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SCALABLE AND COST-EFFECTIVE DATA FLOW

ANALYSIS FOR DISTRIBUTED SOFTWARE:

ALGORITHMS AND APPLICATIONS

Abstract

by Xiaoqin Fu, Ph.D.
Washington State University

July 2022

Chair: Haipeng Cai

More and more distributed software systems are being developed and deployed today.

Like other software, distributed software systems also need very strong quality assurance

support. Distributed software is often very large/complex, has distributed components,

and does not have a global clock. All these characteristics make it very challenging to

analyze the information flow of such systems to support the software quality assurance.

One challenge is that existing dynamic analysis techniques hardly scale to large distributed

software systems in the real world. It is also challenging to develop cost-effective dynamic

analysis approaches. There are also applicability and portability challenges for dynamic

analysis algorithms/applications of distributed software.

My dissertation addresses these challenges via three novel approaches to data flow analysis

for distributed software. My first approach is based on measuring interprocess communica-

tions to understand distributed software behaviors and predict distributed software quality.

Then, I developed a particular approach that can actually pinpoint sensitive information via
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multi-staged and refinement-based dynamic information flow analysis for distributed soft-

ware. Finally, I explored dynamic dependence analysis for distributed systems, utilizing

reinforcement learning to automatically adjust analysis configurations for scalability and

better cost-effectiveness tradeoffs.
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CHAPTER ONE

INTRODUCTION

Due to increasing requirements for computational scalability and performance, there are

more and more real-world software systems designed as distributed today [52]. Software sys-

tems, which perform general-purpose distributed computations, were defined in [52], called

common distributed systems. Rather than common distributed systems, there are special-

ized distributed systems, such as RMI-based systems [206], distributed event-based (DEB)

systems [169], cloud systems [156], Internet of Things (IoT) systems [226], etc.

Compared with single-process programs, distributed software systems have multiple unique

characteristics:

1. Components/processes in a distributed system are concurrent.

2. Multiple components/processes are generally autonomous in nature.

3. Hardware and software resources can be shared.

4. Distributed software typically lacks a global clock.

5. The price/performance ratio may be much better.

On the other hand, distributed software systems widely serve critical application domains

(e.g., aviation, banking, medical, social media).

Like other software systems, distributed software also needs very strong quality assurance

support (e.g., performance monitoring, program optimization, software testing, vulnerability

detection [141]), where the quality includes security and other factors, such as performance
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efficiency, maintainability, and functional suitability [126]. However, the characteristics of

distributed systems not only complicate security issues [22, 62, 54, 57, 61] but also bring

about severe challenges for analyzing the data flow (i.e., information flows) in these systems.

One of the major challenges is that existing data analysis techniques (e.g., [176, 44, 186,

166, 223, 207, 16, 27]) for single-process programs, scarcely scaled to distributed systems

(e.g., Apache Zookeeper [7], a distributed coordination service for achieving synchronization

and consistency as used by Apache Hadoop and Yahoo). The reason is that they rely

on explicit dependencies among program entities and dismiss implicit dependencies across

processes [93].

Developing a cost-effective dynamic analysis is also challenging, since the cost and effec-

tiveness often counteract and compete within a specific analysis. Developing such an analysis

approach for most distributed systems in the real world is even more challenging because

of their typically larger scale and greater complexity than single-process programs. Non-

deterministic, varying, and typically unbounded executions of distributed systems further

exacerbate such challenges.

The main goal of this dissertation is to explore and study data flow analysis approaches

for distributed software security, overcoming scalability, cost-effectiveness, and other (i.e.,

applicability and portability) challenges. In general, this work provides fundamental sup-

port for quality assurance of distributed software. In particular, this work aims to predict

and understand the quality of distributed software systems, related to their run-time be-

haviors and execution dynamics. Moreover, this work mainly targets dynamic information

flow security, dynamic program dependencies, and corresponding applications that could

achieve practical scalability and balance analysis cost-effectiveness via various ways, such
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as a principled, multi-phase analysis strategy, a reinforcement learning strategy, and two

self-adaptation strategies utilizing optimal reinforcement learning and deep reinforcement

learning, respectively.

1.1 Motivation and Problem Statement

Among a variety of security threats (e.g., code injection) distributed software suffers, a

major type lies in assorted vulnerabilities in information flow paths in distributed programs.

In these programs, sensitive information (e.g., username or password) might leak and cause

serious losses/damage. To defend against such information flow threats, it is crucial to check

sensitive data that passes throughout the entire system (across its distributed components

and corresponding processes). Effective information flow analysis (i.e., data flow analysis)

often requires fine-grained (e.g., statement-level) computation of control and data flow paths.

However, precise, fine-grained data flow analysis is usually very expensive. The great com-

plexity of distributed systems is a major reason that most existing relevant approaches are

not applicable (e.g., due to scalability barriers) or very limited utility (e.g., only for sin-

gle components/processes). For many distributed systems (e.g., online/cloud services) that

are normally running continuously, it is desirable to keep monitoring them against security

threats. In these scenarios, scalability can be even more difficult to achieve and maintain.

Moreover, besides the scalability problem, there are multiple additional issues of devel-

oping data flow analysis solutions for distributed software systems. For example, developing

a cost-effective dynamic dependence analysis, however, is challenging, especially given the

known substantial overheads of dynamic analysis in general. Prior research has demonstrated

the difficulties and complexity of balancing the cost and effectiveness in dynamic dependence
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analysis for single-process programs [40]. Executive non-determinism, the variety of and un-

certainties in run-time environments in the real world, and the unbounded executions (due to

their continuously-running nature) further exacerbate such challenges for most distributed

software systems.

In addition, traditional dynamic analysis approaches are hardly applicable to multi-

process programs, such as distributed systems. The reason is that they rely on explicit

dependencies among program entities and dismiss implicit dependencies across processes [93].

A few existing dynamic analysis tools (e.g., [128, 221]) overcome their applicability chal-

lenge by working at system level with platform customization. Yet these tools typically face a

portability challenge due to their customization with diverse and rapidly evolving platforms,

which would be time-consuming and even infeasible [89].

1.2 Contributions

Figure 1.1: The overview of my research

FLOWDIST
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Information Flow Analysis
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SEADS

Distributed Online Scalable  
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One cost-effectiveness 
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Challenges
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Applicability Portability Scalability Cost-Effectiveness

Scalable and Cost-Effective Data Flow Analysis & Applications
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PhD work
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In this dissertation, I explored how to design realistic solutions to deal with the scal-

ability, cost-effectiveness, and other (i.e., applicability and portability) challenges in data

flow analysis for large and complex distributed software systems. Accordingly, as depicted

in Figure 1.1, my research has been focused on three connected themes: DistMeasure,

DistTaint, and Seads.

First, I studied DistMeasure (the expansion of [93]), including a novel set of interpro-

cess communications (IPC) metrics to measure common distributed systems for understand-

ing system behaviors and effects of system IPCs. Based on DistMeasure, DistFax [92],

a toolkit for measuring IPCs and quality of distributed software, was implemented. Us-

ing DistMeasure, I demonstrated the usefulness and practicality of IPC metrics against

11 real-world distributed software systems and their diverse execution scenarios. My ex-

periments revealed that higher IPC coupling between distributed processes tended to be

negatively associated with distributed software quality, while individual processes’ cohesion

gave its positive quality implications. The evaluation of DistMeasure’s learning-based

quality-level classification showed promising merits of IPC measurement for understanding

distributed system behaviors in terms of their statistical and predictive relationships with

various aspects of the quality of distributed software.

Second, I explored a dynamic information flow analysis framework FlowDist [89] that

overcomes multiple technical (applicability, portability, and scalability) challenges through a

principled multi-phase analysis scheme, scaling traditional dynamic information flow analysis

to distributed systems. The corresponding tool, DistTaint [86], a dynamic taint analyzer

for distributed software, was implemented. The evaluation of 12 real-world distributed sys-

tems against two baselines revealed the superior effectiveness, practical efficiency and scal-

5



ability of FlowDist. It found 24 existing vulnerabilities and 24 new vulnerabilities, 17 of

which were confirmed and 2 of which were fixed. Two alternative designs of FlowDist for

diverse subject accommodations were also presented and evaluated.

Since FlowDist provides only one cost-effectiveness tradeoff, I developed Seads [91]

that is a distributed and online dynamic dependence analysis framework for continuously

running distributed systems, offering self-tuning cost-effectiveness (tradeoffs). This was my

attempt and the first step to achieve better scalability and cost-effectiveness on the fly

through automatically and continually adjusting analysis configurations during the execu-

tion(s), using reinforcement learning, according to previous configurations, corresponding

costs, and user-defined budgets. I also implemented Dads [90], as a distributed and online

dynamic slicer for continuously-running distributed software with respect to user-specified

budget constraints, achieving and maintaining practical scalability and cost-effectiveness

tradeoffs according to given budgets on analysis time by continually and automatically ad-

justing analysis configurations on the fly via reinforcement learning. The empirical results

revealed the scalability and efficiency advantages of Seads over a conventional dynamic

analysis approach, at least for computing dynamic dependencies at method level.

1.3 Dissertation Organization

In the rest of this dissertation, I discuss some techniques and key concepts of my research

in Chapter 2 (§2). Based on measuring interprocess communications of distributed systems,

I start with DistMeasure (the expansion of [93]) for understanding/predicting the be-

haviors and quality of distributed software, in Chapter 3 (§3). Then, I present multi-Staged

refinement-based dynamic information flow analysis FlowDist [89] for distributed software,
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and scalable/cost-effective dynamic dependence analysis Seads [91] of distributed systems

via reinforcement learning, in Chapters 4 (§4) and 5 (§5), respectively. Lastly, Chapter 6

(§6) summarizes this dissertation and discusses several research directions for the future.
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CHAPTER TWO

BACKGROUND

In the section, I discuss some techniques and key concepts of my research, including

software metrics, distributed system architectures, logic clocks in distributed systems, depen-

dence analysis, dynamic information flow analysis and dynamic taint analysis, reinforcement

learning, and analysis with variable cost-effectiveness.

2.1 Software Metrics

Measuring software systems in terms of properly chosen metrics is an integral step in

software quality assurance [95]. Defining appropriate software metrics is essential for both

software process quality and product quality, throughout the entire software development

lifecycle [132]. Prior to the implementation phase, software metrics provide a means for

specifying quality requirements with respect to relevant quality factors. After implementa-

tion, the metrics further serve as crucial guidance for evaluating the software product with

respect to the specification of quality requirements. Software metrics also play a vital role

in software project management as a whole (e.g., for cost and effort estimation) [80].

Two main classes of metrics can be used in software measurement: static and dy-

namic [222]. In comparison, static metrics are generally easier to compute relative to dynamic

counterparts [45, 75]. Additionally, static metrics are not subject to limited code coverage or

generalizability, as are dynamic metrics. On the other hand, static metrics are not sufficient

for measuring and interpreting dynamic behaviors of software, for which dynamic metrics

offer much more precise indicators. In fact, concerning quality factors that are ultimately
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attested at runtime (e.g., performance [75], reliability [241], and testability [110]), dynamic

metrics are much more preferable. Meanwhile, understanding a software behavior does not

always need complete code coverage [192], thus a limited execution that dynamic metrics

address does not necessarily constitute a constraint of dynamic measurement. Dynamic met-

rics cannot simply be (over-)approximated by corresponding static metrics either—in some

cases, they are not even correlated [96].

Software coupling is the strength of the relationships among software modules, for mea-

suring how closely connected the modules are [172, 172]. Coupling metrics have been well

studied for single-process systems [45, 132, 222]. For example, Arisholm et al. [14] defined

a set of dynamic coupling metrics for object-oriented software and studied the relationship

between dynamic coupling measures and software change-proneness. Dynamic coupling met-

rics also have been used to estimate architectural risks [241] and complexity [111] in relation

to quality metrics such as maintainability [182, 110]. Most of these metrics were defined

under the assumption that there exists an explicit reference/invocation between the entities

(e.g., object, method, and class) involved in the coupling measure.

The cohesion of a software component refers to the extent to which the elements of a

component are related [33]. A highly cohesive component performs a set of closely relevant

actions, and it is difficult to be split into separate components [241]. Static cohesion has been

widely explored in software measurement. More recent relevant works increasingly focused

on run-time (i.e., dynamic) cohesion [167, 115, 253, 69].
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2.2 Distributed System Architectures

There are typically three types of distributed system architectures: client-server, peer-

to-peer, and n-tier, as shown in Figure 2.1.

Figure 2.1: The architectures of a distributed systems: (a) left: client-server, (b) median:
peer-to-peer, and (c) right: n-tier (3-tier)

Servers
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Network

(Application) Logic 
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Presentation/GUI 
Tier

Data 
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Client-server (CS) is a type of network architecture in which each process/node on the

network is either a server or a client. Servers are powerful for controlling and managing

relevant resources (e.g., disk drives, database, printers, network traffic), while clients rely on

servers for those resources [157]. Client-server architecture is simple to implement, without

peer-discovery [119]. For example, NioEcho is a client-server distributed program including

a client and a server [215].

Peer-to-peer (P2P) is a type of network architecture in which each process/node has

equivalent responsibilities and abilities. P2P differs from CS, in which some processes/nodes

are dedicated to serving other processes/nodes [157]. For instance, OpenChord is a peer-to-

peer distributed system providing network services through a distributed hash table [26].

The n-tier architecture breaks up an application into tiers, providing flexibility and

reusability for developers who only need to modify or add a specific tier(layer), rather than
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to rewrite the whole application when they decide to change the application. In the term

n-tier, ”n” can be any number (larger than 1) of distinct tiers used in a specific architecture,

such as 2-tier, 3-tier, or 4-tier, etc [157]. For example, Microsoft Azure is a typical n-tier

distributed system that provides cloud computing services [235, 50, 164].

2.3 Logic Clocks in Distributed Systems

A distributed system is based on a computer network where different computers are

connected via passing messages or other types of middleware. This feature helps users share

various resources via network communication [170]. But there is no global logic or physical

clock for concurrent execution of distributed components.

The Lamport timestamp (LTS) algorithm is used to generate a partial ordering of events

in a distributed system, maintaining a logical clock for all processes. In the LTS algorithm,

each process maintains an integer value, initially zero, which periodically increments, once

after every atomic event; the value is attached to the record of the execution of each event as

its timestamp centrally or separately; the traces are mostly maintained by each process [81].

The LTS algorithm has asynchronous and synchronous communication methods, with respect

to the following rules:

1. A process increments its counter for each event in it.

2. When sending a message, a process includes its counter value with the message.

3. When receiving a message, the counter of the recipient is updated (adding 1).

I use an example to explain the LTS algorithm in detail. I suppose that there are three

processes (i.e., Process A, Process B, Process C) in a distributed program, as shown in
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Figure 2.2: The Lamport timestamp (LTS) algorithm used in multiple processes of a dis-
tributed program

Process A
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Process C
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Events: a, b, c, d, e, f

Messages: m1, m2

Timestamps: 0, 1, 2, 3, 4, 5

Figure 2.2. Each process has its logical clock initialized to zero and the clock value (i.e.,

timestamp) immediately increments after an event, such as 1 for the event a, 2 for the event

b, etc. When the message m1 was sent from Process A to Process B, the timestamp 2 was

piggybacked and then the event c (of Process B) gets its timestamp 3, which is the maximum

value between piggybacked timestamp 2 and local timestamp 0 (initial value), added 1, as

(max(0, 2) + 1 = 3). Then, the timestamp of the event d is 4 (= 3 + 1). Next, the message

m2 is sent from Process B to Process C with the clock value 4 piggybacked. Finally, the

event f (of Process C) gets its timestamp 5 (= max(1, 4) + 1), where 1 is the timestamp of

the previous event (e) in the same process (Process C) [81, 144].

Like the LTS algorithm, vector logical clocks are used to determine the partial ordering of

events and to detect causality violations in distributed systems, by comparing event times-

tamps [25]. For a distributed system with N processes, there is a vector (i.e., an array) of

N logical clocks, one clock per process; and each process remains a local vector (i.e., array)

that includes the largest possible values of the global clock vector [254, 234].

However, vector logical clocks have a major fault: If a distributed system has too many

processes whose count N is very large, the timestamp data (i.e., communication overhead)

attached to each message would be too large to be acceptable [220].
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Besides the vector clock and LTS timestamps algorithms, matrix clocks are also used to

capture causal and chronological relationships in distributed programs . As a generalization

of the vector clock notion, a matrix clock maintains a vector of the vector clocks for each

process (communicating host) [73, 233].

2.4 Dependence Analysis

In program execution, there are two types of explicit dependencies: traditional de-

pendencies and thread dependencies. Control dependency and data dependency are tra-

ditional dependencies. In a concurrent program, there may be three types of thread de-

pendency: synchronization, ready, and interference dependencies. In a common distributed

software system, besides explicit dependencies (via references and/or invocations) among

code entities, dependencies across distributed components/processes (referred to as inter-

component/interprocess dependencies) are implicit because these components/processes are

decoupled by networking facilities.

Analyzing dependencies among program entities of a software system can help developers

better understand the structure and behaviors of the system. Thus, dependence analyses

are very useful for users to develop, test, and maintain the system, because these tasks rely

on the understanding of system structure and behaviors.

Program dependencies can be deduced by both static and dynamic analyses. Static de-

pendence analysis computes dependencies via analyzing the program code without executing

the software. By contrast, a dynamic dependence analysis infers dependencies from the data

gathered during the execution(s). In particular, as a special type of dynamic analysis, hy-

brid dependence analysis combines static and dynamic analysis modalities [203]. Hybrid
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dependence analysis approaches can integrate run-time information extracted from dynamic

analysis techniques into static analysis algorithms to precisely compute program depen-

dencies. Hybrid dependence analyses are becoming popular because they generate more

accurate results than other analysis modalities. However, a hybrid dependence approach is

often complex, and its analysis process may be time-consuming [190].

2.4.1 Dependence analysis for single-process programs

As a dynamic analysis approach, Diver [39] computes dependence sets as impact sets

using dependence analysis techniques. As a recent advance in (offline) dynamic analysis,

it achieves higher precision and provides a more cost-effective option over EAS-based ap-

proaches (which derive dynamic dependencies based on execution orders), such as PI/EAS [8].

Diver utilizes a static dependency analysis to significantly decrease the size of the depen-

dence set produced by PI/EAS.

With significantly smaller resulting dependence sets, the cost-effectiveness tradeoff of

Diver is much higher even with the additional static dependence analysis cost. Diver

works in three technical phases: static analysis (Phase 1), runtime tracing (Phase 2), and

post-processing analysis (Phase 3). Diver first computes traditional control/data depen-

dencies [123] and instruments the input program in Phase 1. In Phase 2, the instrumented

version of the program is executed for tracing entry (i.e., program control entering a method)

and returned-into (i.e., program control returning from a callee into a caller) events. In Phase

3, the technique computes the dependence set from the trace for any query given by the user.

An online version of Diver, DiverOnline [37], avoids execution tracing costs (e.g., space

and I/O costs) that are ineluctable in offline analyses, via computing dependence sets during
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the execution of the program under analysis. In addition, DiverOnline provides an All-

in-One analysis, which computes the dependence sets for all possible queries (methods),

and then corresponding dependence sets are directly delivered to the user within a short

response time. As such, an All-in-One online dynamic dependence analysis may be suitable

for large-scale software systems.

2.4.2 Dependence analysis for multi-threaded programs

The increasing use of multi-threaded (concurrent) programs invokes challenges for de-

pendence analyses, and it is also relatively difficult for users to understand multi-threaded

systems. For instance, in a shared memory model, one thread accessing a memory loca-

tion may potentially interfere with another thread to access the same location, leading to

dependencies between these two threads.

Generally, among threads, there are two particular types of control dependencies—

ready dependencies and synchronization dependencies, and a type of data dependencies—

interference dependencies [173]. The main task of a dynamic analysis of threading-induced

dependencies is thus to infer ready dependencies, synchronization dependencies, and inter-

ference dependencies across multiple threads that occurred during program executions. For

multi-threaded programs, several dependence analysis algorithms [240, 239, 173, 98] have

been developed.

Indus is a sound framework to analyze and slice multiple-threaded (current) Java pro-

grams. In Indus, Java source code is first transferred to Jimple code as an intermediate

representation. However, since it is purely static, those dependencies are only approximated

by Soot with very little cost [51, 189]. Indus gives developers the most common dependence
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analyses for intra-thread control and data dependencies, inter-thread ready, synchronization,

and interference dependencies.

2.4.3 Dependence analysis for distributed programs

For a complex distributed system with multiple processes, the developer needs to under-

stand various (explicit and implicit) dependencies both within a single process and across

multiple processes. Krinke proposed a slicing algorithm incorporating dependencies across

distributed components induced by socket-based message passing [142], but the dependen-

cies were approximated over-conservatively because they are computed through purely static

analysis. Another approach [28] infers various kinds of dependencies due to interprocess

communications. However, the approach potentially suffers a scalability problem due to its

heavyweight nature.

To overcome the scalability challenges, a lightweight dynamic analysis for distributed

programs, DistIa [41], was developed. The analysis monitors and records method events and

their timestamps during the system execution, and then approximates run-time dependencies

among relevant methods, either within or across processes, based on the happens-before

relations among method execution events.

For example, if a method A has the last returned-into event which was executed before

the first entry event of another method B, the partial-order is A before B, and DistIa

approximately supposes that B is dependent on A. Similarly, if one method D is dependent

on another method C, C must execute before D; otherwise, C cannot affect D. Thus,

dependencies computed by DistIa are safe for executed methods, but not for all methods

since some methods were not covered during the execution. On the other hand, if B is
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executed after A, B may or may not be actually dependent on A. Therefore, we know that

DistIa is not precise.

2.5 Dynamic Information Flow Analysis and Dynamic Taint Analysis

Tracking/checking dynamic information flow underlies various security applications (e.g., [218,

159, 161, 198, 107]), It addresses a general source-sink problem for a program execution, in

which a source is where confidential or untrusted (i.e., sensitive) information is produced

and flows into the program, while a sink consumes the information and makes it flow out

of the program execution [79, 4]. Due to its focused reasoning about actual executions, this

approach has precision merits over statically inferring information flow.

