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SCALABLE AND COST-EFFECTIVE DATA FLOW
ANALYSIS FOR DISTRIBUTED SOFTWARE:

ALGORITHMS AND APPLICATIONS

Abstract

by Xiaoqin Fu, Ph.D.
Washington State University
July 2022

Chair: Haipeng Cai

More and more distributed software systems are being developed and deployed today.
Like other software, distributed software systems also need very strong quality assurance
support. Distributed software is often very large/complex, has distributed components,
and does not have a global clock. All these characteristics make it very challenging to
analyze the information flow of such systems to support the software quality assurance.
One challenge is that existing dynamic analysis techniques hardly scale to large distributed
software systems in the real world. It is also challenging to develop cost-effective dynamic
analysis approaches. There are also applicability and portability challenges for dynamic
analysis algorithms/applications of distributed software.

My dissertation addresses these challenges via three novel approaches to data flow analysis
for distributed software. My first approach is based on measuring interprocess communica-
tions to understand distributed software behaviors and predict distributed software quality.

Then, I developed a particular approach that can actually pinpoint sensitive information via



multi-staged and refinement-based dynamic information flow analysis for distributed soft-
ware. Finally, I explored dynamic dependence analysis for distributed systems, utilizing
reinforcement learning to automatically adjust analysis configurations for scalability and

better cost-effectiveness tradeoffs.
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CHAPTER ONE

INTRODUCTION

Due to increasing requirements for computational scalability and performance, there are
more and more real-world software systems designed as distributed today [52]. Software sys-
tems, which perform general-purpose distributed computations, were defined in [52], called
common distributed systems. Rather than common distributed systems, there are special-
ized distributed systems, such as RMI-based systems [206], distributed event-based (DEB)
systems [169], cloud systems [156], Internet of Things (IoT) systems [226], etc.

Compared with single-process programs, distributed software systems have multiple unique

characteristics:

1. Components/processes in a distributed system are concurrent.

2. Multiple components/processes are generally autonomous in nature.

3. Hardware and software resources can be shared.

4. Distributed software typically lacks a global clock.

5. The price/performance ratio may be much better.

On the other hand, distributed software systems widely serve critical application domains
(e.g., aviation, banking, medical, social media).

Like other software systems, distributed software also needs very strong quality assurance
support (e.g., performance monitoring, program optimization, software testing, vulnerability

detection [141]), where the quality includes security and other factors, such as performance



efficiency, maintainability, and functional suitability [126]. However, the characteristics of
distributed systems not only complicate security issues [22, 62, 54, 57, 61] but also bring
about severe challenges for analyzing the data flow (i.e., information flows) in these systems.

One of the major challenges is that existing data analysis techniques (e.g., [176, 44, 186,
166, 223, 207, 16, 27]) for single-process programs, scarcely scaled to distributed systems
(e.g., Apache Zookeeper [7], a distributed coordination service for achieving synchronization
and consistency as used by Apache Hadoop and Yahoo). The reason is that they rely
on explicit dependencies among program entities and dismiss implicit dependencies across
processes [93].

Developing a cost-effective dynamic analysis is also challenging, since the cost and effec-
tiveness often counteract and compete within a specific analysis. Developing such an analysis
approach for most distributed systems in the real world is even more challenging because
of their typically larger scale and greater complexity than single-process programs. Non-
deterministic, varying, and typically unbounded executions of distributed systems further
exacerbate such challenges.

The main goal of this dissertation is to explore and study data flow analysis approaches
for distributed software security, overcoming scalability, cost-effectiveness, and other (i.e.,
applicability and portability) challenges. In general, this work provides fundamental sup-
port for quality assurance of distributed software. In particular, this work aims to predict
and understand the quality of distributed software systems, related to their run-time be-
haviors and execution dynamics. Moreover, this work mainly targets dynamic information
flow security, dynamic program dependencies, and corresponding applications that could

achieve practical scalability and balance analysis cost-effectiveness via various ways, such



as a principled, multi-phase analysis strategy, a reinforcement learning strategy, and two
self-adaptation strategies utilizing optimal reinforcement learning and deep reinforcement

learning, respectively.

1.1 Motivation and Problem Statement

Among a variety of security threats (e.g., code injection) distributed software suffers, a
major type lies in assorted vulnerabilities in information flow paths in distributed programs.
In these programs, sensitive information (e.g., username or password) might leak and cause
serious losses/damage. To defend against such information flow threats, it is crucial to check
sensitive data that passes throughout the entire system (across its distributed components
and corresponding processes). Effective information flow analysis (i.e., data flow analysis)
often requires fine-grained (e.g., statement-level) computation of control and data flow paths.
However, precise, fine-grained data flow analysis is usually very expensive. The great com-
plexity of distributed systems is a major reason that most existing relevant approaches are
not applicable (e.g., due to scalability barriers) or very limited utility (e.g., only for sin-
gle components/processes). For many distributed systems (e.g., online/cloud services) that
are normally running continuously, it is desirable to keep monitoring them against security
threats. In these scenarios, scalability can be even more difficult to achieve and maintain.

