ORBS [7] promise language-
agnostic analysis capabilities, which may not be practical to use due to scalability barriers [74].

8 CONCLUSION

A defining aspect of multilingual code lies in the interactions/interoperations among the different
programming languages used, which are commonly realized through explicit language interfacing
via cross-language API calls. Yet multilingual bugs buried at and across these language bound-
aries constitute a critical challenge to the quality of multi-language software. Existing relevant
techniques/tools fall short of identifying these bugs due to several fundamental barriers. We thus
presented xLoc, a novel DL-based approach to (function-level) detection and (line-level) localization
of multilingual bugs that address those barriers. Our Transformer-based design in xLoc features
control-flow-based position encoding and pre-training towards learning general knowledge about
different control structures in multilingual code, and cross-language-API-vicinity-based position
encoding and fine-tuning towards learning downstream-task-specific knowledge for differentiating
buggy multilingual functions/statements from non-buggy ones. For demonstrating and validating
our design, we implemented xLoc for Python-C software and evaluated it against codeT5 and
ChatGPT as baselines on a new multilingual buggy dataset for this language combination. Our
evaluation results have shown substantial merits of xLoc over these state-of-the-art baselines for
both detection and localization of multilingual bugs.

9 DATA AVAILABILITY

We released all of our code and datasets to facilitate reproduction, replication and reuse.
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