One technique realizing the approach is to compute the chains of dynamic control and

data dependencies hence to infer full information flow paths between given sources and sinks

during the execution (e.g., [210, 160, 159, 161]), called dynamic information flow analysis

(DIFA). An alternative technique is dynamic taint analysis (DTA), which applies tags to (i.e.,

taint) the data entering the program from the sources, propagates the taint tags during the

execution, and checks the data at the sinks against the presence of the tags (e.g., [49, 247,

176, 202, 166, 207, 16, 27, 256, 134, 128, 221, 246, 244, 77, 243, 121, 47, 133]). Unlike DIFA,

DTA does not compute full information flow paths. DIFA thus provides better support in

usage scenarios that require more detailed flow information (e.g., diagnosing data leaks in

the paths).

DIFA and DTA can be differentiated (1) by their inner workings as mentioned earlier

(i.e., DIFA works by computing dynamic dependencies, while DTA works via data tainting

and taint propagation) and (2) by their results—DIFA provides full information flow paths
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while DTA just tells which data is tainted. On the other hand, both DIFA and DTA concern

information flow paths between given sources and sinks.

2.6 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning, beyond supervised learning,

to suggest software agents taking actions in an environment to maximize the total reward

for all possible successive actions [151]. RL is based on the information measured from

the environment, and thus it can be called action-based learning. RL refers to a learning

approach whose agent or actor modifies its actions according to the response to its interaction

with the environment. And RL hardly requires a priori knowledge, so that it can be applied

to varying and uncertain environments where standard supervised/unsupervised learning

approaches are not applicable [146].

Unlike supervised learning and unsupervised learning, RL does not need training data.

Described by Markov Decision Processes, whose states are decided by the previous states [185],

the output of RL depends on the corresponding input, and the next input depends on the

current output [3].

Figure 2.3: Q-learning
workflow

Environment

Agent

actionreward

state

In particular, as a particular type of RL, Q-learning uses

a Bellman equation to minimize its cumulative cost [29]. It

does not require explicit or exact descriptions of software sys-

tems and only needs state measurements in its feedback control

loop [146]. Q-learning also has an exact capability of learning

the next state according to only previous states. Starting from

an initial state, Q-learning tries to find a way to maximize cu-
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mulative reward values by selecting an action after measuring how good the action is in a

particular state [229]. It is an off-policy and model-free algorithm, as it does not require an

existing policy or model [230]. The overall workflow of a Q-learning algorithm is depicted in

Figure 2.3, including the following steps:

(1) The algorithm initializes Q-learning components and a Q-table (i.e., a lookup table

for storing expected rewards calculated).

(2) At the current state, the agent selects an action referencing the maximal value in the

Q-table or by random.

(3) The agent receives a state and a reward from the environment.

(4) The algorithm updates the Q-table using the Bellman equation [71].

(5) The algorithm repeats steps (2), (3), and (4) until the learning meets predefined

conditions (e.g., when the agent finishes its ultimate tasks).

2.7 Analysis with Variable Cost-effectiveness

Most existing analysis approaches commonly suffer from challenges of balancing the anal-

ysis cost and effectiveness. They are either precise but too expensive or efficient but too

imprecise. To deal with these challenges, one existing solution is to offer variable cost-

effectiveness balances to satisfy varying user needs. For example, the DiaPro framework

provides flexible cost-effectiveness choices for a variety of levels of cost-effectiveness tradeoffs

with the best options for variable user requirements and budgets [40]. By combining the static

and dynamic data, DiaPro unifies PI/EAS [8], Diver [39], and three dependence-based

dynamic dependence analysis techniques: one using coverage and trace, one using aliasing

and trace, and the other using all these dynamic data (aliasing, coverage, and trace).
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Another example is D2Abs [38], which aims at practical scalability and offers various

levels of cost-effectiveness tradeoffs in the dynamic dependence analysis for distributed pro-

grams with four versions.
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CHAPTER THREE

DISTMEASURE: A FRAMEWORK FOR MEASURING AND

UNDERSTANDING DISTRIBUTED SOFTWARE SYSTEMS VIA THE

LENS OF INTERPROCESS COMMUNICATION

The goal of my doctoral research is to address scalability, cost-effectiveness, and other

(applicability/portability) challenges in distributed software analysis and its applications to

other quality problems. And to start with, I looked at the security problems of distributed

systems. There is a communication mechanism that basically connects the different pro-

cesses in a distributed system. Interprocess communication (IPC) may be one of the most

important features of a distributed system. Thus, I developed DistMeasure (the expan-

sion of [93, 85]), including a set of metrics for common distributed systems, with a focus on

their IPC, a vital aspect of their run-time behaviors. I also implemented a toolkit Dist-

Fax [92] for measuring IPCs and quality of distributed software. And I demonstrated the

practicality of characterizing IPC dynamics and complexity via the proposed IPC metrics,

by computing the measures against the executions of 11 real-world distributed systems, with

a large number of test inputs. To show the practical usefulness of IPC measurements, I

extensively investigated how the proposed metrics may help predict and understand various

quality metrics of distributed systems, via classifying system quality levels based on the IPC

measurements, with respect to several different quality aspects.
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3.1 Motivation

In general, a distributed system consists of multiple collaborating components each run-

ning in a process typically located at a separate computing node. Since these components

interact primarily through IPC [204], measuring IPC is essential for understanding the be-

haviors of distributed systems.

Apparently, IPC dominates the activities of this system, excluding which each component

alone would be largely trivial. Thus, the complexity of this system’s execution essentially

lies in the complexity of its IPC. First, I wanted to diagnose the communication security

issues of this system reported by users with the inputs that can reproduce the issues.

A rewarding first step would be to understand how communication currently works in

terms of the IPC with respect to the user input. Measuring IPC would help in this scenario.

Moreover, the IPC measurements may help the developer assess further understand quality

aspects of an IPC-induced system. For instance, if the IPC coupling is very high, intuitively

the system might be difficult to update. Thus, its maintenance cost may be quite high also.

Unfortunately, there is a lack of tool support for measuring distributed systems executions

with respect to IPC, and it is unknown which quality factors might be analyzable through

the IPC measures. There, I addressed these questions by developing new IPC metrics and

applying them to distributed software quality assessment.

Meanwhile, it may be difficult or even impossible to directly measure some quality metrics

of distributed systems. For example, the quality metric code churn size is commonly used to

quantify the varying parts of an evolving program. However, computing this quality metric

typically requires the data of program releases, and it is impossible to directly measure
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the first release of the program. The correlations between the IPC metrics and the quality

(metrics) of a distributed system can be leveraged by developers to indirectly assess correlated

quality metrics of the system and further to understand the system and its quality aspects.

3.2 Approach

I first give an overview of DistMeasure high-level workflow and architecture. Then, I

describe IPC metrics and quality metrics used in DistMeasure.

3.2.1 Overall workflow

Figure 3.1 depicts the overview of DistMeasure, including two closely connected parts:

IPC Measurement (Part 1) and Understanding IPC (Part 2). In Part 1, DistMeasure

takes two inputs from the user: multiple (N) distributed systems D1, D2, ..., Dn and

their run-time inputs T1, T2, ..., Tn including system commands, SQL statements, text

messages, etc. DistMeasure first executes the systems against corresponding inputs, to

produce the system run-time data. Then, DistMeasure computes six IPC metrics (i.e.,

RMC/RCC/CCC/IPR/CCL/PLC) from the data.

Meanwhile, eight quality metrics (i.e., execution time, code churn size, cyclomatic com-

plexity, defect density, information flow path count, information flow path length, attack

surface, and vulnerableness) of the systems are measured directly. From the values of these

IPC metrics and quality metrics, DistMeasure computes the correlations between them.

These correlation results induce to empirical findings and recommendations about the system

quality, as the output of DistMeasure Part 1.
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Figure 3.1: An overview of the DistMeasure workflow
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In Part 2, DistMeasure takes the IPC and quality metric values, distributed systems

D, and D’s input T , as inputs to classify the same quality metrics of D. It first trains

unsupervised learning and supervised learning models from the metric values, and then uses

these models to classify each of such quality metrics as anomalous or normal. Anomalous

indicates a warning of low (than average level) quality, while normal means no such a warning

(i.e., the corresponding quality metric value is higher than or equals or the average level). In

particular, models are trained and used for classification of quality metrics, each of which is

significantly (and negatively or positively) correlated to one or more of the six IPC metrics

(correlation absolute value >= 0.4). These classification results provide developers’ guides

for the quality assurance tasks in software maintenance, such as software debugging, software

testing, and so on.

3.2.2 IPC metrics

As shown in Table 3.1, I defined five IPC coupling metrics (i.e., run-time message coupling

(RMC), run-time class coupling (RCC), class central coupling (CCC), inter-process reuse

(IPR), and class communication load (CCL)) and one IPC coupling metric (i.e., process-
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level cohesion (PLC) [92]), and explained their computation (in the second column) and

justification (in the third column). Six IPC metrics cover four levels of measurement gran-

ularity: method (IPR), class (RCC, CCC, and CCL), process/component (RMC, RCC,

and PLC), and system (RMC, RCC, CCC, IPR, CCL, and PLC), listed in the last col-

umn (NS. L., short for non-system level) of Table 3.1. System level is not listed in Table 3.1

because it covers all six IPC metrics.

RMC is the extent of run-time interactions among processes. A process-level RMC is

the number of messages sent from one process to another. And a system-level RMC is the

average of the process-level RMC on all communicating process pairs.

RCC concerns methods from a class in one process to access methods in other processes.

A class-level RCC is the ratio of the total number of methods in the first class in the first

process that is dependent on any method in the second class in the second process, to the

total number of methods in any process, other than the first process; while a process-level

RCC metric is then set to the size of the union set of entire dependence sets of all methods

in all classes of the process, where the numerator is the size of the union set of remote

dependence sets of those methods. Moreover, a system-level RCC metric is the average of

all process-level RCC measures.

CCC concerns the importance of a class affecting other classes in remote processes. A

class-level CCC is the sum of all RCC measures between the class and other classes in all

remote processes. A system-level CCC is the mean of process-level CCC measures.

For inter-process code overlapping and reuse, a method-level IPR is the ratio of the

intersection of the local dependence set (set of methods in the process that depends on the

given method), and remote dependence set (set of methods that depend on the given method
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Table 3.1: Summary of IPC Metrics

Type & Definition & computation Justification NS. L.
RMC Coupling & the interprocess message coupling & the number of messages

sent from a process to another one
the extent of run-time interac-
tions among processes

process

RCC Coupling & the class coupling between two processes and further at system-
level & the ratio of the total number of methods in the second class that are
dependent on any method in the first class, to the total number of methods,
which are dependent on any method in the second class and in all processes
but the first process

how methods from a class in
one process access methods in
other processes

class,
process

CCC Coupling & the aggregate coupling as regards an individual class executed in
a local process with respect to classes in all remote processes/ the aggregate
RCC metrics between the class and other classes in all remote processes

the importance of a class
with respect to its coupling
strength

class

IPR Coupling & interprocess coupling at method levels & the intersection of the
local and remote dependence sets divided by the size of the union set of
methods executed

code overlapping and reuse
across processes

method

CCL Coupling & the communication loads of an individual class communicating
with others in all remote processes & the sum of the sizes of remote depen-
dence sets of the class’s methods divided by the size of the set of all executed
methods in the class

how much a class contributes
to communication loads
among processes

class

PLC Cohesion & internal connections within an individual process & the sum of
the sizes of local dependence sets of the process’ methods divided by the size
of the set of all executed methods in the process

the degree to which the meth-
ods of a process belong to-
gether

process

but are in any process other than the first process), to the size of the entire set of methods

covered in the execution. A system-level IPR metric is then set to the ratio of the sum of

method-level IPR measures on all methods in the execution, to the size of the entire set of

those methods.

CCL measures how much a class contributes to the communications loads between the

process executing the class and other processes. A higher CCL means that a class has more

communications among system components. A class-level CCL is computed as the sum of

the sizes of remote dependence sets of the class’s methods divided by the size of the set of

all executed methods in the class. The system-level CCL is the mean of class-level CCL

measures over all classes executed (across all processes).

Differing from previous metrics all about coupling, PLC measures cohesion. It is the

degree to which all of the methods executed in a process belong together. A process-level

PLC is computed as the sum of the sizes of local dependence sets of all methods in the
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process, The system-level PLC is the mean of process-level PLC measures over all processes.

Some of these metrics (i.e., RMC, RCC) explicitly measure interprocess coupling, while

some metrics (i.e., CCC, IPR, and CCL) are derivative coupling metrics. And IPR mea-

sures the common dependencies of two processes, differing from four other coupling metrics

(i.e., RMC, RCC, CCC, and CCL) that measure mutual dependencies of one process on

the other.

Differing from measuring process cohesion, measuring interprocess coupling in distributed

systems, however, is different and challenging [41]. Coupling metrics are often defined on

the basis of certain relationships (e.g., dependency and inheritance) [222]. However, deriv-

ing the interprocess dependencies from which the metrics are computed, is not trivial in the

context of distributed system executions. The main reason lies in the lack of global timing

across the system together with the lack of explicit references/invocations across distributed

components. To overcome this challenge, I leverage a framework for dynamic dependence

analysis of distributed programs [38]. Using this framework, I reason about interprocess

dependencies through the happens-before relation between executing methods across pro-

cesses, derived from a global partial ordering of method execution events. I further exploit

the semantics of message passing to improve the precision of such derived dependencies, so

as to enhance the validity of IPC coupling and cohesion metrics.

3.2.3 Quality metrics correlated to IPC metrics

To demonstrate the usefulness of the coupling and cohesion measurement in aiding the

analysis of distributed systems quality, I adopted the standard quality model ISO/IEC

25010 [126] with necessary customization selection, as depicted in Figure 3.2. The model
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Figure 3.2: The reference-quality model underlying DistMeasure, adopted from and
compliant with the ISO/IEC 25010 [126] standard
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has three layers: quality characteristics (i.e., factors), sub-characteristics (i.e., sub-factors),

and quality metrics. The top and second layers are specified by the standard quality

characteristic/sub-characteristic names (in ISO/IEC 25010 [126]), but the bottom layer is

customized by quality metric names used in DistMeasure.

There are four quality characteristics (i.e., performance efficiency, maintainability, func-

tional suitability, and security), nine sub-characteristics (i.e., time behaviour, modifiability,

testability, functional correctness, confidentiality, integrity, non-repudiation, accountability,

authenticity), and eight quality metrics (i.e., execution time, code churn size, cyclomatic

complexity, defect density, information flow path count, information flow path length, attack

surface, and vulnerableness), some of which for measuring multiple sub-characteristics.

DistMeasure uses a direct metric execution time to measure the time behaviour of a

distributed system, and then normalized it by the logical source lines of code (SLOC) of the

system under analysis.

A version-level code churn size is the source line number of code changed (i.e., added,

deleted, or updated), between two adjacent versions of a program [248]. Then, it is normal-

ized by the logical SLOC of the latter version. Finally, the system-level code churn size is
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computed as the mean of all version-level code churn sizes of all the program’s releases.

The cyclomatic complexity of a specific system is a direct quality metric [163], normalized

by the logical SLOC of the system.

The defect density of a specific system is the number of defects related to the system,

normalized by the system’s logical SLOC.

The information flow path count is the total number of dynamic information flow paths,

while information flow path length is computed as the average length of the dynamic infor-

mation flow paths.

The attack surface is defined as a quality metric indicating the relative security of a

system in three dimensions (methods, channels, and data) to determine if the system is

more secure than others [158]. I first consider a triple <N1, N2, N3>, where N1 is the

number of methods including sources/sinks (i.e., entry/exit points), N2 is the number of

network ports (i.e., channel) used, and N3 is the number of files read/written by the subject

during the execution). Next, I calculate the Euclidean distance between it and the origin

(0,0,0) as
√
N12 + N22 + N32. Finally, the distance is normalized by the subject’s logical

SLOC, as the system-level attack surface.

The vulnerableness of most subjects is based on CVSS 2.0 score of public security

databases (e.g., National Vulnerability Database (NVD) [67]) and the time of a vulnera-

bility in CVSS. If the vulnerability was discovered recently, it should be concerned more

than another discovered long ago. However, NVD does not contains the defects of some

subjects (e.g., Grizzly, OpenChord, Voldemort, XNIO, xSocket). Thus, other online bug

resources (e.g., Jira, SourceForge, GitHub) should be considered too. The vulnerableness of

a subject is computed as
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Nnn +
∑

(CV SSv ∗ (100 −Diffv/100)) (3.1)

where Nnn is the number of vulnerabilities found in non NVD bug sources (without CVSS

scores), CV SSv is the CVSS score of a vulnerability v, and Diffv is the difference between

the current year and the v found year,

Then, I explored the relationships between IPC measurements and eight quality metrics

quantified through respective direct measurements, to show the usefulness of IPC measure-

ments and their statistical relationships with distributed software quality measurements and

to demonstrate the capabilities of DistMeasure to help understanding the software quality

via deeply characterizing IPC-related behaviors of distributed software.

For the goal, I performed extensive statistical analyses to examine the correlation of each

pair between the six IPC metrics and the eight quality metrics. Spearman‘s rank correlation

analysis [199] rather than alternatives (e.g., Kendall’s [1], Pearson’s [32] was selected. The

reason is that the former does not assume any relationship between the two involved variables.

Furthermore, I considered correlation strength according to the value of Spearman‘s rank

coefficient r in [197]: If |r| >= 0.4, the correlation is significant; otherwise (i.e., |r| < 0.4),

the correlation is weak. In addition, p values were also computed, indicating the statistical

significance of correlation coefficients.

3.2.4 Classification for understanding and predicting quality

In Understanding IPC (Part 2), DistMeasure first trains unsupervised learning and

supervised learning models from IPC/quality measurements, and then leverages these models

to classify the quality metrics significantly correlated to IPC metrics.
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Learning features. The six proposed IPC metrics (i.e., RMC, RCC, CCC, IPR, CCL,

and PLC) are potential features for unsupervised and supervised classifiers for direct quality

metrics significantly correlated to one or more IPC metrics. Both positive and negative

correlations were considered. Only the system-level metric values were used as feature values

in Part 2 of DistMeasure.

Unsupervised learning. Grouping together given data points with similar characteristics,

partition the data points into k clusters by assigning them to the nearest cluster centers [183],

k-means clustering algorithm (implemented in the Python Scikit-learn library [179]) was

selected for unsupervised learning quality classifiers. I set k = 2 since DistMeasure aims

to classify quality metrics as normal versus anomalous for detecting quality anomalies and

further understanding the system quality.

Supervised learning. After comparatively exploring some alternatives, I selected boot-

strap aggregation (or bagging for short) to construct supervised learning quality classifiers.

Bagging generates multiple versions of a model via bootstrap the training data set replication

used as new training data sets, to provide high prediction accuracy, especially for unstable

data—the accuracy can be retained with large variations across the training data [35]. Dis-

tributed systems cover various application domains, execution scenarios, and scales. Thus,

in system executions, there are expected large variations in different training samples that

are suitable for bagging. As binary classifiers, the supervised ones in DistMeasure are

also utilized to discover quality anomalies for predicting and understanding the quality of

distributed systems, like those unsupervised classifiers.
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Figure 3.3: An overview of DistFax architecture
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3.3 Tool Implementation

To characterize common distributed systems, I implemented DistFax (short for Distributed

software systems facts (sounding Fax)) [92], a toolkit for characterizing common distributed

systems, concerning their interprocess communications (IPCs), an important aspect of the

run-time behaviors of the systems. As shown in Figure 3.3, DistFax measures the system

coupling/cohesion via IPC metrics defined and characterizes the system run-time quality

via dynamic quality metrics referring to the standard quality model ISO/IEC 25010 [126].

Then, DistFax analyzes statistical correlations between the IPC metrics and quality met-

rics. Furthermore, it leverages the correlations to build learning models for classifying the

system quality status with respect to the IPC metrics of the systems.

3.4 Evaluation

3.4.1 Experiment Setup

I measured the IPC traits of nine real-world distributed software projects, mostly enterprise-

scale systems. Table 3.2 lists subject names/versions (the first column), the logical source

lines of code (the second column), test types (the third column), and test input counts

(the last column).
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Table 3.2: Statistics of experimental subjects in DistMeasure

Subject (version) #Logical SLOC Test Type # Test Input
XNIO (2.0.0) 3,963 Integration 247
OpenChord (1.0.5) 6,391 Integration 1,999
xSocket (2.8.15) 11,628 Integration 1,698
QuickServer (1.4.6) 13,369 Integration 34
Thrift (0.11.0) 13,543 Integration 525
Grizzly (2.4.0) 22,725 Integration 2,000
Karaf (2.4.4) 46,810 Integration 26

ZooKeeper (3.4.11) 50,577

Integration 2,000
Load 1,409
System 2,000

Voldemort (1.9.6) 66,754 Integration 1,631
Netty (4.1.19) 109,450 Integration 1,919
Derby (13.1.1) 423,662 Integration 1,392

For all subjects, their integration tests were created via putting together steps in the

quick start guides from their official websites. In particular, for the integration test of six

frameworks/libraries (XNIO, xSocket, QuickServer, Thrift, Grizzly, and Netty), I developed

applications to cover their major functions and then performed all of the applications. In

addition, for ZooKeeper, its load and system tests came with the project packages. I now

introduce all evaluation subjects, their original integration test operations, and corresponding

expansions of their run-time inputs.

1. XNIO is a non-blocking I/O library used to build efficient networking applications [211].

In its original integration test, I started one server and one client and then sent arbitrary

text messages from the client to the server. To augment the test suite, I created 2,000

files, each of which includes different text contents randomly generated. During each

execution, the XNIO client read one file and sent the full content to the server.

2. OpenChord is a peer-to-peer network service [63]. In its original integration test, I
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first started three nodes A, B, and C. Then, I performed the following operations: On

node A, create an overlay network; on the other nodes B and C, join the network; on

the node C, insert a new data entry to the network; on the node A, search and then

remove the data entry; Lastly, on the node B, list all data entries. To augment the test

suite, I created 2,000 files, each of which includes a set of OpenChord commands (e.g.,

retrieveN -key test). Some of these files include invalid commands or command

combinations to construct malformed inputs. During each execution, the nodes read

the commands from one file and then perform them in order.

3. xSocket is a NIO-based library for building high-performance computing (HPC) soft-

ware [118]. In its original integration test, after one server and one client were started,

the client sent a sequence of manually composed text messages to the server. I ex-

panded the test suite using the same way that I used for XINO.