Moreover, besides the scalability problem, there are multiple additional issues of devel-
oping data flow analysis solutions for distributed software systems. For example, developing
a cost-effective dynamic dependence analysis, however, is challenging, especially given the
known substantial overheads of dynamic analysis in general. Prior research has demonstrated

the difficulties and complexity of balancing the cost and effectiveness in dynamic dependence



analysis for single-process programs [40]. Executive non-determinism, the variety of and un-
certainties in run-time environments in the real world, and the unbounded executions (due to
their continuously-running nature) further exacerbate such challenges for most distributed
software systems.

In addition, traditional dynamic analysis approaches are hardly applicable to multi-
process programs, such as distributed systems. The reason is that they rely on explicit
dependencies among program entities and dismiss implicit dependencies across processes [93].

A few existing dynamic analysis tools (e.g., [128, 221]) overcome their applicability chal-
lenge by working at system level with platform customization. Yet these tools typically face a
portability challenge due to their customization with diverse and rapidly evolving platforms,

which would be time-consuming and even infeasible [89].

1.2 Contributions

Figure 1.1: The overview of my research
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In this dissertation, I explored how to design realistic solutions to deal with the scal-
ability, cost-effectiveness, and other (i.e., applicability and portability) challenges in data
flow analysis for large and complex distributed software systems. Accordingly, as depicted
in Figure 1.1, my research has been focused on three connected themes: DISTMEASURE,
Di1sTTAINT, and SEADS.

First, I studied DISTMEASURE (the expansion of [93]), including a novel set of interpro-
cess communications (IPC) metrics to measure common distributed systems for understand-
ing system behaviors and effects of system IPCs. Based on DISTMEASURE, DistFax [92],
a toolkit for measuring IPCs and quality of distributed software, was implemented. Us-
ing DISTMEASURE, | demonstrated the usefulness and practicality of IPC metrics against
11 real-world distributed software systems and their diverse execution scenarios. My ex-
periments revealed that higher IPC coupling between distributed processes tended to be
negatively associated with distributed software quality, while individual processes’ cohesion
gave its positive quality implications. The evaluation of DISTMEASURE’s learning-based
quality-level classification showed promising merits of IPC measurement for understanding
distributed system behaviors in terms of their statistical and predictive relationships with
various aspects of the quality of distributed software.

Second, I explored a dynamic information flow analysis framework FLOWDIST [89] that
overcomes multiple technical (applicability, portability, and scalability) challenges through a
principled multi-phase analysis scheme, scaling traditional dynamic information flow analysis
to distributed systems. The corresponding tool, DISTTAINT [86], a dynamic taint analyzer
for distributed software, was implemented. The evaluation of 12 real-world distributed sys-

tems against two baselines revealed the superior effectiveness, practical efficiency and scal-



ability of FLOWDIST. It found 24 existing vulnerabilities and 24 new vulnerabilities, 17 of
which were confirmed and 2 of which were fixed. Two alternative designs of FLowDIST for
diverse subject accommodations were also presented and evaluated.

Since FLOWDIST provides only one cost-effectiveness tradeoff, I developed SEADS [91]
that is a distributed and online dynamic dependence analysis framework for continuously
running distributed systems, offering self-tuning cost-effectiveness (tradeoffs). This was my
attempt and the first step to achieve better scalability and cost-effectiveness on the fly
through automatically and continually adjusting analysis configurations during the execu-
tion(s), using reinforcement learning, according to previous configurations, corresponding
costs, and user-defined budgets. I also implemented DADS [90], as a distributed and online
dynamic slicer for continuously-running distributed software with respect to user-specified
budget constraints, achieving and maintaining practical scalability and cost-effectiveness
tradeoffs according to given budgets on analysis time by continually and automatically ad-
justing analysis configurations on the fly via reinforcement learning. The empirical results
revealed the scalability and efficiency advantages of SEADS over a conventional dynamic

analysis approach, at least for computing dynamic dependencies at method level.

