
RUN-TIME ANALYSIS AND SECURITY OF MULTI-LANGUAGE SYSTEMS

By

WEN LI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2024

© Copyright by WEN LI, 2024
All Rights Reserved

© Copyright by WEN LI, 2024
All Rights Reserved

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of WEN LI find

it satisfactory and recommend that it be accepted.

Haipeng Cai, Ph.D., Chair

Ananth Kalyanaraman, Ph.D.

Janardhan Rao Doppa, Ph.D.

Xiapu Luo, Ph.D.

ii

ACKNOWLEDGMENT

I extend profound gratitude to all those who played a pivotal role in completing my Ph.D. My

deepest appreciation is for my advisor, Professor Haipeng Cai, whose unwavering support,

guidance, and encouragement were instrumental in the success of my research. Professor

Cai’s invaluable insights and constructive feedback were instrumental in molding the trajec-

tory and focus of this dissertation.

I sincerely thank my dissertation committee members: Professor Ananth Kalyanaraman,

Professor Janardhan Rao Doppa, and the external committee member, Professor Xiapu Luo

from The Hong Kong Polytechnic University. Their insights, comments, and suggestions

enriched this dissertation’s depth and overall quality.

I express gratitude for the invaluable collaboration and guidance provided by Professor

Xiapu Luo, Professor Long Cheng from Clemson University, Professor Ming Jiang from

Tulane University, and Professor Li Li from Beihang University. Their support has been

instrumental in advancing my research work.

I acknowledge the financial support from the National Science Foundation (NSF) (CCF-

2146233) and Office of Naval Research (ONR) (N000142212111), facilitating the fieldwork

and data collection underpinning this project.

Finally, sincere thanks go to all the co-authors who generously shared their time and

insights for my research. Their contributions significantly enriched the depth and quality of

this study in ways that I could not have achieved alone.

iii

RUN-TIME ANALYSIS AND SECURITY OF MULTI-LANGUAGE SYSTEMS

Abstract

by Wen Li, Ph.D.
Washington State University

May 2024

Chair: Haipeng Cai

The contemporary software development landscape has witnessed a widespread integration

of diverse programming languages, leveraging the specific advantages of each, such as the

efficiency of C and the programmability of Python. This trend finds notable applications in

prominent domains, including the Android operating system and advanced machine learning

frameworks like PyTorch. However, adopting this multi-language approach has ushered in a

series of great challenges for developers, necessitating the identification of robust solutions

to tackle potential security vulnerabilities.

Traditional techniques such as program analysis and fuzzing, initially designed for single-

language software, face limitations in effectively uncovering vulnerabilities in multi-language

systems. Program analysis grapples with challenges in comprehending the intricate control

and data flows across diverse languages, often resulting in incomplete vulnerability detec-

tion. Conversely, greybox fuzzing encounters difficulties adapting to the nuances of various

languages, leading to incomplete code coverage and complications in reproducing identified

vulnerabilities. The intricacies within runtime systems supporting multilingual software ex-

acerbate the security clearance predicament, as these systems are often constructed using

iv

multiple languages. This complexity adds an additional layer of difficulty for conventional

security techniques, emphasizing the need for more adaptive and comprehensive approaches

tailored to the unique challenges posed by the multifaceted nature of multi-language systems.

Within the scope of my dissertation, I endeavored to tackle the intricate challenges posed

by vulnerabilities in multi-language software through a comprehensive and multifaceted ap-

proach. This approach entailed conducting extensive empirical investigations into vulnera-

bility susceptibility, facilitating the development of dynamic cross-language information flow

analysis. Recognizing the pivotal significance of comprehensive test input coverage, I devised

an integrated greybox fuzzing methodology. This innovative approach integrates sensitivity

analysis and comprehensive whole-system coverage measurements, significantly enhancing

the efficiency of the fuzzing process and vulnerability identification. Furthermore, I focused

on fortifying runtime security by proposing a novel two-level collaborative fuzzing framework

tailored explicitly for Python language runtime. This contribution was pivotal in reinforcing

the software system’s foundational safeguards, ensuring a robust defense mechanism against

potential security threats.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . iii

ABSTRACT . iv

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Research Overview . 5

1.2 Dissertation Organization . 6

2 BACKGROUND . 8

2.1 Language Interfacing Mechanisms . 8

2.2 Multi-Language Program Analysis . 9

2.3 Greybox Fuzzing . 12

2.4 Compiler Testing . 13

3 SYSTEMATIC EMPIRICAL INVESTIGATION ON MULTILINGUAL CODE 15

3.1 Motivation . 15

3.2 Approach . 16

3.2.1 Vulnerability-fixing commit categorization 17

3.2.2 Language interfacing mechanism categorization 18

3.2.3 Functionality domain identification 24

3.2.4 Statistical methods . 27

3.3 Empirical Results . 28

vi

3.3.1 Association between functionality & language selection 28

3.3.2 Language selection’s security relevance 31

3.3.3 Factors contributing to the relevance 37

3.4 Implications . 41

3.5 Related Work . 42

4 CROSS-LANGUAGE DYNAMIC INFORMATION FLOW ANALYSIS 44

4.1 Motivation . 44

4.2 Approach . 47

4.2.1 Overview of PolyCruise . 47

4.2.2 Static analyses and instrumentation 48

4.2.3 Online dynamic analysis . 58

4.3 Implementation . 63

4.3.1 Static analysis . 63

4.3.2 Runtime libraries . 65

4.3.3 Dynamic information flow analysis engine 65

4.3.4 Limitations . 68

4.4 Evaluation . 68

4.4.1 Experiment setup . 68

4.4.2 Effectiveness of PolyCruise . 71

4.4.3 Efficiency of PolyCruise . 72

4.4.4 Real-world vulnerability discovery 76

4.5 Related Work . 76

5 HOLISTIC GREYBOX FUZZING OF MULTI-LANGUAGE SYSTEMS . . . 78

5.1 Motivation . 78

vii

5.2 Approach . 80

5.2.1 Overview of PolyFuzz . 80

5.2.2 Static analysis and instrumentation 82

5.2.3 Sensitive-analysis-based seed generation 87

5.2.4 Fuzzer . 91

5.3 Implementation . 92

5.4 Evaluation . 94

5.4.1 Experiment setup . 94

5.4.2 Effectiveness on multilingual programs 97

5.4.3 Effectiveness on single-language programs 99

5.4.4 Importance of sensitivity analysis in PolyFuzz 101

5.4.5 Real-world vulnerabilities discovery 103

5.5 Related Work . 103

6 COLLABORATIVE FUZZING OF PYTHON RUNTIMES 106

6.1 Motivation . 106

6.2 Approach . 109

6.2.1 Overview of PyRTFuzz . 110

6.2.2 Run-time API description extraction 110

6.2.3 SLang-based Python application generation 113

6.2.4 Two-level fuzzing core . 120

6.3 Implementation . 123

6.4 Evaluation . 125

6.4.1 Effectiveness of PyRTFuzz . 126

6.4.2 Scalability of Python application generation 127

viii

6.4.3 Factors affecting effectiveness . 128

6.5 Related Work . 132

7 FUTURE WORK . 133

8 CONCLUSION . 136

8.1 Summary . 136

8.2 Implications . 137

8.2.1 Academic and industry impact . 137

8.2.2 Relevance to diverse researchers and developers 137

8.2.3 Generalizable security solutions 138

REFERENCES . 151

ix

LIST OF TABLES

Page

3.1 Vulnerability categorization over the millions of commits. 20

3.2 Codebook for categorizing project’ functionality domains. 25

3.3 Distribution of projects across functional domains. 26

3.4 Association between level0’s functionality domains & language selections. . . 29

3.5 Association between level1’s functionality domains & language selections. . . 30

3.6 Language selection’s vulnerability proneness. 33

3.7 Language selection’s proneness to the three vulnerability categories. 35

3.8 Interfacing mechanism’s vulnerability proneness. 38

3.9 Interfacing mechanism’s proneness to the three vulnerability categories. . . . 40

4.1 PycBench’s features and outline. 69

4.2 Real-world multilingual benchmarks with main languages of Python-C. . . . 70

4.3 Effectiveness on PyCBench. 72

4.4 PolyCruise’s effectiveness on real-world benchmarks. 72

4.5 SDA performance, SDA-T:time, SDA-M:memory, and instrumentation rate. . 74

4.6 New vulnerability discovery of PolyCruise. 76

5.1 Fifteen real-world multi-language benchmarks. 95

5.2 Fifteen single-language benchmarks selected from OSSFuzz. 96

5.3 Performance comparison on the Python-C benchmarks. 97

5.4 Performance comparison on the Java-C benchmarks. 98

5.5 Performance evaluation on the Python benchmarks. 99

5.6 Performance evaluation on the Java benchmarks. 100

x

5.7 Performance evaluation on the C benchmarks. 100

5.8 Performance evaluation between PolyFuzz and PolyFuzz-NSA. 102

5.9 Performance evaluation between PolyFuzz and AFL++. 103

5.10 Vulnerabilities detected by PolyFuzz. 104

6.1 Field definitions for an API description. 111

6.2 SLang primitives implemented in PyRTFuzz. 116

6.3 Profiles of the 3 released CPython versions. 126

6.4 Bugs detected by PyRTFuzz. 128

xi

LIST OF FIGURES

Page

1.1 The research overview. 5

2.1 An intermediate representation layer for multilingual programs. 9

2.2 A general design of cross-language analysis framework. 11

3.1 Overall design of PolyFax. 17

3.2 The overview of interfacing classification technique. 23

4.1 An illustration of cross-language vulnerabilities in Python-C program. 46

4.2 The overall design of PolyCruise. 47

4.3 An example of the symbolic translation. 52

4.4 Symbolic def-use chains of the code in Figure 4.3. 53

4.5 An overview design for the analysis of symbolic dependence. 53

4.6 Format of execution events at runtime. 59

4.7 An example of field-insensitive parameter passing. 67

4.8 Comparison of slowdown factor between SSDA- and CMPL-version. 74

4.9 Comparison of peak memory usage between SDA- and CMPL-version. 75

5.1 A real-world multi-language software: Pillow. 79

5.2 An overview of PolyFuzz’s architecture. 81

5.3 The block representation of a seed. 90

5.4 An overview of PolyFuzz’s implementation. 93

6.1 The number of bugs over twenty years in CPython. 107

6.2 Example of grammar-based code generation. 107

6.3 Motivating example: bugs occur in the interpreter and runtime library. . . . 108

6.4 An overview of PyRTFuzz’s architecture. 109

xii

6.5 Primitive OO to Python APP of equivalent semantics 116

6.6 An example of SLang specification with three statements. 118

6.7 Generated Python application from SLang specification in Figure 6.6 120

6.8 Coverage evolves over the timeline on Python 3.9.15. 127

6.9 The time costs of Python application generation over specification sizes. . . . 129

6.10 Coverage evolves with different APP specification sizes. 129

6.11 Coverage evolves with different level-2 budget. 130

6.12 Coverage evolves with typed and untyped API descriptions. 131

xiii

Dedication

This dissertation is dedicated to my family and friends, with special recognition extended

to my wife, Wei Wei. Their unwavering love, encouragement, and profound understanding

have been the cornerstone of my success throughout this challenging academic journey.

xiv

CHAPTER ONE

INTRODUCTION

In contemporary software systems, the incorporation of multiple programming languages

has become commonplace, leading to developing a "multilingual" code base [102, 72, 103,

80]. Leveraging the unique advantages of different languages, such as the efficiency of C and

the flexibility of Python, has been a standard practice in software development, sustaining

its momentum for several decades. This approach has not only contributed to heightened

productivity in the development process but has also improved the overall performance of

the resulting software. However, this widespread adoption of multilingual software across

various domains has also introduced additional security threats, making security concerns

increasingly critical.

Despite the criticality and urgency, the support for ensuring the security of multilingual

systems has remained largely inadequate, primarily due to the lack of comprehensive tech-

niques and tools. Existing techniques like program analysis [88, 146] and fuzzing [99, 149,

95] all target single-language software. While operating on multi-language software, their

functionalities get compromised by multiple challenges.

When considering single-language program analysis, the issue of comprehensive analy-

sis that extends beyond language boundaries becomes a significant concern. Incomplete

control and data flow analyses often lead to unsound analysis. Consequently, security ap-

plications, such as vulnerability detectors, built upon such unsound analyses, can produce

lots of both false positives and false negatives. While several approaches are geared towards

cross-language analysis [150, 83, 19, 160, 80, 53], yet many of them are narrowly focused

on specific cases within the multilingual realm, particularly JNI programs, thus imposing

certain limitations. Additionally, various other methodologies have practical challenges. For

example, as a framework of dynamic taint analysis, Truffle relies on utilizing a customized

JVM (GraalVM) to accommodate multi-language systems [74]. Nevertheless, implementing

1

a dedicated runtime for each non-Java language within this approach can be a complex and

impractical undertaking. Moreover, the inherent resource-intensive nature of the VM-based

technique renders it less scalable for real-world systems.

Moreover, in the realm of single-language fuzzing, the hurdle of incomplete coverage

measurement presents a formidable challenge to the evolution of effective fuzzing techniques.

Established fuzzing methods such as those focusing on C/C++ [46, 149, 31, 50, 48, 92] have

recently expanded their reach to encompass various language units, yet their operations

remain essentially confined within a single language unit. While these single-language fuzzers

can be adapted for use with multilingual code, the approach treats other language units

as enigmatic entities. The persistent issue of incomplete coverage measurement not only

generates misleading outcomes but also significantly curtails the overall fuzzing effectiveness.

Furthermore, the inadequacy in security coverage for multi-language software at the appli-

cation level poses a substantial risk, as potential vulnerabilities within the language runtimes

hosting these applications could compromise the overall integrity of system security. While

existing approaches have demonstrated efficacy in bug detection within specific language

runtimes, a pivotal yet often overlooked facet is the role played by runtime libraries in the

broader context of language runtime systems. Numerous fuzzing techniques, meticulously

designed for compiler and language runtimes (examples include JSfunfuzz [143], TreeFuzz

[118], Skyfire [158], and Fuzzil [55]), are primarily geared towards the generation of varied

syntax-correct applications. However, they frequently neglect to account for the intricate

interplay of application complexity and runtime libraries, thereby potentially limiting the

effectiveness of security testing. This underscores the critical need for enhanced methodolo-

gies that consider the holistic dynamics of language runtime systems, addressing not only

language runtimes but also the pivotal role of runtime libraries in fortifying the security

posture of multi-language applications.

To tackle these challenges, this dissertation proposes a multifaceted and progressive ap-

proach. First and foremost, it undertakes systematic empirical studies on the security in-

2

vestigation of multi-language code, thereby enhancing the comprehension of multi-language

systems and paving the way for further research directions. Building upon the empirical

studies, a pioneering dynamic information flow analysis (DIFA) is conceived to facilitate

fundamental cross-language program analysis. To overcome the limitations associated with

input coverage in dynamic analysis, a comprehensive greybox fuzzing technique, incorpo-

rating sensitivity analysis and whole system coverage measurement, is introduced to target

the testing of multi-language applications. Moreover, recognizing the significant impact

stemming from identified security issues within language runtimes, a two-level collaborative

fuzzing strategy is devised to thoroughly test the Python interpreter and runtime libraries,

integrating a generation- and mutation-based fuzzing approach. These research endeavors

have demonstrated the scalability and cost-effectiveness of detecting vulnerabilities within

real-world multi-language applications and their respective language runtimes.

Through my PhD research journey, I have demonstrated a set of novel methodologies

for practical security solutions for multilingual applications and their perspective language

runtimes. In summary, I have made the following contributions.

• The empirical findings on the vulnerability proneness of multilingual code not only es-

tablish a robust statistical foundation affirming the susceptibility of multilingual code

to vulnerabilities but also furnish comprehensive evidence elucidating the links between

this susceptibility and actual instances of vulnerabilities. Leveraging these discoveries,

I have formulated practical recommendations tailored for researchers, developers, and

tool builders. These guidelines aim to enhance comprehension, analysis, and defense

against vulnerabilities inherent in multilingual code. In addition to these insights, my

contributions extend to an automated vulnerability classifier for commits, surpassing

the accuracy of existing peer tools. I introduce the inaugural automated language

interfacing mechanism detector, structured according to the first taxonomy of such

mechanisms. Furthermore, I present a real-world vulnerability dataset that surpasses

peer datasets in terms of size, accuracy, and diversity, encompassing a broader spec-

3

trum of projects. The introduction of these innovative tools and datasets provides

immediate, tangible support for the implementation of my proposed recommendations

in practical settings.

• I conceived PolyCruise, an extensible and scalable dynamic analysis framework de-

signed for multilingual applications, specifically those developed in Python and C

programming languages. This innovative framework leverages lightweight language-

specific static analyses coupled with online language-agnostic dynamic analysis, mark-

ing a milestone as the first cross-language dynamic information flow analysis (DIFA).

Additionally, I introduce PyCBench, an open DIFA test suite encompassing a diverse

range of analysis features. This suite stands out as the first publicly available cross-

language dynamic analysis benchmark.

• I conceptualized and created PolyFuzz, the pioneering holistic multi-language fuzzer.

Its open-source and extensible design not only supports fuzzing across Java, C, and

Python but also enables the extension of greybox fuzzing to other language combi-

nations. Notably, the absence of multilingual fuzzing benchmarks posed a significant

challenge to the technique evaluation. In response, I introduce the first benchmark

suite for multilingual fuzzing, addressing a crucial gap in the community.

• I introduced PyRTFuzz, a pioneering two-level collaborative fuzzing technique designed

specifically for Python runtime testing. Its open-source implementation and flexible

design not only support greybox fuzzing within Python but also provide a foundation

for extending this approach to other compiler and runtime systems. The methodology,

which integrates generation-based compiler fuzzing with mutation-based application

fuzzing, as demonstrated in PyRTFuzz, has broader applicability and can be extended

to interpretation languages beyond Python.

4

1.1 Research Overview

In this dissertation, I address the challenges of vulnerabilities in multi-language software

through a multifaceted approach. Beginning with empirical investigations into multi-language

code [84, 87, 85], I progressed with ongoing research in runtime analysis and the security

assurance of multi-language software, as illustrated in Figure 1.1. Specifically, my research

encompasses a security analysis of application-level systems, including initiatives like Poly-

Cruise and PolyFuzz. Additionally, I have delved into the domain of language runtimes with

PyRTFuzz at system level.

PolyCruise
A Cross-Language Dynamic
Information Flow Analysis

PolyFuzz
Holistic Greybox Fuzzing of

Multi-Language Systems

PyRTFuzz
 Collaborative Fuzzing of Python Runtimes

Systematic Empirical
Investigations

Multi-language
Application

Language
Runtime

❸

❹ ❺

❻

Figure 1.1 The research overview.

Based on empirical findings, I introduced PolyCruise, a dynamic information flow analysis

(DIFA) method that observes program behaviors in real-time, addressing varied semantics

among languages and scalability issues [86]. Using a language-independent symbolic repre-

sentation (LISR), PolyCruise successfully uncovered 14 previously unknown vulnerabilities in

real-world multi-language systems, emphasizing the critical role of the approach in bolstering

the security of multilingual software.

5

To overcome the weakness of PolyCruise due to the limited code coverage of available test

inputs, I developed PolyFuzz, a holistic greybox fuzzing methodology, which effectively tested

multi-language systems [89]. PolyFuzz consistently outperformed single-language fuzzers,

achieving significant code coverage enhancements (10%-52.3%) and uncovering more bugs

(1-10 vulnerabilities) across multi-language and single-language programs, highlighting its

effectiveness.