4. QuickServer is an open-source library for users to quickly develop multi-client TCP

applications [23]. In its original integration test, after its server was started, the client

connected to it and then sent a set of text messages to the server. I expanded the

original test suite like that for XINO.

5. Thrift is a framework for developing scalable cross-language services [187]. In its orig-

inal integration test, I used its libraries to develop a calculator consisting of a server

and a client component. I ran the calculator (from its client) against basic arithmetic

operations (i.e., addition, subtraction, multiplication, and division). To expand the

test suite, I created 2,000 files, each of which includes a distinct arithmetic expression

(e.g., 1 add 2 minus 3 multiply 4), with some invalid ones to represent malformed
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inputs. During each execution, the Thrift client read the expression from one file, sent

it to the server, and then took the computation result back from the server.

6. Grizzly is an NIO-based server framework from the GlassFish community [180]. In its

original integration test, I started a server and a client, and then sent random text

messages from the client to the server, and finally waited for the echo of each message.

I expanded the original test inputs almost like for XNIO, except for the addition of a

command for awaiting each message’s echo sent by the client.

7. Karaf is a modular container as an open-source runtime environment supporting the

standard OSGi [177]. In its original integration test, I created a container hosted

by the server and then executed two commands: listing all packages (la) and listing

OSGi bundles (list). To expand the original input set, I created 2,000 files, each of

which includes various Karaf commands (e.g., config:proplist). I purposely included

invalid ones in some cases to construct abnormal inputs. During each execution, the

Karaf client read the commands from one file and performed them in order.

8. ZooKeeper achieves consistency and synchronization in distributed systems [125].

In its original integration test, the operations were: create two nodes, search them,

look up their attributes, update their data association, and remove these two nodes.

To expand the integration test inputs, I created 2,000 files each of which includes

various ZooKeeper commands (e.g., ls /zk-temp), including invalid ones. During

each integration test execution, the Zookeeper client read the commands from one file

and then performed them in order.
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In the original load test, after the server was started, I started a container instance and

then generated workloads. To expand the load test suite, I generated the workloads

with 2,000 different sets of configuration parameters (e.g., the number of clients

involved in the load, the request size). During each load test execution, I ran

the load test with one parameter set.

In the original system test, I started a server instance and a system test container, and

then launched the system test. To expand the system test suite, I created 2,000 config-

uration files each with different configuration parameters (e.g., initLimit, tickTime,

syncLimit). During each system test execution, I ran the original system test code

but with one configuration file.

9. Voldemort is a distributed key-value store underlying LinkedIn’s service [219]. In its

original integration test, I performed the following operations in order: add a key-value

pair, find the key for its value, remove the key, and retrieve the pair. To expand the

original test suite, I created 2,000 files, each of which includes various Voldemort com-

mands (e.g., getmetadata). Invalid commands or command sequences were included

for invalid inputs. During each execution, the Voldemort client read the commands

from one file and then performed each of the commands.

10. Netty is a framework for rapid HPC application development [162]. In its original

integration test, after starting a server and a client, I sent text messages from the

client to the server. I expanded the original input set using the same way for XINO.

11. Derby is an open-source relational database [48]. In its original integration test, I

searched all the data records (SELECT *) from a relational database (including one
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table) created beforehand. To expand the original test, I created 2,000 files, each of

which includes a distinct set of SQL statements that are compatible with Derby (e.g.,

show settable roles). Invalid SQL statements or invalid statement sequences were

included to construct invalid inputs. For each execution, the Derby client reads SQL

statements from one file and then executed them in sequence.

There are 26 to 2,000 test inputs (the last column) for each subject and test type, for

a total of 16,880 test inputs for these evaluation subjects. These 16,880 subject executions

formed the basis of all the experiments of DistMeasure.

Two dynamic analyzers [38, 89] were used to detect information flow paths, hence the two

direct quality metrics (i.e., information flow path count and information flow path length)

based on such paths. The sources and sinks involved were generated according to JDK se-

curity/cryptography APIs. Source code measurement tool LocMetrics [17, 135] was utilized

to calculate the scales (i.e., logical SLOC) of distributed systems. To compute the dynamic

(run-time) cyclomatic complexity of each subject execution, I instrumented the subject,

executed the instrumented version of the subject, and counted the number of simple condi-

tional decisions exercised in the execution. Comparison tool diff [24] was used to calculate

the code churn sizes between the adjacent versions of each subject. All evaluation exper-

iments were performed in Ubuntu 18.04.1 workstations, each of them with 256GB DRAM

and 2.27GHz CPU.

3.4.2 IPC measurements

My results on IPC measurements are summarized in Table 3.3. Each number represents

one of the six proposed IPC metrics computed for one subject test.
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Table 3.3: System-level IPC measurement results

Subject Executions RMC RCC CCC IPR CCL PLC
XNIO 16.82 58.96 2.76 0.51 74.43 41.10
OpenChord 3.14 67.15 5.29 0.78 267.36 255.78
xSocket 20.74 76.77 3.63 0.36 257.98 208.19
QuickServer 2.12 36.21 2.42 0.40 113.27 70.85
Thrift 11.59 25.27 3.17 0.56 23.40 41.59
Grizzly 39.68 152.09 2.16 0.67 665.13 673.34
Karaf 2.85 22.31 1.06 0.45 70.16 78.32
ZooKeeper 6.26 191.83 3.04 0.42 506.32 461.36
ZooKeeper Load 4.01 90.02 1.19 0.37 391.41 369.29
ZooKeeper System 4.84 131.32 2.62 0.39 382.56 332.70
Voldemort 40.17 301.54 5.02 0.54 528.32 569.79
Netty 1.00 129.00 2.38 0.54 863.39 765.36
Derby 3.31 29.45 2.22 0.72 717.70 734.12

Two real-world distributed systems, Grizzly and Voldemort, had the largest RMC values.

The reason is that two systems exhibited the highest levels of inter-component dependencies

and a lot of message exchange (and corresponding network communications) among their

processes during their integration-test executions that needed closely collaborating processes,

leading to the highest RMC levels. And RMC values did not seem to be typically related to

the system scales (in terms of logical SLOCs). For example, the RMC value in the largest

system, Derby, is smaller than that in the smallest system, XNIO, with respect to the same

test type (i.e., integration test).

Voldemort had the largest RCC value and hence the highest process coupling at class

level, followed by Zookeeper; while Karaf had the small one, meaning that in a Karaf process,

a class hardly affects the class in other processes. It seemed that RCC values did not have

significant relationships with RMC values and system scales in terms of logical SLOCs.

In terms of the numbers, the mean CCC was mostly between one and five, meaning that

every class collaborated with about 1 - 5 other classes in remote processes.
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OpenChord had the largest IPR value (0.78), while xSocket had the smaller one (0.36).

This meant a lot of functional sharing among the processes of OpenChord. Conversely,

xSockets processes had very low levels of common dependencies.

CCL values were between 23 to 863, meaning that each class had 23 - 863 times the

communication loads of other classes in remote processes. The largest CCL value 863 was for

Netty, while the smallest one was for Thrift. This suggests the highest level of interprocess

communication complexity for Netty and further the most difficult debugging for Netty

IPC correctness/performance. Instead, Thrift had the lowest interprocess communication

complexity and hence could be debugged easily.

I saw that PLC values ranged from 41.10 to 765.36, meaning a process’ methods de-

pending on about 41 to 765 others in the same process. I also observed that high/low CCL

values came along with high/low PLC values in general. The reason is that the evaluation

executions had overall closeness between process-level coupling and cohesion, in terms of

CCL for coupling and PLC for cohesion.

In sum, I found that four IPC metrics (i.e., RMC/RCC/CCC/IPR) were related to

neither subject scales nor with any other IPC metrics. This implies that the associations

among these four IPC metrics were few and each of the RMC/RCC/CCC/IPR hardly influ-

enced others. In addition, I observed an obvious difference between RMC/RCC/CCL/PLC

and CCC/IPR, that RMC/RCC/CCL/PLC varied sharply with very small variations in

CCC/IPR. This difference suggests that RMC/RCC/CCL/PLC changed in relatively wide

ranges across systems, but CCC/IPR changed little.
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Table 3.4: Measurement results for two direct quality metrics: information flow path count
and information flow path length

Subject Execution Thrift xSocket Voldemort ZooKeeper Load Netty

Information flow path count 2.22E-04 1.72E-04 6.28E-04 1.27E-03 1.83E-05
Information flow path length 1.26E-02 4.69E-03 5.43E-03 9.22E-03 2.26E-05

3.4.3 Quality measurements correlated to IPC measurements

Information flow path count, which is the total number of such paths, and information

flow path length is the average length of the paths. Both of then are normalized by the

subject logic thousand SLOC (KSLOC), as listed in Table 3.4.

The direct measures of each of the six quality metrics (except for information flow path

count and length) over all subjects are summarized in Table 3.5. When quantifying a quality

factor, I selected logic SLOC/KSLOC, as the normalizing unit according to the value range

of the quality factor’s measure, to avoid the metric value being too small to be ignored.

Then, I conducted extensive statistical analysis to discover significant associations be-

tween the coupling metrics and the quality metrics, via a non-parametric correlation anal-

ysis using Spearman’s method [199]. I showed, through empirically validated correlations,

promising applications of IPC metrics in predicting and understanding the quality/behaviors

of complicated distributed systems. The results showed widely varying correlations between

six IPC metrics and eight quality metrics for 6 x 8 = 48 pairs. I marked significant correla-

tions in boldface, as shown in Table 3.6.

From the results, five (out of six total) IPC metrics (i.e., RMC, RCC, CCC, CCL, and

PLC) were significantly correlated to and informative of one or more of six (out of eight

total) quality metrics (i.e., Execution Time, Code Churn Size, Cyclomatic Complexity, De-

40



Table 3.5: Measurements of other (six) direct quality metrics, normalized by logical SLOC
or KSLOC

Subject
Execution Code Churn Cyclomatic Defect Attack

VulnerablenessTime (seconds) Size Complexity Density Surface
XNIO 1.51E-03 9.28E-02 2.03E-01 9.34E-03 4.55E-03 1.01E+00
OpenChord 8.45E-03 8.87E-02 1.72E-01 2.35E-03 1.13E-02 6.26E-01
xSocket 9.46E-04 4.83E-02 2.38E-01 5.16E-04 1.98E-03 2.58E-01
QuickServer 8.23E-04 4.73E-02 2.45E-01 2.99E-04 7.10E-04 4.38E-01
Thrift 5.91E-04 6.57E-02 1.45E-01 4.28E-03 2.51E-03 8.14E+00
Grizzly 3.08E-04 7.81E-02 2.21E-01 1.98E-03 6.30E-04 8.80E-01
Karaf 5.13E-04 1.17E-02 1.66E-01 9.08E-03 3.01E-04 1.96E+00
ZooKeeper 4.60E-04 1.37E-02 5.17E-02 7.41E-03 6.16E-03 9.00E-01
Voldemort 4.19E-04 3.97E-03 2.42E-01 4.93E-04 4.61E-03 1.80E-01
Netty 1.10E-04 1.11E-02 2.33E-01 5.03E-03 7.13E-04 1.80E-01
Derby 5.90E-05 2.70E-02 1.55E-01 9.70E-03 4.91E-04 5.12E-01

fect Density, Attack Surface, and Vulnerableness), despite varying correlation strengths.

High IPC coupling based on the dependencies between a process and others (i.e., high

RMC/RCC/CCC) was significantly correlated to long execution time, high complexity, low

defect density, large attack surface, and few vulnerabilities reported. Also, a large number of

communication loads of a class with others in remote process (i.e., high CCL) suggest small

attack surface and low vulnerableness. Meanwhile, high cohesion in an individual process

(i.e., high PLC) implies small code churn size, small attack surface, and few vulnerabilities.

According to Table 3.6, from IPC metric(s) for predicting dynamic quality metrics, I

constructed four classifiers (IPC metric(s) -> corresponding quality metric): (CCC) ->

execution time, (RMC,CCC) -> (run-time) cyclomatic complexity, (CCC) -> attack surface,

and (CCL, PLC) -> attack surface. For static quality metrics, in a similar way, I built one

classifier (CCL, PLC) -> vulnerableness.

In addition, the p-value of a correlation coefficient is the probability that the coefficient

is not significant. If the p-value is less than 5%, the correlation coefficient is called sta-
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Table 3.6: Spearman‘s correlation coefficients (p-values) between IPC and quality metrics

Quality metrics IPC metrics
Level Type Name RMC RCC CCC IPR CCL PLC

System Static

Code Churn Size
0.2320
(4.46E-01)

-0.3260
(2.77E-01)

0.2541
(4.02E-01)

0.2707
(3.71E-01)

-0.3978
(1.78E-01)

-0.4972
(8.38E-02)

Defect Density
-0.2210
(4.68E-01)

-0.3149
(2.95E-01)

-0.4475
(1.25E-01)

0.0497
(8.72E-01)

0.0166
(9.57E-01)

0.0331
(9.14E-01)

Vulnerableness
0.0553
(8.58E-01)

-0.4205
(1.53E-01)

-0.2407
(4.28E-01)

-0.0470
(8.79E-01)

-0.6224
(2.31E-02)

-0.5616
(4.58E-02)

Execution Dynamic

Execution Time
-0.2845
(0.00E+00)

-0.0864
(2.39E-29)

0.4735
(0.00E+00)

0.0461
(2.11E-09)

-0.1554
(1.10E-91)

-0.2471
(3.32E-233)

Cyclomatic
Complexity

0.4239
(0.00E+00)

0.0573
(9.16E-14)

0.4831
(0.00E+00)

0.1988
(5.77E-150)

-0.3644
(0.00E+00)

-0.3941
(0.00E+00)

Information Flow
Path Count

0.1295
(4.99E-64)

0.0777
(4.97E-24)

-0.0091
(2.38E-01)

-0.3771
(0.00E+00)

-0.1327
(3.31E-67)

-0.1570
(1.15E-93)

Information Flow
Path Length

-0.1616
(3.45E-99)

0.0349
(5.77E-06)

-0.1159
(1.50E-51)

-0.2494
(1.24E-237)

0.1134
(2.07E-49)

0.0757
(6.59E-23)

Attack Surface
0.1556
(5.35E-92)

-0.2132
(9.49E-173)

0.4534
(0.00E+00)

-0.0868
(1.42E-29)

-0.7424
(0.00E+00)

-0.7968
(0.00E+00)

tistically significant. As shown in Table 3.6, zero (0.00E+00) p-values for corresponding

coefficients signal significant correlations between the five (out of six total) IPC metrics (i.e.,

RMC/CCC/CCL/IPR/PLC) and one or more of four (out of five total) dynamic quality

metrics (i.e., Execution Time, Cyclomatic Complexity, Information Flow Path Length, and

Attack Surface) considered. However, for static quality metrics (versus IPC metrics), cor-

responding p-values (most of them > 0.05) could not indicate significant coefficients due to

too few (only 11) static data points.

3.4.4 Classification for predicting and understanding quality

In this section, I present my experimental results and conclusions, focusing on the results

of classifying dynamic quality metrics with respect to a large number of (16,880) subject

executions as samples. However, for classifying static quality metrics, only eleven available

samples (i.e., subjects) were too few for training practical models, and hence possibly leading

to a solid conclusion.
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Table 3.7: The effectiveness of unsupervised learning (k-means) classification for dynamic
predictable quality metrics

Model Hold-out Validation 10-fold Cross-validation
IPC Metric Quality Metric Precision Recall F1 Precision Recall F1
CCC Execution Time 100.00% 37.84% 54.90% 83.33% 41.27% 55.20%
RMC, CCC Cyclomatic Complexity 73.23% 84.91% 78.64% 99.68% 66.85% 80.03%
CCC Attack Surface 90.87% 83.22% 86.88% 98.10% 77.73% 86.73%
CCL, PLC Attack Surface 99.73% 61.47% 76.06% 71.70% 81.01% 76.07%
Average: 90.96% 66.86% 74.12% 88.20% 66.71% 74.51%

For unsupervised classifiers for predictable dynamic quality metrics, Table 3.7 shows their

precision, recall, and F1 accuracy. For the classifier, the first and second columns show IPC

metric(s) -> corresponding quality metric. The 3–5th columns and 7–8th columns show

hold-out validation results and 10-fold cross-validation (CV) results, respectively. Average

74% F1 demonstrated generally useful accuracy for classifying the distributed system quality

with respect to dynamic quality metrics (i.e., execution time, run-time cyclomatic complexity,

and attack surface), achieved by the unsupervised learning (k-means) algorithm. In addition,

two validation results showed very similar precision, recall, and F1 accuracy (average 90.96%

versus 88.20%, 66.86% versus 66.71%, and 74.12% versus 74.51%), both on overall average

and for each individual classifier. This meant that these evaluation results were consistent

and hence developers could consolidate the result reliability and validity.

However, the unsupervised learning (k-means) algorithm did not achieve the high levels

of effectiveness in classifying execution time (The recall is lower than 42% and F1 accuracy is

lower than 56%). This suggests that the clustering algorithm was not very effective to capture

the time behavior status of a distributed system, according to the system IPC measurement

result (CCC). The main reason is that the (k-means) algorithm is based on the similarity

of data points, but system executions, which have near IPC measurements (e.g., CCC),
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might not have close execution time. Therefore, the unsupervised learning (e.g., k-means)

classification might not be the best option for assessing the quality metric execution time

through CCC.

Table 3.8: The effectiveness of supervised learning (bagging) classification for dynamic pre-
dictable quality metrics

Model Hold-out Validation 10-fold Cross-validation
IPC Metric Quality Metric Precision Recall F1 Precision Recall F1
CCC Execution Time 99.80% 99.80% 99.80% 99.70% 99.70% 99.70%
RMC, CCC Cyclomatic Complexity 99.10% 99.10% 99.10% 99.70% 99.70% 99.70%
CCC Attack Surface 96.50% 96.50% 96.50% 95.20% 95.20% 95.20%
CCL, PLC Attack Surface 97.50% 97.50% 97.50% 96.80% 96.80% 96.80%
Average: 98.23% 98.23% 98.23% 97.85% 97.85% 97.85%

On the contrary, supervised learning classifications between IPC metrics and dynamic

predictable quality metrics were more effective for predicting these quality metrics, as shown

in Table 3.8. For the same classification tasks between the same IPC and quality metrics,

related to supervised classifiers, both the hold-out validation and 10-fold CV revealed high

levels of precision, recall, and F1 accuracy, which all were above 95%. In particular, the

overall average F1 accuracy was about 98%. Compared with unsupervised classification

results, these supervised classification results also had consistency in all of these three ef-

fectiveness metrics, not only for individual classifiers but for overall. There, with respect

to available labeled training samples, supervised classifiers were clearly more suitable for

accurate classifications in DistMeasure than unsupervised classifiers.

I used Python Scikit-learn library [179] to compute feature importance scores as the stan-

dard deviation and mean of the impurity decrease accumulation [42] (i.e., feature importances

in Python) for the supervised classifiers in DistMeasure. The results (i.e., features ranking

by importance scores) are depicted in Figure 3.4. Yet two classifiers ”(CCC) -> execution”
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Figure 3.4: Ranking of features (IPC metrics) by importance score (shown on the x axis)
for supervised (bagging) classifiers for quality metrics. The left figure shows
the importance scores of RMC versus CCC in classifying run-time cyclomatic
complexity, while the right one shows the scores of CCL versus PLC in classi-
fying attack surface

0.44

0.56

RMC

CCC

0.08

0.92

CCL

PLC

and ”time (CCC) -> attack surface” have one feature (CCC) only, without the require-

ment of feature selection. The results show that CCC, the strongest IPC coupling metric as

discussed earlier, was clearly more important than RMC for classifying the quality metric

run-time cyclomatic complexity (with the importance score of 0.56 versus 0.44). And PLC,

the only IPC cohesion metric in DistMeasure, was much more important than CCL for

classifying the quality metric attack surface (with the importance score of 0.92 versus 0.08).

Note that feature importance and ranking are not relevant in k-means clustering, thus this

study was only conducted on my supervised classifiers.

I compared the default supervised classification (bagging) algorithm with eight alterna-

tive supervised learning algorithms when classifying dynamic, predictable quality metrics

based on the IPC metrics. Figure 3.5 shows the overall average precision, recall, or F1 accu-

racy across, with both hold-out validation and 10-fold cross-validation. From the figure, the

bagging algorithm demonstrates the best performance among all these supervised learning

algorithms considered. Specially, C4.5 Decision Tree algorithm achieved the second high-

est F1 accuracy, followed by Random Forest, while two algorithms, Voting and Multinomial

Naive Bayes, had the worst F1 accuracy. Other algorithms had similar classification effec-

tiveness in terms of precision, recall, or F1 accuracy, in either hold-out validations or 10-fold

cross-validations.
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Figure 3.5: The average accuracy of alternative supervised learning algorithms compared
with the default algorithm (bagging)

Model Hold‐Out Validation Precision Hold‐Out Validation Recall Hold‐Out Validation F1 Cross_Validation Precision_Validation ss_Validation F1
Naive Bayes 71% 82% 76.05% 71% 82% 75.93%
Multinomial Naive Bayes 53% 72% 61.21% 54% 73% 61.83%
(KBF Kernel) SVM 81% 92% 86.51% 81% 92% 86.53%
kNN 73% 97% 83.34% 73% 97% 83.22%
AdaBoost  78% 89% 83.22% 79% 89% 83.69%
Voting 37% 74% 49.79% 37% 73% 48.92%
C4.5 Decision Tree  98% 98% 98.21% 98% 98% 97.86%
Random Forest 98% 98% 97.70% 97% 97% 97.43%

Bagging 98% 98% 98.23% 98% 98% 97.85%

F1

98.21%
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3.4.5 Threats to Validity

The empirical results are subject to various common kinds of validity threats according

to [236]. I describe below each major kind and then discuss how I control or mitigate relevant

validity threats.

Internal validity. The main threat to internal validity lies in possible errors in the imple-

mentation in measuring/computing IPC/quality metrics, analyzing correlations, and classi-

fying quality. To reduce this threat, I carefully reviewed the code and manually validated the

analysis/prediction results of two smallest subjects. In particular, I confirmed the correctness

of these subject’s executions’ dynamic dependencies used in DistMeasure computations.

As a result, I did not find such issues.