1.3 Dissertation Organization

In the rest of this dissertation, I discuss some techniques and key concepts of my research
in Chapter 2 (§2). Based on measuring interprocess communications of distributed systems,
[ start with DISTMEASURE (the expansion of [93]) for understanding/predicting the be-
haviors and quality of distributed software, in Chapter 3 (§3). Then, I present multi-Staged

refinement-based dynamic information flow analysis FLowDIST [89] for distributed software,



and scalable/cost-effective dynamic dependence analysis SEADS [91] of distributed systems
via reinforcement learning, in Chapters 4 (§4) and 5 (§5), respectively. Lastly, Chapter 6

(§6) summarizes this dissertation and discusses several research directions for the future.



CHAPTER TWO

BACKGROUND

In the section, I discuss some techniques and key concepts of my research, including
software metrics, distributed system architectures, logic clocks in distributed systems, depen-
dence analysis, dynamic information flow analysis and dynamic taint analysis, reinforcement

learning, and analysis with variable cost-effectiveness.

2.1 Software Metrics

Measuring software systems in terms of properly chosen metrics is an integral step in
software quality assurance [95]. Defining appropriate software metrics is essential for both
software process quality and product quality, throughout the entire software development
lifecycle [132]. Prior to the implementation phase, software metrics provide a means for
specifying quality requirements with respect to relevant quality factors. After implementa-
tion, the metrics further serve as crucial guidance for evaluating the software product with
respect to the specification of quality requirements. Software metrics also play a vital role
in software project management as a whole (e.g., for cost and effort estimation) [80].

Two main classes of metrics can be used in software measurement: static and dy-
namic [222]. In comparison, static metrics are generally easier to compute relative to dynamic
counterparts [45, 75]. Additionally, static metrics are not subject to limited code coverage or
generalizability, as are dynamic metrics. On the other hand, static metrics are not sufficient
for measuring and interpreting dynamic behaviors of software, for which dynamic metrics

offer much more precise indicators. In fact, concerning quality factors that are ultimately



attested at runtime (e.g., performance [75], reliability [241], and testability [110]), dynamic
metrics are much more preferable. Meanwhile, understanding a software behavior does not
always need complete code coverage [192], thus a limited execution that dynamic metrics
address does not necessarily constitute a constraint of dynamic measurement. Dynamic met-
rics cannot simply be (over-)approximated by corresponding static metrics either—in some
cases, they are not even correlated [96].

Software coupling is the strength of the relationships among software modules, for mea-
suring how closely connected the modules are [172, 172]. Coupling metrics have been well
studied for single-process systems [45, 132, 222]. For example, Arisholm et al. [14] defined
a set of dynamic coupling metrics for object-oriented software and studied the relationship
between dynamic coupling measures and software change-proneness. Dynamic coupling met-
rics also have been used to estimate architectural risks [241] and complexity [111] in relation
to quality metrics such as maintainability [182, 110]. Most of these metrics were defined
under the assumption that there exists an explicit reference/invocation between the entities
(e.g., object, method, and class) involved in the coupling measure.

The cohesion of a software component refers to the extent to which the elements of a
component are related [33]. A highly cohesive component performs a set of closely relevant
actions, and it is difficult to be split into separate components [241]. Static cohesion has been
widely explored in software measurement. More recent relevant works increasingly focused

on run-time (i.e., dynamic) cohesion [167, 115, 253, 69].



2.2 Distributed System Architectures

There are typically three types of distributed system architectures: client-server, peer-

to-peer, and n-tier, as shown in Figure 2.1.

Figure 2.1: The architectures of a distributed systems: (a) left: client-server, (b) median:
peer-to-peer, and (c) right: n-tier (3-tier)

(Application) Logic Data
Tier Tier
Presentation/GUI
Tier
(a) (b) (c)

Client-server (CS) is a type of network architecture in which each process/node on the
network is either a server or a client. Servers are powerful for controlling and managing
relevant resources (e.g., disk drives, database, printers, network traffic), while clients rely on
servers for those resources [157]. Client-server architecture is simple to implement, without
peer-discovery [119]. For example, NioEcho is a client-server distributed program including
a client and a server [215].

Peer-to-peer (P2P) is a type of network architecture in which each process/node has
equivalent responsibilities and abilities. P2P differs from CS, in which some processes/nodes
are dedicated to serving other processes/nodes [157]. For instance, OpenChord is a peer-to-
peer distributed system providing network services through a distributed hash table [26].

The n-tier architecture breaks up an application into tiers, providing flexibility and

reusability for developers who only need to modify or add a specific tier(layer), rather than

10



to rewrite the whole application when they decide to change the application. In the term
n-tier, "n” can be any number (larger than 1) of distinct tiers used in a specific architecture,

such as 2-tier, 3-tier, or 4-tier, etc [157]. For example, Microsoft Azure is a typical n-tier

distributed system that provides cloud computing services [235, 50, 164].