Shifting the focus to language runtime security, I developed PyRTFuzz, a two-level collab-

orative fuzzing framework for Python runtime [90]. PyRTFuzz combines generation-based

fuzzing at the compiler level and mutation-based fuzzing at the application-testing level,

having discovered 61 new, demonstrably exploitable bugs within the interpreter and runtime

libraries. The scalability, cost-effectiveness, and potential for continued bug discovery un-

derlines the promise of PyRTFuzz’s collaborative two-level fuzzing approach, for extending

its application to other language runtimes, particularly those of interpreted languages.

1.2 Dissertation Organization

In the subsequent sections of this dissertation, I delve into the techniques and fundamental

concepts that underpin my research in Chapter 2. Following this groundwork, Chapter 3

presents extensive empirical studies on multi-language software construction and the vul-

nerability proneness of code written in multiple programming languages, as documented in

previous research [84, 87, 85]. This chapter addresses the lack of a systematic empirical as-

sessment of multi-language software structure and the interaction mechanisms among various

programming languages.

The ensuing three chapters showcase technical contributions, featuring PolyCruise [86]

in Chapter 4, PolyFuzz [89] in Chapter 5, and PyRTFuzz [90] in Chapter 6. These chapters

delve into specific technical aspects and implementations of the research.

Chapter 7 delineates my envisioned future directions for research, offering a glimpse into

potential avenues for further exploration. These insights converge in the concluding remarks

6

of Chapter 8, particularly elucidating implications for researchers, industry professionals, de-

velopers, and security analysts within the expansive domain of software security and testing.

7

CHAPTER TWO

BACKGROUND

2.1 Language Interfacing Mechanisms

Language Interfacing Mechanisms are integral for enabling seamless communication and

interaction among different programming languages. As software systems grow in complexity

and diversity, the need for languages to effectively collaborate has become increasingly vital.

These mechanisms allow developers to integrate code from one language with that of another,

leveraging the unique strengths of each language within a single application.

The two primary categories of Language Interfacing Mechanisms exist: uniform and

language-specific approaches. Uniform approaches typically involve interprocess communica-

tion (e.g., Remote Procedure Call), enabling different language components to communicate

based on predefined agreements or protocols. These mechanisms are generally language-

independent and widely utilized in various middleware technologies. Conversely, language-

specific approaches, facilitated through Foreign Function Interfaces, enable direct function

invocations between language components. These methodologies necessitate a more profound

comprehension of the complexities inherent in each language’s runtime environment.

Widely used languages like Python, PHP, Java, and Ruby [49] all provide support for

Foreign Function Interfaces concerning C modules, with variations in the specific interfaces

employed across languages. For instance, Java interacts with C functions using native func-

tion calls and ’jobject’ for parameter passing, while Python’s interaction with C is notably

more complex and flexible [133]. Python can load a C library through ’ctypes’ and call

C functions, emulating the ’dlopen’ usage in the C programming language. Alternatively,

a common approach involves constructing the C module as a Python extension, allowing

Python to import and use the C extension as a Python module. Conversely, using built-

in APIs of Python runtime, C can call a Python function, necessitating the conversion of

C-type parameters to PyObjects. Similar mechanisms are observed in other representative

8

languages, such as Go’s communication with C through the ’cgo’ command and Ruby’s

communication with C through FFI.

Understanding the intricacies of these Language Interfacing Mechanisms is crucial for

ensuring smooth communication and seamless integration between different components of

a software system. Developers must be aware of the varying interfaces and interaction

patterns between different languages to design effectively, develop and maintain complex

software applications. Meanwhile, for researchers, handling the intricate interactions among

different language units is essential for sound technical design.

2.2 Multi-Language Program Analysis

As an evolving research domain, investigations on multilingual programs primarily focus on

three key directions:

(1) Unified intermediate representation layer. In analyzing monolingual programs, a

crucial step involves translating the source or binary code into an intermediate representa-

tion (IR). This language-independent IR contains essential information, including data types

and instruction operations, facilitating effective analysis [76]. Frameworks such as Soot [75]

for Java and LLVM [76] for C/C++ are equipped to perform this translation. Consequently,

when considering the analysis of multilingual programs, the concept of translating all lan-

guage components into a uniform IR with a consistent syntax structure naturally arises (as

shown in Figure 2.1).

C/C++ component Java component Python component component

The front ends of individual language compiler

Multilingual Software system

Intermediate
representation

of the whole
software system

Existing program
analysis techniques

Figure 2.1 An intermediate representation layer for multilingual programs.

9

Various research endeavors are already in progress in this area. For instance, The pyLang

[97] functions as a front-end tool for the compilation of Python programs into LLVM IR. Sim-

ilarly, JLang [169] has succeeded in translating Java programs into LLVM IR, encompassing

most of Java 7’s language features, albeit excluding advanced reflection functionalities. In a

separate effort, Arzt et al. [7] attempted to translate the Common Intermediate Language

(CIL) of the Microsoft .NET framework into Jimple. However, this approach missed some

crucial features, such as those pertaining to mixed-mode DLLs.

(2) Language-independent analysis techniques. From a technological perspective at

the application level, existing language-independent techniques can be summarized into two

aspects: (1) Techniques based on observation and (2) Techniques based on system emulators.

One representative of the former, ORBS [13], claims to analyze multilingual programs

without the need for additional efforts. It accomplishes this by iteratively applying a process

known as "delete-execute-observe" on the target system, obtaining a program slice until no

further lines can be deleted. The resulting slice behaves the same as the original program,

given a specific criterion. However, even its improved version [77] continues to face significant

scalability issues, with obtaining a 5K program slice taking up to 10 hours.

The latter group has long been focused on dynamic analysis. Generally, such low-level

technologies do not differentiate between language characteristics during runtime. Instead,

they analyze the target system by tracking memory bytes with shadow memory [42, 37]. De-

spite their language-independent nature, these techniques have not been extensively reported

for multilingual program analysis. One possible reason is their inability to capture details of

vulnerabilities in software components developed using interpreted languages. For instance,

they may report a JVM vulnerability caused by a specific application without recognizing

any details about the application itself.

(3) Cross-language analysis techniques. Structurally, cross-language analysis (CLA)

can be divided into three components: (1) Language-specific component (LSC), (2) Language-

independent component (LIC), and (3) Analysis component (AC) as shown in Figure 2.2.

10

C/C++ component Java component Python component component

LLVM SOOT CPython

Multilingual Software system

Lexical dependence
based instrumentation

C/C++ component Java component Python component component

Instrumented Multilingual Software system

Event collector Dynamic information graph Analysis applicationsRuntime

Figure 2.2 A general design of cross-language analysis framework.

The Cross-Language Analysis (CLA) approach leverages existing mature analysis frame-

works (i.e., LSCs) tailored for specific languages, minimizing the effort required to obtain a

language-independent intermediate representation, such as a forest of graphs in static anal-

ysis or an Abstract Syntax Tree (AST) in dynamic analysis, as seen in Truffle [74]. The

Language Interconnection Component then links these intermediate representations based

on the connecting semantics of each language component. Finally, the Analysis Component

focuses on developing specific analysis algorithms for the entire software system. However,

this technique still demands some engineering work for single-language analysis, and model-

ing the semantic connections between language components remains a challenge.

In this context, prominent work has largely focused on JNI analysis due to the extensive

use of Java and Android. Previous efforts, such as those by Kondoh et al. [73] and Li et

al. [83], detect bugs in native code by modeling semantic rules for JNI and native code

interactions, employing data flow graphs and finite automated machines as intermediate

representations. Similarly, Wei et al. [160] and Lee et al. [78] aim to construct comprehensive

program data flow/call graphs with semantic summaries of all native functions, applying taint

analysis or bug detection on these graphs. However, the current research is primarily limited

to the static analysis of two languages, highlighting the ongoing challenge of implementing

an effective and practical multilingual analytical framework.

11

2.3 Greybox Fuzzing

Greybox fuzzing [15, 100, 46] involves conducting lightweight program analyses on the tar-

gets and/or collecting execution feedback (such as coverage) to guide seed selection and/or

mutation [98, 48]. The typical procedure of greybox fuzzing is outlined as below. (1) retains

and operates a seed queue Q, (2) picks seeds from the queue Q based on a specific strat-

egy; (3) mutates the seeds using diverse approaches (e.g., bit/byte flips, stacked tweaks, and

splicing [98]); (4) executes the program using the mutated seeds, detecting vulnerabilities

and, if necessary, updating the queue Q. and (5) repeats the cycle from step (2).

Greybox fuzzing techniques, including AFL [99], VUzzer [141], and AFL++ [46], lever-

age lightweight program analysis on the target programs, using execution feedback such as

coverage data to guide seed selection and mutation strategies. The general iterative process

of greybox fuzzing entails maintaining a seed queue that can be dynamically updated. Seeds

are selected from the queue based on specific policies and then subjected to diverse mutations

such as bit flips, arithmetic operations, and splicing. The fuzzer subsequently executes the

target program with mutated seeds, reporting vulnerabilities and updating the seed queue

as necessary. The process continues cyclically, refining the fuzzing strategy over time.

Serving distinct purposes, greybox fuzzing can be broadly categorized into two main

types: coverage-based greybox fuzzing (CGF) and directed greybox fuzzing (DGF). CGF

primarily concentrates on attaining extensive coverage of the target program by generating

seeds through input mutation. The aim is to traverse previously undiscovered program

statements, thereby increasing the overall code coverage rate. Prominent examples of CGF

techniques include AFL [99] and its enhanced version, AFL++ [46]. On the other hand,

DGF techniques are specifically designed to generate seeds capable of reaching specified or

potentially vulnerable code. This may involve triggering known vulnerabilities with identified

locations or assisting in the creation of proof-of-concept (PoC) scenarios for vulnerabilities

[16, 23, 167]. The distinction between these two categories underscores the varied objectives

12

and strategies employed by greybox fuzzing techniques in the pursuit of effective vulnerability

discovery and exploitation.

As an evolution of greybox fuzzing, data-flow-sensitive (DFS) fuzzing aims to leverage

data flow features such as data dependence effectively to explore hard-to-reach code and

uncover vulnerabilities while balancing efficiency and effectiveness. For instance, Greyone

[48] introduced a fuzzing-driven taint inference (FTI) technique to infer semantic dependence

between seeds and branch variables. Leveraging these dependence facts, it builds an input

prioritization model to guide mutation and implements conformance-guided evolution to

enhance seed updating and selection. Despite utilizing minimal data flow facts, Greyone has

demonstrated a strong capability in detecting vulnerabilities.

2.4 Compiler Testing

Compiler testing is a complex task involving generating a diverse set of valid test programs,

ensuring that the generated programs exercise various compiler parts for effective bug de-

tection [24]. The generation of invalid programs can lead to their exclusion during the

initial phases of the compilation process, making them less useful for comprehensive testing.

To address these challenges, two primary strategies are commonly used: grammar-guided

approaches and program mutation-based approaches [24].

Generation-based fuzzing techniques, including JSfunfuzz [143], TreeFuzz [118], and Sky-

fire [158], leverage existing samples to learn grammatical features and rules, enabling the

generation of valid applications. These techniques use formal grammar of programming lan-

guages to ensure the syntactic correctness of the generated programs. On the other hand,

mutation-based fuzzing techniques, such as Superion [159] and Fuzzil [55], modify exist-

ing programs based on their Abstract Syntax Trees (ASTs) or intermediate representations

while considering the underlying grammar. By intelligently mutating existing programs,

these techniques aim to create diverse and valid variations for testing purposes.

LangFuzz [63] is an example of a grammar-driven approach that generates random pro-

13

grams by assembling code snippets according to the rules defined by the grammar. More-

over, specific grammar-aware methodologies, such as those proposed by Chen et al. [28, 27],

emphasize the use of generative models based on machine-learning techniques for effective

compiler testing, particularly in the context of Java Virtual Machine (JVM) testing. De-

spite the effectiveness of these techniques in testing compilers and interpreters, they often

overlook the critical role played by runtime libraries, which are integral components of the

language runtime system. The selection of an effective strategy is determined by various

factors, including the programming language, the type of compiler, and the defined testing

objectives, with each approach having unique advantages and limitations.

14

CHAPTER THREE

SYSTEMATIC EMPIRICAL INVESTIGATION ON MULTILINGUAL CODE

Utilizing multiple languages in contemporary software development has become a common

practice. To delve into the intricacies of how different languages are used and chosen in

tandem, this research work presents an updated overview of the language profiles in multi-

language software, through analyzing 7,113 active projects on GitHub over the past 5 years.

The research identifies an increasing trend of incorporating 3 to 5 languages within a single

project, along with a consistent preference for specific languages over time. Furthermore, the

study reveals the considerable impact of language selection, project age, and team size on the

susceptibility of multi-language software to code vulnerabilities, with a particularly notable

effect on specific vulnerability categories. The exploration of various cross-language inter-

facing mechanisms serves as a key explanatory factor for these effects. In light of previous

research, the results emphasize the significance of holistic language profile selections, rather

than individual languages, in influencing the vulnerability proneness of software, highlight-

ing the critical need for heightened attention to security threats across language interfaces.

Moreover, These findings provide valuable insights for developers and language designers,

aiding them in making informed decisions for language selection and design strategies.

3.1 Motivation

Numerous studies have thoroughly explored the panorama of programming languages within

the realm of software development, shedding light on critical factors influencing language suc-

cess [25] and popularity [14, 104, 142]. These studies have explored language interactions [14,

155], relationships, and evolutionary trends [25], offering valuable insights into the dynam-

ics of programming languages over time. While extensive research has explored the impact

of language usage on defect-proneness and maintenance in software systems, the majority

15

has focused on single-language systems. Insufficient attention has been dedicated to com-

prehending the intricacies of these dynamics within the realm of multi-language software,

thereby underscoring an untapped potential for extended investigation and exploration.

Although some studies have investigated multilingual software, these have primarily cen-

tered on the prevalence of such projects and developer practices [1], often relying on surveys

rather than empirical analysis of project artifacts [103, 151]. Limited research has explored

the rationale behind language selections and combinations in multilingual projects, leav-

ing a gap in understanding the underlying decision-making process. While a few studies

have examined associations among chosen languages in multilingual software [102, 39], these

works have not comprehensively delved into the justifications for language combinations with

respect to project characteristics or functionalities.

Moreover, a substantial portion of existing literature has focused on individual program-

ming languages [14, 104, 142, 25, 155, 170], with only a few studies addressing the challenges

and implications of multilingual software development [103, 151]. Some recent research has

hinted at potential security risks associated with multilingual code, but these findings have

been limited to Java Native Interface (JNI) programs [160, 80, 64], leaving the broader

context of vulnerability proneness in multilingual software unexplored. Overall, there is a

need for more comprehensive and detailed studies to unravel the complexities and implica-

tions of employing multiple programming languages in contemporary software development,

especially in the context of security vulnerabilities.

3.2 Approach

To enable the systematic empirical investigation of the open-source projects on GitHub, I

developed a toolkit, PolyFax [85], which facilitates a comprehensive and systematic empirical

investigation of open-source projects on GitHub. This toolkit is designed to streamline the

process of data collection and processing, enabling efficiently gathering relevant information

for analysis. The architecture of PolyFax is illustrated in Figure 3.1, providing an insightful

16

overview of its internal structure and functionality.

PolyFaxPolyFax

Configure

Github

Reports

Crawler

Project
metadata

Scrubber Analyzer
VCC-analyzer

LIC-analyzer

……

Figure 3.1 Overall design of PolyFax.

PolyFax operates in three main stages: Crawler, Scrubber, and Analyzer. Initially, the

Crawler fetches repository profiles, clones projects, and retrieves historical commits to lo-

cal storage. Subsequently, the Scrubber preprocesses textual information from all project

metadata, such as project descriptions and commit logs. Finally, the Analyzer executes spe-

cific analyses for predefined purposes in the study. This includes vulnerability-fixing commit

categorization, language interfacing mechanism categorization, functionality domain identi-

fication, and association analysis, all designed to achieve the study’s investigative goals.

3.2.1 Vulnerability-fixing commit categorization

Vulnerability-fixing commit categorization (VCC) is based on the principle that commits

aimed at addressing specific vulnerabilities often include corresponding keywords or phrases

in their logs. This methodology is akin to the approach adopted in earlier studies, such as

that by Ray et al. [142], where bug-fixing commits were identified using keyword analysis

in commit logs. The VCC process involves two primary phases: (1) Vulnerability keyword

summarization: This phase condenses the top 25 critical Common Weakness Enumerations

(CWEs) [22] into three overarching categories: Porous defenses, Risky resource management,

and Insecure interaction. It generates a set of security-related keywords or phrases associated

17

with each category. (2) Vulnerability keyword matching: In this phase, the FuzzyWuzzy

technique [32] is employed to classify commit logs based on the identified keywords.

The process outlined in Algorithm 1 begins by retrieving the predefined categories (line

2) and cleaning the input commit using the pre-processText function (line 3). Subsequently,

the algorithm calculates a match score between the commit and each category (lines 5-21). It

retrieves and iterates through the keywords or phrases in each category (lines 8-20), dividing

the commit log into n-grams for a given phrase or keyword length n (lines 9-17) and matching

them using the FuzzyWuzzy algorithm (line 18). To ensure accuracy, the algorithm employs

a minimum threshold score of 90 (line 6) and selects the highest score from all the phrases

in a category as the final score for that category (lines 19-20). Finally, the algorithm returns

the most relevant category as the vulnerability category for the given commit (lines 22-23).

Following the prescribed methodology, a comprehensive analysis revealed 141.38K com-

mits designated as vulnerability-fixing out of the total 20.37 million commits. These were

further categorized into three distinct classes, with 36%, 48%, and 16% assigned to each

category, as illustrated in the detailed breakdown provided in Table 3.1.

To assess the efficacy of the approach, among randomly sampled 50 projects, I examined

500 commits of each project. I measured precision and recall based on manually established

ground truth, as shown in Table 3.1. The ground truth was established through independent

labeling by the authors, involving a thorough examination of the commit log, associated code

snippets, and issue comments, if available. Disagreements were resolved through discussion

to arrive at a final decision for each commit. Moreover, each identified vulnerability-fixing

commit corresponds to a vulnerability that has been confirmed, going beyond matches of

simple keywords or phrases.

3.2.2 Language interfacing mechanism categorization

In order to obtain a comprehensive grasp of language selection’s security implications, it

was imperative to ascertain the specific language interfacing mechanisms employed in every

18

Algorithm 1: Procedure of vulnerability-fixing commit categorization
Input: Cmmt: a commit including its log and code snippet

Output: vCat: the vulnerability category of Cmmt

1 Function classifyCommit (Cmmt)

2 V C ← initVulCategory () /* Categories with keywords/phrases */

3 Cmmt ← pre-processText (Cmmt) /* Tokenize, stemmatize, etc. */

4 CatScore ← ϕ

5 foreach Cat in V C do

6 Score ← 90 /* The minimum match score as the threshold */

7 PhraseList ← Cat.phrases /* Keywords/phrases of category Cat */

8 foreach Phrase in PhraseList do

9 Np ← getWordNum (Phrase) /* 1 if Phrase is a keyword */

10 Nc ← getWordNum (Cmmt) /* Number of tokens */

11 xGramSet ← ϕ /* The set of n-grams in Cmmt; n=Np */

12 Index ← 0

13 while Index < Nc do

14 End ← Index + Np /* Split Cmm into n-grams */

15 xGramStr ← Cmmt[Index:End]

16 xGramSet.append (xGramStr)

17 Index++

/* Match Phrase against Cmm’s n-grams with FuzzyWuzzy */

18 Result = FuzzyWuzzy.extractOne (Phrase, xGramSet)

19 if Result.score > Score then

20 Score ← Result.score

21 CatScore[Cat] = Score /* Keep the best match score with Cat */

22 vCat ← maxScoreCat (CatScore) /* Take the best-matched category */

23 return vCat

project. To accomplish this, I undertook an extensive manual investigation, examining

codebases and relevant documentation thoroughly. This meticulous process enabled the

development of a comprehensive taxonomy categorizing the various interfacing mechanisms.