In addition, DistMeasure results might have been influenced by various factors not

considered but have affected the process for collecting the data needed for directly quantifying

the studied quality metrics. For example, in order to measure the quality metric code

churn size, I needed to gather the data on system release/version histories, from various

sources. However, some system releases might not be available online. To mitigate this

threat, I carefully searched/reviewed all possible subject release data and contracted relevant

developers with requests for the missing releases.
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The measurement results of some particular quality metrics may not be valid with respect

to other possible relevant quality measures that I did not consider. For example, run-

time cyclomatic complexity is currently used to the quality sub-characteristic testability,

without considered other metrics that may affect testability. Systems with similar (run-time)

cyclomatic complexity may not always be similarly testable. For instance, two programs have

similar code but read/write various external files. The former handles large files with complex

data structures, while the latter operates simple files (e.g., text files). Thus, they have close

(run-time) cyclomatic complexity but different testability. Some other quality metrics (e.g.,

availability, network throughput, response time, scalability) were not considered since I only

concerned the quality metrics related to IPC-related system behaviors justifiably.

External validity. The main threat to external validity is that my study results may not

generalize to other distributed programs and executions. To reduce this threat, I selected

subjects covering various architectures, domains, and scales.

With limited run-time inputs, a relevant validity threat arises from classifying the soft-

ware quality in Part 2, with respect to static quality metrics. With different run-time inputs,

the correlations between the IPC metrics and static quality metrics, and the performance

of the classifiers based on IPC metrics for classifying quality metrics, may be different from

those reported.

Another external validity threat is that it is hard to collect all three test types (e.g.,

integration, system, and load tests) that are only for ZooKeeper. Fortunately, integration

tests were available for each subject and exercised whole-system behaviors. Furthermore,

I have manually constructed lots of unique run-time inputs for subjects, to significantly
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increase the total run-time coverage for all subjects, and hence to reduce the threat.

Construct validity. The main threat to construct validity is for the use of statistical analy-

sis to cause my conclusions. In computing the system-level IPC metrics, I took the means of

lower-level metrics without concerning the variations (e.g., standard deviations). To reduce

the threat as regards the correlation analysis, I purposely chose Spearman‘s method over

alternatives as it is a non-parametric method that does not assume normality of underlying

data distribution or relationships between the data groups.

On the other hand, although I applied largely augment the run-time inputs to the sub-

jects, this augmentation did not help get more samples for training and testing the quality

classifiers with respect to static quality metrics. As a result, the evaluation for these classi-

fiers might be quite premature. I would need thousands of different Java distributed systems

as subjects for a much stronger evaluation in this regard.

Conclusion validity. The lack of enough distributed system subjects (only 11) causes

a threat to conclusion validity regarding static quality metric classifiers. In building these

classifiers, I measured the IPC metrics during subject executions and aggregated correspond-

ing results. This process ignored the different characteristics of dynamic behaviors across

various executions of each subject, and essentially treated all executions of each subject as

representations of its holistic behaviors.

This aggregation ignored the varying characteristics of dynamic behavioral profiles across

different executions of each subject, and essentially treated all of the executions of each sub-

ject as being collectively representative of that subject’s holistic behaviors. Such a treatment

may lead to biases about the performance of these classifiers.
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Eventually, the quality classifiers only estimate whether the quality metrics are anomalous

or not (whether they are worth warning or not) only at high levels. Currently, DistMeasure

is not sufficient for pinpointing such anomalies when warned.

3.5 Lessons Learned and Takeaways

My exploration of IPC metrics not only demonstrated the practicality of measuring IPC in

large, real-world distributed systems, but also revealed the substantial presence (albeit with

varying degrees) of implicit coupling among distributed components (generally decoupled

in architectural design). And I showed that one way to reveal such implicit coupling is

through measuring interprocess coupling. My results on IPC measurements revealed that

higher coupling in terms of inter-process dependencies is generally bad for quality (by being

significantly indicative of lower quality with respect to five out of the six factors considered).

In particular, in distributed program executions, high IPC coupling was typically asso-

ciated with low quality in some characteristics/sub-characteristics (e.g., bad time behaviour

and further low performance efficiency, low modifiability/testability and further low main-

tainability, low security) and corresponding quality metrics (e.g., long execution time, high

complexity, large attack surface). This largely consolidates the drawbacks of high coupling,

generally leading to low quality [132].

Conversely, higher process-level cohesion benefited the system quality via high security

in multiple sub-characteristics (i.e., high confidentiality, integrity, non-repudiation, account-

ability, and authenticity) and relevant quality metrics (e.g., low attack surface and vulnera-

bleness). This confirmed the previous finding that high cohesion (in an individual software

process/component) is typically related to high quality [97].
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In summary, distributed system developers are recommended to achieve and maintain

low overall (implicit) coupling among system components for high system quality, espe-

cially when they concern quality characteristics including performance efficiency, functional

suitability, and security. On the other hand, developers prefer to program high cohesive

components with respect to the merits of higher process-level cohesion, when concerning

better maintainability and security [126]. In short, low coupling and high cohesion should

be the targets of distributed system developers.

From the statistical results of DistMeasure Part 1, there was only one classifier for

one static predictable quality metric: (CCL, PLC) -> vulnerableness, discussed in §3.4.3.

However, the corresponding dataset was not sufficient (only 11 data points, as shown in

Tables 3.5) for unsupervised learning and supervised learning in DistMeasure Part 2. In

particular, 10-fold cross-validation could not be performed due to too few samples. Much

more data points and samples are required for training/testing a sound classifier for the

static predictable quality metric (i.e., vulnerableness).

As one of the six IPC metrics in DistMeasure, IPR did not significantly correlate to

any direct quality metric considered. However, it is still useful for understanding run-time

code reuse in distributed systems. Meanwhile, the other five IPC metrics have shown to be

indicative of distributed software quality with respect to at least one of the quality metrics,

static and/or dynamic.

In particular, the strongest indicator of interprocess coupling, CCC, which captures the

coupling between all of the distributed processes (as opposed to measuring that between two

processes as RCC does) at a fine-grained granularity level (as opposed to measuring that at

a coarse level as RMC does) tended to be the most indicative of distributed software quality.
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Indeed, CCC was found to be significantly correlated with more (four) quality metrics than

any other IPC metrics in the experiments. As a learning feature, CCC also contributed to

the quality classifications more than other features wherever more than one feature was used

in the classifiers. Meanwhile, PLC, the only metric in the framework that captures process

cohesion, exhibited similar merits to CCC—it was found to be significantly correlated with

three quality metrics, more than other IPC metrics except for CCC, while having contributed

to relevant classifiers much more than other features. These results demonstrated the great

usefulness of measuring both coupling and cohesion at process level for assessing distributed

software quality.

The results also show that supervised classifiers had clear advantages over unsupervised

classifiers, at least for dynamic, predictable quality metrics of distributed systems. This

comparison suggests that predicting those quality metrics purely based on the similarity of

corresponding IPC metrics across different system executions might not be effective. The

main reason is that varied system executions may have very different quality measurements

even if they are close to enough IPC measurements. Instead, a better way would be based

on supervised classifications with respect to labeled data.

On the other hand, the advantages of supervised classifications over unsupervised clas-

sifications in DistMeasure also carry a price that handling relevant quality metric values

might be expensive, especially because a large number of such values were computed and

labeled as training samples in the evaluation of DistMeasure.

In addition, for supervised (bagging) classifiers, computed Spearman’s rank correlation

coefficients and feature importance scores were consistent, as shown in Table 3.6 and Fig-

ure 3.4. For the quality metric run-time cyclomatic complexity, the IPC metric CCC had
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larger correlation coefficient than RMC did (0.448 versus 0.42); while CCC was more impor-

tant than RMC in the classification for run-time cyclomatic complexity (importance scores

of 0.56 versus 0.44). A similar consistency was observed in the classifier ”(CCL, PLC) ->

attack surface”—The IPC metric CCL was more strongly correlated with attack surface, and

also more important in the classifier, than PLC.

3.6 Related Work

In this section, I discuss other previous works in three categories: dynamic coupling

metrics (§3.6.1), run-time cohesion (§3.6.2), and predictive software quality assessment based

on machine learning (§3.6.3).

3.6.1 Dynamic coupling metrics

Jin et al. [130] defined a dynamic component coupling metric (CPC) directly based

on inter-component dependencies derived from method executions with timing information.

Conceptually, the CPC metric is closely related to our IPR metric, in that both are based

on approximated dynamic dependencies across components. However, the interprocess de-

pendencies on which our IPR computation is based are significantly more precise than the

purely control-flow-based dependencies approximated in [130], according to [41]. In addi-

tion, CPC was defined for measuring structural complexity, while IPR is proposed primarily

as a reusability metric. Previous reuse metrics mainly concern reusing library code and con-

nectivity between server and client nodes as a whole [82]. Instead, I measure interprocess

reusability at code level in terms of metrics defined based on code dependencies.
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3.6.2 Run-time cohesion

Jin et al. [129] also proposed a dynamic cohesion measurement approach for distributed

software, which includes two component-level cohesion metrics (i.e., CC and CCW) by ex-

tending the metric lack of cohesion in methods (LCOM), a classical cohesion metric for

single-process programs. A structural quality attribute cohesion factor of component (CHC)

was later introduced also for distributed software [130]. These cohesion metrics were only

evaluated against specialized distributed programs (e.g., Netflix RSS Reader, RSS Reader

Recipes, and/or the distributed version of iBATIS JPetStore) [129, 130]. The underlying

measurement tool used was also designed for these specialized systems only. In compari-

son, the cohesion metric PLC is defined based on method-level dynamic dependencies and

evaluated against real-world common distributed systems.

3.6.3 Software quality assessment based on machine learning

Software quality prediction helps developers with better utilization of resources, effort

estimates, and making testing plans for components that may have defects, hence reducing

development costs and mitigating risks at initial stages [188, 208]. Various machine learning

techniques, using unsupervised or supervised learning algorithms (e.g., logistic regression,

support vector machine, neural networks, and k-means clustering) have been used for soft-

ware quality assessment.

For instance, Khoshgoftaar and Allen proposed a software quality assessment model using

logistic regression [137]. Xing et al. employed a support vector machine technique for the

classification of software modules based on a complexity metric to predict software quality in
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early development stages [191]. Abe et al. used a Bayesian classifier to estimate the success

or failure of a software project [2]. In addition, neural network techniques were also applied

to the prediction of software quality [138, 224, 227, 208]. Furthermore, Zhang et al. [252]

presented SMPLearner that trained a software maintainability prediction model by gathering

the real maintenance efforts computed from code change histories; it experimented with 24

common machine learning techniques, including SVM regression, random forest, K-star, etc.

As a type of software quality assessment model, numerous software defect prediction

models have been built from single or multiple software projects for within- or cross-project

prediction [250, 251, 255], respectively. For example, Zhang et al. built a universal defect

prediction model with a large number of software projects from various contexts by clustering

projects based on the similarity of distribution across multiple predictors, deriving the rank

transformations, and fitting the model on the data transformed beforehand [250].

An unsupervised learning model does not require any training data and thus avoids

any homogeneity requirement (e.g., a similar distribution of metrics) among projects [251].

Moreover, some simple unsupervised models outperformed supervised models for a special

type of software defect prediction (i.e., effort-aware just-in-time defect prediction) for open-

source software systems [242, 83]. In particular, unlike distance-based unsupervised learning

(e.g., k-means clustering) models, connectivity-based unsupervised defect classifiers are based

on the assumption of a similar intuition that defective entities are likely to cluster around

the same area [251].

In contrast to these prior defect prediction models that are commonly static—they are

based on project features rather than system execution traits, the quality classifiers in Dist-

Measure are dynamic as they are based on IPC measurements in specific executions. I also
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differ from prior defect prediction works in that I leverage IPC characteristics as a particular

aspect of system behaviors, which have not been exploited before. DistMeasure also fo-

cuses on addressing the quality of distributed software systems, which were not particularly

addressed in earlier works. Finally, unlike prior works on defect prediction that mainly aim

at predicting whether a software unit (e.g., a file) contains functional defects, my quality

classifiers address a variety of (both functional and non-functional) quality characteristics.

Meanwhile, I recall that the main goal of DistMeasure is to enable and explore measuring

IPC-induced behaviors and understanding the measurement results from a perspective of

their quality correlations, rather than developing a defect prediction model, for distributed

software systems.
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CHAPTER FOUR

FLOWDIST: MULTI-STAGED REFINEMENT-BASED DYNAMIC

INFORMATION FLOW ANALYSIS FOR DISTRIBUTED SOFTWARE

SYSTEMS

Through working on DistMeasure, I found that interprocess communication is very

important for understanding the information flow security problems in distributed systems.

DistMeasure could help us indirectly understand potential information problems. How-

ever, it could not directly detect information flow paths that might leak sensitive data. This

motivated me to consider interprocess dependencies and information flow paths in overall

data flow analyses for distributed systems. As the next step in my research, I developed a

dynamic information flow analysis (DIFA) framework for distributed systems, which could

detect the concrete sensitive information flow paths.

4.1 Motivation

With increasing demands for computation at large scale, distributed software has been

increasingly developed. As other domains of software applications, distributed software

also suffers from varied security vulnerabilities. For example, a real-world distributed sys-

tem, Apache Zookeeper [7], had a security vulnerability as reported in CVE-2018-8012 [65]:

”There is no enforced authentication or authorization when a ZooKeeper server attempts to

join a quorum ......”. Relevant information flow is shown in Figure 4.1.

With this vulnerability, attackers might easily gain access to a Zookeeper server and

might lead to severe damage or losses. Especially, compared to centralized programs, dis-

56



Figure 4.1: A case of sensitive information flow (marked by arrowed lines) in Apache
ZooKeeper across three components (processes)

// Message-receiving inside

39 public class ClientCnxnSocketNIO extends ClientCnxnSocket { . . .
 // Executed in a Client process 

68                int rc = sock.read(incomingBuffer);  // Source
103             Packet p = findSendablePacket(outgoingQueue,...

……

107             sock.write(p.bb);

63                SocketChannel sock = (SocketChannel) sockKey.channel();  
61            public void doIO(java.utils.list,…) { . . .

. . . }}

247 public class InstanceContainer implements Watcher,  . . . {
 // Executed in a Container process 

392           zk = new ZooKeeper(zkHostPort, sessTimeout, this);
393           mknod(assignmentsNode, CreateMode.PERSISTENT);

397           zk.getChildren(assignmentsNode, true, this, null);

……

. . . } . . . }

391      public void run() throws IOException,  . . . {

432 public class BinaryOutputArchive implements OutputArchive {
 // Executed in a Server process 

442      public BinaryOutputArchive(DataOutput out) {
443           this.out = out;

454      public void writeInt(int i, String tag) throws IOException {...

455         out.writeInt(i);  // Sink

   …… 

. . . }

Blue line: source information flow path segment (SOFPS)
Green line: remote information flow path segment (REFPS)
Red line: sink information flow path segment (SIFPS)

Solid line: intraprocess flow
Dashed line: interprocess flow

. . . }

. . . }

437      public getArchive(java.io.OutputStream strm) {
438           return new BinaryOutputArchive(new DataOutputStream(strm));  }

……

……
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tributed systems usually have larger code sizes, with their decoupled components running

on physically separated machines without a global timing mechanism. These characteristics,

among others, contribute to the greater complexity of distributed software, making it even

more difficult to defend the code security for these systems.

As popular alternative techniques [133], taint analysis approaches have been used for

defending against these vulnerabilities. They help users identify where the sensitive data

may be leaked to untrustworthy parties as revealed by tainted information flow paths (i.e.,

taint paths). However, as conservative taint analyzers, static taint analysis tools often suffer

from possible unsoundness due to the use of dynamic language constructs (e.g., reflective

calls and dynamic code loading) in modern software.

In contrast, dynamic taint analysis (DTA) has been regarded as a powerful technique

for software security that is more precise than static approaches, since it monitors and/or

computes information flows that are actually exercised during the program executions [194].

Unfortunately, they were mostly developed for single-process programs and cannot be imme-

diately applied/adapted to common distributed systems. A major reason for the applicability

issue lies in that these tools compute information flows based on explicit dependencies, which

do not exist among distributed (decoupled) components in common distributed software.

Other existing dynamic taint analyzers, such as Panorama [243] and Taintdroid [77],

may not be subject to the applicability barrier, yet typically rely on the underlying runtime

platform (e.g., operating system or JVM) being customized or modified (e.g., instrumented).

These tools thus suffer from portability problems—for each of their updated versions, and

thus the runtime platform may need to be modified again, which may require substantial

effort and not always be possible.
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In a distributed system, for an information flow path segment, if its statements or methods

are all in one component/process, it should be called the local information flow path segment.

Relatively, all statements or methods in the remote information flow path segment (REFPS )

are in different components/processes. A local information flow path segment is called a

source information flow path segment (SOFPS ) if it contains one or more source statements

or methods. Oppositely, the local information flow path segment, including sink statements

or methods, is called a sink information flow path segment (SIFPS ).

An information flow in a distributed program may go across decoupled components via

message passing. Figure 4.1 shows a code excerpt of Apache ZooKeeper (version 3.4), a

widely used distributed coordination service, including a sensitive flow that is responsible

for a vulnerability case CVE-2018-8012 [65].

The data-leaking flow crossed three processes: (1) The sensitive data (a security key) was

read into incomingBuff in class ClientCnxnSocketNIO of a Client process (at the Source), (2) passed

through class InstanceContainer of a Container process, and (3) reached class BinaryOutputArchive of

a Server process where the data leaked out of the system (at the Sink). This leakage caused

an authentication/authorization failure when a ZooKeeper server tries to join a quorum,

which thus may propagate fake changes to the ZooKeeper leader node. In addition, there

are no explicit dependencies among processes: Client, Container, and Server in the infor-

mation flow. However, there may be implicit dependencies among them in the interprocess

information flows shown as broken lines in Figure 4.1.
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Figure 4.2: An overview of FlowDist architecture
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4.2 Approach

I developed FlowDist [89], a DIFA for common distributed software, working at purely

application level to avoid platform customization, hence achieving high portability. It in-

fers implicit, interprocess dependencies from global partially ordered execution events for

applicability to distributed software. Most of all, it achieves high scalability while remaining

effective, via introducing a multi-staged refinement-based scheme for application-level DIFA,

where an otherwise expensive data flow analysis is reduced by method-level results from a

cheap pre-analysis.

4.2.1 Overview

An overview of FlowDist architecture is shown in Figure 4.2. FlowDist needs three

user inputs: the distributed program D , the run-time input set I to drive D, and the

user configuration C. This configuration specifies the sources and sinks of user interest and

a list of message-passing APIs that FlowDist probes for monitoring and profiling inter-

process message communication events. With these user inputs, FlowDist computes the

information flow paths between any source and any sink of C with respect to I, in two phases.

In the first phase (Pre-analysis), FlowDist computes method-level flow paths and the

statement-level coverage for methods on the paths to avoid otherwise expensive computation
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Figure 4.3: Phase 1 workflow of FlowDist
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(overcoming the scalability challenge) of the next phase by narrowing down their analysis

scopes. Then, in the second phase (Refinement), FlowDist infers the statement-level

information flow paths as the final FlowDist output (i.e., fine-grained sensitive flows)

through a hybrid dependence analysis as guided by the pre-analysis result.

4.2.2 Phase 1: Pre-analysis

The goal of this phase is to provide a coarse (method) level of analysis result, via a

rough (conservative) and rapid analysis, that will reduce the costs of the next phase, hence

enabling the overall scalability. In this phase, FlowDist computes branch coverage and

method-level information flow paths between each source-sink pair (defined in configuration

C), in three major steps, as shown in Figure 4.3.

Step 1.1. In this step, FlowDist leverages three types of dynamic data in its hybrid de-

pendence analysis to balance the analysis cost effectiveness balance: (1) entry (i.e., program

control entering a method) and returned-into (i.e., program control returning from a callee

into a caller) method events, (2)sending and receiving message events, and (3) statement

branch coverage events.

FlowDist produces the instrumented version D′ of program D, by inserting probes to

monitor these events. To identify where to probe the message-passing events, FlowDist
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refers to the message-passing API list in C. If it is not provided by the user, FlowDist

would use a default list of the most commonly used APIs in the Java SDK. Only the methods

on static control flow paths between source-sink pairs are probed, referred to as relevant

methods. Also, only statement branches in relevant methods (i.e., called relevant branches)

are probed.

For each distributed component in D, an interprocedural control flow graph (ICFG) is

constructed. Each message-sending and message-receiving API callsite in the component are

treated as an additional sink and source, respectively.

Step 1.2. In this step, FlowDist records the first entry and last returned-into events

for every method. The reason that only these events are monitored is that they suffice for

inferring the happens-before relations among all method-execution events, hence the ap-

proximate (control-flow-based) dependencies among associated methods [41] across all pro-

cesses. Meanwhile, message-passing events, albeit themselves not traced, are handled during

this step to partial-order method-execution events based on the Lamport time-stamping

algorithm [232], so as to determine the happens-before relation between any two method-

execution events later. The method event trace (Ti) is produced for each of the n processes

(Pi) in the execution. In addition, a mapping (pid2fm[i]) is produced for Pi to keep the

timestamp (p2fm[i][j]) of each event of receiving the first message from another process Pj

(i, j ∈ [1, n]).

Step 1.3. In this step, FlowDist computes method-level information flow paths as the

output of this phase, by identifying the sequence of methods between any source and any

sink exercised during the execution.

62



Algorithm 1 Computing method-level flow paths

Let SO and SI be the list of source and sink enclosing methods, respectively
Let Ti be time-stamped method execution event trace in process Pi, i∈[1, n]

1: ps = ∅ // initialize the set of all method-level paths between the given pair
2: for i=1 to n do // traverse the n processes of the given execution
3: Sd = {s|s ∈ SO ∧ s ∈ Ti}
4: if Sd==∅ then continue
5: end if
6: for each method q ∈ Sd do // first compute intraprocess dependencies
7: DS(q) = {m|m ∈ Ti ∧ fe(q) ≤ lr(m)}
8: for j=1 to n do // then compute interprocess dependencies
9: if i==j ∨ p2fm[i][j]==null then continue
10: end if
11: DS(q) ∪= {m|m ∈ Tj ∧ fe(q) ≤ p2fm[i][j] ≤ lr(m)}
12: end for
13: if DS(q) ∩ SI==∅ then continue
14: end if
15: ps ∪= {< m1, ...,mk > |m1 == q ∧mk ∈ SI ∧ ∀i<j, i,j∈[1,k]fe(mi) ≤ lr(mj) ∧ ∀i∈[1,k]mi ∈ DS(q)}
16: end for
17: end for
18: return ps

With the event traces and mapping from Step 1.2, FlowDist computes the method-

level information flow paths according to Algorithm 1. The core idea is that FlowDist

combines method-level control flows and process-level data flows to approximate dynamic

method-level dependencies.