2.3 Logic Clocks in Distributed Systems

A distributed system is based on a computer network where different computers are
connected via passing messages or other types of middleware. This feature helps users share
various resources via network communication [170]. But there is no global logic or physical
clock for concurrent execution of distributed components.

The Lamport timestamp (LTS) algorithm is used to generate a partial ordering of events
in a distributed system, maintaining a logical clock for all processes. In the LTS algorithm,
each process maintains an integer value, initially zero, which periodically increments, once
after every atomic event; the value is attached to the record of the execution of each event as
its timestamp centrally or separately; the traces are mostly maintained by each process [81].
The LTS algorithm has asynchronous and synchronous communication methods, with respect

to the following rules:

1. A process increments its counter for each event in it.

2. When sending a message, a process includes its counter value with the message.

3. When receiving a message, the counter of the recipient is updated (adding 1).

I use an example to explain the LTS algorithm in detail. I suppose that there are three

processes (i.e., Process A, Process B, Process C) in a distributed program, as shown in

11



Figure 2.2: The Lamport timestamp (LTS) algorithm used in multiple processes of a dis-
tributed program

Process A L@l ()2

0 mi1
Process B ()

0 1 5
Process C —@ f

Time

3 @4

v

Figure 2.2. Each process has its logical clock initialized to zero and the clock value (i.e.,
timestamp) immediately increments after an event, such as 1 for the event a, 2 for the event
b, etc. When the message m1 was sent from Process A to Process B, the timestamp 2 was
piggybacked and then the event ¢ (of Process B) gets its timestamp 3, which is the maximum
value between piggybacked timestamp 2 and local timestamp 0 (initial value), added 1, as
(max(0, 2) + 1 = 3). Then, the timestamp of the event dis 4 (= 3 + 1). Next, the message
m2 is sent from Process B to Process C' with the clock value 4 piggybacked. Finally, the
event f (of Process C) gets its timestamp 5 (= max(1, 4) 4+ 1), where 1 is the timestamp of
the previous event (e) in the same process (Process C) [81, 144].

Like the LTS algorithm, vector logical clocks are used to determine the partial ordering of
events and to detect causality violations in distributed systems, by comparing event times-
tamps [25]. For a distributed system with N processes, there is a vector (i.e., an array) of
N logical clocks, one clock per process; and each process remains a local vector (i.e., array)
that includes the largest possible values of the global clock vector [254, 234].

However, vector logical clocks have a major fault: If a distributed system has too many
processes whose count N is very large, the timestamp data (i.e., communication overhead)

attached to each message would be too large to be acceptable [220].
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Besides the vector clock and LTS timestamps algorithms, matrix clocks are also used to
capture causal and chronological relationships in distributed programs . As a generalization
of the vector clock notion, a matrix clock maintains a vector of the vector clocks for each

process (communicating host) [73, 233].

2.4 Dependence Analysis

In program execution, there are two types of explicit dependencies: traditional de-
pendencies and thread dependencies. Control dependency and data dependency are tra-
ditional dependencies. In a concurrent program, there may be three types of thread de-
pendency: synchronization, ready, and interference dependencies. In a common distributed
software system, besides explicit dependencies (via references and/or invocations) among
code entities, dependencies across distributed components/processes (referred to as inter-
component /interprocess dependencies) are implicit because these components/processes are
decoupled by networking facilities.

Analyzing dependencies among program entities of a software system can help developers
better understand the structure and behaviors of the system. Thus, dependence analyses
are very useful for users to develop, test, and maintain the system, because these tasks rely
on the understanding of system structure and behaviors.

Program dependencies can be deduced by both static and dynamic analyses. Static de-
pendence analysis computes dependencies via analyzing the program code without executing
the software. By contrast, a dynamic dependence analysis infers dependencies from the data
gathered during the execution(s). In particular, as a special type of dynamic analysis, hy-

brid dependence analysis combines static and dynamic analysis modalities [203]. Hybrid
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dependence analysis approaches can integrate run-time information extracted from dynamic
analysis techniques into static analysis algorithms to precisely compute program depen-
dencies. Hybrid dependence analyses are becoming popular because they generate more
accurate results than other analysis modalities. However, a hybrid dependence approach is

often complex, and its analysis process may be time-consuming [190].

2.4.1 Dependence analysis for single-process programs

As a dynamic analysis approach, DIVER [39] computes dependence sets as impact sets
using dependence analysis techniques. As a recent advance in (offline) dynamic analysis,
it achieves higher precision and provides a more cost-effective option over EAS-based ap-
proaches (which derive dynamic dependencies based on execution orders), such as PI/EAS [8].
Di1vER utilizes a static dependency analysis to significantly decrease the size of the depen-
dence set produced by PI/EAS.