Leveraging insights derived from this taxonomy, I subsequently created an automated tool

tailored for interfacing classification.

19

Table 3.1 Vulnerability categorization over the millions of commits.

Category Security Vulnerability Description Signatures (Keywords/Phrases) %Cts Prec Rec

Porous

defenses

vulnerabilities associated with defen-

sive techniques that are either misused,

abused, or simply ignored.

missing authorization, missing authentication, broken

cryptographic, missing encryption, hard-coded creden-

tial, unnecessary privilege, excessive authentication, au-

thorization bypass, user-controlled key, privilege esca-

lation, etc.

36% 79% 81%

Risky

resource

management

the creation, usage, transfer, or de-

struction of important system resources

is not properly managed.

data race, deadlock, buffer overflow, data leak, memory

leak, exposed danger, stack overflow, memory corrup-

tion, integer overflow, untrusted control, etc.

48% 83% 86%

Insecure

interaction

data is sent and received between sep-

arate components, modules, programs,

processes, threads, or systems in inse-

cure ways.

command injection, request forgery, SQL injection, re-

flected XSS, CSRF, unintended proxy, unrestricted up-

load, origin validation error, unintended intermediary,

incomplete blacklist, etc.

16% 81% 88%

3.2.2.1 Definition of language interfacing mechanism

During the initial exploration aimed at understanding the fundamental mechanisms govern-

ing the interactions between the top languages, I categorized the language interactions into

four overarching categories:

(1) Foreign function invocation (FFI). Foreign function invocation enables the seamless inter-

action between different programming languages. In this context, the host language provides

an interface for ease of use by the guest language. For example, Java utilizes the Java Native

Interface (JNI) to establish communication through native code programmed in languages

such as C. Notably, these cross-language interfaces strictly adhere to standardized definitions

outlined in various documentation sources, including JNI and Python extension [135]. Fur-

thermore, these interactions are executed through direct function invocations, characterizing

the distinctive features of this category.

(2) Implicit invocation (IMI). Implicit invocation serves as a cross-language interaction

mechanism, relying on inter-process communications to facilitate communication among di-

verse components. One of the commonly adopted techniques in this category is the Remote

20

Procedure Call, which is often utilized to enable seamless communication among various

language components.

(3) Embodiment (EBD). Certain languages might not exhibit any visible interface interac-

tions within the software, yet they are interdependent and coexist to form a comprehensive

system. We categorize this type of relationship between languages as interdependence. For

example, in a web application, there might not be any FFI or IMI interactions between lan-

guages like CSS, HTML, and JavaScript. However, their collaboration is essential to ensure

the functionality of the application.

(4) Hidden interaction (HIT). This category encompasses language selections where there is

no apparent explicit interaction between the languages. I refer to it as "hidden interaction"

as there might be an indirect data connection between various language components. For

example, a crawler developed in Python could download GitHub projects to serve as inputs

for an analyzer developed in C. While the two components are language-independent but

rely on the interactive data flows.

3.2.2.2 Language interfacing classification

Based on pattern matching and finite state machine techniques, we constructed a rule-based

classification model C in the following manner:

C = (s0,F, δ, S,R,Φ), s0,F ∈ S, δ∗ : S× R∗ → S

In the model, s0 and F represent the initial and end state, respectively; S is the set of

states; R is the set of patterns; δ is the function for state transition and Φ is a regular

expression engine. With a sequence of inputs I = {I0, I1, ..., In}, C obtains a set of matched

rules R = Φ(I), iff δ∗(s0,R) = F then we say C accepts the input I or I is classified by C.

Built upon the model, I constructed a language interaction classification engine (LICE),

illustrated in Figure 3.2. Meanwhile, LICE focuses on the top twelve languages in the

study’s language selections with pre-defined classifiers. The engine operates through two

interdependent components, including classifier configuration and classifier matching.

21

Algorithm 2: Classify a project based on language interfacing mechanism
Input: P : a multilingual program, C: the classifier set

Output: PC : the classifier set matched

1 Function classifyProject (P)

2 C ← initClassifier (); /* Initiate classifier set. */

3 R ← compileRegex (C); /* Compile all regex in classifiers. */

4 RC ← initMap (C); /* Initiate a map from regex to classifiers. */

5 foreach file in P do

6 RM ← scanRegex (R, file); /* Obtain matched regexs. */

/* Obtain possible classifiers by matched regex. */

7 PClf ← selectClassifier (RC , RM);

8 foreach Clf in PClf do

9 if classifyMatch (Clf , RM) then

10 PC .insert (Clf);

11 return PC ;

12 Function classifyMatch (Clf , RM)

/* Initiate state queue by the initial state of Clf . */

13 SQ ← initStateQueue (Clf);

14 foreach rm in RM do

15 foreach S in SQ do

/* Try to move to the next state with input rm. */

16 NS ← nextState (S, rm);

17 if NS == NULL then

18 continue

19 if isFin (Clf , NS) then

20 return TRUE; /* Reach the Fin state. */

21 else

22 SQ.push (NS);

23 return FALSE

(1) Classifier configuration (CC). CC is designed to establish a classifier set chain, comprising

four categories: FFI, IMI, EBD, and HIT as defined above. For the FFI classifier set, I

manually extracted programming patterns from the official language interface documents for

all sixty-six pairs of the top twelve languages, resulting in the creation of twenty classifiers

such as c_java, c_python, and java_python. In the case of the IMI classifier set, I examined

22

FFI classifier set

IMI classifier set

EBD classifier set

HIT classifier set

C_Python

classifier

……

classifier

Ruby_Java

classifier

S0

S1

Fin

S2

Import.*ctypes

#include <Python.h>

ctypes.CDLL

Py_Initialize.*

……

……

……Mechanism
labels

Project
repository

LICE

initial

state

Figure 3.2 The overview of interfacing classification technique.

programming patterns on standard components facilitating remote calls like D-bus [121]

and gRPC [56], leading to the development of seven classifiers. The EBD classifier set

includes a single classifier for the interdependent existence of javascript, css, html in the top

language selections. Additionally, in cases where the three classifier sets mentioned above

cannot categorize a specific scenario, CC introduces a HIT category to account for instances

where explicit programming patterns cannot be detected. Although LICE ensures interaction

classification for the top twelve languages in the study, the implementation can be extended

to support additional languages with relative ease.

(2) Classifier match (CM). Upon receiving a repository as input, CM conducts a comprehen-

sive scan of the source files, making every effort to identify all types of language interactions

utilized within the project. Algorithm 2 illustrates the process through which CM classifies a

given project. During the initialization phase (lines 2-4), CM sets up all classifiers, compiles

regular expressions, and establishes a mapping from each regex to a corresponding set of

classifiers employing the regex. Subsequently, CM initiates the file scanning procedure. For

every file, CM first employs a regex engine to identify all matched regex patterns. Through

a process called dynamic selection (line 7), CM can narrow down the number of classifiers to

be examined by utilizing the pre-defined regex-classifiers mapping. Thereafter, CM iterates

through each classifier using the matched regex as input and adds any matched classifiers to

the results. During the classifier matching process (lines 12-23), CM sequentially passes the

matched regex into the state machine of the classifier, maintaining a state queue to store the

matching context, hence capturing all accepted regex.

23

3.2.3 Functionality domain identification

To analyze the functional context of language utilization within multilingual software, I

conducted an automatic identification of the functional domain for each project. For this

purpose, I categorized the projects under investigation by employing inductive and axial

coding analysis techniques to assess their functional attributes. [34, 105]. During the induc-

tive coding step, I labeled randomly selected projects based on their associated non-code

artifacts, such as project descriptions and README files, thereby compiling a codebook

of identified labels. Subsequently, in the axial coding phase, I systematically grouped the

projects into well-defined functional domains, assigning each project a specific code that most

accurately reflects its primary functionality domain, as outlined in the developed codebook.

In particular, the manual analysis for categorizing project functionality involves two key

phases: codebook creation and project categorization, detailed below.

(1) Codebook creation. To establish the codebook, I initiated a random selection of 1,500

projects, ensuring a statistically significant sample at a 95% confidence level (CL) and a 5%

margin of error (ME). Three collaborators meticulously analyzed the documents of the se-

lected projects, continuously refining the codebook and resolving any disagreements through

collaborative discussions. Each project underwent a thorough evaluation, involving a com-

prehensive review of the project documents, assessment for compatibility with existing cat-

egories, and creation of new categories when needed.

The process of introducing a new category involved the initial definition of a label by the

collaborators, followed by the creation of a comprehensive description for that category. To

facilitate the labeling of future projects, the collaborators provided a concise summary of the

characteristics exhibited by projects belonging to that particular category. As a result, the

analysis yielded a codebook comprising 20 distinct codes, each accompanied by a summary

description, as illustrated in Table 3.2. The codebook adopts a hierarchical categorization

approach, where level 0 encompasses codes representing different layers within the standard

software stack, spanning from drivers to end-user applications. On the other hand, level 1

24

Table 3.2 Codebook for categorizing project’ functionality domains.

ID Level Category Description

1 0 driver a software connecting OS and hardware devices

2 0 system the interface between hardware and user applications

3 0 programming tools for software development

4 0 middleware software providing services to applications beyond OS

5 0 application library libraries providing supports to other client applications

6 0 end-user application applications providing functionalities to end users

7 1 word process software for manipulating and designing text

8 1 database software for operating database files and records

9 1 spreadsheet software for operating data arranged in rows/columns

10 1 multimedia software for operating audio/video files

11 1 presentation software for creating a presentation of ideas via medias

12 1 enterprise information system for organizations

13 1 information worker software for users to create and manage information

14 1 communication software for passing information from between entities

15 1 education software for educational purposes

16 1 simulation software modeling a real phenomenon

17 1 content access software for accessing content without editing

18 1 application suite a group of different but inter-related applications

19 1 email software for using electronic mail

20 1 engineering integrated software systems supporting development

25

accounts for the varied types of application software present within the system.

Table 3.3 Distribution of projects across functional domains.

Software functionality domain Percentage of projects

end-user application 28.67%

application libraries 14.38%

middleware 13.34%

content access 8.75%

engineering/development 6.11%

education 5.16%

database 4.30%

programming 3.82%

multimedia 2.94%

word process 2.82%

system 2.10%

communication 1.60%

email 1.57%

presentation 1.13%

application suites 1.07%

(2) Project categorization. The entire set of projects was analyzed and coded by the five

collaborators, in adherence to the codebook’s guidelines. Notably, certain projects received

multiple labels, reflecting their involvement in various functionality domains. The collab-

orators employed a negotiated agreement approach to ensure coding reliability, resolving

discrepancies through discussion and consensus. The results of this comprehensive cate-

gorization process, detailing the distribution of projects in the SPC dataset across various

functionality domains (Table 3.3).

26

3.2.4 Statistical methods

The study employed two key statistical techniques: association analysis and regression anal-

ysis using the NBR method.

Association analysis. In line with the established per-project functionality categories, a

comprehensive examination was conducted to explore the relationship between these cate-

gories and the language combinations present in the dataset. The approach involved employ-

ing association rule mining techniques, aimed at identifying common if-then associations that

comprised a software category as the antecedent and a language combination as the conse-

quent. This involved the implementation of the Apriori algorithm [122] within the Mlxtend

library [140], following a meticulous process consisting of three specific steps.

(1) Data formatting. The inputs are structured as a data frame, with one column containing

project functionality categories and the other column containing language combinations.

(2) 1-hot encoding. The data frame is transformed in two steps: first, all unique data items

(i.e., words) in the data frame are formed into a set of size n; then, each cell of the data

frame is encoded as n bits by setting each item of the cell as 1 if it is in that set, followed

by zero padding.

(3) Association computation. Using the encoded data frame, I initially calculate the sup-

port for each row (with min_support=0.01). Subsequently, I derive the association rules,

representing the if-then associations, for the specified project set (with min_threshold=0.6).

In parallel, I analyze the association between project functionality categories and lan-

guage combinations across the projects under study. This exploration aims to provide in-

sights into the decision-making process and rationale behind language selection in developing

multilingual software, focusing on the functionality domain.

NBR modeling. The NBR model was utilized to establish the relationship between

vulnerability-fixing commits and various factors associated with multi-language software

projects. This analysis was inspired by previous research in the field [142] and was particu-

27

larly well-suited for handling datasets exhibiting over-dispersion [5, 142].

In the study, each pairing of (language selection, project) was treated as an individual

sample representing the overall landscape of multi-language programs. The analysis focused

on several predictors, including project age (#days since creation), language selection size

(#languages selected), and the language selection itself. To account for the unbalanced na-

ture of the factors under consideration, weighted effects coding [139] was employed. This

method assessed the relative impact of using a specific language selection to the response,

relative to the dependent variable’s weighted mean on all samples. Furthermore, to validate

the results, a Chi-Square test [33] was conducted to assess the two-factor variables’ depen-

dences. In cases where dependence was identified, the effect size was computed using an r

× c equivalent of the phi coefficient, as adopted in [142].

3.3 Empirical Results

3.3.1 Association between functionality & language selection

I investigated the correlation between developers’ language choices in the studied software

projects and their preferences within functionality domains, particularly emphasizing project

topics. This analysis entailed calculating associations between functionality domains and

language selections.

The outcomes of the association analysis, considering level-0 and level-1 functionality

domains, are presented in Tables 3.4 and 3.5. Each entry in these tables represents a pair

of (software domain, language selection), where support indicates the frequency of the pair

in the dataset, and confidence signifies the conditional probability of the language selection

given the domain. The inclusion of pairs is based on the criteria support ≥ 1% and confidence

≥ 50%. These thresholds were chosen empirically. Lowering them would not yield additional

pairs with at least weak association [62] (i.e., lift ≥ 1). The level of association is indicated

by the lift factor: lift < 1 denotes mutually exclusive language selection and software domain,

lift = 1 indicates no association, and lift > 1 implies an association with higher lift values

28

suggesting a stronger association.

Table 3.4 Association between level0’s functionality domains & language selections.

Functionality Domain Language Selection Support Confidience Lift

application library css-javascript-php 2.20% 7.11% 1.51

middleware c-c++-python 1.66% 12.65% 1.41

end-user application php-shell 1.50% 2.98% 1.39

end-user application css-html-ruby 1.82% 3.62% 1.38

application library css-html-javascript 8.80% 28.42% 1.33

end-user application css-html-javascript 1.89% 14.56% 1.29

end-user application java-kotlin 1.02% 2.02% 1.18

application library objective c-ruby-swift 1.72% 5.55% 1.10

middleware css-html-javascript-php 3.59% 27.35% 1.03

middleware css-html-javascript-python 3.38% 25.71% 1.01

end-user application c-c++-cmake 3.97% 7.88% 1.01

The analysis revealed a noteworthy relationship between language selection and the ex-

amined functionality domains, although certain associations appeared weaker in comparison.

For instance, the association between css-html-javascript-php and middleware was relatively

weaker at level 0, as shown in Table 3.4. Similarly, the association between c-c++-cmake and

end-user application exhibited a comparable pattern. Moreover, at level 1, the relationship

between css-html-javascript and multimedia displayed a moderate association, as outlined

in Table 3.5. Notably, the majority of level-0 (3) and level-1 (7) domains demonstrated a

strong correlation with language selections.

When examining the level 0 domains exclusively, the associations mined primarily relate

to various types of applications, such as application library or end-user application. More-

over, the language selections demonstrated a degree of diversity within specific domains,

suggesting that multiple language combinations are associated with a single domain. For

instance, the development of end-user applications could involve choices like php-shell, java-

29

Table 3.5 Association between level1’s functionality domains & language selections.

Functionality Domain Language Selection Support Confidience Lift

simulation go-shell 1.28% 7.95% 3.24

multimedia css-html-javascript 1.28% 48.00% 2.59

multimedia css-html-javascript-php 1.38% 52.00% 2.19

multimedia css-html-javascript-ruby 1.38% 52.00% 2.18

multimedia css-html-javascript-python 1.28% 48.00% 2.10

simulation makefile-python-shell 1.92% 11.92% 1.90

application suites css-html-javascript-ruby 1.49% 45.16% 1.89

engineering/development c-c++-cmake 3.83% 14.63% 1.86

spreadsheet css-html-javascript 1.70% 30.19% 1.63

spreadsheet css-html-javascript-php 1.92% 33.96% 1.43

spreadsheet css-html-javascript-ruby 1.92% 33.96% 1.42

engineering/development html-javascript-typescript 3.83% 14.63% 1.37

spreadsheet css-html-javascript-python 1.70% 30.19% 1.32

engineering/development objective c-ruby-swift 1.49% 5.69% 1.27

communication css-html-javascript-python 2.66% 28.74% 1.26

engineering/development html-javascript-python 2.56% 9.76% 1.19

email css-html-javascript-php 3.30% 25.41% 1.07

application suites css-html-javascript-python-shell 1.28% 38.71% 1.07

communication css-html-javascript-ruby 2.34% 25.29% 1.06

email c-c++-cmake 1.06% 8.20% 1.04

30

kotlin, or objective c-ruby-swift. This diversity can be attributed to the fact that software

within the same domain is often developed within different software ecosystems or for differ-

ent platforms, such as Android or iOS, influencing the selection of programming languages.

In the case of the non-application domain, middleware, associations indicate that developers

commonly opt for combinations like c-c++-python or languages such as php and python

paired with css-html-javascript.

In terms of the level 1 domains, which represent specific kinds of end-user applications,

the association analysis revealed a strong connection between the multimedia domain and

languages paired with css-html-javascript. This language selection pattern is also commonly

observed in the development of other types of end-user applications, including spreadsheet,

communication, and email. These associations suggest that the combination of css-html-

javascript is extensively used in the creation of various application software. Comparing these

findings with the results in Table 3.4, the strong association between end-user application

and css-html-javascript further emphasizes the consistency of the association analysis results

between the two levels of functionality domains investigated. In contrast, level 1 functionality

domain associations are generally stronger than those at level 0. This is attributed to greater

language diversity within each higher-level domain, resulting in weaker associations with

specific language selections.

3.3.2 Language selection’s security relevance

Employing the NBR model, the study delved into the intricate relationship between security

vulnerabilities and the selection of programming languages. Within this framework, the pre-

dictive encoding of language selections with weighted effects and the subsequent examination

of the number of commits dedicated to rectifying security-related issues served as the focal

point. The present section is dedicated to unraveling the security implications of language

selections from dual perspectives. Firstly, the exploration encompasses the assessment of Dif-

ferential Vulnerability Proneness among Language Selections, scrutinizing whether specific

31

language choices display heightened vulnerability susceptibility. Secondly, the investigation

delves deep into the domain of Topic Traits of Security Relevance, aiming to establish a

correlation between language preferences and distinct categories of security vulnerabilities.