The algorithm traverses the n per-process traces to search paths ps by (lines 2-15). In

each trace Ti, the set Sd of covered source-enclosing methods is obtained (line 3). If there is

no source executed in Pi, no path would start in Pi (corresponding to Ti) (line 4). Otherwise,

the algorithm identifies paths starting at q by computing its dynamic dependence set DS(q),

for each method q in Sd. (lines 6-13).

I let fe(m) and lr(m) be the timestamp of the first entry event and last returned-into

event of a method m, respectively. The local (intraprocess) dependencies are first identi-

fied (line 7) according to the happens-before relation between q and each other method m

executed in Pi (treated as a local process). The design reason is that method m2 is not

dependent on method m1 if m2 is not executed after m1 [39].
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Next, dependencies in each other (remote) process Pj are identified (lines 8-11). If Pj

never sent a message (line 9) or the timing of message passing implies no dependence, rel-

evant methods in Pj are not considered. Otherwise, they are added to DS(q) (line 11).

The rationale is that for two methods m1 and m2 executed in two processes, p1 and p2,

respectively, m2 depends on m1 only if p2 receives at least one message before lr(m2) that

is sent (directly or transitively) from p1 after fe(m1).

When DS(q) is computed, if it includes a sink-enclosing method mk (line 13), these

partially ordered methods in DS(q) form an information flow path from q to mk. All such

paths are gathered into ps (line 15) and then returned (line 18).

4.2.3 Phase 2: Refinement

In this phase, FlowDist aims to computed fine-grained (statement-level) information

flow paths by refining the coarse results (i.e., method-level information flow paths) inferred

in Phase 1, leveraging program data of two modalities (i.e., static and dynamic), in three

steps, as shown in Figure 4.4. The primary motivation of this hybrid analysis design is to

balance the total analysis cost and precision [40].

Step 2.1. This step is mainly a static analysis that builds a static dependence graph

of the program D. Differing from a whole-system dependence graph, the graph is partial,

only involving methods on the (method-level) flow paths computed in the first phase (pre-

analysis). The rationale is that one method on a statement-level information flow path from

a source to a sink must be on the statement-level information flow path between two methods

enclose the source and sink. FlowDist stops interprocedural propagation of relevant flow

facts, when encountering methods that are not on the (method-level) information flow paths.
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Figure 4.4: Phase 2 workflow of FlowDist
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The static dependencies are computed at a statement level, to be used as an essential

type of information by the hybrid data flow analysis in the last step. Specifically, FlowDist

computes data/control dependencies [123] within and across threads. On the other hand,

when computing such static dependencies, in order to cover all of the components in D,

the static analysis searches for all possible entry points (i.e., all classes containing the main

method) of D and starts the data flow computation from each of the entry points found. All

the control dependencies are also computed.

The static dependence analysis here is chosen to be context-insensitive because its results

are only used in Step 2.3, which will use method-execution events to provide the necessary

context. Furthermore, its interprocedural analysis part is flow-insensitive because those

events are ordered by their timestamps, while its intraprocedural analysis part remains flow-

sensitive. These selections reduce the total analysis cost of FlowDist.

Step 2.2. This step aims to produce the statement coverage for each process, the fine-

grained dynamic data only for refining the hybrid analysis in Step 2.3, referring to the static

dependencies from Step 2.1 and branch coverage from Step 1.2. Importantly, only methods

on method-level paths computed in Phase 1 are considered. The relational is that statements

in other methods will not appear on the statement-level information flow paths.
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Step 2.3. With the statement coverage (SC), method event traces (Ti) in process Pi,

and partial static dependence graph (sDG) of D, FlowDist now infers statement-level

information flow paths between each source-sink callsite pair (<s,t>). FlowDist exploits

message sending and receiving APIs to identify the callsites within the methods on the

method-level flow paths, indicating where information flows out from and into each process,

referred to as outlets and inlets, respectively.

In Algorithm 2, per-process method event sequences are first merged as a global event

sequence ES (line 2) ordered by event timestamps. Then, the function build-dDG constructs

a dynamic dependence graph dDG (line 3) by referring to the static dependencies in sDG

while traversing ES, using a hybrid dependence analysis inspired by Diver [39]. The insights

include: (1) interprocedural dependencies in sDG are categorized into adjacent (due to

parameter or return-value passing) and posterior(due to the def-use associations); and (2)

when scanning ES, if that dependence is adjacent and m2 happens immediately after m1

in ES, or the dependence is posterior and m2 happens anywhere after m1 in ES, a static

dependence of method m2 on another method m1 is activated and hence added to dDG.

The algorithm considers all static intraprocedural dependencies in a method that is in

ES as activated and then adds them to dDG. And it constructs the graph from the source

s, only including dependencies that reach the sink t. The resulting dependencies in dDG

would not be precise at statement level. Therefore, FlowDist proceeds with a function

prune-dDG which prunes spurious dependencies in dDG per the statement coverage SC:

Vertices corresponding to uncovered statements and their associated edges are deleted from

the graph, causing the pruned graph (line 4). I made this choice to contain the overall

analysis cost of FlowDist for scalability.
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Algorithm 2 Computing statement-level flow paths

let S1, S2, ..., Sn be the n per-process instance-level event traces
let M1,M2, ...,Mk be the k methods on the method-level path
Let sDG be the partial static dependence graph
Let <s,t> be a source-sink callsite pair between which paths are computed
Let outlets be the list of all outlets
Let inlets be the list of all inlets

1: SOFPS=∅, REFPS=∅, SIFPS=∅, intraFP=∅
2: merge Ti, i∈[1, n] into a global partially ordered sequence ES
3: dDG = build-dDG(sDG, <s,t>, ES) // hybrid analysis
4: dDG′ = prune-dDG(dDG, SC) // statement-level pruning
5: SOFPS = findPaths(dDG′, {s}, outlets, tr(s))
6: for i= to n do // compute remote segments of interprocess paths
7: intraFP ∪= findPaths(dDG′,{s},{t},Sj) // intraprocess paths
8: if tr(s) == Ti ∨ tr(t) == Ti then continue
9: end if
10: REFPS ∪= discoverPaths(dDG′, inlets, outlets, Ti)
11: end for
12: SIFPS = discoverPaths(dDG′, inlets, {t}, tr(t))
13: return [spliceSegs(SOFPS, REFPS, SIFPS), intraFP ]

With the dDG′, the algorithm then deduces both intraprocess and interprocess infor-

mation flow paths, using a function, discoverPaths(G, In, Out, T), which detects paths

from any statement in In to any statement in Out on a graph G while only considering

nodes in T. Simply traversing dDG′, the algorithm computes intraprocess information paths

(intraFP) in each process (line 7).

However, for any interprocess information flow path, the sink is not explicitly reachable

from the source on dDG′ due to no connectivity in it. Thus, FlowDist computes the three

segments separately:

1. The segment within the source (s)’s process (SOFPS ) is computed via a traversal on

dDG′ (line 5) that retrieves paths from s to a relevant outlet within that process’s

trace—tr(x) denotes the trace that includes an event of the method that encloses a

statement x.

2. The segment within the sink (t)’s process (SIFPS ) is computed similarly (line 12), but

by searching for paths from any inlet to t.
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3. The remaining segment (REFPS ) is searched within each process (lines 6-10) except

the one that encloses the one that encloses s or t (line 8), by traversing dDG′ and

looking for paths from all inlets to all outlets in the process.

Eventually, these segments are spliced into interprocess information flow paths with the

function spliceSegs, according to the timestamps of relevant inlets and outlets. This splic-

ing works so that there are no events between the end of an SOFPS and the start of an

REFPS, nor between the end of the REFPS and the start of an SIFPS as per the global

partially ordered sequence ES. With the intraprocess paths, these spliced interprocess paths

are then returned as the algorithm output (line 13).

4.2.4 Alternative designs

The default design of FlowDist as presented above targets common distributed soft-

ware systems in general. To more systematically explore the multi-staged refinement-based

methodology for dynamic information flow analysis, I developed two alternative designs:

FlowDistsim and FlowDistmul. They might offer even greater cost-effectiveness and

scalability for systems that meet certain conditions, by further reducing analysis costs while

without compromising precision and soundness.

FlowDistsim. In Step 1.1 of FlowDist, the goal of the static analysis is to reduce the

instrumentation scope, hence the costs of tracing method and statement branch events.

However, with certain systems, probing for and tracing all such events is cheap, and the

cost incurred by this static analysis itself may be larger than the cost reduced. Optimized

for systems that meet these conditions, FlowDistsim skips the static analysis and simply

instruments all methods and statement branches.
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FlowDistmul. With some systems, the FlowDistsim design is well justified. But probing

for and then tracing all method and branch events in D incurs substantial costs. To reduce

these costs, I introduce an intermediate phase to FlowDistsim, with a multi-staged and

refinement-based design in Phase 1.

First, the new Phase 1 only probes for and traces the first entry and last returned-into

events of each method, and then computes method-level flow paths from those events. The

intermediate phase then probes for and traces the coverage of statement branches, and all

instances of both kinds of events of methods on such paths. Finally, Step 2.2 is removed

from Phase 2.

Since FlowDistmul requires multiple executions of the same system against the same

input (in the first and intermediate phases), this design is optimized for systems with deter-

ministic executions. The first condition is that the inconsistencies between the two executions

could compromise the soundness of the DIFA as a whole. Another condition is that the cost

reduction should outweigh the costs incurred by the intermediate phase.

FlowDistsim versus FlowDistmul. According to the rationale of each alternative de-

sign, FlowDistmul is the best for such systems without non-deterministic executions,

while FlowDistsim is expected to perform the best for small/simple systems with non-

deterministic executions. For large/complex distributed systems, FlowDist (default de-

sign) would perform the best. These contrasts are justified by the conditions (as described

above). If the system does not meet any of those conditions, the default design of FlowDist

is superior in general.
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4.2.5 Limitations

FlowDist does not address the problem of identifying the sources/sinks of interest,

which are assumed in default list or to be given by users. Also, the analyses in FlowDist

are limited to the program parts executed. Thus, the capabilities of discovering bugs rely on

that (1) the relevant source and sink are specified and (2) the source and sink are covered by

the run-time inputs considered. Moreover, considering the security context in specific usage

scenarios (e.g., external protection mechanisms applied to the source or sink), FlowDist

may suffer from false positives as they do not analyze, nor have access to, those exter-

nal/context factors.

Also, FlowDist requires static instrumentation and thus does not suit systems that

cannot be modified. Additional limitations of FlowDistsim and FlowDistmul are those

implied by the respective system conditions discussed earlier.

4.3 Tool Implementation

For distributed systems, information flow security solutions face multiple challenges, in-

cluding technique applicability, tool portability, and analysis scalability. Due to these chal-

lenges, I implemented DistTaint [86, 88, 84, 85], a dynamic information flow (taint) ana-

lyzer for distributed systems, as shown in Figure 4.5.

By partial-ordering method events during the execution, DistTaint computes implicit

dependencies in distributed programs to resolve the applicability challenge. It overcomes

the portability challenge by working fully at application level, without customizing the run-

time platform. To achieve scalability, it reduces analysis costs using a multi-phase analysis,
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Figure 4.5: An overview of DistTaint architecture
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where the method-level results (produced by pre-analysis phase) are used to narrow down the

scope of the following statement-level analysis. Applied it to different large-scale distributed

software against diverse executions, DistTaint demonstrated its applicability to, portabil-

ity with, and scalability for industry-scale distributed systems, along with its capability of

finding existing and new vulnerabilities.

4.4 Evaluation

4.4.1 Experiment setup

As shown in Table 4.1, I used 12 Java distributed systems as subjects. The subject

sizes are measured by numbers of non-blank non-comment Java source code lines (#SLOC ),

numbers of methods defined in the subject (#Method), and execution scenarios/architectures

(Scenario) including client-server, peer-to-peer, and n-tier.

I now describe each subject and its integration test operations, except for those that were

already introduced (§3.4.1).

1. NioEcho [215] provides an echoing service for any message sent by clients. In its

integration test, I started a server and a client, sent random text messages from the

client to the server, and then waited for the echo of each message.

2. MultiChat [108] is a chat service broadcasting client messages. In its integration test,
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Table 4.1: Subject distributed programs and test inputs used

Subject #SLOC #Method Scenario Tests
NIOEcho 412 27 Client-server Integration
MultiChat 470 37 Peer-to-peer Integration
ADEN 4,385 260 Peer-to-peer Integration
Raining Sockets 6,711 319 Client-server Integration
OpenChord 9,244 736 Peer-to-peer Integration
Thrift 14,510 1,941 Client-server Integration
xSocket 15,760 2,209 Peer-to-peer Integration

Client-server Integration
ZooKeeper 62,194 5,383 N-tier Load

N-tier System

RocketMQ 105,444 6,198
N-tier Integration
N-tier System
Client-server Integration

Voldemort 115,310 20,406 N-tier Load
N-tier System

Netty 167,961 12,389 N-tier Integration

HSQLDB 326,678 10,095
Client-server Integration
N-tier System

I started a server and three clients. From one client, I sent random text messages to

the server, which broadcast them to all other clients.

3. ADEN [214] offers a UDP-based alternative to TCP sockets. In its integration test,

I started two nodes, each of which sends messages to and receives messages from the

other node.

4. Raining Sockets [213] is a non-blocking and sockets-based framework. In its integration

test, I started a server and a client, and then the client sent text messages to the server.

5. RocketMQ [193] is a distributed messaging platform. In its integration test, there are

four components: a name server, a broker, a producer, and a consumer. The name

server provided reading and writing services and records full routing information, the
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broker stored messages, the producer sent messages to the broker, and the customer

received messages from the broker.

6. Netty: In its integration test, I developed a n-tier (3-tier) application with three nodes.

The first node read an email list from a file and then sent relevant emails to the second

node. Then, the second node encrypted the emails using the RSA algorithm and

then sent them to the third node. Finally, the third node used Postfix to send emails

received.

7. HSQLDB (HyperSQL DataBase) [216] is an SQL relational database system. I started

a database server and a client. Then, the client sent a SQL query to the server and

then received the SQL result from the server.

For all subjects, their integration tests were created according to the guides at their

official websites. Particularly for the integration test of five frameworks/libraries (ADEN,

Raining Sockets, Thrift, xSocket, and Netty), I developed applications to cover their major

functions and then performed all of the applications.

I selected a state-of-the-art dynamic taint analyzer Phosphor [30] and a static taint

analyzer JOANA [114], as two baselines compared with FlowDist. For the experiments,

I used Ubuntu 16.04.3 LTS workstations, each of them equipped with an Intel E7-4860

2.27GHz CPU and 32GB DMI RAM.

4.4.2 Results and analysis

Effectiveness. Table 4.2 shows the number of source-sink pairs covered in each execution

(i.e., subject-test type) and that of information flow paths between the pairs, separately
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Table 4.2: Numbers of intraprocess (Ir) source/sink pairs (Pr) and information flow paths
(Ps), versus interprocess (Int) ones

Execution #IrPr#IrPs#IntPr#IntPs IntPs/AllPs

NioEcho 66 21 12 6 22.22%

MultiChat 42 0 12 0 0.00%

ADEN 0 0 5 0 0.00%

Raining Sockets 12 3 0 0 0.00%

OpenChord 14 0 24 0 0.00%

Thrift 4 0 4 3 100.00%

xSocket 10 8 26 2 20.00%

Zookeeper Integration 9 0 33 0 0.00%

Zookeeper Load 1086 1 6522 64 98.46%

Zookeeper System 124 0 1116 46 100.00%

RocketMQ Integration 19 23 46 17 42.50%

RocketMQ System 24 0 187 50 100.00%

Voldemort Integration 198 30 193 138 82.14%

Voldemort Load 6 0 6 0 0.00%

Voldemort System 80 30 77 42 58.33%

Netty 9 3 7 2 40.00%

HSQLDB Integration 140 10 668 0 0.00%

HSQLDB System 7 2 11 4 66.67%

for intraprocess and interprocess paths. For each source/sink given in the configuration

C, FlowDist treated each of its exercised callsites as a separate source/sink in counting

the pairs and computing the paths. The last column shows the percentage of interprocess

information flow paths over all paths per execution. The greyed rows are for executions that

did not have any information flow paths.

Figure 4.6: The accuracy of FlowDist versus the baselines Phosphor and JOANA
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Both baselines captured all intraprocess paths as FlowDist did but missed all inter-

process ones. Thus, they had the same but low recall (37.5%), as shown in Figure 4.6. For

the same reason, none of them discover any known or unknown vulnerability. In addition,

JOANA reported many additional paths that were not covered in the executions considered,

as false positives, leading to the lowest precision (30%). Therefore, FlowDist achieved the

highest F1 (100%) (with Phosphor F1 (54.6%) and JOANA F1 (33.3%)).

Table 4.3: Time (in seconds) and storage (in MB) costs of FlowDist

Executions
Norm Phase 1 Time Phase 2 Time

Stor.Run StaticRunSlowdownQueryStaticCoverageQuery
NioEcho 39 53 41 5.16% 0.2 50 1 1.0 1.6
MultiChat 26 55 28 6.12% 0.2 50 1 0.1 1.0
ADEN 21 117 23 10.23% 0.3 59 3 0.3 4.0
Raining Sockets. 6 40 6 7.67% 0.3 122 6 0.4 14.5
OpenChord 54 177 59 8.54% 0.3 740 41 4.7 26.7
Thrift 8 146 10 24.83% 0.5 79 45 0.6 26.1
xSocket 11 101 19 63.99% 0.5 70 14 0.1 29.3
Zookeeper Integration 71 292 121 70.16% 0.5 193 108 1.8 231.2
Zookeeper Load 99 292 177 78.83% 0.6 137 67 2.0 404.0
Zookeeper System 98 292 178 81.87% 0.5 250 93 1.1 417.5
RocketMQ Integration 105 56 196 87.05% 0.6 704 49 21.5 291.0
RocketMQ System 339 156 753 122.09% 0.6 727 52 34.0 463.2
Voldemort Integration 28 1206 58 106.06% 0.6 566 317 9.1 560.4
Voldemort Load 11 1206 23 113.37% 0.6 435 260 14.4 523.1
Voldemort System 31 1206 65 109.81% 0.6 618 344 22.2 545.1
Netty 12 1132 22 81.65% 0.6 381 317 30.1 417.6
HSQLDB Integration 9 659 19 107.46% 0.7 2227 96 41.5 591.1
HSQLDB System 15 684 36 142.71% 0.7 2771 408 49.7 733.7
Overall Average 55 437 102 68.20% 0.5 565 124 13.0293.4

Efficiency. Table 4.3 gives the breakdowns of the time and storage costs of FlowDist

over its two phases and major phase steps. The time costs include those for static analy-

sis (and instrumentation if any) (Static), profiling (Run), and on average for computing

the (method-level or statement-level) information flow paths between each source-sink pair
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(Query). The second column lists the original run time (Norm Run) of each execution,

from which profiling overheads were computed as runtime slowdown ratios (Slowdown).

The eighth column shows the time costs for statement coverage analysis (Coverage). The

last column lists the total storage costs (Stor.) for all phases per execution, for storing

the traces of method and branch events in Phase 1, statement coverage and partial static

dependence graph in Phase 2, and the instrumented program. The overall averages (across

all executions) are given in the last row.

On average over the 18 executions, FlowDist took 19 minutes ((437 + 565 + 124)

/ 60) for all one-off analyses, including the time for all static analyses, instrumentation,

and coverage analysis, as shown in the last row of Table 4.3. I considered them one-off

because their results are shared by all queries with respect to a given subject execution

and source/sink configuration. In particular, the partial dependence analysis (as guided by

the method-level paths from Phase 1 was significantly more efficient than a whole-system

analysis without a pre-analysis phase. For example, the latter did not even finish in 12 hours

with otherwise the same setup against Voldemort.

On the other hand, Phosphor and JOANA took 1.38 and 0.43 seconds on average, re-

spectively, for each source/sink pair, lower than FlowDist’s querying cost (13 seconds on

average). FlowDist also incurred a higher average storage cost (293.4MB) than Phosphor

(21.2MB) and JOANA (35.2MB). The reason is that FlowDist performed more, heav-

ier analyses (e.g., probing, building the dynamic dependence graph, profiling instance-level

method events) than the baselines. However, these extra costs of FlowDist were moderate

and should be paid off by its much higher effectiveness. Also, it did not incur the substantial

manual effort (e.g., test case development or source code annotation).
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Figure 4.7: The run-time slowdowns (%, y axis) versus #method execution event instances
(x axis) of all subject executions.

Scalability. Figure 4.7 shows the scalability of FlowDist in terms of its runtime slowdown,

for all 18 executions, each characterized by the length of the instance-level method execution

event sequence in it as a run-time complexity measure. The fitting curve with R2 > 0.88,

indicates that FlowDist scaled gracefully to large-scale systems in terms of the runtime

overhead, where the determination coefficient R2 ∈[0,1] indicates how close the data are to

the curve (the closer R2 is to 1, the better the fitting is).

Figure 4.8: The total analysis time (seconds, y axis) versus subject size (#SLOC, x axis)
of all subjects (integration test)

Meanwhile, Figure 4.8 shows how FlowDist scaled to subjects of growing sizes in terms

of its total time cost (the sum of one-off analysis time, profiling costs, and the time for

querying all possible source/sink pairs), against integration tests because every subject has
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Table 4.4: Existing vulnerabilities detected by FlowDist

Subject Vulnerability ReferenceFound#Vulnerability#False Negative
HSQLDB CVE-2005-3280 [58] ✓ 1 0

Netty

CVE-2014-0193 [55] ✗

10 5

CVE-2014-3488 [64] ✗
CVE-2015-2156 [56] ✗
CVE-2016-4970 [59] ✗
Issue 8869 [100] ✗
Issue 9112 [101] ✓
Issue 9229 [102] ✓
Issue 9243 [103] ✓
Issue 9291 [104] ✓
Issue 9362 [105] ✓

RocketMQCVE-2019-17572 [60] ✓ 1 0
Thrift CVE-2015-3254 [57] ✓ 1 0

Voldemort

Issue 101 [99] ✓

6 1

Issue 381 [12] ✓
Issue 387 [13] ✓
Issue 352 [9] ✓
Issue 378 [11] ✓
Issue 377 [10] ✗

xSocket Bug 21 [106] ✓ 1 0

ZooKeeper

CVE-2014-0085 [54] ✓

4 0
Bug 2569 [5] ✓
CVE-2018-8012 [65] ✓
CVE-2019-0201 [66] ✓

such a test. In the same format as Figure 4.7, the fitting curve in Figure 4.8 indicates that

the total time cost of FlowDist grew linearly.