With significantly smaller resulting dependence sets, the cost-effectiveness tradeoff of
DIVER is much higher even with the additional static dependence analysis cost. DIVER
works in three technical phases: static analysis (Phase 1), runtime tracing (Phase 2), and
post-processing analysis (Phase 3). DIVER first computes traditional control/data depen-
dencies [123] and instruments the input program in Phase 1. In Phase 2, the instrumented
version of the program is executed for tracing entry (i.e., program control entering a method)
and returned-into (i.e., program control returning from a callee into a caller) events. In Phase
3, the technique computes the dependence set from the trace for any query given by the user.

An online version of Diver, DIVERONLINE [37], avoids execution tracing costs (e.g., space

and /O costs) that are ineluctable in offline analyses, via computing dependence sets during
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the execution of the program under analysis. In addition, DIVERONLINE provides an All-
in-One analysis, which computes the dependence sets for all possible queries (methods),
and then corresponding dependence sets are directly delivered to the user within a short
response time. As such, an All-in-One online dynamic dependence analysis may be suitable

for large-scale software systems.

2.4.2 Dependence analysis for multi-threaded programs

The increasing use of multi-threaded (concurrent) programs invokes challenges for de-
pendence analyses, and it is also relatively difficult for users to understand multi-threaded
systems. For instance, in a shared memory model, one thread accessing a memory loca-
tion may potentially interfere with another thread to access the same location, leading to
dependencies between these two threads.

Generally, among threads, there are two particular types of control dependencies—
ready dependencies and synchronization dependencies, and a type of data dependencies—
interference dependencies [173]. The main task of a dynamic analysis of threading-induced
dependencies is thus to infer ready dependencies, synchronization dependencies, and inter-
ference dependencies across multiple threads that occurred during program executions. For
multi-threaded programs, several dependence analysis algorithms [240, 239, 173, 98] have
been developed.

Indus is a sound framework to analyze and slice multiple-threaded (current) Java pro-
grams. In Indus, Java source code is first transferred to Jimple code as an intermediate
representation. However, since it is purely static, those dependencies are only approximated

by Soot with very little cost [51, 189]. Indus gives developers the most common dependence

15



analyses for intra-thread control and data dependencies, inter-thread ready, synchronization,

and interference dependencies.

2.4.3 Dependence analysis for distributed programs

For a complex distributed system with multiple processes, the developer needs to under-
stand various (explicit and implicit) dependencies both within a single process and across
multiple processes. Krinke proposed a slicing algorithm incorporating dependencies across
distributed components induced by socket-based message passing [142], but the dependen-
cies were approximated over-conservatively because they are computed through purely static
analysis. Another approach [28] infers various kinds of dependencies due to interprocess
communications. However, the approach potentially suffers a scalability problem due to its
heavyweight nature.

To overcome the scalability challenges, a lightweight dynamic analysis for distributed
programs, DISTIA [41], was developed. The analysis monitors and records method events and
their timestamps during the system execution, and then approximates run-time dependencies
among relevant methods, either within or across processes, based on the happens-before
relations among method execution events.

For example, if a method A has the last returned-into event which was executed before
the first entry event of another method B, the partial-order is A before B, and DisTIa
approximately supposes that B is dependent on A. Similarly, if one method D is dependent
on another method C, C' must execute before D; otherwise, C' cannot affect D. Thus,
dependencies computed by DISTIA are safe for executed methods, but not for all methods

since some methods were not covered during the execution. On the other hand, if B is
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executed after A, B may or may not be actually dependent on A. Therefore, we know that

DisTIA is not precise.

2.5 Dynamic Information Flow Analysis and Dynamic Taint Analysis

Tracking/checking dynamic information flow underlies various security applications (e.g., [218,
159, 161, 198, 107]), It addresses a general source-sink problem for a program execution, in
which a source is where confidential or untrusted (i.e., sensitive) information is produced
and flows into the program, while a sink consumes the information and makes it flow out
of the program execution [79, 4]. Due to its focused reasoning about actual executions, this
approach has precision merits over statically inferring information flow.

One technique realizing the approach is to compute the chains of dynamic control and
data dependencies hence to infer full information flow paths between given sources and sinks
during the execution (e.g., [210, 160, 159, 161]), called dynamic information flow analysis
(DIFA). An alternative technique is dynamic taint analysis (DTA), which applies tags to (i.e.,
taint) the data entering the program from the sources, propagates the taint tags during the
execution, and checks the data at th