Delving into the intricacies of multi-language software analysis, the study probes the

potential links between language selections and the magnitude as well as the thematic aspects

of developers’ activities during the project development phase, specifically in addressing

security vulnerabilities. This analytical approach implicitly acknowledges the evolutionary

nature of software security within the dynamic landscape of multilingual environments.

3.3.2.1 Differential language selection’s vulnerability proneness

Quantifying the comprehensive association between language selection and vulnerability

proneness was achieved through the implementation of the NBR model. In this model,

language selections were encoded with weighted effects serving as predictors, while the count

of vulnerability-fixing commits was utilized as the dependent variable. Elaborated insights

into this model can be found in Table 3.6.

The independent factors, namely, language selection size and project size, operate as con-

trol variables within the study. Although not the primary focus, their significance, as antic-

ipated, remains conspicuous. All other independent factors, function as indicator variables,

characterized as language selection variables (e.g., c-c++-shell). The coefficients associated

with these variables serve to compare each language selection (per project) with language

selections’ weighted mean across all projects. The coefficient can be categorized into one

of three distinctive classes: (1) Insignificance, as determined by p values exceeding 0.05.

(2) Significance coupled with positivity. (3) Significance combined with negativity. A posi-

tive coefficient indicates that the specific language selection (e.g., c-c++-shell) is correlated

with a heightened frequency of commits dedicated to rectifying security vulnerabilities. This

correlation suggests a heightened vulnerability susceptibility compared to a language selec-

tion by average. Conversely, a negative coefficient implies that a language selection (e.g.,

32

Table 3.6 Language selection’s vulnerability proneness.

Independent factors Coeff. Std. Error

(Intercept) 1.4672 0.051 ***

project age 0.0001 0.001 ***

language selection size 0.0483 0.004 ***

css-html-javascript -0.0841 0.073

python-shell 0.2818 0.069 ***

go-shell 0.3234 0.077 ***

c-c++-python-shell -0.1922 0.201

javascript-python -0.0925 0.113

css-html-javascript-shell 0.1522 0.092 *

c-c++-python -0.0300 0.162

objective-c-ruby -0.2838 0.120 *

html-python -0.4557 0.109 *

css-html-javascript-python -0.0666 0.101

c++-python 0.4613 0.144 **

html-ruby -0.1324 0.121

c-python 0.6253 0.222 ***

c-c++-shell 0.7641 0.098 ***

java-shell 0.2766 0.096 **

javascript-shell -0.2041 0.084

javascript-php 0.1061 0.088 **

html-java -0.1493 0.064

33

html-java) is less susceptible to vulnerabilities than the average case, signifying a decreased

likelihood of prompting vulnerability-fixing commits.

In a nutshell, the coefficient linked to the language selection variable serves as an indicator

of the expected change in the logarithm of the dependent variable (i.e., #vulnerability-fixing

commits), assuming all other independent variables remain constant. By establishing a base

factor (the mean of anticipated changes across all language selections), denoted as κ, and with

a specific coefficient for a given language selection as γ, predictions can be made using the

formula: N = κ × eβ. To illustrate, consider a project with an average language selection

that reports five vulnerability-fixing commits among all types of commits. The expected

number of vulnerability-fixing commits would be emph5 × e0.7641 = 10.74 when utilizing c-

c++-shell, significantly surpassing the average of five. Conversely, opting for html-python

would result in fewer vulnerability-fixing commits (5× e−0.4557 = 3.17).

3.3.2.2 Topic traits of security relevance

To gain a deeper understanding of this connection, I explored how language selection aligns

with distinct vulnerability categories, considering the thematic traits present in the commit

data, such as logs and altered code. To achieve this, I constructed individual NBR models for

each of the three categories (as indicated in Table 3.1). These models mirror the overarching

relationship model, with the sole difference being that the dependent variable represents the

count of vulnerability-fixing commits associated with the specific category. Refer to Table 3.7

for detailed information on these three models, denoting statistical significance with marks

like ***p<0.001, **p<0.01, *p<0.05.

The deviance observed in each category-specific NBR model is notably smaller when

compared to the deviance in the general vulnerability proneness model presented in Table 3.6.

This discrepancy suggests that language selection has a more pronounced impact on the

susceptibility to specific vulnerability categories than on vulnerability susceptibility overall.

Porous defenses. In this category, vulnerabilities arise from security defense technique

34

Table 3.7 Language selection’s proneness to the three vulnerability categories.

Independent factors
Porous defense Risky resource mgmt. Insecure interaction

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

(Intercept) -2.167 0.157 *** 0.4746 0.070 *** -2.7066 0.149 ***

project age 0.0001 0.001 * 0.0002 0.009 ** 0.0087 0.013

language selection size 0.0811 0.010 *** 0.0624 0.005 *** 0.0767 0.010 ***

css-html-javascript -0.3234 0.218 -0.1741 0.105 * 0.3042 0.195 *

python-shell 0.5527 0.212 ** 0.3627 0.093 *** 0.3159 0.189

go-shell 0.4895 0.221 * 1.0764 0.099 *** -0.5575 0.264 *

c-c++-python-shell -0.7087 0.641 -0.6020 0.249 * -2.1799 0.180

javascript-python 0.7464 0.339 * -0.8805 0.161 *** 1.8017 0.333 ***

css-html-javascript-shell 0.8216 0.281 ** 0.1136 0.132 1.2334 0.301 ***

c-c++-python -0.2442 0.509 0.0927 0.202 1.8819 0.295

objective-c-ruby -0.2630 0.424 0.0855 0.170 -1.4854 0.626 *

html-python 0.0735 0.315 -1.0742 0.163 *** 0.5449 0.287

css-html-javascript-python 0.9098 0.306 * 0.2371 0.144 -1.6434 0.308 *

c++-python -0.1056 0.468 1.4384 0.181 *** -0.8860 0.583

html-ruby -0.4525 0.357 * -0.6938 0.188 *** 1.6767 0.289 ***

c-python -0.9907 0.714 1.2994 0.279 *** -1.7480 0.253

c-c++-shell -0.3065 0.315 1.5537 0.123 *** -1.8835 0.443 ***

java-shell -0.3145 0.316 0.7744 0.124 *** -1.0087 0.367 **

javascript-shell -0.4194 0.264 -0.2721 0.120 * -1.5733 0.294 ***

AIC 25342 26358 13278

BIC 25575.03 26591.08 13511.08

Log Likelihood -12634 -13142 -6602

Deviance 7962.3 7679.5 4327.3

35

misuse or absence, like ’missing authentication for critical function’. The study confirms a

strong link between language selections and these vulnerabilities, consistent with the over-

all findings (Table 3.6). Certain choices, like css-html-javascript-python, showed notable

susceptibility, especially python’s impact when combined with web languages. Conversely,

selections (e.g., html-ruby) exhibited a negative impact on secure stance.

Risky resource management. This vulnerability category, accounting for 48% of the

vulnerability-fixing commits, results from mishandling vital system resources, as outlined

in [101]. Instances include ’integer overflow/wraparound’ and ’uncontrolled format string’.

Notably, language selection’s impact on these vulnerabilities outweighed its influence on the

’porous defenses’ category. An exception was observed with java-javascript, it significantly

affected the latter but had minimal effect on resource management vulnerabilities. Most

language selections associated with these vulnerabilities above the average include c and

c++, known for their susceptibility to memory-related vulnerabilities [142, 88, 111].

Insecure interaction. Within this category, 16% of the addressed issues are attributed

to vulnerabilities arising from insecure data exchange between components, modules, and

systems [101] (e.g., ’cross-site request forgery,’ ’cross-site scripting’). Despite its relatively

lower impact, language selection still plays a significant role, particularly in web language

combinations such as javascript-php and java-javascript. These vulnerabilities frequently ex-

ploit these languages’ interfaces, with ’cross-site scripting’ often involving injected javascript

code [145]. Understanding these dynamics is crucial for effective mitigation strategies in

security analysis.

In conclusion, the research revealed a robust connection between vulnerability suscepti-

bility and language selections in the studied projects. Moreover, language selection exhibited

a stronger association with specific vulnerability categories rather than vulnerabilities in the

overall category.

36

3.3.3 Factors contributing to the relevance

Previous findings have established a statistically significant connection between language

selection and the security of the selected software. However, the strength of this association

alone does not provide a comprehensive understanding of the underlying causes. Earlier

research has suggested that cross-language interactions may represent critical vulnerability

points in multi-language systems generally [103]. Similarly, inter-language dependencies

have been identified as contributors to the vulnerabilities in JNI (Java Native Interface)

applications specifically [53]. Consequently, the investigation delved into examining the

correlation between cross-language interfacing mechanisms and the resulting vulnerability of

the cross-language code. This analysis aimed to elucidate the effects of these interactions on

the security relevance of the language profile, thereby explaining the observed relevance. I

commenced by providing an overview of the diverse mechanisms employed in cross-language

interfacing, followed by an exploration of the same two dimensions of security relevance as

those studied in previous research. Furthermore, it is plausible that the security relevance

of language selection is influenced by the individual characteristics of the chosen languages.

Thus, I also scrutinized how each language contributes to the vulnerability susceptibility of

multi-language code.

3.3.3.1 Overview of interfacing mechanisms

On each project, PolyFax conducted a comprehensive analysis of the interfacing mechanisms,

uncovering instances where language selections exhibited hybrid mechanisms. The investi-

gation revealed the presence of eight distinct combinations of mechanisms, distributed inde-

pendently as follows: pure FFI 8.68%, FFI IMI 24.55%, FFI EBD 1.19%, IMI EBD 23.87%,

FFI IMI EBD 1.26%, pure IMI 29.23%, pure EBD 5.87%, and pure HIT 5.36%.

Implicit interfacing emerged as the prevailing approach, accounting for 86% of the projects

utilizing IMI, EBD, or both. This dominance can be ascribed to multiple factors. Firstly, a

limited subset (20/66) of the language pairs considered during the development of PolyFax

37

to support FFI, primarily due to the scarcity of languages that support foreign functions.

Additionally, the inherent advantages of implicit interfacing, including reduced component

coupling and simplified implementation complexities, contributed to its widespread adoption.

This trend was further reinforced by the availability of robust frameworks like gRPC [56],

facilitating seamless interfacing between languages such as c-python-java, and ruby. Fur-

thermore, a notable prevalence of EBD was observed, predominantly driven by projects

employing the language combination {javascript-css-html}. This observation aligns with

earlier research emphasizing the prevalent use of general-purpose programming languages in

conjunction with domain-specific languages [103].

3.3.3.2 Differential vulnerability proneness of language interfacing

PolyFax performed an in-depth analysis of interfacing mechanisms in each project. This

analysis led to the identification of language profiles characterized by hybrid mechanisms.

In total, eight distinct combinations of these mechanisms were identified and treated as

independent variables in the corresponding NBR models, as outlined in Table 3.8.

Table 3.8 Interfacing mechanism’s vulnerability proneness.

Independent factors Coeff. Std. Error

FFI 0.2817 0.092 **

FFI IMI 0.1676 0.095 *

FFI EBD -0.1454 0.415 *

FFI IMI EBD 0.7576 0.380

IMI 0.6441 0.164 ***

IMI EBD -0.3059 0.092 *

EBD -0.0811 0.089

HIT 0.4998 0.498

The NBR analysis highlighted the significant impact of language interfacing, whether

38

explicit (e.g., FFI) or implicit (such as IMI, either alone or combined with FFI), on the vul-

nerability susceptibility of multilingual code. Notably, the three mechanisms (FFI, FFI IMI,

IMI) that exhibited significant vulnerability-proneness constituted the majority (53.1%) of

the language profiles within the dataset. This outcome underscores the considerable influ-

ence of how selected languages interact within multilingual code on their vulnerability. It is

a well-established fact that the use of multiple languages can render a system more suscepti-

ble than employing a single language alone [53]. The findings serve as a complement to this

existing understanding, offering compelling evidence of the language interfacing mechanism’s

pivotal role in determining the overall security implications of utilizing multiple languages.

The regression analysis revealed three key indicators (FFI, FFI IMI, IMI) with notably

positive and significant coefficients associated with the response variable, namely, the number

of security vulnerabilities. This finding underscores the strong vulnerability proneness of

language interactions, highlighting both direct and indirect interaction impacts.

Based on our comprehensive survey and analysis, we identified two plausible reasons

contributing to the vulnerability of multilingual software: (1) Inherent complexity in devel-

oping multilingual systems: Previous research has confirmed the challenges developers face in

comprehending and maintaining multilingual systems, especially concerning cross-language

modifications [103]. (2) Insufficient technical support for quality assurance in multilingual

programs: A survey of 1,000 research papers on program analysis published over the past

five years in the ACM digital library indicated that a mere 0.8% of these publications were

related to cross-language analysis. Moreover, the majority of these studies were limited to

language selections such as c and java [160, 80]. This scarcity hinders the development of

cross-language analysis tools necessary to ensure the quality of multilingual software.

3.3.3.3 Topic traits of interfacing effects

To gain insight into the specific effects on individual vulnerability categories, I constructed a

separate NBR model for each category. The detailed results of the three models are presented

39

in Table 3.9 (marks: ***p<0.001, **p<0.01, *p<0.05).

The findings revealed that the three most vulnerable mechanisms overall were closely

linked to each of the two prevalent vulnerability categories (refer to Table 3.1), which signifi-

cantly contributed to the overall association’s strength. Intriguingly, it became apparent that

both FFI and FFI IMI displayed below-average vulnerability proneness concerning ’Insecure

interaction’ vulnerabilities. This observation stemmed from the fact that these vulnerabili-

ties were primarily associated with web languages, which do not typically engage with FFI

mechanism for interactions.

Table 3.9 Interfacing mechanism’s proneness to the three vulnerability categories.

Independent factors
Porous defense Risky resource mgmt. Insecure interaction

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

(Intercept) -1.2328 0.152 *** -1.5902 0.059 *** -2.0517 0.096 ***

FFI 0.5434 0.315 ** 0.4733 0.109 *** -1.3708 0.180 *

FFI IMI 0.3562 0.321 * 0.4758 0.114 *** -1.1683 0.239 *

FFI EBD 1.8357 0.266 * 0.7160 0.525 1.0950 0.634 *

FFI IMI EBD 0.3540 0.471 0.8610 0.487 * -2.0167 1.186

IMI 1.1156 1.368 ** 0.7457 0.531 0.6490 0.643 *

IMI EBD -0.4470 0.320 -0.3917 0.113 ** -0.3215 0.241

EBD -1.6342 0.312 * -0.3942 0.108 *** 0.3044 0.233 **

HIT -0.0088 0.270 1.2619 0.126 *** -0.1634 0.642

AIC 25082 26224 13330

BIC 25163.89 26305.89 13411.89

Log Likelihood -12528 -13099 -6652

Deviance 7521.4 7374.5 3897.1

This explanation finds support in the notable positive association between the ’Insecure

interaction’ vulnerability category and EBD, the predominant interfacing mechanism across

web languages, such as javascript-php. Similarly, this rationale further elucidates the sig-

nificant impact of FFI EBD on this particular vulnerability category. To validate this, we

40

conducted a manual examination of 10 projects utilizing {FFI EBD} and found that 7 of

these projects employed the language selection {c-c++-css-html-javascript}, thereby empha-

sizing the prevalence of web languages contributing to ’insecure interactions’.

In conclusion, certain interfacing mechanisms demonstrated a higher susceptibility to

specific vulnerability categories, yet the per-category effects of all mechanisms remained

consistent with their overall vulnerability impacts. The vulnerability susceptibility to ’inse-

cure interaction’ vulnerabilities was notably associated with the utilization of EBD. However,

the strength of this association was counterbalanced by the application of IMI. Additionally,

the mechanisms that exhibited the highest vulnerability proneness overall (FFI, IMI) were

also most susceptible to ’porous defense’ vulnerabilities.

3.4 Implications

Attention to cross-language vulnerabilities. Significant vulnerability-proneness in mul-

tilingual code has been identified and confirmed by extensive case studies [107, 160, 80, 2, 64].

However, research on these vulnerabilities remains scarce. Out of over 1,000 papers on pro-

gram analysis reviewed from the ACM digital library’s recent publications, only 0.8% were

generally related to cross-language analysis. Notably, this specific language combination did

not rank among the top 20 language selections [107, 160, 80, 2, 64]. Addressing this criti-

cal gap and urgent issue requires the research community’s investment in tools and studies

targeting cross-language defects, transcending the limitations of Java-C (JNI) software.

Practical recommendations for researchers. Previous studies on GitHub, such as those

by Ray et al. [142] and Berger et al. [11], have indicated the minimal influence of individ-

ual languages on software susceptibility to defects. However, this research sheds light on

the substantial effects of language selection on the vulnerability proneness of multilingual

code. These effects were strongly correlated with language interfacing mechanisms, par-

ticularly FFI and IMI, enabling direct data interoperations through code-level invocations.

Thus, prioritizing the examination of multilingual code using these mechanisms to address

41

explicit (e.g., via foreign functions) and implicit (e.g., via RPC) cross-language interactions

is strongly recommended.

Practical recommendations for tool builders. When creating tools for multilingual

security, it’s advisable to combine machine learning (ML) and deep learning (DL) models

with program analysis approaches. These models can incorporate features related to language

selections, such as size and language-specific properties, as well as interfacing details like

mechanism category and interface parameters. Training and validating these models on a

comprehensive vulnerability dataset can enhance their effectiveness. Given the variety in

language choices and interfacing techniques, focusing on language-independent analyses in

code analysis approaches—such as computing cross-language information flow for identifying

multilingual vulnerabilities—becomes crucial.

Practical recommendations for developers. Certain language selections (e.g., c-python)

were notably more vulnerable than others, as were specific interfacing mechanisms (e.g., FFI,

IMI) compared to others. Opting for less vulnerable selections and mechanisms can bolster

the security of multilingual code. Additionally, using less vulnerability-prone mechanisms for

interfacing between selected languages is recommended. Prioritizing selections and mecha-

nisms less susceptible to specific categories of critical vulnerabilities is also advisable, based

on Tables 3.7 and 3.9.

3.5 Related Work

Study of quality effects of languages. Recent research has explored the fault proneness

of design smells in multi-language software systems [2] and the impact of inter-language

dependencies on code quality [53]. However, these studies were restricted to the Java-C

language pairing and a small number of sample projects, typically 10 or fewer [1]. Mayer’s

research [103] highlighted that most developers encountered at least one bug related to

cross-language linking, and using multiple languages increased the complexity of bug fixing.

Some studies have focused on individual languages rather than language combinations [142,

42

170]. In contrast, our work stands out by investigating the security implications of language

selection in real-world multi-language projects. Conversely, prior studies have examined the

vulnerability proneness of single-language projects in the context of general code defects,

including security defects, but not specifically in terms of security vulnerabilities [72, 11].

Such results can be compared with and complement our findings.

Analysis of language interactions. Bissyandé and colleagues conducted a study to quan-

tify the proximity between various languages, offering valuable insights into language in-

teroperability [14]. Additionally, separate investigations focusing on polyglotism revealed

strong associations among languages, highlighting specific language combinations commonly

utilized in practical contexts [151, 102]. In my research, I approach language interactions

from a distinct perspective, delving deeper into the intricate relationships between languages

within selected contexts. Furthermore, my study uniquely shifts the focus from the mere co-

occurrence of languages to an exploration of the underlying security implications of language

interactions, particularly through interfacing.