Discovering vulnerabilities. I searched for real-world vulnerabilities from varied sources

(e.g., bug repositories and CVE reports) on our subjects, selected those on information flow

security, and then identified one or more vulnerabilities for 7 of the studied subjects, as

shown in Table 4.4. For each of these subjects (Subject), vulnerabilities (Vulnerability)

along with reference links (Reference), and vulnerability counts (#Vulnerability) are

listed, with marks (Found) indicating whether the vulnerability was found or not. The last

column gives the numbers of missed vulnerabilities (#False Negative).

From the information flow paths inferred (as shown in Table 4.2), FlowDist successfully

discover most vulnerabilities for all these 7 subjects but Netty. Five vulnerabilities for

Netty and one for Voldemort were missed. I verified that the reasons for that the missed

vulnerabilities were not covered during the executions. I did not purposely select run-time
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inputs to cover the vulnerabilities but just used available ones that represented the system

operational scenarios. In addition, for all of the 18 successful cases, corresponding paths

were interprocess ones.

Table 4.5: New vulnerabilities discovered by FlowDist

Subject #Fixed #Confirmed #Pending
HSQLDB 0 5 2
Netty 1 1 0
Raining Sockets 0 1 0
RocketMQ 0 4 0
Thrift 0 5 0
Voldemort 0 0 4
xSocket 0 0 1
Zookeeper 1 1 0

Furthermore, from the information flow paths found by FlowDist, related to 8 subjects,

24 new vulnerabilities [87] were identified, as listed in Table 4.5. After reported by me, 17

have been confirmed and 2 have already been fixed so far. This suggests that FlowDist

computes information flow paths in given executions for detecting known or new vulnera-

bilities/bugs, without the requirements of bug reports; albeit such reports may benefit the

vulnerability detection.

Figure 4.9: The total time costs (in seconds) of FlowDistmul and FlowDistsim against
FlowDist for all subject executions
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Alternative design comparisons. As expected, the best performer among the three

varied for different systems in terms of efficiency. Figure 4.9 shows the contrasts in the

total analysis time of FlowDist and its designs for 18 executions studied. For a relatively

large system (ZooKeeper or larger), FlowDist was the most efficient. For the system,

the time saved due to the reduced instrumentation and profiling scope in the pre-analysis

noticeably outweighed the static analysis time cost, and thus FlowDist was better than

FlowDistsim. Meanwhile, the time saved due to the reduced scope of profiling instance-

level method events was more than the extra time cost of the intermediate phase, and thus

FlowDist was better than FlowDistmul.

These outweighing contrasts were reversed for small systems (those smaller than ZooKeeper),

which explains why the alternative designs were better than FlowDist, for those systems.

Figure 4.10: The storage costs (in MB) of FlowDistmul and FlowDistsim against
FlowDist for all subject executions
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The comparison of storage costs revealed insignificant differences, as shown in Figure 4.10.

FlowDistmul and FlowDistsim had the least and the most storage space requirements,

respectively. And FlowDist needed storage spaces between them. The reason is that

FlowDistmul only records the first entry and last returned-into events in the pre-analysis
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phase, and then only traces methods on the method-level flow paths found in the pre-analysis

and branches in those methods. In contrast, FlowDistsim traces all instance-level method

and statement branch events in the execution during the pre-analysis phase. On the other

hand, FlowDist just traces relevant methods and branches only.

Table 4.6: Recommendations on DIFA/DTA tool selection

System type
Is the execution non-deterministic?

Yes No

Distributed
(multi-process)

Common
Small FlowDistsim

FlowDistsim
or FlowDistmul

Large FlowDist FlowDist

Specialized
Kakute [128] (for Spark [245])

Pileus [221] (for OpenStack [200]), ...
Single-process Phosphor [30], JOANA [114], ...

The findings shown in Table 4.6 led me to recommend how to select the right tool for a

particular software system. Overall, FlowDist (default design) best suits large-scale com-

mon distributed systems, regardless whether their executions are non-deterministic or not.

For a small common distributed system, if its execution is known to be deterministic, both

FlowDistsim and FlowDistmul might be a great choice; otherwise, only FlowDistsim

should be considered. I also list a few peer tools that suite other types of (specialized

distributed or single-process) systems in Table 4.6.

4.5 Related Work

Two classes of prior works are most relevant to ours: conventional information flow

analysis (IFA) & taint analysis (TA) and cross-process information flow analysis (IFA) &

taint analysis (TA).
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4.5.1 Conventional information flow analysis (IFA) & taint analysis (TA)

Most prior analyses of this kind are static [171, 196, 212, 228, 15, 149, 231, 109, 249, 114].

These approaches suffer from the common imprecision of static analysis, in addition to un-

soundness due to dynamic constructs (e.g., dynamic code loading) in modern languages [153].

When applied to distributed software, they would be subject to even greater inaccuracy due

to implicit dependencies among distributed (decoupled) components.

Among dynamic approaches, TaintDroid [77] customizes the Android OS to track whole-

system information flow at runtime and provides warnings to users when sensitive flows are

found. Panorama [243] performs system-side dynamic information flow tracking for Windows

malware analysis through dynamic instrumentation based on a processor emulator QEMU.

In [121], a dynamic taint analysis was used for intrusion detection via a custom Linux security

module (i.e., modifying the Linux kernel). A few others [47, 53, 218] require specialized

hardware to perform taint tracking. These approaches rely on platform customizations. Also,

they belong to DTA rather than DIFA since they do not provide full, code-level information

flow paths. Juturna [154], a hybrid approach combining with JOANA, employs bytecode

augmentation and modified Java API classes for taint tracking. Thus, it requires platform

customizations too.

Dytan [49] provides a generic framework for dynamic tainting x86 executables and an in-

stantiation of the framework for x86 binaries. Similar to Dytan, TaintEraser [256] leverages

a dynamic instrumentation framework Pin [155] to track run-time information flow in Win-

dows applications. In [20, 21, 134], the authors proposed language semantics for dynamic

taint analysis of JavaScript code. In particular, [134] uses the Jalangi framework [201] to
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instrument the ECMAScript 5 [68] code of target systems. LabelFlow [46] is an extension

of PHP to simplify security policy implementation in web applications. TaintMan [77] is an

Android RunTime (ART) compatible DTA that statically instruments the code of both the

target Android application and libraries to track data and control flows. TaintTrace [44] uses

DynamoRIO [36] to perform instrumentation, and its loader was implemented by modifying

the code of Valgrind [175]. In addition, TaintCheck [176] performs instrumentation using

Valgrind and LIFT [186] is based on the StarDBT dynamic binary translator [225] while

DFSan [223] employs the LLVM framework [145].

Like other analyzers [176, 166, 207, 16, 27], these approaches do not work properly with

distributed software as they only track information flow in single threads/processes.

4.5.2 Cross-process information flow analysis (IFA) & taint analysis (TA)

Among a number of prior techniques for tracking/checking dynamic information flow,

only a few addressed the flow across processes. One of those is Kakute [128], which tracks

field-level data flow with unified APIs for reference propagation and tag sharing. Since it is

based on Phosphor [31], Kakute also needs to customize (instrument) its runtime platform

(i.e., JVM). Also, it targets big-data applications running on Spark [245], not working with

common distributed software. This is similar to Pileus [221] targeting applications on a

special cloud platform OpenStack [200].

Taint-Exchange [247] is a generic cross-process/host framework for taint tracking. It

builds on libdft [136] to transfer taint information exchanged between hosts/processes through

sockets and pipes. Like Cloudfence [178] and Cloudopsy [246], it relies on a customized run-

time (the Pin dynamic instrumentation framework) and targets C/C++ software.
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CHAPTER FIVE

SEADS: SCALABLE AND COST-EFFECTIVE DYNAMIC DEPENDENCE

ANALYSIS VIA REINFORCEMENT LEARNING

A fundamental strategy for understanding and validating software behaviors is to model

run-time interactions among program entities as dependencies and then reason about pro-

gram behaviors based on the dependence model [140, 127, 34]. Historically, dynamic depen-

dence modeling and analysis [184, 122] supported software quality assurance, ranging from

fault diagnosis [237] to security defense [18, 136]. Dynamic dependence analysis is important

because many application techniques in software quality assurance rely on dynamic depen-

dencies, such as performance monitoring, program optimization, security defense, software

testing, vulnerability detection, and so on [141]. For instance, software testing is also crucial

for software quality assurance, for which dynamic dependencies can be utilized to detect

defects in the software by searching among the dependencies of the program entities where

faulty outputs are observed. Similarly, dependencies can be used to detect run-time sensitive

data leaks to sinks from sources via the chains of the dependencies. Compared with static

approaches, dynamic dependence analysis has greater precision as it focuses on specific, con-

crete executions. Thus, I developed a cost-effective dynamic dependence analysis framework

and implement a dynamic slicer with respect to user budget constraints.

5.1 Motivation

In general, a fundamental challenge to dynamic analysis for distributed software is how to

achieve an optimal balance between analysis overheads and the effectiveness of the analysis
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algorithm (e.g., maximal analytical accuracy with minimal cost). Early dependence modeling

and analysis for parallel and distributed software have been attempted [43, 139, 74, 131, 168]

with unbalanced costs and the lack of scalability/effectiveness.

For example, I attempted to apply an existing state-of-the-art dependency analysis for

distributed programs [38] to a real-world system [6]. The analysis, running with an 8-

processor 2.7 GHZ CPU and 512 GB DRAM, did not finish even in 12 hours. And I did not

find any existing dependence analysis approach which is able to provide a scalable solution

for industry-scale distributed systems in the real world.

However, more and more industry-scale software systems are becoming distributed sys-

tems in nature. Thus, there is an urgent requirement for tool support for distributed systems,

and for which dynamic dependence analysis is a fundamental, enabling approach. I believe

that online analysis is a better option than offline analysis for distributed systems. The online

solution analyzes the system during the run, while offline approaches compute dependencies

after program executions. Thus, online analysis would be much faster, albeit with slight

runtime overhead. In the continuous infinite execution, execution traces are unnecessary for

an online approach.

By contrast, offline techniques require traces, whose storage costs may be expensive. If the

execution is interminable, the requirement for trace storage space would also be unlimited.

However, this is impractical, and hence offline analyses are not proper for distributed systems.

5.2 Approach

I developed Seads (Short for Scalable and cost-Effective dynamic dependence Analysis of

Distributed Systems) [91], a cost-effective dynamic dependence analysis framework that can
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Figure 5.1: An overview of the Seads architecture and workflow, including its input, out-
put, and key modules

Querying Client

Answering user queries

Instrumented SUA D 

User budget B

Distributed SUA D

Instrumenter
Probing  for dynamic data (method  

events, statement coverage)

Dependence Query Q

Query Dependencies 

Time

 Monitor
Arbitration & 

dependence computation

Querying Interface

Network

Controller
Adjusting analysis 

configurations 

SEADS Inputs

SEADS Output

Analysis 
Configuration

.
..

Process 1

Process 2

Process N

...

scale the analysis to real-world distributed systems. The analysis itself is distributed and on-

line to overcome the problem with unbounded execution traces while analyzing continuously

running systems. Moreover, given a user-specified time budget, the analysis automatically

adjusts itself by varying configurations for better cost-effectiveness tradeoffs (than other-

wise), according to the analysis time cost(s). The core idea is using a reinforcement learning

method to decide which configurations to adjust to according to the current configuration

and corresponding analysis cost with respect to a given user budget.

5.2.1 Overview

The overall architecture of Seads is shown in Figure 5.1, consisting of an instrumenter,

monitors each for a process of the system under analysis (SUA), controllers each for a

process of the SUA, and a querying client. Seads takes three user inputs: the distributed

SUA D, a user budget B, and a dependence query Q. In particular, B is a response time

constraint for the dependence analysis, while Q is a method name imputed by the user for
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s dependencies of the method, such as org.apache.zookeeper.server.ZooKeeperServerMain:

void main(java.lang.String[]).

The instrumenter first inserts probes, which will monitor entry and returned-into method

execution events and/or monitor the executed statement coverage, into D to produce the

instrumented system D′. Then, as time goes on, D′ continuously runs and Seads continually

adjusts itself in its analysis configurations through per-process monitors and controllers. In

particular, during the execution of D′, I suppose that there are N processes (e.g., a server

and N − 1 clients). In each of its N processes, a monitor performs arbitration (deciding the

adjustment) and dependence computation, and a controller adjusts analysis configurations.

In short, the overall dynamic dependence analysis is performed in a distributed manner with

per-process analysis configurations being adjusted independently of those in other processes.

The querying client receives query Q from the user and then sends it to the query-

ing interface that directly communicates with the monitor in each process, through the

network facility. After the dependence computation in a process has finished, resulting de-

pendencies for Q are delivered to the querying interface attached to the monitor in that

process, from which the querying client receives the queried dependencies for the process.

After the distributed dependence analyses in all processes are finished, the querying client

receives/merges all per-process dependence sets for Q and then performs an interprocess

analysis to compute the overall query dependencies as the final output of Seads.

5.2.2 Configuration

The key idea for achieving scalability and cost-effectiveness is to continually adjust anal-

ysis configurations according to (1) the user budget, (2) the current and previous configura-
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tions, and (3) time costs of dependence computations. In Seads, analysis configurations play

a key role, each of whose parameters uniquely contributes to cost-effectiveness. As a hybrid

approach, Seads leverages various combinations of static and dynamic analysis techniques

along with varied static/dynamic data (e.g., the static dependence graph, method events,

and the statement coverage) while using different static and dynamic configuration param-

eters. I first present the parameters (i.e., configuration items) considered in the static and

dynamic analysis separately (referred to as static configurations and dynamic configurations,

respectively), and then describe the holistic (hybrid) configuration encodings.

Static configuration. There are two static configuration parameter dimensions: data selection

and sensitivity. In the data selection dimension, one parameter staticGraph concerns whether

static data is used and determines whether Seads uses static dependencies to compute the

dynamic dependencies of the given query, via traversing the per-component static depen-

dence graphs to infer precise dependencies with a high time cost.

The sensitivity dimension includes two parameters(context sensitivity and flow sensitiv-

ity), expected to achieve a relatively high level of precision, as explained below.

1. Context-sensitivity concerns the effects of different calling contexts of the same vari-

able/object (e.g., method). A context-insensitive analysis uses a single abstraction for

a variable/object for all calling contexts. On the contrary, a context-sensitive analy-

sis distinguishes different calling contexts of a variable/object and computes separate

information for these calling contexts [217, 117]. For instance, if a method is called

multiple times at different callsites, a context-sensitive analysis would distinguish these

callsites and computes separate analysis facts (e.g., dependencies) for them.
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There are two (the functional and call-string) approaches implementing context-sensitive

analyses, varying in the context abstraction and the analysis algorithm. In the func-

tional approach using methods’ arguments, there is a summary function mapping each

context to the corresponding method effect on the analysis facts. In the call-string

approach using the strings of call sites, the analysis facts are tagged with context, and

the analysis propagates the tagged facts along the flow graph of the system under anal-

ysis [205]. Context-sensitive analyses using call site strings as context are often called

k-CFA, where CFA is short for control flow analysis and k is an integer limit on the

(calling) lengths of the strings, referring to a hierarchy for call sites [209, 165, 147]. In

particular, 0-CFA, where the 0 indicates context insensitivity, works quickly. However,

its analysis results may be imprecise [113].

2. Flow-sensitivity considers control flow reachability. A flow-insensitive analysis does not

consider the execution order (i.e., the control flow) of entities (e.g., statements), while

a flow-sensitive analysis approach takes into account the order, when computing the

information (e.g., dependencies among entities). For example, if a variable was defined

twice and then used once in a program, a flow-insensitive analysis only considers the

second definition and the use. However, a flow-sensitive analysis differentiates the order

of these two definitions and the use during the execution(s). Therefore, the relevant

information (e.g., a dependence between the first definition and the use) is only reported

by the flow-sensitive analysis [195]. A flow-sensitive analysis needs additional (time)

costs to analyze the entity execution order and thus is more expensive but much more

precise than a flow-insensitive analysis.
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Dynamic configuration. Seads considered two dimensions of dynamic configuration pa-

rameters: data selection and data granularity. The data selection dimension concerns which

types of data used, including methodEvent and statementCoverage parameters.

1. The parameter methodEvent decides whether Seads uses method (entry and returned-

into) events to compute dependencies. If the parameter is enabled, Seads infers more

precise dependencies from dynamic data (e.g., method events) with additional costs.

Otherwise, with the disabled parameter methodEvent, Seads coarsely but quickly com-

putes dependence sets without method events.

2. The parameter statementCoverage determines if Seads prunes the static dependence

graphs using statement coverage information. This means that with enabled statement-

Coverage, Seads only considers statements covered in the execution and dismissed

other statements. And thus, with other statements dismissed while referring to the

static dependencies, Seads obtains more precise results than otherwise.

Only one parameter MethodInstanceLevel is in the data granularity dimension, concerning

the granularity of the dynamic data (i.e., method events) used in the dependence computa-

tion. It is about whether Seads uses all method event instances to compute dependencies. If

the parameter is enabled, Seads utilizes all instances of (entry and returned-into) events to

compute dependencies more precisely with a larger level of costs for monitoring and utilizing

a greater amount of dynamic data. Otherwise, only the first entry and last returned-into

method events gathered/used, the computation is faster but rougher (i.e., more imprecise).

Configuration encoding. The holistic configuration of Seads consists of both the static

and dynamic configurations described above. Three bits encode the three parameters in the
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Table 5.1: Hybrid (Static/Dynamic) Configuration Encoding

Encoding

Static Configuration Dynamic Configuration
Data Selection Sensitivity Data Selection Data Granularity

StaticGraph
Context Flow Method Statement Method

Sensitivity Sensitivity Event Coverage InstanceLevel
000000 Disabled (0) Disabled (0)Disabled (0) Disabled (0)Disabled (0) Disabled (0)
000001 Disabled (0) Disabled (0)Disabled (0) Disabled (0)Disabled (0) Enabled (1)

......
111110 Enabled (1) Enabled (1) Enabled (1) Enabled (1) Enabled (1) Disabled (0)
111111 Enabled (1) Enabled (1) Enabled (1) Enabled (1) Enabled (1) Enabled (1)

static configuration, and other bits are for dynamic configuration parameters. The first to

third bits are encoded as the static configuration parameters, while the fourth to sixth bits

are used as the dynamic configuration parameters. The binary number 1 or 0 means that

corresponding parameter is enabled or disabled, respectively. Therefore, the holistic (i.e., hy-

brid) configuration, including static and dynamic configuration parameters, is encoded as a

6-bit binary number ranging from 000000 through 111111. As shown in Table 5.1, in the con-

figuration encoding, the hybrid configuration parameters’ ordering is: staticGraph, context-

sensitivity, flow-sensitivity, methodEvent, statementCoverage, and methodInstanceLevel.

Some of all possible 64 (26) hybrid configurations are invalid and cannot be used in Seads.

The reason is that certain configuration parameters are dependent on others, and they are

meaningful only with other parameters enabled. For example, three parameters (context-

sensitivity, flow-sensitivity, statementCoverage) depend on the parameter staticGraph. If the

parameter staticGraph is disabled, meaning that Seads does not use the static data (i.e.,

the static dependence graph), then the three relevant parameters (context-sensitivity, flow-

sensitivity, and statementCoverage) are meaningless—statement coverage data is only used

for pruning the static dependence graph in Seads. Thus, configurations 001xxx, 010xxx,
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011xxx, and 0xxx1x are invalid, where ’x’ is a bit which can be 0 or 1. Another parameter

methodInstanceLevel depends on the parameter methodEvent and thus configurations xxx0x1

are invalid. Configuration 000000 is also invalid, meaning no data is used in the analysis. In

sum, there are 38 invalid configurations and 26 valid configurations in Seads.

5.2.3 Instrumenter

The instrumenter inserts probes into the system D to generate the instrumented version

D′ that will continuously run. During the execution, these probes monitor and record the

entry and returned-into events of all executed method to infer the method happens-before

relations and further approximate dynamic dependencies among the methods within and

across processes [39].

The instrumenter also probes statement branches for efficiently inferring statement cov-

erage [40], another kind of dynamic data considered. In particular, besides the branches

related to explicit predicates, the method entries are also treated as special branches (i.e.,

entry branches), whose true edges lead to the corresponding method (execution) entries.

5.2.4 Monitor

After the instrumentation, with instrumented system D′ launched and continuously run-

ning in its N distributed processes, the monitor and controller in each process of D′ also

start and continuously run along with the process, as shown in Figure 5.2. During the

execution of the process, as the core component of Seads, the monitor decides when the

analysis configuration needs to be adjusted (i.e., arbitration) and computes dynamic depen-

dencies with a current configuration (i.e., dependence computation). The module consists
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Figure 5.2: The monitor and controller run along with the instrumented subject
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of two sub-modules: a gatherer collecting dynamic data (method execution events and/or

statement coverage) and a processor receiving the data for the dependence computation.

More specifically, the processor computes/updates the dynamic dependencies for all possi-

ble queries (i.e., methods exercised) when (i) the time gap since the previous dependence

computation exceeds a threshold (e.g., 15 minutes) and (ii) the number of method-execution

events accumulated since the previous dependence computation exceeds another threshold

(e.g., 1000). As part of Seads settings, both thresholds are customized by users.