Commit-based vulnerability identification. Similar to classifying vulnerabilities in

PolyFax, previous studies have also delved into identifying vulnerabilities in code repositories

through commit analysis. For example, D2A employs static analyzers and learning-based

classifiers to detect vulnerability-fixing commits [171]. VCCFinder uses code metrics and

GitHub metadata to train an SVM classifier for labeling vulnerability-contributing commits

[123]. Another tool leverages commit messages and bug reports to classify vulnerability-

related commits [172]. Notably, our approach demonstrated superior accuracy, achieving 83%

compared to 53% by D2A, 36% by VCCFinder, and 50% by [172] for commit classification.

Real-world vulnerability datasets. The study dataset of vulnerability-fixing commits,

totaling 141,380 instances, surpasses D2A’s dataset [171] in size (18,653 commits) and ac-

curacy (30%). Additionally, it complements smaller, C/C++ focused CVE-based datasets

such as BigVul [44] and CVEfixes [12].

43

CHAPTER FOUR

CROSS-LANGUAGE DYNAMIC INFORMATION FLOW ANALYSIS

Contemporary software ecosystems are predominantly multilingual, comprising integral code

components scripted in diverse programming languages [102, 72, 103, 80]. The last decade

has witnessed an upsurge in the pervasiveness of multilingual software, marked by an increase

in the language number incorporated into each system [91]. Given the pivotal character in

today’s digital landscape, there is a critical imperative to methodically ensure the security

of multi-language software. However, the current landscape reveals a conspicuous absence

of comprehensive techniques to safeguard multilingual systems. Unlike their single-language

counterparts, vulnerabilities in multilingual systems may not only reside within each lan-

guage component but also manifest at and across the interfaces connecting various language

units. Consequently, a holistic (cross-language) approach to validate multilingual programs

against insecure properties becomes indispensable.

In response to this challenge, I conceived PolyCruise, an innovative cross-language dy-

namic information flow analysis tailored for multilingual systems. This approach seamlessly

integrates minimal language-specific static analysis along with language-agnostic dynamic

analysis, facilitating the identification of diverse vulnerability types. PolyCruise underwent

successful validation on 14 previously unknown security issues on real-world multi-language

systems, showcasing scalability, cost-effectiveness, and efficacy in discovering vulnerabilities.

4.1 Motivation

The interaction mechanisms between language components can be categorized into two main

types. The first type is the uniform approach, which involves interprocess communication.

This approach is universally applicable and not specific to any particular language, enabling

communication based on an agreed-upon protocol, such as Remote Procedure Call (RPC).

The second type is the language-specific approach, known as the foreign function interface

44

(FFI), which facilitates direct function invocations between language components, making

it strongly language-dependent. Empirical studies have shown that popular languages such

as Java, Python, PHP, and Ruby support FFI for C modules according to their official

documentation. However, the interfaces vary significantly across languages. For example,

Java interacts with C functions via native function calls, while Python’s interaction with C

is more complex and variable, often employing techniques like using ctypes or building C

modules as Python extensions.

In the context of static analysis, the straightforward approach involves modeling all the

language interfaces and then integrating the data flow at the boundaries between languages.

However, the diverse interfaces and the dynamic features of certain languages can challenge

this method. On the other hand, a dynamic analysis engine can conservatively link the data

flow across languages by ensuring that the instrumentation covers all potential data flow

paths. This dynamic analysis approach leverages the sequential execution events within a

thread during runtime to establish connections between different language components.

The necessity and challenges of dynamic cross-language analysis are exemplified through

three code snippets, depicted in Figure 4.1. In snippet (a), Python calls a C function

using ctypes. An issue related to least privilege violation is present in line c3 of the Ca.so

file, as data flows from line p5 of the Pa.py file. Exploiting this vulnerability enables an

unauthorized intruder to gain access to files without proper authorization. Single-language

analyzers on the Python side fail to detect this vulnerability, as the data flow is terminated at

the boundary. Snippet (b) demonstrates Python’s bidirectional interaction with C through

a Python extension. Sensitive data flows from line p3 to line c9 (sink point) along the

red lines. Both single-language analyzers are unable to identify this vulnerability, as they

cannot construct a complete call graph in this context. In snippet (c), Python interacts

bidirectionally with C through a Python extension, where two invocations of the C function

are implicit. A static analyzer is unable to detect the presence of these function calls,

making it impossible to identify the information leakage. Cross-language analysis is crucial

45

p1 from ctypes import *
p2 def DataProcess():
p3 Extdata = Socket.Recv ()
p4 Lib = cdll.LoadLibrary("libC.so")
p5 Lib.process (Extdata)
p6 IntData = Internal ()
p7 Lib.process (IntData)

c1 int process(char *data) {
c2 char* Name = data

c3 FILE *f = fopen (Name , “r”)
c4 fread (f,...)
c5 fclose (f)
c6 }

a

p1 from Cb import *
p2 def Source ():
p3 String S = source ();
p4 Foo (S)
P5
p6 def Foo (S) :
p7 Cfoo (S)
P8
p9 def Bar (S) :
p10 Cbar (S)

c1 void Cfoo (pyObj, args) {
c2 PyArg_ParseTuple(args, S)

c3 ……
c4 args2 = Py_BuildValue(S);
c5 PyObject_Call(Bar, args2 , ...);

c6 ……
c7 }
c8 void Cbar (env, obj, S) {
c9 sink(S);
c10 }

b

p1 from Cc import *
p2 class PC:
p3 def __init__(self, data):
p4 self.data = data
p5 def __enter__(self):
p6 self.data = encode (self.data)
p7 def __exit__(self, *_):
p8 self.data = decode (self.data)
p9 with PC (data):
p10 process ()

c1 PyObject* Encode(data) {
c2 en = base64 (data);
c3 log (en)
c4 return Py_BuildValue(en);
c5 }

c6 PyObject* decode(…, data) {
c7 de = debase64 (data);
c8 log (de)
c9 return Py_BuildValue(de);
c10 }

c

Pa.py Ca.so

Pb.py Cb.so

Pc.py Cc.so

Figure 4.1 An illustration of cross-language vulnerabilities in Python-C program.

for vulnerability detection in multilingual programs. However, static approaches have clear

limitations in handling different language interfaces, as seen in (a) and (b), and in accounting

for the dynamic characteristics of the languages, as observed in (c).

The provided code snippets underscore the critical role of comprehensive, dynamic cross-

language analyses in detecting potential security vulnerabilities resulting from interactions

between distinct programming languages.

46

4.2 Approach

To enable practical security support for multilingual software, I undertook a dynamic infor-

mation flow analysis (DIFA) approach, a fundamental technique in various security appli-

cations. However, multilingual DIFA faces significant challenges, including the disparities

in language semantics and the need for cost-effective analysis in large-scale systems. To

address these challenges, I developed a hybrid analysis strategy in our framework, utilizing

language-independent symbolic representations and a language-agnostic dynamic analysis.

This approach allows to compute data flow paths while accommodating diverse language

characteristics, ensuring scalability and efficiency. The prototype, named PolyCruise, lever-

ages symbolic dependence analysis for approximate dependencies and generates a dynamic

information flow graph (DIFG), enabling various vulnerability discovery through plugins.

4.2.1 Overview of PolyCruise

Figure 4.2 presents an outline of PolyCruise, focusing on its approach to analyzing multilin-

gual programs. The framework operates through two distinct phases, both integrating static

and dynamic analyses.

POLYCRUISE
Inputs

Multilingual program P
…C unit Python unit another

language

User configuration X
Per-language source/sink lists Plugin options

Run-time input set T (for P)
Test 1 Test 2 Test N…

Phase 1: Static analyses & instrumentation

Language-specific
symbolic translation

Language-agnostic
symbolic dependence analysis (SDA)

SDA-guided static
instrumentation

Language-independent
symbolic representation (LISR) Symbolic dependencies

SDA-guided
dynamic

instrumentation

Instrumented multilingual program P’ in execution

Shadow
event
queue

Language-agnostic information
flow computation (IFC)

Dynamic information flow graph (DIFG)

Language-agnostic vulnerability detection (plugins)

bugs

POLYCRUISE
Outputs

Phase 2: Online dynamic analysis

1.1

1.2

1.3

2.1
2.2

2.3

unit

Figure 4.2 The overall design of PolyCruise.

In the initial phase, PolyCruise processes the program’s language units into a language-

independent symbolic representation (LISR). This representation aids in conducting a sym-

47

bolic dependence analysis (SDA) to track dependencies within each unit. Subsequently, the

framework employs the static analysis to narrow down the instrumentation scope, minimiz-

ing the runtime overhead in the subsequent phase. This phase aims to approximate the

dynamic information flow from specified sources to sinks, across different language units.

For interpreted languages like Python, the subsequent phase initiates dynamic instrumenta-

tion while the statically instrumented program runs with a given input set. This dynamic

analysis operates in real time, utilizing a shadow event queue to buffer execution events.

The framework continuously conducts runtime information flow computation (IFC) between

sources and sinks, updating a dynamic information flow graph (DIFG) with the results.

Additionally, leveraging the DIFG, PolyCruise accommodates various security applications

for detecting vulnerabilities. These applications function as plugins, persistently scanning

for information flow paths associated with particular vulnerabilities, including data leaks.

Identified vulnerabilities are then incorporated into the framework’s outputs.

4.2.2 Static analyses and instrumentation

To amass the runtime data vital for its Dynamic Information Flow Analysis (DIFA), Poly-

Cruise necessitates the instrumentation of the provided program P. Emphasizing the core

principle explicated in the design overview, the instrumentation approach aims to acquire

runtime data in a manner that transcends the confines of individual programming languages.

This strategy enables a language-agnostic dynamic analysis, thereby reducing the dependence

on language-specific analyses. Adhering to this principle, the initial phase of PolyCruise en-

compasses three principal stages, delineated as follows.

4.2.2.1 Symbolic translation (Step 1.1)

To diminish the reliance on language-specific analyses, PolyCruise aspires to a language-

agnostic approach, employing Symbolic Dependence Analysis (SDA). This method system-

atically generates uniform instructions for instrumentation by initially translating every lan-

48

guage unit within P into a symbolic representation, which is language-independent called

LISR. The uniqueness of LISR lies in its capacity to offer a standardized representation that

ensures consistent SDA results across diverse programming languages.

As a particular note, LISR serves as a foundational element, providing a standardized and

consistent representation of various programming languages. This uniformity guarantees co-

herence in SDA results, regardless of the specific programming language in use. Additionally,

when contrasted with traditional data dependence analysis, SDA on LISR adopts a more

lightweight methodology, focusing solely on capturing symbolic dependencies. This selective

strategy discards resource-intensive analyses, such as pointer analysis or reachability solv-

ing. Consequently, the SDA-guided instrumentation method meticulously probes pertinent

statements, striving to enhance efficiency and minimize computational overhead.

Definition. The symbolic dependencies derived from SDA aim to approximate data depen-

dencies between statements within a language unit. Consequently, the LISR representation

acknowledges three primary types of statements: line (representing assignments), call (denot-

ing function calls), and return (indicating return statements). Additionally, it recognizes two

distinct categories of symbols: global (referring to global variables) and function (pertaining

to functions). Below is the definition of LISR’s formal syntax:

P ::= G∗F ∗

G ::= e

F ::= τf(x∗)S∗

S ::= [x =]e∗ | [x =]f(e∗) | return e

e ::= x | C | ε

τ ::= T | ε

In the formal syntax provided for LISR, P, denoted as a program, is delineated as a succession

G∗ for global symbols, succeeded by function symbols, F∗. A straightforward identifier

distinctly identifies each symbol. A global symbol is constructed from an expression of

e. Conversely, an F encompasses the return type τ , the function name f, a sequence of

49

parameters x∗, and a sequence of statements S∗. τ exclusively signals if f yields a symbol,

with the return type having no bearing on the symbolic dependence computation within the

context of SDA.

Moreover, a statement S can manifest in any of the following three forms: a function call

statement [x=]f(e∗) (with optional return value and possibly none), a line statement [x=]e∗,

and a return statement return e. In this context, the expression e can assume the form of a

symbol x, a constant C, or ε, where ε signifies an empty string. It’s noteworthy that since

LISR primarily functions for the approximation of data dependence, it exclusively captures

variable definitions and corresponding uses, excluding other conventional language syntax

features (e.g., operators) from its representation.

Translation. As per the aforementioned LISR definition, transforming a language unit into

its symbolic translation involves a simple process of light syntactic parsing. This parsing

entails the translation of each statement within the unit’s source code that falls under the

specified three categories or encompasses either of the two types of data symbols outlined

in the LISR framework. The principal aim is to capture the declarations and usages of

variables. Given the limited scope of the syntactic analysis required and the absence of

any semantic scrutiny, Converting a language’s code into its LISR equivalent is a relatively

straightforward task.

LISR distinguishes three main code entities: statement, global variable, and function.

Algorithm 3 outlines the translation process for LISR, it translates each entity based on its

type. For global entities, global symbols are extracted (line 5). Function definition entities

are symbolized as LISR expressions (line 7). Regarding statement translation (line 8-21),

for call statements (line 9), the left symbol is the return value (if exists), and the function

call is the right symbol. Return statements (line 15) extract the symbol for an appropriate

LISR return statement. Other statement types represent left symbols with definitions and

right symbols with uses (line 19-21).

Figure 4.3 illustrates the conversion of a language unit (left column) into LISR (right

50

Algorithm 3: Generate the LISR form of a given code entity
Input: E: a given code entity of the target language: one of the three types: global,function,statement

Output: Slisr: the corresponding LISR for E

1 Function translate2LISR (E)

2 Slisr ← None;

3 Te ← getEntityType (E);

4 if Te == global then

5 Slisr ← getGlobalSymbol (E);

6 else if Te == function then

7 Slisr ← getFunctionSymbol (E); // symbolize the function type

8 else if Te == statement then

9 if E == call then

10 Ret ← getDef (E);

11 if Ret ̸= None then

12 Slisr ← getSymbol (Ret) + "="; // get return because def exists

13 Call = getCallSymbol (E); // symbolize the function call

14 Slisr ← Slisr + Call

15 else if E == return then

16 Use ← getUse (E);

17 Slisr ← "Return " + getSymbol (Use);

18 else

19 Use ← getUse (E);

20 Def ← getDef (E);

21 Slisr ← getSymbol (Def) + "=" + getSymbol (Use);

22 return Slisr

51

Source Code | LISR

1 typeA gValue | gValue

2 Output(typeB& arg) | Output(arg)

3 print (arg) | print(arg)

4 |

5 typeB Foo(typeB N) | T Foo(N)

6 typeB V := 1 | V = C

7 typeB& S := V | S = V

8 V := N | V = N

9 while N != 0: | N

10 V := V * N | V = V,N

11 N := N - 1 | N = N,C

12 Output (S) | Output(S)

13 return S | return S

Figure 4.3 An example of the symbolic translation.

column), where the global variable gValue with type typeA (Line 2) is denoted as gValue of

global symbol, while the statement at Line 3 is represented as a function symbol Output(arg),

followed by a subsequent call statement without a return value. LISR, unlike conventional

IRs such as LLVM’s IR, focuses solely on capturing essential information (def/use) necessary

for subsequent analysis in PolyCruise, enabling cross-language functionality by presenting

language-agnostic essential data, despite varying language semantics.

4.2.2.2 Symbolic dependence analysis (SDA) (Step 1.2)

After translating a specific language unit into LISR, the subsequent imperative involves

the computation of the unit’s symbolic dependencies. This process entails meticulously

examining the def/use of symbols stipulated within the LISR, transcending the constraints

of any particular programming language.

Definition. In symbolic dependence analysis, two statements, Si and Sj, are symbolically

dependent if the intersection of their use and def sets is not empty: U(Si) ∩ D(Sj) ∪ D(Si)

∩ U(Sj) ̸= ∅, where D(S) and U(S) represent the def and use sets for S.

Besides approximating true flow dependencies [61] (D(Si) ∩ U(Sj) ̸= ∅), the analysis

52

LISR | symbolic def -use pairs

1 gValue |

2 Output (arg) |

3 print(arg) | D[4]={} ,U[4]={ arg}

4 |

5 T Foo(N) |

6 V = C | D[7] ={V},U[7] ={C}

7 S = V | D[8] ={S},U[8] ={V}

8 V = N | D[9] ={V},U[9] ={N}

9 N | D[10]={ },U[10]={N}

10 V = V,N | D[11]={V},U[11]={V,N}

11 N = N,C | D[12]={N},U[12]={N,C}

12 Output(S)| D[13]={} ,U[13]={S}

13 return S | D[14]={} ,U[14]={S}

Figure 4.4 Symbolic def-use chains of the code in Figure 4.3.

considers potential anti-dependencies [61] (U(Si) ∩ D(Sj) ̸= ∅) to ensure SDA soundness.

Lacking pointer/reference analysis, the SDA operates without aliasing information for the

analyzed language unit, risking the oversight of true dependencies induced by aliasing effects.

In Figure 4.3, if V at Line 9 is S’alias after Line 8, accounting for anti-dependencies would

include Lines 13 and 14 to Line 9’s symbolic dependence set, potentially capturing dynamic

information flow paths. Neglecting this could lead to missing crucial flow paths, as only

statements that are symbolically dependent on Line 9 would be examined during runtime.

 T Foo(N)
 V = C
 S = V
 V = N

 ……

V = N

SDA

global symbol
area

stack
Function symbol

parameters
local symbols

……

forward execution

backward execution

Execution unit

LISR

Criteria
(DIFA sources)

Figure 4.5 An overview design for the analysis of symbolic dependence.

Figure 4.4 contains symbolic definitions and uses corresponding to the example depicted

in Figure 4.3. Let Si represent a statement at Line i, and assume (S9, V) as the criteria. Con-

53

sidering true flow dependencies, D(S9) ∩ U(S11) ̸= ∅. Additionally, for anti-dependencies,

U(S8) ∩ D(S9) ̸= ∅. Consequently, the symbolic dependence set of S9 is S8, S11.

Dependence computation. Following the provided definition, the computation of sym-

bolic dependencies within a language unit is illustrated in Figure 4.5. This process involves

utilizing a set of predetermined criteria and the symbolic representation of the program. The

computation starts from a collection of entry functions within the target libraries or exe-

cutables, maintaining a runtime stack and a global symbol area (GSA) until the termination

of the program.

Algorithm 4 delineates the intricacies of how the Symbolic Dependence Analysis (SDA)

calculates the overall program’s symbolic dependencies. The algorithm is structured into

three sequential procedures: computeSD → computeSDoF → computeMain. The SDA

accepts predefined criteria for a specific language unit alongside the corresponding LISR.

Then, it performs symbolic analysis, capturing both true/flow and anti-dependencies, in

both forward and backward manners. This procedure depends on the management of two

separate memory areas: a GSA for overseeing global symbols and a stack that encompasses

the local symbol area (LSA) to monitor local symbols.

Within SDA, the initiation involves accepting entry functions from target programs and

a pre-established set of criteria as inputs. The methodology characterizes the entry function

as the main function within executables or the designated interface functions for external

use in libraries. The criteria set is predesigned by users of the framework.

As the first step in the computeSD process, all entry functions are added to a First-In-

First-Out (FIFO) queue QF (line 2). Following this, entry function is executed sequentially

along with its corresponding Symbolic Dependence Summary (SDS) using the computeSDoF

procedure. The SDS of a function is presented as a bitmap, indicating accessibility of its

return value or sequential parameters from the criteria by computing Def-Use-Associations

(DUA) at a specific call site. For example, with an 8-bit SDS, the SDS of Output at call-site

S13 is calculated as 01000000 in the given scenario. In this representation, the first bit, 0,

54

Algorithm 4: Procedure of symbolic dependence analysis
Input: EF :entry functions, C: criteria (e.g., DIFA sources)

Output: Ss:C’s symbolic dependences

1 Function computeSD (EF , C)

2 QF ← initQueue (EF)); // QF is a FIFO queue of functions

3 Gsym ← ∅;

4 while QF ̸= ∅ do

5 F ← QF .pop();

6 Stack ← ∅;

7 SDSF ← getSDS (F);

8 computeSDoF (F, SDSF, C, Stack, Gsym); // compute SDs per function

9 if (gSym = getReachable (Gsym)) ̸= ∅ then

10 Ref = getRefer (gSym); // get entry functions that use global symbols

11 QF .push(Ref);

12 Ss ← obtainStmt (); // get the statements symbolically dependent on C

13 return Ss

signifies an unreachable return value, while the second bit, 1, denotes the first parameter’s

accessibility. Since Output possesses only one parameter, the left bits are set to zero.

SDS of an entry function can be initialized as -1 by default or with a predefined value

defined in the criteria set (line 7). The Stack is reset for each entry, while the GSA remains

consistent across all functions. Following the insertion of a global symbol into the GSA

upon being reached from a criterion, the entry functions referencing the symbols of global

are, again enqueued to QF for reevaluation, ensuring data consistency (line 11). Once QF is

empty, the SDA outputs a statement set as the guidance for the instrumentation.

Algorithm 5 outlines the process for computing symbolic dependencies within each func-

tion. The algorithm begins by initializing the local symbol area (LSA) based on the function’s

Symbolic Dependence Summary (SDS), which specifies the formal parameters to be incor-

porated into the LSA (line 2). Subsequently, the algorithm iterates through the forward

and backward (line 4 and line 7, respectively) computation procedures until the count of

reachable statements levels off, signifying that all feasible statements have been gathered.

The backward computation mirrors the forward process but operates in reverse order.

In the computeMain procedure (Algorithm 6), the SDA conducts symbolic execution for

55

Algorithm 5: the procedure of SDA on each function
Input: F:an entry function, SDSF:the (current) SDS of F, Stack: stack, Gsym:global symbols, C:predefined criteria

Output: SDSF:the (updated) SDS of F

1 Function computeSDoF (F, SDSF, C, Stack, Gsym)

2 Lsym ← initLocalSymb (SDSF); // initialize the local symbol area

3 while True do

4 computeMain (F, Lsym, SDSF, C, Stack, Gsym); // forward execution

5 StmtNumF ← getReachableStmt ();

6 Fr = reverseFunc (F);

7 computeMain (Fr, Lsym, SDSF, C, Stack, Gsym); // backward execution

8 StmtNumr ← getReachableStmt ();

9 if StmtNumF == StmtNumr then

10 break; // having reached the fixed point

11 updateSDS (F, SDSF);

the input function. Initially, the SDA checks whether the current function is already in the

stack; if not, it is pushed onto the stack to prevent redundant recursive invocations, as the

SDS of the function remains unaltered with the fixed inputs. The algorithm then iterates

through and executes each statement in three distinct categories:

Line: If the Use of a statement falls within the set of criteria, either under LSA or GSA, the

SDA propels the Def into the corresponding area (either LSA or GSA), thereby facilitating

the propagation of symbolic dependence along the execution flow.

Call: The SDA coordinates the examination of the Call statement to discern interprocedural

dependencies. Before initiating the callee’s execution, the SDA obtains the definition of the

callee and constructs an invocation context, including the call site and an initial SDS of

the callee derived from the actual parameters. This initial SDS delineates symbols from the

parameters that will enter the callee, facilitating the SDA in initializing the callee’s LSA. In

situations where SDA encounters difficulty retrieving the definition of the callee (e.g., for a

library function) and its initial SDS is non-zero, a cautious strategy is implemented. SDA

designates the callee’s SDS as -1, signifying that the return value and all function parameters

are considered reachable from the criteria. If possible, SDA invokes computeSDoF for the

callee. Following the execution of the callee, SDA updates the LSA of the current function

56

Algorithm 6: The main logic of computing symbolic dependence
Input: EF :entry functions, C:pre-defined criteria

Output: Ss:statement set for instrumentation

1 Function computeMain (F, Lsym, SDSf , C, Stack, Gsym)

2 if F ∈ Stack then

3 return SDSf ;

4 Stack.push(F);

5 foreach Si in F do

6 D[Si], U [Si] ← getDefUse (Si);

7 if getType (Si) == Line then

8 if isCriteria (C, Si) or (U [Si] ∈ {Lsym ∪ Gsym}) then

9 if isGlobalSym (D[Si]) then

10 Gsym.push(D[Si])

11 else

12 Lsym.push(D[Si])

13 else if getType (Si) == Call then

// get callee’s initial SDS:actual->formal args

14 Callee, Sdsc ← initCallee (Si);

15 if Callee != NULL then

16 Sdsc ← computeSDoF (Callee, Sdsc, C, Stack, Gsym);

17 else

18 Sdsc ← -1;

19 updateSym (Lsym, Sdsc, Si) ; // update Lsym after call

20 else if getType (Si) == Return then

21 if Si ∈ {Lsym ∪ Gsym} then

22 setRetBit (SDSf) ; // return to the callsite

23 if isReachable (Si) == true then

24 Ss.push(Si) ; // save the stmts for instrumentation

25 Stack.pop(F);

26 SDSf ← SDSf | summarize (Lsym,F) ; // update function’s SDS

27 return SDSf ;

57

with the callee’s SDS, which indicates the symbols that flow from the callee back to the

current function after return.

Return: The SDA conducts a thorough analysis of the Use associated with a Return state-

ment. If the Use within the LSA or GSA suggests that the return value of the current

function is accessible based on the criteria, the SDA adjusts the return bit of the SDS to 1

accordingly. Throughout the execution of each statement, the SDA consolidates reachable

statements into a set. Upon completing the execution of all statements, the SDA updates

the SDS of the function with the LSA before exit—an essential step, particularly when the

function involves output parameters.

4.2.2.3 SDA-guided static instrumentation (Step 1.3)

During the final stage, PolyCruise conducts static instrumentation on every compiled-language

unit. This involves the integration of probes to collect runtime data crucial for its dynamic

information flow analysis (DIFA). The static instrumenter precisely aims at the statement

set determined by the SDA as symbolically dependent on a specific source within the unit.

Following this determination, probes are introduced exclusively at those statements to cap-

ture the pertinent runtime data. The data, gathered during the execution of the program,

will be further elaborated upon in the subsequent phase. It’s worth noting that if program P

lacks any compiled-language unit, this particular step can be overlooked without disrupting

the overarching process.

4.2.3 Online dynamic analysis

PolyCruise executes program P’ while performing online analysis on it, regardless of whether

it has been statically or dynamically instrumented. This continuous process remains active

until the program P’ concludes. The online methodology is indispensable for managing

extended or continuously running programs, especially those serving as persistent services.

Storing the complete execution trace externally for subsequent offline analysis, as indicated

58

by prior research [21, 20], may prove impractical in these particular scenarios.

4.2.3.1 SDA-guided dynamic instrumentation (Step 2.1)

In the case of units that are programmed with interpreted languages, particularly with

intricate dynamic features, solely relying on static instrumentation might not be adequate for

capturing essential runtime data. The complex nature of these units often renders their code

inaccessible to static analysis. To address this, PolyCruise performs dynamic instrumentation

on these units, enabling the comprehensive collection of runtime data. As elucidated in

Step 1.3, the focus is specifically on probing statements that exhibit symbolic dependencies

on the provided sources. Furthermore, both instrumentation phases target the same category

of runtime facts, as expounded upon below.

Ev
e

n
t

co
n

te
n

t
Ev

e
n

t
id

en
ti

fi
e

r

Language type Event type Module ID

Function ID Statement ID

0 4 8 12 16 20 24 28 32

64
bits

Line

Call

Return

x=e

x=f(e)

return e

e = x | C | 𝜀
Language type: [0, 28-1], (C, Java, Python, ...)

Event type: [0, 28-1], (Line, Call, Return, ...)

Module ID: [0, 216-1], Local file number in language

Function ID: [0, 212-1], Local number in a module

Statement ID: [0, 220-1], Local number in a function

Figure 4.6 Format of execution events at runtime.

A Language-Independent Execution Event (LIEE) commences with a 64-bit event identi-

fier, succeeded by the event content, as shown in Figure 4.6. Within the event identifier, the

event type serves as a primary field that guides the analyzer in decoding the event content.

While other fields do not actively contribute to dynamic analysis, they establish a direct

link from an execution event to a static statement. This linkage empowers the analyzer to

trace the original path leading to the identified vulnerability. PolyCruise incorporates three

distinct event types, namely Line, Call, and Return, each aligning with different types of

59

program statements (S). The formal definition of these event types is outlined below.

S ::= x = e | x = f(e) | return e

e ::= x | C | ε

An expression e⃗ can be a symbol x to represent a basic datatype (e.g., an integer), a

constant C to represent a pointer value (address), or ε. The event contains a statement

translated from the original statement following the syntax above. A crucial point here is

that the instrumenter should instrument the address of a non-basic type rather than its

symbol. The address is used to compute aliases and real data dependencies at runtime.

4.2.3.2 Information flow computation (Step 2.2)

Definition. Consider the execution P’ composed of a collection of threads Φ = φ1, ..., φn.

These threads have the potential to share code and/or data through global or shared vari-

ables. The DIFG representing this execution is denoted as GΦ = ⟨Gφ∗, s∗, t∗⟩, where φ ∈ Φ.

This structure comprises thread graphs Gφ, each commencing from an entry point s and

concluding at an exit point t. A thread graph Gφ is constructed from a series of function

graphs Gf connected by interprocedural edges, involving either call or return events. Each

Gf is a collection of nodes that directly correspond on a one-to-one basis with the event

sequence e⃗. Here, e⃗k signifies the k-th event in the sequence e⃗.

Each node within the DIFG symbolizes an individual execution event. The edges within

this graph, categorized into one of the four types listed below, serve to represent flow facts:

(1) e⃗itcf : inter-thread control flow edge. When examining two events e⃗i ∈ φm and e⃗j ∈ φn,

where e⃗i represents a call-site for thread creation, e⃗j denotes the first node of φj, and φi

serves as the predecessor of φj, the notation e⃗itcf = e⃗i → e⃗j indicates an intra-thread control

flow from e⃗i to e⃗j. This connection signifies the control flow between the thread creation

event in φm and the initiation of φn.

(2) e⃗cf : intra-thread control flow edge, including intra- and inter-procedural (function)

edge. In the context where two events e⃗i and e⃗j belong to the same thread φ: If e⃗i is a

60

call event and e⃗j is the entry event of the corresponding callee, then e⃗i → e⃗j represents an

inter-procedural edge, specifically a call edge. If e⃗i → e⃗j, it forms an intra-procedural control

flow edge, provided that e⃗i and e⃗j occur sequentially within the same function. When e⃗i is

a return event and e⃗j is the call event corresponding to the call-site, the connection e⃗i → e⃗j

is characterized as an inter-procedural edge, specifically functioning as a return edge.

(3) e⃗itdd: inter-thread data flow edge. When considering two consecutive events, e⃗i in φi

and e⃗j in φj in chronological order, the relation e⃗i → e⃗j is established as an inter-thread

data dependence edge under the condition that the use operation U(ej) within φj is part

of the set of dependencies D(ei) within φi. This dependency relationship is contingent on

U(ej) referring to a shared or global variable, with D(ei) denoting the latest write operation

on that specific variable.

(4) e⃗dd: intra-thread data flow edge, including intra- and inter-procedure (function) edge.

When considering two events e⃗i and e⃗j within the same thread φ, the edge e⃗i → e⃗j is an

intra-procedural data flow edge if U(e⃗j) ∈ D(e⃗i) and e⃗i and e⃗j occur sequentially within the

same function. If e⃗i is a return event and e⃗j is the call event corresponding to the call-site,

the relationship e⃗i → e⃗j represents an inter-procedural edge, functioning as a return edge.

In the case of a call event e⃗i with e⃗j in the corresponding callee, the edge e⃗i → e⃗j is an

inter-procedural edge, specifically identified as a call edge.

Algorithm 7 illustrates the primary steps involved in the incremental construction of

the Dynamic Information Flow Graph (DIFG). When an event E is received, the algorithm

starts by decoding the event content and retrieving the thread graph Gφ. Subsequently, it

assigns a new node CurNode to the event and retrieves its predecessor in Gφ. If Gf for E

does not exist, indicating that E represents the current function’s first event, the algorithm

creates a Gf . In cases where Gf is NULL, implying that E serves as the current thread’s

first event, an inter-thread control flow edge is established. When Gf exists, the algorithm

initially adds intra-procedural control and data flow edges if applicable. If E represents a

call event, the callee’s DIFG, Gcallee, is obtained, and inter-procedural control and data flow

61

Algorithm 7: Incremental construction of DIFG
Input: E: an execution event, φ: the Thread number

Output: GΦ: the updated DIFG

1 Function constructDIFG (EF , C)

2 e⃗vent ← decodeEvent (E);

3 Gφ ← getOrAddGraph (e⃗d, φ);

4 Gf ← getFuncDIFG (Gφ, e⃗vent);

5 CurNode ← newNode (Gφ, e⃗vent);

6 PreNode ← getPreNode (Gφ);

7 if Gf == NULL then

8 Gf ← addFuncDIFG (Gφ, e⃗vent);

9 if PreNode == NULL then

10 createItcfgEdge (GΦ, Gφ) ; // inter-thread CF edge

11 else

12 TailNodef ← getTail (Gf);

13 createCfgEdge (TailNodef , CurNode);

// compute intraprocedural data dependence

14 while TailNodef != NULL do

15 if U [CurNode] ∈ D[TailNode] then

16 createDDEdge (TailNodef , CurNode);

17 break;

18 TailNodef ← TailNodef− > previous

19 if IsCallEvent(e⃗vent) then

20 Gcallee ← getFuncDIFG (Gφ, e⃗vent);

21 createCfgEdge (Gf , Gcallee) ; // inter-procedure CF

22 createDDEdge (Gf , Gcallee) ; // inter-procedure DD

// compute DD for global or shared variables

23 computeGlobalDD (GΦ, CurNode);

62

edges are subsequently added. It is important to note that a call event can only be captured

after executing the corresponding callee during dynamic analysis. Lastly, if existing shared

or global variables are referred to U[E], the algorithm computes global data dependence.

This procedure involves a form of global search within the execution context.

4.2.3.3 Security applications (plugins) (Step 2.3)

PolyCruise facilitates a range of security applications, addressing the general source-sink

problem. To showcase the practical utility of this technique, the emphasis is placed on vul-

nerability detection leveraging the Directed Interprocedural Flow Analysis (DIFA) within

PolyCruise. Various detector plugins compute the information flow paths between these

sources and sinks through a reachability analysis of the most recently updated Dynamic

Information Flow Graph (DIFG), addressing different information flow security vulnerabil-

ities. As the DIFG is incrementally constructed and updated, any identified vulnerabilities

are reported as security bugs, contributing to the comprehensive security measures integrated

within PolyCruise (refer to Figure 4.2).

4.3 Implementation

PolyCruise has been developed and applied to Python-C programs along with seven plugins,

each designed to detect a specific type of vulnerability on top of dynamic information flow.

4.3.1 Static analysis

LISR translation. The implementation of C-LSI was realized on the LLVM compiler

framework [76]. The translation process of C-LSI involves traversing the LLVM intermedi-

ate representation (IR) generated by the compiler frontend (Clang) and converting it into a

Language-Independent Symbolic Representation (LISR). For Python-LSI, I reused pypredic-

tor [161] (for Python 2.7) to transform Python code into the form of static single assignment

(SSA), generating the corresponding abstract syntax tree (AST). The tool was subsequently

63

updated to support Python 3.6 and higher versions, and LISR is translated from the source

in SSA form.

Instrumentation. Utilizing the results from the Symbolic Data Analysis (SDA), an LLVM

pass [76] was implemented to statically instrument the C sources. The execution event

follows the specification defined in Figure 4.6. Regarding the Python units, sys.settrace

(built-in API) was used for dynamic instrumentation with the guidance of SDA results.

Then, statement details were captured during runtime, and the events were constructed

accordingly; by combining the earlier generated ASTs and dynamic stack information,

The tracing module was implemented as a C library, facilitating direct integration with

both language components.

Symbolic dependence analysis. The SDA was implemented as a simplified symbolic

execution engine using C++. This choice was made since the Language-Independent Sym-

bolic Representation (LISR) of language components does not include branches except for

function invocation. The primary objective of SDA is to calculate all statements that can

be reached from the predefined criteria in a language component.

To guarantee the smooth flow of data among different language components and enhance

the scalability of the framework, a two-level implementation of the SDS was undertaken for

the entry functions of diverse language components. At the initial level, a conservative com-

putation strategy is employed, assuming that all parameters of entry functions are reachable

from the predefined criteria. Specifically, the SDA calculates the invocation relationships

among functions within each language component. It identifies functions that are invoked

by no other functions, designates them as entry functions, and initializes their SDSs as -1.

While this approach may lead to redundant pins, it ensures coverage of all potential data

flow paths across languages.

The framework provides users with the flexibility to customize the second level of the

SDS through configuration. This empowers users to define SDS for each language interface

according to their specific requirements. Consequently, the framework accommodates only

64

the data flow paths that users find relevant or interesting. With these customized SDSs and

user-defined criteria as a guide, the SDA can accurately and efficiently compute all feasible

statements within the language components, ensuring alignment with the user’s specific

needs and preferences.

4.3.2 Runtime libraries

The runtime library consists of two functionalities: tracing library and dynamic event queue.

It is implemented as a C library to link it to mainstream language components (e.g., Python,

Java, Ruby).

Tracing library Each event is tagged with the corresponding thread number in the tracing

API to facilitate analysis for multi-threaded programs. Additionally, to minimize any po-

tential side effects on the target program, the tracing API promptly returns after pushing

an execution event into the event queue.

Dynamic event queue: The queue is implemented as a bidirectional circular queue initial-

ized in shared memory. Throughout runtime, the target program utilizes the tracing API to

push execution events to the queue, while the analysis engine polls events for dynamic infor-

mation flow analysis. Due to its thread- and process-safe design, the queue implementation

is suitable for deployment in real-world programs.

4.3.3 Dynamic information flow analysis engine

The dynamic information flow analysis engine (DIFAE) was implemented using the C pro-

gramming language. Structured around functional components, DIFAE comprises five key

units: event parser, memory database, online DIFA, and security application basis.

Event parser. Adhering to the event definition outlined in Figure 4.6, the event parser

decodes the events in the string to extract def-use information and event types of each event.

Memory database. To ensure the processing capacity for analyzing large-scale programs,

we developed an efficient memory database leveraging the memory pool and hashing. In con-

65

trast to traditional databases, we adopted the following strategies to ensure high efficiency:

1. Light-weight implementation: We focused solely on implementing essential functionalities

such as hash, memory pool, and data operations (e.g., add, query, and delete).

2. High memory efficiency: With a data size of 64 bytes on average, the database can

accommodate over ten million data units with just 1 Gigabyte of memory.

3. Scalable memory pool: Managing memory units based on a scalable memory pool helps

prevent frequent memory allocations and releases.