Arbitration. Algorithm 3 shows the arbitration pseudo-code which decides when and how

to trigger dependence computations and configuration adjustments. In this algorithm, I set

some variables as inputs, letting method be the executed method, gCounter be the number

counter of method events, LastT be the time of the last computation, B be the user budget,

QU be the method event queue, isT imeOut be the boolean value to record timeouts, TC/TT

be the thresholds of event number and analysis time interval, sgc T/sgl T/d T be timeouts

of constructing/loading the static graph and computing dependencies, TCN/oldTCN be

current and immediately previous configurations, respectively.
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Algorithm 3 Arbitration
1: Set gCounter = 0, LastT = 0, QU = ∅, TCN =111111, oldTCN =None
2: Assign sgc T , sgl T , and d T from B
3: while true do
4: if event(method)==entry then
5: gCounter++
6: Add (-method) to QU
7: end if
8: if event(method)==returnInto then
9: gCounter++
10: Add method to QU
11: if gCounter > TC and (CurrentT ime - LastT ) > TT then
12: Read current configuration parameters
13: isT imeOut = false
14: if Configuration staticGraph then
15: if TCN/oldTCN ’s static configuration parameters are different then
16: Construct a new static (dependence) graph
17: if (Not isT imeOut) and (constructT ime > sgc T ) then
18: Cancel the static graph construction, and set isT imeOut = true
19: end if
20: end if
21: if the static graph exists then
22: Load the static graph
23: if (not isT imeOut) and (loadT ime > sgl T ) then
24: Cancel the static graph loading, and set isT imeOut = true
25: end if
26: end if
27: end if
28: if not isT imeOut then
29: Call the processor to compute dependencies with TCN
30: if (not isT imeOut) and (ComputeT ime > d T ) then
31: Cancel the dependence computation, and set isT imeOut = true
32: end if
33: end if
34: gCounter = 0, LastT = CurrentT ime
35: Call the gatherer to record the time cost of the analysis
36: Call the controller to compute new configuration newTCN
37: oldTCN = TCN
38: TCN = newTCN
39: end if
40: end if
41: end while
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Seads first initiates gCounter, QU , and LastT , and sets the current configuration TCN

as 111111 for the most precise but possibly the slowest analysis to start with (line 1). The

variable oldTCN is initialized as None and will be used to keep the previous configuration.

The variables sgc T , sgl T , and d T are timeouts for constructing/loading the static de-

pendence graph, and computing dependencies, respectively, and their values are empirically

allocated from the total given user budget B (line 2). For example, I can set and allocate

the user budget as 30 seconds sgc T , sgl T , and d T as 21s, 6s, and 3s, respectively.

Then, there is an infinite loop, arbitrating dependence computations and configuration

adjustments (lines 3–40), via invoking (collaborating with) the controller module for the

same process as is this monitor. During the execution, in each method entry event, Seads

increments gCounter by one and adds minus method (id) to QU (lines 4–6). For example,

gCounter is 1, and minus method (id) (e.g., -571) is added to QU . In each returned-into

event, Seads also increments gCounter by one but adds method (id) to QU (lines 8–10).

For example, gCounter is 2, and method (id) (e.g., -571) is added to QU .

If gCounter is greater than TC and the time span (between the current time and the last

computation time LastT ) is greater than TT (i.e., both conditions (i) and (ii) are satisfied),

Seads will start a new round of analysis (e.g., updating dynamic dependencies for all possible

queries) as detailed below. To start with, Seads reads the current configuration and set

isT imeOut as false (lines 11–13). For example, after 1000 events occurred and 3 minutes

passed, gCounter > TC (e.g., 1000) and (the current time - LastT ) > TT (e.g., 3 minutes).

Then, Seads reads the current configuration TCN = 111111, and isT imeOut = false.

If the staticGraph parameter is enabled and at least one of the static analysis parameters

(i.e., the first to third bits of the configuration) varies between the current and immediately
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previous configurations, Seads constructs a new static dependence graph (lines 14–16) using

the static configuration. For example, with TCN = 111111 now, the first to third bits (three

static parameters) are all 1 (enabled). Thus, Seads constructs the new static dependence

graph with both context sensitivity and flow sensitivity applied. When the static depen-

dence graph is ready, Seads loads it (lines 21–22). The static analysis reuses the relevant

algorithms of Diver [39] and DiverOnline [37].

Moreover, the processor is invoked to compute dependencies with the current configura-

tion TCN (line 29), as detailed in Algorithm 4. When isT imeOut is false, if any part of the

static or dynamic analysis—(1) constructing and (2) loading the static dependence graph and

(3) computing dynamic dependencies (costing constructTime, loadTime, and computeTime

respectively), runs timeout, Seads would cancel the respective part of the analysis and set

isT imeOut as true (lines 17–18, 23–24, 28–31). For example, with the current configuration

TCN = 111111, Seads has not finished constructing the static graph in sgc T time (e.g.,

21 seconds) and thus cancel it the construction of the static graph.

Then, isT imeOut is true and hence Seads skips the static graph loading and dependence

computation. After resetting gCounter and LastT , Seads calls the gatherer to collect the

time costs of above analyses (i.e., constructing/loading the static graph and computing

dependencies) under the current configuration and then calls the controller to compute the

next configuration newTCN (lines 34–36), as detailed later in Algorithm 5. For example,

now gCounter = 0, the time cost = 22 (> 21) seconds, and newTCN = 000101.

In the last place, the algorithm updates the current (TCN) and previous configuration

(oldTCN) accordingly for the next arbitration iteration (lines 37–38). For example, I ob-

tained oldTCN = 111111, and TCN = 000101 now.
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Dependence computation. When Seads calls the processor to compute dependencies,

the online analysis based on DiverOnline [37] is adopted, avoiding execution tracing to

economize analysis costs, such as storage and I/O costs. Algorithm 4 gives the pseudo-code

of the online algorithm to compute dependencies. In Algorithm 4, QU is the same method

event queue as in Algorithm 3, and DS(m) is the dependence set for the method m.

First, four configuration parameter variables (i.e., Configuration staticGraph,

methodEvent, statementCoverage, and methodInstanceLevel) are read from the current

configuration (line 1). For example, from the current configuration 000101, I have these

variables assigned 0, 1, 0, 1, respectively. If the parameter methodInstanceLevel is disabled,

Seads filters the first entry and the last return-into events from the event sequence in QU

(lines 2–3). For example, since methodInstanceLevel is enabled, Seads skips the filtering.

If staticGraph and statementCoverage are both enabled, the static dependence graph is

pruned according to the statement coverage (lines 5–6). For example, since both staticGraph

and statementCoverage are disabled, Seads skips the pruning. Then, Seads traverses QU

to compute dynamic dependencies corresponding to the method events in QU (lines 8–34).

For each event e in QU , I let m be the corresponding method of e and DS(m) be the

dependence set of m which is empty initially (line 9). For example, for e = -571, DS(e) is

empty now, where 571 is the id of method org.apache.zookeeper.server.ZooKeeperServerMain:

void main(java.lang.String[]). If the parameter methodEvent is enabled and the value of e is

negative (i.e., e is an entry event) and m is executed, Seads adds m itself into the dependence

set DS(m) (lines 8–10). For example, since the parameter methodEvent is enabled and e =

-571 (< 0), the method (of id = 571) is added to DS(m).

If both parameters methodEvent and staticGraph are enabled, Seads adds dependen-
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Algorithm 4 Computing dependencies
Let Configuration staticGraph be staticGraph parameter of current configuration
Let Configuration methodEvent be methodEvent parameter of current configuration
Let Configuration statementCoverage be statementCoverage parameter of current
configuration
Let Configuration methodInstanceLevel be methodInstanceLevel parameter of current
configuration
Let DS(m) be dependence set for method m

1: Read current configuration parameter settings
2: if Not Configuration methodInstanceLevel then
3: QU=getFirstLastInstances(QU)
4: end if
5: if Configuration staticGraph and Configuration statementCoverage then
6: Prune the static graph with the statement coverage
7: end if
8: for each method event e ∈ QU do
9: m=abs(e), DS(m) = ∅
10: if Configuration methodEvent then
11: if e < 0 then
12: DS(m) ∪ = {m}
13: end if
14: if Configuration staticGraph then
15: if e < 0 then
16: AddDSEntry(m)
17: else
18: AddDSReturnInto(m)
19: end if
20: else
21: if e < 0 then
22: for each last returned-into event e′ that happens after e ∈ Q do
23: m′=abs(e′)
24: DS(m) ∪ = {m′}
25: end for
26: end if
27: end if
28: else
29: if Configuration staticGraph then
30: AddDSEntry(m)
31: AddDSReturnInto(m)
32: end if
33: end if
34: end for
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cies via calling a function AddDSEntry for the negative e value (entry event) or calling

another function AddDSReturnInfo for the positive e value (returned-into event) (lines 14–

18). If the parameter staticGraph is not enabled, Seads skips both subroutines. I leveraged

DiverOnline [37] to develop these two subroutines, in which Seads traverses the static

dependence graph to add dependencies into DS(m), using different dependence propagation

rules for the entry and returned-into event of the method (m), respectively. If the parameter

methodEvent is enabled yet the parameter staticGraph is disabled, upon each negative e (i.e.,

an entry event), Seads adds all methods whose last (returned-into) event in QU happened

after e, into the dependence set DS(m) (lines 20–24). For example, with enabled methodE-

vent and disabled staticGraph, Seads adds all methods whose last (returned-into) event in

QU happened after e (-571) into the dependence set DS(m).

If methodEvent is disabled yet staticGraph is enabled, Seads simply calls these two

functions AddDSEntry & AddDSReturnInfo (lines 28–31) to add dependencies to DS(m) by

traversing the static dependence graph without utilizing any dynamic data. If methodEvent

is enabled and staticGraph is disabled, Seads skips both functions here.

It is worth noting that for each process, the monitor only computes the run-time depen-

dencies within the process (referred to as intraprocess dependencies). Dependencies across

processes (i.e., interprocess dependencies) will be computed for a given query Q by the

querying client after receiving the intraprocess dependencies of Q from each process.

Querying interface. For interacting with the user, the monitor module for each process

includes a querying interface that receives the dependence query Q from and sends corre-

sponding dependence sets back to the querying client module, both through the network
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facility (see Figure 5.1). When a query is received at (the querying interface of) the moni-

tor module, there are two situations that should be handled differently: (1) If the monitor

is in the middle of computing/updating the dependence sets for all possible queries. In

this situation, the querying interface will wait until the dependence computation/updating

is completed to run Q’s dependence set. And (2) if the monitor is performing arbitration

functionalities, but not computing dependencies now after the previous round of dependence

computation, and waiting for the next round. In this situation, the querying interface will

immediately return the most recently computed dependence set of the query Q.

While the querying interface (attached to the monitor) for each process computes in-

traprocess run-time dependencies, the querying client module derives interprocess dependen-

cies hence produce the final dependence set, while merging all the per-process intraprocess

dependence sets, for the user-supplied query Q. Once it has received Q, the querying client

sends it to the querying interface for each process, and then waits for all the per-process in-

terfaces to return their respective intraprocess dependence sets for all possible queries. The

reason is that all these dependence sets are needed for computing interprocess dependencies

for the query Q.

More specifically, the querying client will identify the process Pi where the query Q was

executed first (i.e., where the earliest first entry event of Q occurred).

1. If no process exercised Q, an empty dependence set would be returned.

2. Otherwise, the final dependence set of Q, noted as fDS(Q), is initialized as the in-

traprocess dependence set of Q returned from the querying interface for Pi (noted as

intraDS(Q, i)).
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Then, for each other process Pj,if Pj also exercised Q, intraDS(Q, j) is straightforwardly

merged into fDS(Q); otherwise,for each method m exercised in Pj, intraDS(m, j) is merged

into fDS(Q) if the last returned-into event happens after the first entry event of Q. This

merging process implicitly derives and adds to fDS(Q) the interprocess dependencies for

Q according to the happens-before relationships among method execution events across all

processes of the system.

5.2.5 Controller

For each process of the system, Seads utilizes a controller to adjust its analysis config-

urations, as shown in Figure 5.2. The controller takes the costs of the current configuration

and user budget B as inputs to determine which next configuration the analysis should use

in order to achieve a better cost-effectiveness (than with the current configuration) with

respect to the user budget (i.e., the total analysis time constraint under the budget).

Each controller module consists of two sub-modules: a learner and an executor. The

learner uses the data from the gatherer (i.e., the analysis costs under the current con-

figuration) while referring to the user budget, to adjust the configuration. The resulting

configuration may be the same as or different from the current configuration. Then, the

executor updates Seads to the new configuration from the learner’s output and simply

transfer the new configuration to the collaborating monitor. Next, I elaborate the learner’s

inner workings for configuration adjustment.

Seads decides new analysis configurations using a reinforcement learning methodology,

in particular the Q-learning method. Since supervised learning needs a large training set,

it is not suitable for the configuration adjustment in Seads. There are not enough data
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for training when Seads starts with a particular system. Meanwhile, since the dynamics of

execution may vary widely across different systems, learning from other systems beforehand

may not be effective either. Thus, given the unpredictably changing environment during the

execution of a system, reinforcement learning, which is not subject to those constraints, is

more suitable. Moreover, as a special type of reinforcement learning, Q-learning is particu-

larly appropriate for configuration adjustments in Seads, because dependence computation

time costs constantly vary during the execution without an existing policy or model of the

adjustments [230]. Therefore, as an off-policy and model-free learning strategy, Q-learning

was employed.

In Q-learning as applied in Seads, an agent receives a state (the current analysis con-

figuration) from the environment and takes an action (i.e., choosing a new configuration),

either from a Q-table or by a random exploration of possible actions. Subsequently, the agent

receives feedback in terms of a reward computed according to the action’s performance. As

shown in Figure 5.3, a state represents the current dependence computation configuration,

and the monitor is the environment while the controller is the agent. With the user budget

and time cost of the dependence computation, a reward is computed and sent back to the

agent as feedback. For a positive reward, the corresponding action is encouraged/reinforced.

Otherwise, the action is discouraged. Q-learning uses the reward to update the Q-table

whose largest value will be presumably chosen as the future action [94]. In other words, the

larger the reward is, the more likely the corresponding configuration will be chosen.

Q-learning updates the Q-table according to the Bellman equation to find optimal poli-

cies [124]. With this equation, the value in the Q-table (i.e., V q) for the next state is

calculated as follows with two parameters (γ and α):
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Figure 5.3: The interactions between the agent and environment of Q-learning
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V q = V q + α ∗ [reward + γ ∗ max{q|q ∈ Q-table} − V q] (5.1)

Here γ is a discount factor between 0 to 1 related to the importance of future rewards. If

γ is 0, the Q-learning agent only considers current rewards; if γ is 1, the agent strives for

a long-term high reward. And α is the learning rate between 0 to 1 to control how much

the difference between the previous and new V q values considered. If α is 0, the agent only

utilizes prior knowledge; if α is 1, the agent ignores prior knowledge and only considers the

most recent information to explore possibilities.

Algorithm 5 shows the learning pseudo-code for configuration adjustment. First, Seads

initiates Q-learning components/variables (e.g., learner, Agent, Qtable, actions, rewards,

ϵ, and states) and Bellman equation’s parameters: γ and α (lines 1–2). For example, I

set the values in the Q-table as all zeros and the parameters γ, α, and ϵ as 0.9, 0.9, and

0.2, respectively. Because γ=0.9 is slightly lower than 1, the Q-learning agent prefers for a

long-term high reward rather than the current reward. Due to α (0.9), the agent prefers for

the most recent data (e.g., reward, values in the Q-table).

ϵ is used to control the agent taking an action (i.e., selecting a new configuration) from

the Q-table or by a random exploration of possible actions. If a randomly calculated variable

value <= (1 - ϵ), the agent uses the epsilon greedy strategy [238] to take the best action

according to the largest V q in the Q-table. Otherwise, the agent randomly selects an ac-
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Algorithm 5 Configuration Adjustment using Q-learning
Let TCN and newTCN be current and new configurations
Let Qtable, actions, rewards, states, γ, α, and ϵ be components and parameters used by Q-learning
Let T be overall dynamic dependence analysis time cost with the current configuration
Let B be the user budget
Let probability be the possibility to select the action according to the largest value in Qtable

1: Initiate Q-learning components: learner, Agent, Qtable, actions, rewards, and states
2: Set Bellman equation parameters γ, α, and ϵ between 0 and 1
3: Update reward = 1/(B - T ) * 1000.
4: Update Qtable using the Bellman equation
5: probability=random(0,1)
6: if probability < = (1 - ϵ) then
7: Take the best action according to the largest value in Qtable
8: else
9: Randomly take an action
10: end if
11: Return a new configuration newTCN

tion [78]. (lines 8–9). Now ϵ = 0.2 and (1 - ϵ) = 0.8 = 80%. Thus, the possibility that the

agent takes the best action according to the largest value in the Q-table is 80%, while the

possibility of a random selection is 20%.

Next, the reward and Qtable are updated (lines 3–4). The reward is defined as 1/(the

user budget B - the current dependence analysis time cost T ) * 1000—the rationale is that

the closer the analysis cost is to the user budget (the learning goal here), the higher the

reward. For example, I suppose the user budget B is 60000 (ms) and the current analysis

time cost T is 40000 ms. Then the reward is 1/(60000 - 40000) * 1000 = 0.05 that is used to

update the Q-table. In the algorithm, the action means the transfer from the current state

(configuration) to the next state (configuration). If the randomly calculated probability value

equals or is less than (1 - ϵ), the Q-learning Agent uses the epsilon greedy strategy [19] to

take the best action according to the largest value in the Qtable (lines 5–7). For example,

suppose Seads randomly calculated the probability value as 0.803 (> 0.8).

Then, Seads skips taking the best action according to the largest value in Qtable. Oth-

erwise, the Agent randomly selects an action (lines 8–9). For example, The Agent may
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randomly select an action (selecting the next configuration (e.g., 000101). Eventually, a new

configuration newTCN is returned (line 11).

5.2.6 Querying client

Seads uses querying client to interact with the user(s). Through this module, the user

sends a dependency query Q to the querying interface within each process of the instrumented

system D′ and waits for their responses. When the intraprocess dependence computation in a

process has finished, resulting dependencies are delivered back to the querying interface in the

process, from which the querying client receives these intraprocess dependencies computed.

Once the intraprocess analyses in all processes are completed, the querying client per-

forms an interprocess analysis, which splices all the intraprocess dependence sets received

according to the timestamps associated with the partially ordered method events while lever-

aging basic message-passing semantics to reduce false positives [91].

5.2.7 Limitations

During the instrumentation, Seads needs to insert probes into the bytecode of the system

under analysis (SUA) to monitor method events. If the administrator does not allow to

modify the SUA, Seads cannot work.

Seads attempts to provide the most cost-effective result (i.e., dependence set) achieved

within a response time constraint (i.e., the user budget). However, the current controller

(Q-learning algorithm) might not be optimal. The configuration with which the dynamic

dependence computation does not necessarily have the optimal cost-effectiveness tradeoff

possible with respect to Seads). For example, the Q-learning algorithm might take a wrong
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action at certain steps (especially when the selection is random, as shown in Algorithm 5).

As a result, the dynamic dependence analysis may not always be the most cost-effective.

In addition, if the user sets an improper budget (e.g., one that is far off the typical

response time for a particular system), the analysis configuration adjustment by the controller

can be even less effective (i.e., leading the analysis in Seads to be further away from optimal

cost-effectiveness balances). On the other hand, when the user does not specify a budget,

Seads would have to use a default budget, which may not be desirable to the user or not

suitable for the given system.

Figure 5.4: An overview of Dads architecture
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5.3 Tool Implementation

To avoid tracing and hence relevant time/space costs when analyzing continuously-

running distributed software, I developed Dads [90, 85], an online, scalable, and cost-

effective dynamic slicer with respect to user-specified budget constraints, as shown in Fig-

ure 5.4. Dads is distributed by design to utilize parallel and distributed computing/storage

resources. Furthermore, Dads continually and automatically adjusts its analysis configu-

rations on the fly via reinforcement learning, to achieve and maintain practical scalability

and cost-effectiveness tradeoffs according to given budgets. Adapted against eight Java dis-

tributed systems in the real world, Dads demonstrated its scalability and cost-effectiveness
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Table 5.2: Experimental subjects

Subject (Version)#Method#SLOC Test Type
NioEcho (r69) 27 412 Integration
MultiChat (r5) 37 470 Integration
OpenChord (v1.0.5) 736 9,244 Integration
Thrift (v0.11.0) 1,941 14,510 Integration
xSocket (v2.8.15) 2,209 15,760 Integration
ZooKeeper (v3.4.11) 5,383 62,194Integration, Load, System
Netty (v4.1.19) 12,389 167,961 Integration
Voldemort (v1.9.6) 20,406 115,310Integration, Load, System

advantages over a similar slicer without the capabilities of configuration learning and ad-

justment. Through the dynamic slices within the given budget, Dads can benefit software

maintenance, testing, and security tasks with respect to time budget constraints.

5.4 Evaluation

5.4.1 Experiment setup

I applied Seads against eight Java distributed systems that typically run continuously,

as shown in Table 5.2. The sizes of these subjects are measured as the number of methods

defined in the subject source code (#Method) and the number of Java source code lines

excluding blank lines and code comments (#SLOC ). The last column (Test Type) shows the

test types, including integration, load, and system tests. I selected these subjects covering

different architectures, domains, and scopes.

In order to show the impact and merits of this innovation, due to the absence of a directly

comparable peer technique, I created and used an online version (referred to as Doda) of

D2Abs [38], the state-of-the-art dynamic dependence analysis for distributed programs to

the best of the knowledge, as the baseline in my evaluation. In terms of implementation,
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Doda is essentially a version of Seads that does not change its analysis configurations on

the fly but constantly uses a fixated configuration (111111, for the possibly highest precision

but expensive analysis).

5.4.2 Results and analysis

In this section, I report and discuss the empirical results. Table 5.3 shows the major

results, including the cost and precision measures of Seads versus the baseline Doda against

the 12 subject executions (in the first column). The third to fifth and sixth to eighth columns

list the total run time (Run Time), run-time slowdowns (SlowDown), and average query

response time (Response Time), for each instrumented subject execution with Doda and

Seads, respectively. The normal run time (the second column) for each subject execution

was the total execution time of the subject against the same sequence of run-time inputs

driving the corresponding instrumented subject execution. For each subject execution, the

run-time inputs to the subject were exactly the same during the analysis by both techniques,

in addition to feeding them with the same sequence of queries.