For the performance evaluation of the database, we conducted tests on the creation and

query operations under an Ubuntu 18.04 desktop environment with a 2.30G CPU and 16GB

DDR4. The results demonstrated that the database can create 10 million records in 1.7

seconds and execute 3.3 million queries per second when a table contains 10 million records.

Online DIFA. Online DIFA is performed incrementally based on the memory database,

where each dynamic event activates the updating process of the dynamic information flow

graph (DIFG). During the implementation of Algorithm 7, two primary concerns demanded

attention: the thread graph and the language boundary.

1. Thread graph: To handle the chaotic events occurring during the analysis of multi-

threaded or multiprocess programs, DIFG is structured with a set of thread-level graphs.

This approach enables the sequential analysis of events within a thread, allowing DIFAE to

compute intra- and inter-procedural data dependence for each event within a specific thread

graph. Interthread data flow is facilitated by maintaining a shared global cache among all

the thread graphs. for the write operation of the memory, DIFAE updates the cache to track

the latest writing location for the memory address. Similarly, for the read operation of the

memory, the engine retrieves the address’s latest writing location and then establishes a data

flow edge from the write to the read point. While this search may slow down its efficiency,

we adopt a "local first" strategy to minimize excessive searching. Upon discovering a local

dependence, the engine terminates the search in the global scope.

2. Language boundary: SDA ensures comprehensive instrumentation covering all potential

66

cross-language data flow paths. Nevertheless, challenges arise due to differences in data

encapsulation and conversions between languages, posing obstacles for dynamic data de-

pendence computation at runtime. For instance, the process of converting parameters from

Python to C through C extension involves transitions from Python type to Pyobject to C

type [133], while parameters flowing from Java to C through Java Native Invocation follow

the sequence from Java type to jobject to C type [114]. Rather than modeling all inter-

face APIs at language boundaries to guide parameter correlation across different language

components, I opt for a field-insensitive approach for parameter passing in foreign function

invocations, as illustrated in Figure 4.7.

1 from PyAdd import *
2
3 def main ():
4 V1 = 1 // source
5 V2 = 1
6 Da = PyAdd (V1, v2)

7 ……

PyAdd(PyObject *self, PyObject *args){
 int V3;
 int V4;
 PyArg_ParseTuple(args, "ii", &V3, &V4);

 Cadd (V3, V4);

 ……;}

int CAdd(int V5, int V6) {
 V = V5 + V6;
 return V
}

7

Python Python-C extension C

Figure 4.7 An example of field-insensitive parameter passing.

In the given example, line 4 in Python is set as the criterion. Variable V1 follows edge

1 to the line 6 call site and then proceeds along edge 2 into a PyObject args that encodes

V1 and V2. Due to the unknown method for decoding args, which is language-dependent,

a cautious approach is adopted. Two data flow edges 3, 6 are added from the definition

point of args to line 4 of the Python-C extension: edge 3 represents the flow of V1 into V3,

while edge 6 indicates the flow of V1 into V4 (simulated data flow). While this conservative

computation may introduce side effects, it ensures the soundness and language independence

of the framework, making it adaptable to support other languages. Conversely, once a

vulnerability is reported on a "simulated" data flow path across language components, it

may be both authentic and effective, potentially originating from an undefined source.

Security application basis: DIFAE offers a collection of interfaces designed to develop

security applications (plug-ins) in the C language. More precisely, a framework user can

efficiently implement a specific vulnerability detection plug-in using just 100 lines of C code.

67

The integration of the plug-in into the framework is streamlined, requiring the user to specify

the location, entry point, and source/sink of the plug-in for seamless incorporation. This

approach ensures a quick and straightforward process for users to enhance and extend the

functionality of the framework with their custom vulnerability detection modules.

4.3.4 Limitations

While PolyCruise is primarily designed for precise dynamic analysis of multi-language pro-

grams, its current implementation can lead to the generation of imprecise flow paths due to

its handling of parameters at language boundaries in a field-insensitive manner. Moreover,

although PolyCruise has been implemented and thoroughly tested on Python 3.7, claiming to

support most language features of Python 3.x, variations in Python versions might introduce

changes in PolyCruise’s behaviors.

It’s important to note that, PolyCruise does not handle data flow across multiple pro-

cesses. In the current implementation, I treat a process similarly to a thread, constructing

an independent analysis context and dynamic information flow analysis for each. However,

I have not yet handled interprocess communication mechanisms, leading PolyCruise to fail

to capture data flow across processes due to the independent address spaces.

4.4 Evaluation

PolyCruise is evaluated through four fundamental aspects: (1): PolyCruise’effective in

terms of its precision. (2): PolyCruise’s efficiency in terms of its costs. (3): PolyCruise’s

capacity for real-world vulnerability discovery.

4.4.1 Experiment setup

PyCBench: a Python-C micro bench. Due to the unavailability of benchmarks with ground

truth written in Python-C for cross-language analysis, a manual micro-benchmark set was

devised, named PyCBench, to ensure the framework’s accuracy. The PyCBench test suite, as

68

shown in Table 4.1 (GenF: general flow, GF: global flow, FieldSen: field sensitivity, ObjSen:

ObjectSensitivity, DynInv: dynamic invocation), was developed to evaluate both static and

dynamic cross-language analyses (Python and C). The suite includes forty-six hand-crafted

micro applications categorized into five groups, covering seven typical security vulnerability

types. PyCBench has been made available alongside PolyCruise and will continue to receive

updates and improvements in subsequent research.

Table 4.1 PycBench’s features and outline.

Vulnerability GenF GF FieldSen ObjSen DynInv Sum

Sensitive data leak 7 5 4 2 2 20

Code injection 1 1 0 0 0 2

Buffer overflow 1 2 2 1 1 7

Division by zero 1 0 0 1 0 2

Integer overflow 1 0 2 5 1 9

Incomplete comparison 3 1 0 0 0 4

Control-flow integrity 1 0 0 1 0 2

Sum 15 9 8 10 4 46

In addition to PyCBench outlined in Table 4.1, a collection of twelve other popular

multilingual open-source projects primarily developed in Python and C was obtained from

GitHub, as shown in Table 4.2. The benchmarks were curated with specific constraints to

ensure their practicality and effectiveness. These included criteria such as the projects hav-

ing around 1,000 or more stars, indicating their substantial and renowned presence within

the open-source community, and a predominant development in Python and C (or C++),

with both languages contributing over 30% of the project size. Moreover, the projects were

required to have multiple developers involved, ensuring ongoing maintenance and updates,

and a rich set of test cases to guarantee high-quality and thorough testing. Detailed doc-

umentation was also necessary for easy installation, usage, or testing. Further information

about each project can be found on the respective open-source project websites.

To conduct the integration tests of the benchmarks using PolyCruise, the Pytest [132]

69

Table 4.2 Real-world multilingual benchmarks with main languages of Python-C.

Benchmark Size (KLoC) C/C++% Python% #Tests

Bounter [17] 3.5 48.2% 50.9% 190

Immutables [66] 5.9 55.0% 44.3% 152

Simplejson [67] 6.4 37.6% 59.8% 31

Japronto [125] 9.4 50.4% 48.2% 15

Pygit [93] 17.0 57.4% 44.6% 241

Psycopg [126] 27.5 50.8% 48.2% 198

Cvxopt [36] 56.0 60.8% 39.0% 78

Pygame [129] 207.0 54.3% 44.7% 324

PyTables [131] 219.8 52.1% 46.6% 6355

Pyo [4] 259.1 50.8% 48.8% 51

NumPy [112] 919.7 36.1% 63.7% 16002

PyTorch [138] 6419.2 56.2% 35.2% 4146

and Unittest [137] frameworks were customized to automate the test case execution and

collect the associated analysis results. In certain benchmarks, only a small number of paths

were identified by PolyCruise based on the default source/sink configuration. To enhance

the runtime coverage and increase the likelihood of discovering vulnerabilities, a tool was

devised to extract all Python function interfaces as sources.

Experimental methodology. For the real-world benchmarks, ground truth was not avail-

able; therefore, manual validation was conducted by randomly sampling ten resulting in-

formation flow paths between unique source/sink pairs. Each path was validated using its

statement-level details by referencing the respective subject’s source code. The path was

considered a true positive if the information flow from the source to the sink was exercised

without any sanitization in between; otherwise, it was considered a false positive. Preci-

sion was computed based on this sampling. To compute recall, ground truth was manually

constructed for the three least complex subjects against the execution for which PolyCruise

found the least paths.

To evaluate the effectiveness of PolyCruise, the tracing of each program statement is

70

collected on both the PyCBench and five real-world benchmarks. The precision and recall

were computed for each benchmark and test using the traced paths as ground truth. Poly-

Cruise’s efficiency and scalability are evaluated separately on its dynamic and static and

analysis parts. Specifically, SDA’s efficiency, in terms of both time and memory usage, was

measured. For Phase 2, the slowdown factor of run-time was compared among the original,

SDA-instrumented, and completely instrumented versions of each benchmark. All experi-

ments were conducted on Ubuntu 18.04 with an Intel i7-10875H CPU and 16GB RAM.

4.4.2 Effectiveness of PolyCruise

Effectiveness on PyCBench. The analysis results of PolyCruise on PyCBench are sum-

marized in Table 4.3 (INT-LP: inter-language path, ITR-LP: Intra-language path). In the

evaluation, PolyCruise successfully identified almost all information flow paths in PyCBench,

with only three false positive alarms. Two of these false positives were in the group labeled as

"Field sensitivity", while the other was in the "Object sensitivity" group. These false alarms

were a result of PolyCruise’s field-insensitive approach to language boundaries, which is im-

plemented to ensure language independence. As a consequence, two benign flows across

languages were misdiagnosed. However, these false positives can be optimized and elimi-

nated in the implementation. The precision of PolyCruise was 93.5%, while the recall was

100%. Though the micro-benchmarks may not entirely capture the intricacies of various

scenarios of real-world applications, the design of PyCBench took into account common

program analysis problems, ensuring the correctness of the implementation.

Effectiveness on practical benchmarks. The effectiveness results of PolyCruise on the

five real-world projects are displayed in Table 4.4 (Pg: #ground-truth paths, Pp: #paths

found by PolyCruise, TP: true positive, TPsc: true positive in security context, FN: false

negative, RC: recall, PI: precision, PIsc: precision under security context.). Through manual

validation of a total of 486 tests, 15 paths were identified as ground truth. PolyCruise

generated 17 paths, of which 15 were validated as true positives, resulting in an overall

71

Table 4.3 Effectiveness on PyCBench.

Group #INT-LP #ITR-LP #Alarm #False alarm

General flow 10 4 14 0

Global flow 9 0 9 0

Filed sensitivity 8 0 8 2

Object sensitivity 9 2 11 1

Dynamic invocation 4 0 4 0

Summary 40 6 46 3

precision of 88.2% and recall of 100%. For the two false positives observed in Cvxopt, The

primary reason was the field-insensitive handling of the language interface. Furthermore,

it was confirmed that, among the 15 vulnerability-associated paths, 10 were exploitable,

resulting in a precision of 58.8% under the security context. Although these findings may

not be generalizable, they provide confidence in the effectiveness of PolyCruise when applied

to real-world multilingual systems.

Table 4.4 PolyCruise’s effectiveness on real-world benchmarks.

Benchmark Pg Pp #TP #TPsc #FN RC PI PIsc

Bounter 3 3 3 2 0 100% 100% 66.7%

Immutables 2 2 2 1 0 100% 100% 50%

Japronto 1 1 1 1 0 100% 100% 100%

Cvxopt 5 7 5 4 0 100% 71.4% 57.5%

Pyo 4 4 4 2 0 100% 100% 50%

Summary 15 17 15 10 0 100% 88.2% 58.8%

4.4.3 Efficiency of PolyCruise

The efficiency of PolyCruise was evaluated on twelve real-world programs, amounting to a

total of 8142.5 thousand lines of code (KLOC). This assessment involved measuring various

aspects in both static and dynamic analysis. In the realm of static analysis, the focus was on

72

three properties: (1) the time consumption of the Static Data Analysis (SDA), (2) the peak

memory utilization of the SDA, and (3) the rate of instrumentation. Additionally, during

dynamic executions, the assessment included two metrics: (1) the runtime slowdown factor,

and (2) the peak memory in Dynamic Information Flow Analysis (DIFA).

Slowdown factor. The computation of the slowdown factor typically involves dividing

the execution time with the SDA version (ESDA) by the execution time of the pure version

(Epure). However, during the evaluation process, a consistent initialization phase overhead

in the Python interpreter for each execution. For instance, in the test runs, the unittest

or pytest frameworks consistently took several seconds to prepare for the case execution,

regardless of the program under test. A straightforward constant slowdown factor connects

the execution times TSDA and Tpure. However, for a more accurate representation, it is

advisable to consider the initialization times ISDA and Ipure, along with the execution times

ESDA and Epure, introducing a slowdown factor S that exclusively affects the execution time.

Tpure = Ipure + Epure

TSDA = ISDA + S · Epure

Consequently, the slowdown factor is computed as follows:

S = TSDA −ISDA
Tpure −Ipure

Efficiency of SDA. Table 4.5 provides the values of three measurements of SDA. In general,

although SDA’s time and memory usage increase as the size of the targets increases, SDA

can complete its analysis in a matter of minutes even for programs with millions of lines

(e.g., PyTorch). For smaller programs, SDA can finish in seconds or even milliseconds.

Regarding the instrumentation rate, with the guidance of SDA, the rate varies between

43% (Pygit) and 62% (Pyo). The main reason for these results is the conservative compu-

tation at language boundaries, which covers all possible data flow paths across languages.

Nevertheless, in real-world tests, only a few paths need to be traced when the source and

73

Table 4.5 SDA performance, SDA-T:time, SDA-M:memory, and instrumentation
rate.

Benchmark SDA-T (sec) SDA-M (MB) Instm%

Bounter 0.02 2.97 52%

Immutables 0.04 4.68 50%

Simplejson 0.03 4.47 56%

Japronto 0.02 3.89 47%

Pygit 0.13 14.54 43%

Psycopg 0.14 15.32 57%

Cvxopt 1.21 35.52 52%

Pygame 2.27 85.32 44%

PyTables 2.45 101.11 51%

Pyo 20.21 258.73 62%

NumPy 10.99 557.95 48%

PyTorch 175.19 7414.95 51%

sink are fixed. A straightforward optimization for the framework users is configuring the

second-level SDS for boundary interfaces to reduce the instrumentation rate.

Figure 4.8 Comparison of slowdown factor between SSDA- and CMPL-version.

Runtime slowdown and memory usage. In each benchmark, three versions were com-

piled: the pure version, the SDA-based instrumentation version (SDA-version), and the

complete instrumentation version (CMPL-version). Ten random test cases were selected for

each benchmark, and the performance metrics (i.e., memory use, time cost) were collected

for these cases across the three versions. Relative to the data of the pure version, the runtime

74

Figure 4.9 Comparison of peak memory usage between SDA- and CMPL-version.

slowdown factor was calculated using the formula (1) for both the SDA-version and CMPL-

version in each benchmark. Finally, a set of ten factors was obtained for each benchmark.

Figure 4.8 presents the comparison of average slowdown factors between the two versions for

each benchmark, along with standard errors.

Compared to the pure version, the SDA-version exhibits runtime slowdown factors rang-

ing from a minimum of 2.71 in Pygit to a maximum of 11.96 in PyTorch. Referring to

the instrumentation rate provided in Table 4.5, PolyCruise achieves a lower rate in Pygit

(43%) compared to PyTorch (51%), thereby potentially leading to a lower slowdown factor

in the former during runtime. Given the computational intensity of PyTorch relative to

other benchmarks like Pygit, it generates a significantly larger number of execution events

during runtime, averaging 55 million events across ten random PyTorch cases. This notable

increase in the number of events contributes to the higher slowdown factor experienced.

However, in contrast to the CMPL-version, the SDA-version demonstrates superior time

and memory efficiency across all twelve benchmarks, as illustrated in Figure 4.8 and 4.9.

Specifically, the SDA-version enhances efficiency by reducing the slowdown factor by 18.3%

(in Japronto) to 66.2% (in PyTorch), and curbing memory usage by 16.2% (in Japronto) to

67.1% (in Cvxopt).

In summary, PolyCruise demonstrates a significant performance improvement compared

to the CMPL-version. Despite this advancement, the conservative computation in SDA

results in notable slowdown factors during runtime across all practical benchmarks.

75

Table 4.6 New vulnerability discovery of PolyCruise.

Benchmark #IntOf #BufOf #InCc #Fixed #Confirmed #Pending #CVEs

Bounter 0 1 0 1 0 0 1

Immutables 0 1 0 0 0 1 0

Japronto 0 1 0 0 0 1 0

Cvxopt 0 0 4 4 0 0 1

Pyo 0 2 0 2 0 0 2

NumPy 1 3 1 1 3 1 4

Summary 1 8 5 8 3 3 8

4.4.4 Real-world vulnerability discovery

Based on the program executions of the practical benchmarks, as depicted in Table 4.2,

PolyCruise successfully detected 14 previously unknown vulnerabilities in the real-world

benchmarks. These vulnerabilities are detailed in Table 4.6 (IntOf: Integer-overflow, BufOf:

Buffer-overflow, and InCc: Incomplete-comparison).

4.5 Related Work

ORBS [13] provides language-independent support for multilingual program analysis, but

scalability issues limit its practical application, even in its improved version [77]. Semantic

summarization, as demonstrated by Dillig et al. [40], suffers from significant information

loss and complex language semantics [80, 160]. Unified intermediate representations such as

pyLang (PyLLVM) and JLang enable multilingual analysis, yet the complexity of various

language features and the need for extensive engineering work pose substantial challenges

[97, 169, 7]. Dynamic techniques like Truffle [74] and DroidScope [164] encounter practical

limitations related to laborious runtime component implementation, potential discrepancies

in program behavior, and overall efficiency challenges. Various studies, including those by

Tan et al. [150], Li et al. [83], Afonso et al. [3], Brucker et al. [19], Bae et al. [10], Lee et al.

[79], Brown et al. [18], Dinh et al. [41], and Li et al. [82], have targeted specific language

76

combinations, although extending support for additional language pairs remains challenging.

In contrast, PolyCruise diverges from existing methodologies, as PolyCruise employs a

language-independent SDA approach that mitigates runtime slowdown with minimal reliance

on language-specific analysis, indicating potential adaptability for new language combina-

tions and providing the first cross-language DIFA implementation for Python-C programs.

77

CHAPTER FIVE

HOLISTIC GREYBOX FUZZING OF MULTI-LANGUAGE SYSTEMS

The prevalence of multiple programming languages in software systems introduces security

threats alongside various benefits. However, state-of-the-art techniques are insufficient for

such systems. PolyCruise’s effectiveness is hindered by the input coverage; existing fuzzing

techniques predominantly target single-language software, leaving multi-language systems in-

adequately protected. To address this, I introduce PolyFuzz, a comprehensive greybox fuzzer

that efficiently tests multi-language systems by utilizing cross-language coverage feedback

and a sophisticated model capturing semantic relationships across languages. The evalua-

tion against single-language fuzzers on 15 multi-language and 15 single-language benchmarks

demonstrated that PolyFuzz obtained 25.3–52.3% higher code coverage and uncovered twelve

previously unknown multi-language vulnerabilities, along with two vulnerabilities in single-

language benchmarks, got five CVEs assigned. These results underscore the significance of

holistic approaches like PolyFuzz in securing multi-language software systems.