In the ninth column (Precision), I report the average relative precision of Seads versus

the baseline: for each query, the measure was computed as the ratio of the size of query

dependence set computed by Doda to the size of the query dependence set computed by

Seads. I computed and reported the relative measure for two reasons: (1) There are no

ground-truth dependence sets available for the sample queries, and no existing tools which

scale to and work with the subject systems to compute such ground truths; and (2) the

evaluation goal is mainly to validate Seads’ scalability and cost-effectiveness merits over

conventional analysis which has a configuration.
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Table 5.3: Time (in seconds) & storage costs (in MB) & precision (ratios) of Seads versus
Doda as the baseline

Execution

Normal Doda Seads

Precision Storage
Run Run Slow Response Run Slow Response
Time Time Down Time Time Down Time

NioEcho 158.37 228.17 44.07% 14.39 214.15 35.22% 13.71 100.00% 2.00
MultiChat 148.96 241.89 62.39% 15.12 223.67 50.15% 14.32 100.00% 2.00
Openchord 233.78 606.87 159.59% 51.36 359.37 53.72% 25.33 77.44% 14.00
Thrift 199.87 573.49 186.93% 45.23 345.19 72.71% 23.82 90.68% 25.00
xSocket 380.59 1,817.61 377.58% 170.82 772.38 102.94% 65.37 83.25% 21.00
Netty 589.39 4,218.85 615.80% 409.56 1,226.16 108.04% 115.16 87.12% 105.00
Zookeeper
Integration 598.34 3,543.47 492.22% 343.19 1,139.25 90.40% 103.21 66.29% 96.00
Zookeeper
Load 616.16 3,804.37 517.43% 368.43 1,209.77 96.34% 111.97 65.55% 96.00
Zookeeper
System 598.17 3,676.91 514.69% 355.56 1,183.97 97.93% 107.94 63.28% 96.00
Voldemort
Integration 398.06 - - - 791.37 98.81% 69.62 - 200.00
Voldemort
Load 194.44 - - - 731.71 276.32% 67.58 - 200.00
Voldemort
System 355.78 - - - 719.38 102.20% 66.96 - 200.00
Average: 372.66 2,079.07 330% 197.07 743.03 99% 65.41 81.5% 88.08

The last column (Storage) lists the total storage costs (disk space taken) of Seads,

ranging from 2MB for the two smallest subjects (NioEcho and MultiChat) to 200MB on

the largest system (Voldemort), and including an average cost of 88MB across all the 12

executions. These spaces were mainly used to store the static dependence graph for each

subject component and the instrumented subject versions. Baseline storage costs were almost

the same as Seads ones and hence were omitted.

Results for Doda against the Voldemort executions are unavailable (hence missing from

the table) because the baseline did not scale to the system: I killed the analysis after running

it for 12 hours. For this reason, the relative precision of Seads for these executions is missed

also. Next, I discuss major findings and observations from these results, so as to answer the

research questions.

Efficiency: response time. The response time, as shown in the fifth and eighth columns,

is the user’s waiting time since a dependence query is sent to each dependence analysis
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technique until the user receives the dependence set in return. Seads took 65 seconds on

average to respond to random user queries with random intervals and user-specified budgets,

over all subject executions. For individual executions, Seads took the shortest response

time (14 seconds) on average against the NioEcho execution, due to its smallest size. On

the other hand, Seads took the longest average response time (115 seconds) on Netty, the

largest system among the subjects. However, looking at this efficiency measure across all the

subject executions reveals no consistent correlation between subject sizes and the average

response time. One reason is that the source size of a subject is not the only factor that

affects this efficiency measure. For example, the complexity of the execution analyzed is

another major factor here. Other factors (e.g., the time cost of network communication)

could also affect the response time experienced by the user. In fact, there is noticeably

different average response time with Seads in the three subject executions for the same

subject, Voldemort.

Doda took 197 seconds on average over the 12 subject executions for the same query

requests as sent to Seads, with the average response time for individual subject executions

ranging from 14 seconds on NioEcho to 410 seconds on Netty. In particular, for Voldemort,

Doda could not answer any query within 12 hours. In practice, most users (either a human

or an application using the dynamic dependence results) do not want to wait even longer

than 12 hours for querying a dependence set. In other words, Doda might suffer a serious

scalability issue hampering its practical adoption to large distributed systems in the real

world. Conversely, for the three executions of Voldemort considered, Seads took short time

to respond, demonstrating its scalability and efficiency advantages over the conventional

dependence analysis.
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The efficiency advantage in terms of mean response time of Seads over Doda was

generally more significant with larger-scale subject executions. As shown, the gap in this

efficiency measure between the two techniques tended to increase when the subject grows

in source size and execution complexity. In particular, for the two smallest subjects, the

average response time of Doda was very close to that of Seads (the difference was less than

one second on average for each query); for a medium-scale subject such as Thrift, Seads was

about 2x faster; and for the largest subjects, Seads was over 3x faster. This further means

that the scalability and efficiency advantages of Seads over Doda are especially significant

for large distributed systems.

Efficiency: analysis overheads. Table 5.3 shows that the run-time slowdowns of Seads

ranged from 35% (NioEcho) to 276% (Voldemort load test), with 99% on average over the 12

subject executions. Meanwhile, the run-time overheads of Doda ranged from 44% (NioEcho)

to 616% (Netty), with 330% on average. Generally, the slowdown of either technique was

greater against larger subjects with more complex executions, as expected.

Since Doda did not answer any dependence query for each of three Voldemort execu-

tions within 12 hours, the corresponding slowdown measures were not meaningful and hence

omitted (> (12 * 3600 - 398.06 / 398.06) = 4,319,900%) For the other 9 subject executions,

Seads was consistently more efficient than the baseline.

Similar to their contrasts in average response time, the advantage of Seads over Doda

was increasingly significant for subjects growing size and execution complexity. For instance,

for the two smallest and simplest subjects, the slowdowns of both techniques were close; for

a medium-scale subject xSocket, Doda incurred over 2x greater slowdown than Seads; for
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two large-scale subjects (Netty and ZooKeeper), Doda’s slowdown was 4x to 5x larger.

Overall, Seads was more than 3x as efficient as the conventional approach to dynamic

dependence analysis in terms of the slowdown measure, further describing the advantages of

the on-the-fly analysis configuration adjustments through reinforcement learning in Seads.

Cost-effectiveness: precision-cost ratios. To evaluate the cost-effectiveness of Seads, I

need to first compute the precision by comparing the average sizes of query dependence sets

computed by Doda and Seads. The precision for each subject execution, as shown in the

ninth column (Precision) of Table 5.3, is the average ratio of the size of the dependence set

for each query computed by Doda to the size of that computed by Seads for the same query.

For each dependence query, I also compared the content of both dependence sets, and found

that Seads’s dependence set always subsumed the dependence set given by Doda for any of

the queries involved in our evaluation. This confirms that although sacrificing precision by

adjusting analysis configuration to achieve higher scalability and efficiency, Seads had no

loss in recall. These relative effectiveness measures essentially treated the baseline results

as ground truths. Thus, given the equally 100% recall of both techniques, I only considered

the relative precision of Seads (with Doda precision as constantly 100%) when computing

the cost-effectiveness of both techniques as the ratio of cost-effectiveness.

For the 9 subject executions for which the baseline dependence sets were available to

enable the relative precision measurement for Seads, the precision achieved by Seads ranged

from 63% to 100%, for an overall average of 82%. In the best cases, for the two smallest

subject and simplest subject executions (i.e., NioEcho and MultiChat), Seads did not lose

any precision relative to the baseline. The reason was mainly because the online analysis
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by Seads constantly incurred time costs lower than the user budgets even with the most

precise analysis configuration for these subjects. Thus, Seads did not need to leave the

highest-precision configuration.

Likewise, Seads had the lowest precision of 63.28% for Zookeeper system test, most

plausibly because Seads experienced the most aggressive and frequent adjustments of its

analysis configurations in order to maintain scalability and efficiency with respect to given

user budgets. The average relative precision (over the ten queries) achieved by Seads for

a subject execution had to do with the size and complexity of the subject execution was

reflected in part in the two efficiency metrics: response time and run-time slowdown.

To compute the cost-effectiveness of Seads and Doda, for each subject execution, I

calculated the ratio of the average precision (over the ten queries) to one of the two cost

measures I considered: average response time (over the ten queries), and run-time slowdown

(overall during the entire execution across the ten queries). Accordingly, I had two measures,

each with respect to one of the two cost measures, in our cost-effectiveness assessment and

comparison between the two techniques, shown in Figure 5.5 (with average response time as

the cost factor) and Figure 5.6 (with the run-time slowdown as the cost factor), respectively.

For ease of presentation with respect to space constraints, I used abbreviations in both

figures as follows (on the x axis): MC. for MultiChat, OC. for OpenChord, V for Voldemort,

Z for ZooKeeper, I. for integration test, L. for load test, and S. for system test. In particular,

to highlight the advantages of Seads over Doda, either figure only shows comparisons in

terms of the cost-effectiveness per subject execution, as the percentage of Doda’s cost-

effectiveness over the cost-effectiveness of Seads. Thus, both figures show the bars for

Seads constantly corresponding to 100%, whereas the cost-effectiveness of Doda is shown
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Figure 5.5: Comparisons (y axis) of the cost-effectiveness expressed as the ratios of the
precision to the response time of Doda and Seads per execution (x axis).
The higher the ratio, the more cost-effective
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as the fractions of that of Seads. Since Doda could not be applied to Voldemort, the

corresponding cost-effectiveness measures of Doda for the three Voldemort executions were

zero. Consider storage costs were not considered in computing the cost-effectiveness because

they were almost negligible (only 88MB on average and 200MB at most).

In Figure 5.5, the cost-effectiveness (with respect to response time) of Doda was about

44% of that of Seads on average. For individual subject executions, Doda and Seads had

very close cost-effectiveness against the two smallest and simplest subjects, NioEcho and

MultiChat. In previous sections, I observed that the efficiency and scalability advantages

of Seads over the baseline were more prominent when applied to larger and more complex

systems. This comparative trend applies here also: the cost-effectiveness merits of Seads

were more substantial with subjects of large scale and more complex executions, compared to

Doda. For example, Doda cost-effectiveness was about 60% of that of Seads for medium-

scale subjects like Open chord and Thrift, while the ratio went down to less than 45% for

larger systems like ZooKeeper and further down to 30% for even the larger subject Netty.

As a trend extreme, Doda’s cost-effectiveness was zero for Voldemort, the most challenging

subject in the project.
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Figure 5.6: Comparisons (y axis) of the cost-effectiveness expressed as the ratios of the
precision to the run-time slowdown of Doda and Seads per execution (x
axis). The higher the ratio, the more cost-effective
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Figure 5.6 shows the cost-effectiveness in the alternative measure, concerning the run-

time slowdown as the cost factor. Overall, the cost-effectiveness with respect to this cost

measure of Doda was only about 32% of that of Seads on average, substantially lower

than the cost-effectiveness with respect to response time as shown in Figure 5.5. It was

obvious that the efficiency and scalability advantages of Seads over Doda in terms of run-

time slowdown were greater than those in terms of average response time. On the other

hand, compared with the cost-effectiveness variations (with respect to response time) shown

in Figure 5.5, the variations in the cost-effectiveness with respect to run-time slowdown

were similarly associated with the scale of the subject executions: The cost-effectiveness

advantages of Seads were greater against larger and more complex subjects.

In sum, Seads was substantially more cost-effective than Doda, regardless of the cost

factor concerned with. This suggests that the precision sacrifices of Seads were well paid

off by the gains in efficiency and scalability, resulting in the ultimate advantages in cost-

effectiveness overall. Thus, the methodology of adjusting analysis configurations on the fly

appeared to be a scalable and cost-effective solution to the dynamic dependence analysis of

large-scale distributed systems in the real-world.
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Table 5.4: The number of iterations and learning time (in seconds) of Q-learning

Execution #Iteration Time
NIOEcho 1 36.73
MultiChat 1 41.38
OpenChord 2 327.19
Thrift 2 316.70
xSocket 3 639.37
ZooKeeper integration 4 1013.73
ZooKeeper load 4 1097.26
ZooKeeper system 4 1053.82
Netty 4 1132.98
Voldemort integration 3 697.35
Voldemort load 3 632.42
Voldemort system 3 621.94
Overall Average: 3 634.24

Configuration learning speed. Seads uses Q-learning to learn analysis configurations

for obtaining and maintaining scalability and high cost-effectiveness of dynamic dependence

analysis. However, its controller module takes time to learn and hence start producing

reasonably good decisions (i.e., the next configuration to switch to). In fact, as an iterative

learning method widely used in approximate dynamic programming for Markov decision

processes (MDPs), Q-Learning computes an optimal MDP policy through multiple iterations

such that the averaged dynamics can be desired with convergence properties [181]. To

demonstrate how fast Seads can learn cost-effective configurations, I have collected the

numbers of Q-learning iterations and learning time before Seads started computing cost-

effective results (i.e., when the controller started stably choosing the next configuration that

led to cost-effective dynamic dependence computation) in my empirical evaluation.

Table 5.4 shows the number of learning iterations (#Iteration) and learning time (Time)

in seconds for each of our 12 subject executions (Execution). Generally, Seads tended to take

more iterations to learn better configurations for more complex system executions, intuitively
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due to the greater variations in the dynamics of these executions. Because the learning time

included the time cost of dependence computations, as shown in Table 5.3, Seads took longer

time to compute dependencies and hence responded more slowly to dependence queries for

more complex system executions. This explains the observation here that the learning time

was generally longer as well for those system executions. On overall average, Seads needed

3 rounds of learning and 634 seconds before it started to achieve cost-effective results.

5.4.3 Threats to validity

Internal validity. The major threat to internal validity concerns potential mistakes in the

implementation of Seads, Doda, and our experimental procedure. Errors in any of these

implementations would compromise the validity of our empirical results and our conclusions

drawn based on the results. However, Seads is based on Soot [143], a framework that has

matured over a decade. Many of the key components of Seads and Doda, including the

code for static instrumentation, static dependence analysis, run-time monitoring/profiling,

and hybrid dependence computation, were drawn from several tools (e.g., Diver [39], Di-

aPro [37], DistEa [41]) that have been debugged and tuned for years.

To minimize the threats concerning the implementation scripts and newly developed

components of Seads (e.g., the controller), I carefully reviewed code and manually inspected

against simple samples (e.g., the two smallest subjects) and cases (e.g., queries with relatively

small dependence sets) to ensure the functional correctness of Seads.

External validity. One threat to the external validity lies in the representativeness of the

subject subjects and their executions used in the evaluation study. The subjects selected

may not well represent all real-world distributed systems that Seads could apply to, and the
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executions considered for each chosen subject might not have exercised all typical subject

behaviors. If the differences between the sample subject executions and other distributed

system executions are significant, Seads users may experience different performance and

merits from what I reported.

I have attempted to reduce this threat by considering subject subjects covering various

size, architecture, and application domains, as well as varied execution scenarios. Neverthe-

less, to minimize such threats, I would need to use real operations scenarios of real-world

distributed systems in their actual deployment settings.

Construct validity. The major threat to construct validity is that the evaluation baseline

selection may be not ideal. To avoid potential biases, I used a state-of-the-art online dynamic

dependence analysis tool Doda (developed by my advisor and me) that at least works with

some (if not able to scale to all) real-world distributed systems. Moreover, to reduce this

threat, I ensured that both Doda and Seads share underlying analysis infrastructure and

some utilities.

Conclusion validity. The main conclusion validity threat is the generalizability of the

evaluation results and conclusions. Meanwhile, the method-level results of Seads versus the

baseline for the dynamic dependence analysis may not generalize to finer-grained levels (e.g.,

statement level). The reason is that statement-level dynamic analysis would face much great

efficiency and scalability challenges. Due to the limited number and diversity of subject

subjects and subject executions considered, I cannot claim that the results generalize to all

real-world distributed systems in all scenarios.
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5.5 Related Work

In this section, I discuss prior works closely related to Dependence analysis for distributed

software and analysis with variable cost-effectiveness.

5.5.1 Dependence analysis for distributed software

Earlier approaches attempted to extend traditional dependence analysis algorithms to

concurrent programs [240, 239, 173, 98]. Most of these approaches are limited to analyzing

dependencies within single processes. In [142], a slicing algorithm was proposed which incor-

porates dependencies due to socket-based message passing. Since it is purely static, those

dependencies are approximated in an overly-conservative manner.

Several dynamic slicing algorithms have been developed too, first for procedural pro-

grams only [139, 43, 112, 74, 131] and later for object-oriented systems as well [168, 28]. In

particular, the approach in [28] defines varied kinds of dependencies induced by interpro-

cess communication. However, the approach was not implemented to work on real-world

distributed software, and its algorithmic nature implies scalability barriers.

Reasoning about happens-before relations by addressing global timing via partial ordering

based on logic clocks is a standard technique in concurrent program analysis. This technique

has been used in testing concurrent programs and distributed systems. For example, DCatch

detects concurrency bugs by checking a distributed execution against a set of happens-before

relation rules [152].
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5.5.2 Analysis with variable cost-effectiveness

Balancing cost-effectiveness has been a long-standing common challenge to program

analysis techniques in general. To tackle this challenge, DiaPro [40] offers variable cost-

effectiveness tradeoffs for dynamic dependence analysis to satisfy diverse user requirements.

It does so by unifying several previously proposed dependence analysis techniques (e.g.,

PI/EAS [8], Diver [39]) each providing a single, unique cost-effectiveness tradeoff.

In addition, D2Abs [38] aims at practical scalability, offering various levels of cost-

effectiveness tradeoffs in the dynamic dependence analysis for distributed programs. To

achieve several cost-effectiveness tradeoffs, D2Abs provides four versions (e.g., basic version,

msg+ version, csd+ version, and scov+ version) to users for enabling and disabling different

analysis steps.
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CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Summary

In my dissertation, I have presented three associated projects (DistMeasure, FlowDist,

and Seads) for my overall doctoral research goal: offering scalable and cost-effective data

flow analysis to support quality assurance for common distributed software. To achieve this

goal, I have solved the scalability, cost-effectiveness, applicability, and portability challenges

first for a particular security application (i.e, information flow analysis, which is essentially

a targeted data flow analysis), and then for more general problems (e.g., self-adaptation,

dependence analysis) to support wider applications, such as software maintenance, quality

assurance, and so on.

First, in project DistMeasure (the expansion of [93]), I defined interprocess communi-

cations (IPC) metrics to measure the coupling and cohesion of distributed systems and then

to predict and understand their quality.

Second, after understanding distributed systems through IPC metrics, I developed and

evaluated a refinement-based dynamic information flow analysis framework, FlowDist [89]

(with two alternative designs), which could overcome applicability, portability, and scalability

challenges through a multi-phase analysis strategy.

Lastly, I developed a distributed, online, continuous, and cost-effective dynamic depen-

dence analysis framework Seads [91] for continuously running distributed systems to achieve

practical scalability and cost-effectiveness through automatically adjusting analysis configu-

rations. It offers self-tuning cost-effectiveness tradeoffs via a reinforcement learning method.
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6.2 Future Work

There are many directions in which I can extend my research work. I list three major

directions ones below, including fuzzing techniques, analysis for cloud systems, and analysis

for internet of things (IoT) systems.

6.2.1 Fuzzing techniques

Software vulnerabilities have caused serious security problems and significant losses to

many industrial areas, such as aviation, energy, finance, etc [148]. However, my approach

FlowDist still has a problem that it depends on test inputs to discover vulnerabilities. If

some vulnerabilities are not covered during the execution with all inputs, these vulnerabil-

ities would not be found. Thus, I will develop techniques to generate more test inputs of

FlowDist (and other approaches).

Figure 6.1: An overview of the fuzzing testing workflow

Input
Generation

Start
Program

Execution
Violation Vulnerabilities

Y
N

To discover and then fix vulnerabilities, researchers have presented several techniques,

among which fuzzing has been greatly evolved and is becoming the most popular one. Fuzzing

testings first generate a large number of abnormal and normal inputs (i.e., test cases) to target

programs, and attempt to find and monitor exceptions (e.g., code assertion failures, crashes,

data leaks) by feeding the inputs to the programs [148], as shown in Figure 6.1. Thus, I will

apply fuzzing techniques (e.g., AFL (short for American Fuzzy Lop) [116]) to information

flow analysis for detecting more vulnerabilities in common distributed software.
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6.2.2 Analysis for cloud systems

Cloud system are the applications of distributed systems [226]. They are rapidly increas-

ing for offering the platforms and software as services [174] provided by Amazon Web Service

(AWS), Google Cloud Platform, IBM Cloud Services, Microsoft Azure, Oracle Cloud, Sales-

force, SAP, etc. Various services and applications have been deployed in these cloud systems,

such as e-commerce, storage, high-performance computing, and so on [226]. Users only need

to send the requests to and then wait for the results to be returned from cloud providers,

without knowing how cloud services/platforms run [150].

However, there are some challenges preventing cloud systems and applications, such as

security, performance, availability, and so on [70]. Analysis techniques/tools will focus on

dealing with these challenges. For example, various ways will be used to detect/prevent

security gaps/attacks in cloud [150]. I will explore techniques that analyze and/or can be

deployed on cloud systems, addressing these challenges.

6.2.3 Analysis for Internet of Things (IoT) systems

Using embedded technologies, Internet of Things (IoT) defines an environment where

various physical objects can interact and cooperate with each other [72]. IoT systems unify

real-world objects to help people perceive/control of relevant things.

There are lot of the development and applications of IoT over the past years, such as

Connected Cars, Smart Cities, Smart Grids, Smart Factories, etc. And many IoT sys-

tems/platforms have been developed and deployed, such as AWS IoT, IBM Watson IoT

Platform, Microsoft Azure IoT Hub, OpenMTC, SiteWhere, and so on [156].
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In recent years, academic research focuses on address the security challenges (e.g., confi-

dentiality, integrity, key management, policy enforcement, privacy) for IoT systems. Tradi-

tional technologies (e.g., cryptography) and new methods (e.g., Blockchain, Software Defined

Network (SDN)) are implemented to solve current IoT security challenges [120]. Besides IoT

security, there are some future research directions for IoT, such as data analysis, performance

modelling, and monitoring. The IoT can transform, aggregate, store, and analyze its data

in the cloud that provides several benefits such as advanced security, low-cost resources,

measurement service, resource consolidation, self-service access, and so on [76]. Therefore, I

plan to develop analysis approaches to IoT systems.
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