5.1 Motivation

Greybox fuzzing has exemplified significant efficacy in exposing vulnerabilities in real-world

software [100]. Notably, prominent fuzzers like AFL (American Fuzzy Lop) [99] and libFuzzer

[95] have successfully identified over 16,000 vulnerabilities across various projects [98]. How-

ever, our understanding suggests that these leading fuzzers primarily focus on single-language

programs [100], while the majority of contemporary projects (more than 80%) are developed

using multiple programming languages [147].

The application of single-language fuzzers to multilingual code poses several challenges,

notably as follows:

(1) Feasibility for different languages: The complexity and diversity of interfaces between

various languages in multi-language software lead to variations in runtime input formats

78

GifImageFile

PyImagingNew

PyImaging_XbmDecoderNew

PyImaging_GifDecoderNew

……

Image.Parser

ImageDraw.Draw……

Image.save

Image.fromaryPython
28 APIs

C
117 APIs

p1 GifImageFile -> decode:
p2 s = self.fp.read(1)
p3 if s[0] == 249: proc1 ()
p4 elif s[0] == 254: proc2 ()
p5 elif s[0] == 255:
p6 s = self.fp.read(9)
p7 x1, y1 = i16(s, 4), i16(s, 6)
p8 if (x1 > 65536 or y1 > 256) :
p9 bomb_check()
p10 decode (s, x1, y1)
p11 …….

c1 ImagingNewDIB(char* mode,int x, int y) {
c2 if (x > (INT_MAX / 4) - 1) { …… }
c3 if (mode[0] == ‘1’) { …….}
c4 else if (mode[0] == ‘P’) { …… }
c5 else if (mode[0] == ‘L’) { …… }
c6 else if (mode[0] == ‘F’) { …… }
c7 else if (mode[0] == ‘I’) { …… }
c8 else { …… }
c9 image = calloc(x*y);
c10 …….
c11 }python C

Pillow

60%

39%

Figure 5.1 A real-world multi-language software: Pillow.

across language units and APIs. It becomes impractical to construct suitable invocation

contexts and fuzzing instances for all the APIs.

(2) Inefficiency due to incomplete feedback: In the context of fuzzing a multilingual program,

single-language fuzzers commonly face challenges in advancing the fuzzing process. This

difficulty arises from the absence of comprehensive coverage feedback, resulting in inefficient

performance—particularly when interacting with black-box components within the system.

(3) Reproducibility of vulnerabilities: Engaging in fuzzing at the level of individual language

units disrupts the semantic connections between these units, introducing potential discrep-

ancies in vulnerability detection. The inherent limitation lies in the lack of a comprehensive

understanding of the complete system execution path, potentially resulting in false positives

during vulnerability assessment. Acknowledging this challenge underscores the importance

of adopting approaches that consider the whole context for vulnerability detection.

These drawbacks of single-language fuzzers necessitate the development of a cross-language

fuzzing technique that achieves holistic, whole-system fuzzing (WSF). However, WSF en-

counters its challenges, notably the inefficiency resulting from the shortage of initial seeds for

exercising cross-language behaviors, and the high percentage of redundant inputs generated

due to random mutation guided by control flow coverage [173]. These challenges require

a more precise and informed approach to mutation, involving cross-language information

flow analysis. Building upon these insights, the development proposal for a cross-language

fuzzing framework, named tech, aims to facilitate efficient and comprehensive fuzzing of

multi-language systems.

79

5.2 Approach

To enhance the effectiveness of fuzzing in multi-language software environments, I pioneered

the development of PolyFuzz. This innovative tool facilitates comprehensive code coverage

analysis across the entire system, providing valuable insights for methodically optimizing

seed scheduling.

A crucial element of PolyFuzz is its initial phase, the seed generation process, specifically

crafted to tackle the prevalent issue of limited initial seeds in multi-language systems. In this

phase, PolyFuzz utilizes sensitivity analysis to explicitly map semantic relationships among

various input segments and branch predicates, informed by regression analysis. Following

this, it smoothly transitions to conventional fuzzing, dynamically adapting and reverting to

seed generation as required.

To seamlessly handle diverse language combinations, PolyFuzz integrates a streamlined

language-specific analysis for holistic coverage measurement. This analysis selectively cap-

tures only the essential variable values for constructing the regression model. Facilitated

by a custom intermediate representation (IR), PolyFuzz standardizes runtime value probing

across different languages, making the majority of PolyFuzz language-agnostic.

5.2.1 Overview of PolyFuzz

In Figure 5.2, the comprehensive design of PolyFuzz is depicted. This cutting-edge tool

operates on three crucial Inputs:

(1) The multilingual program P, encompassing a collection of language units for testing

purposes. (2) A set of adaptable fuzzing drivers for P, catering to the requirements of various

fuzzing interfaces. (3) The initial tests for P’ for the fuzzing process.

The functioning of PolyFuzz is orchestrated through three core functional units:

Unit 1: Static analysis and instrumentation, involving a meticulous procedure of static

language-specific analysis (LSA) on P. This process entails translating the sources into an

80

1. Static analysis & Instrumentation

LSA

Run-time

Multilingual program P

2. Sensitive analysis based seed generation

Fuzzing mode

3. Fuzzer
Fuzzing proxy Core Fuzzing

Dynamic Event Monitor

...
Fuzzing inputs for P

Test 1 Test 2 Test N
Fuzzing drivers for P ...C unit Python unit Java unit

IR translation

IGC CDA & DFA

Static/Dynamic
Instrumentation

Instrumented multilingual program P’

Input

F-IRsCCBVs

Learning mode Output

Sampling BV values Seed blocks’ values SeedGenSensitive analysis

New seeds

IP
C

bugs

SASG proxy

F-CFGs

IGs

CFA

shadow event queue

Figure 5.2 An overview of PolyFuzz’s architecture.

intermediate representation for each function (F-IR). Simultaneously, it parses the constant

constraints of branch variables (CCBV) to facilitate effective seed learning in Unit 2. The

subsequent step involves the computation of instrumentation guidance, merging the results

of control dependence analysis (CDA) and data flow analysis (DFA) to generate the final

guidance for both static and dynamic instrumentation.

Unit 2: Sensitivity Analysis-based Seed Generation (SASG) operates in two distinct modes,

namely Fuzzing mode and Learning mode. In the Fuzzing mode, it directs the fuzzer (Unit 3)

to initiate fuzzing on the instrumented multilingual program P’. Simultaneously, it monitors

dynamic events, capturing the coverage of branch variables (CoBV). Upon detecting changes

in CoBV triggered by a seed S, it switches to Learning mode. This mode entails conducting

random sampling (mutation) on S by seed block, performing sensitive analysis between seed

blocks and branch variables, and leveraging the collected constants of branch variables from

Unit 1 to predict the values of seed blocks. The generated new seeds are then employed to

enhance the fuzzing process before reverting to Fuzzing mode.

Unit 3: The language-agnostic fuzzer functions in tandem with SASG’s learning procedure,

prioritizing and loading new seeds into the seed queue. Operating on path-coverage guidance,

81

the Fuzzer collaborates with SASG to improve coverage and effectively detect vulnerabilities.

In the event of triggering vulnerabilities, the Fuzzer reports the associated seed as PolyFuzz

Outputs for further analysis and reproduction.

5.2.2 Static analysis and instrumentation

To streamline and expand the language-specific analysis within PolyFuzz, the static analysis

and instrumentation (SAI) phase is strategically devised. This phase is dedicated to reducing

complexity and simplifying the overall language-specific analysis, thereby enhancing the

language extensibility of the system.

5.2.2.1 IR translation

To fulfill the specific demands of PolyFuzz, two distinct types of instrumentation are imper-

ative: (1) Instrumentation at the basic block level to facilitate path-coverage computation.

(2) Instrumentation at the definitions of branch variables to enable sensitive analysis. Ac-

commodating these requirements necessitates the implementation of both intra-procedure

control flow and data flow analyses. However, as these intensive program analyses must

be applied to each language unit within multilingual systems, they pose a considerable ob-

stacle to the seamless extension of the algorithm to new languages. This complexity also

contributes to the challenging maintenance of PolyFuzz.

In response to this challenge, we have devised an intermediate representation (IR) that

retains the essential and simplified syntax required for the unified program analysis of mul-

tilingual programs. This IR, known as SAIR within the context of the paper, serves as a

unifying foundation that streamlines the analysis process and facilitates a more cohesive

approach to handling multilingual codebases.

SAIR definition. Based on the outlined instrumentation requirements, the SAIR is defined

with an emphasis on two fundamental program elements: basic blocks and the definitions of

branch variables. Consequently, we establish the SAIR with a specific global symbol, namely

82

the function. Additionally, two distinct types of statements, LINE (denoting assignments)

and CMP (for comparisons), along with two value types, integer (I) and other (O), are

incorporated into the SAIR’s structure. Below is the formal syntax of the SAIR:

P ::= F ∗

F ::= τf(x∗)S∗

S ::= [x =]e∗ | [cmp]e∗, e∗

e ::= τx | C | ε

τ ::= I | O

In the representation, a program P is expressed as a sequence F∗ consisting of function

definitions. Each function F is characterized by a return type τ , a function name f, a sequence

x∗ of parameters, and a set of statements S∗. The return type τ of f is simplified into two

fundamental types: I (integer) and O (other). Two kinds of statements exist in this context:

a line statement [x=]e∗ covering non-compare statements like assignments, calls, and unified

returns with assignments, and a cmp statement [cmp]e∗,e∗ specifying the comparison of two

variables. Expressions e can take one of three forms: a variable x with type τ , a constant

C, or ε indicating an empty string. Additionally, a return tag τ is categorized as either a

general type T or ε.

For control flow analysis, SAIR retains the basic block information from the sources.

As only branch variables with integer types are considered in data flow analysis, SAIR

simplifies the variable types to just two categories, namely integer and other. Furthermore,

to streamline the analysis process, SAIR condenses call and return statements into unified

assignments, as the focus primarily lies on intra-procedure analysis.

Translation. Given the SAIR definition mentioned earlier, the translation of a language

unit occurs via a lightweight syntactic parsing process on a function-by-function basis.

Algorithm 8 provides a comprehensive overview of the SAIR translation process. The

SAIR translator initially converts the declaration to SAIR format for a function definition

(line 2). Subsequently, it iterates through all the basic blocks (lines 4 to 15). Within each

83

basic block, the SAIR translator sequentially parses each statement (lines 6 to 15).

In the case of a CMP statement (line 9), the translator decodes the uses and generates

a corresponding CMP statement in SAIR. If this CMP statement involves a parameter that

includes an integer constant, the translator captures the branch variable information, which

includes a unique identifier, the prediction type, and the value of the constant (line 11). As

for other statements, they are translated into LINE statements following the SAIR format.

Algorithm 8: Translate a given function to SAIR
Input: F: a given code function

Output: Fsair: the SAIR of F

1 Function translate2SAIR (F)

2 Ssair ← getFDeclaration (F); //translate function declaration

3 Fsair.append (Ssair);

4 foreach Bi in F do

5 Bsair ← initBlock (Fsair, Bi) ; //initialize current basic-block

6 foreach Si in Bi do

7 if isCMP (Si) then

8 _, Uses = getDefUse (Si);

9 Ssair ← getCmpSAIR (Uses[0], Uses[1]);

10 if hasIntConstant (Si) then

11 dumpBrVariable (Si); //dump branch variables with int const

12 else

13 Def, Use = getDefUse (Si);

14 Ssair ← getLineSAIR (Def, Use);

15 Bsair.append (Ssair); //insert Ssair to current basic-block

16 return Fsair

5.2.2.2 Instrumentation guidance computation

With SAIR as input, Instrumentation Guidance Computation (ICG) takes three language-

independent program analysis phases: (1) Intra-procedure control flow analysis (CFA), (2)

Intra-procedure control dependence analysis (CDA), (3) Intra-procedure data flow analysis

(DFA). Then ICG decides which blocks should be instrumented according to the results of

CDA and DFA.

84

Algorithm 9: Procedure of ICG on SAIR
Input: F: a given function of SAIR

Output: Sicg : a set of statements for instrumentation

1 Function icgComputation (F)

2 CFG ← getFCfg (F); //get function CFG

3 DomBB ← calDomofBB (CFG); //compute dominance on CFG

4 PDomBB ← calPostDomofBB (CFG); //compute post-dominance on CFG

5 SBB ← ϕ;

6 foreach Bi in F do

7 if isEntry (Bi, F) then

8 SBB .append (Bi) ; //always instrument the entry block

9 else

10 if isFullDominator (Bi, DomBB) || isFullPostDominator (Bi, PDomBB) then

11 continue;

12 SBB .append (Bi) ; //instrument the non-(post)dominators

13 SBV ← calReachability (CFG); //cal instrument-sites for branch-vars

14 Sicg ← merge (SBB , SBV);

15 return Sicg

The detailed procedure for calculating the minimal instrumentation sites for a given SAIR

function F is outlined in Algorithm 9. The algorithm commences by constructing a control

flow graph (CFG) (line 2). With CFG as the input, it proceeds to compute the dominant

and post-dominant relationships between the basic blocks within CFG through the process

of Control Dependence Analysis (CDA) (lines 3 to 4). During the iteration of each basic

block (lines 6 to 12), the decision to include a block in the block set SBB is contingent upon

its impact on the control-flow-path distinction. Consequently, the entry block of CFG is

marked for instrumentation and added to SBB.

Under specific conditions, a block is identified as a non-instrumented block if it domi-

nantly influences all of its immediate descendants, exhibiting behavior akin to a full post-

dominator. This categorization is based on its limited impact on the path distinction within

the CFG. Concurrently, the algorithm employs Data Flow Analysis (DFA) [59] to derive a

set of definitions for all branch variables (SBV). Ultimately, the algorithm yields Sicg as the

output, carefully eliminating redundant elements from the consolidated sets SBB and SBV .

85

Algorithm 10: Seed partition and sampling
Input: P: instrumented program

Input: S: a seed triggering new CoBVs

Input: L: list of preset values of block-length, e,g, {1, 2, 4, 8}

Input: N: the number of sampling

Output: SBPlist: lists of SBP

1 Function seedPtSampling (P, S, L, N)

2 SBPlist ← ϕ;

3 foreach Li in L do

4 Pos ← 0;

5 while Pos+ Li <length (S) do

6 SBi ← S [Pos : Pos+ Li]; //extract a block with length Li

7 Ns ← 0;

8 while Ns <N do

9 S
′ ← randMutate (S, SBi); //mutate SBi and generate new seed S

′

10 execute (P, S
′
); //execute P with new seed S

′

11 BVlist ← collectBrValues ();

12 updateSbBvPairs (SBPlist, SBi, BVlist);

13 Ns ← Ns + 1;

14 Pos ← Pos+ Li;

15 return SBPlist

86

5.2.3 Sensitive-analysis-based seed generation

Sensitive-Analysis-Based Seed Generation (SASG) is responsible for monitoring the coverage

of branch variables (CoBV) during the fuzzing process. When a seed triggers new CoBV,

SASG initiates seed learning, involving three primary phases: (1) seed partition and sam-

pling, (2) sensitive analysis, and (3) seed generation, as elaborated below.

5.2.3.1 Seed partition and sampling

Instead of treating the seed as a mere byte stream [48], the seed partition process divides

it into blocks of equal length L (e.g., 1-byte block, 2-byte block, 4-byte block), effectively

treating the seed as a block stream. This approach is more practical, considering that

an integer branch variable is often influenced by a block of bytes with a specific length,

rather than just a single byte. During the sampling process, the seed blocks are randomly

mutated, and the instrumented program’s execution observes the values of branch variables.

Consequently, a list of value pairs of seed-blocks and branch-variables (SBP) is generated

for further sensitive analysis.

Algorithm 10 presents a detailed stepwise procedure for seed partition and the generation

of Seed Block Profiles (SBPs). The algorithm takes four distinct inputs: the instrumented

program (P), a seed (S), a predefined list of partition lengths (L), and the sampling quantity

N. For each partition length Li (line 3), the seed undergoes N random mutations, block by

block (lines 5 to 14). In the sampling process (lines 9 to 12), a new seed S′ is generated by

randomly mutating block SBi. After executing P with seed S′ , all reached branch variables

are collected into BVlist, and the SBPs list, SBPlist, is updated with information from SBi

and BVlist during the current execution.

5.2.3.2 Sensitive analysis

The sensitive analysis phase involves constructing regression models based on the SBP lists

to discern the functional associations between branch variables and seed blocks. By utilizing

87

Algorithm 11: Procedure of sensitive analysis
Input: PC: preset parameter combinations of regression models

Input: SBPlist: a list of SBP

Input: BVset: a set of integer constants of branch variables

Output: Ssb: a set of seed block values

1 Function sensitiveAnalysis (SBPlist, BVset)

2 RMlist ← {Rbf, Polynomial, Linear}; //initialize regression model list

3 Accopt ← 0; //initialize the accuracy as 0

4 Rmopt ← ϕ;

5 Train, Test ← split (SBPlist);

6 foreach RM [i] in RMlist do

7 Rmi, Acci ← getModel (PC, RM [i], Train, Test);

8 if Acci > Accopt then

9 Accopt ← Acci;

10 Rmopt ← Rm; //selected the optimal RM

11 Ssb ← predict (Rmopt, BVset)

12 return Ssb

13 Function getModel (PC, RM [i], Train, Test)

14 Acci ← 0;

15 Rmi ← ϕ;

16 foreach pc in PC[i] do

17 rm ← trainModel (RM [i], pc, Train); //train a model for each pc

18 res ← predict (rm, Test);

19 acc ← calAccuracy (res, Test);

20 if acc > Acci then

21 Acci ← acc;

22 Rmi ← rm

23 return Rmi, Acci

88

the acquired models, it becomes possible to predict the values of seed blocks using the

integer constants extracted during the static analysis (Unit 1). This approach facilitates

the generation of new seeds based on the predicted seed blocks, increasing the likelihood of

either hitting or reversing the comparison conditions at branches.

Algorithm 11 provides a comprehensive overview of the sensitive analysis process, encom-

passing model training, selection, and prediction. The algorithm is designed to accept preset

parameter combinations of regression models, an SBP list, and a set of integer constants

of branch variables as input. The initialization of three regression types as RMlist (line 2)

marks the outset of the process. For each regression type, multiple models are trained with

the preset parameter combinations on the training data, with the selection of the model that

exhibits the highest accuracy on the test dataset for the specific regression type (lines 13 to

23). Subsequently, an optimal model Rmopt is identified based on its accuracy among the

three regression models (line 10). Finally, the algorithm leverages Rmopt in conjunction with

the constants of branch variables to predict the potential values of the seed block.

5.2.3.3 Seed generation

During the phase of seed generation, the process involves the creation of new seeds by

assembling the values of the seed blocks sequentially. Illustrated in Figure 5.3, the predicted

values of seed blocks (sb0, sb1, ..., sbn) are utilized to formulate a seed SD as a sequence of

seed blocks, represented as SD = {sb0[k] sb1[m] ... sbn[o]}, where k, m, and o are random

variables. The seed space SS is further defined as SS = x × y × ... × z, with x, y, and z

representing the number of values in blocks sb0, sb1, and sbn, respectively.

To address the efficient production of seeds, we approach the seed generation problem

by transforming it into a path construction problem within a directed graph (DG). Initially,

we establish a dummy entry node S and an exit node E for DG (as depicted in Figure 5.3).

Subsequently, the depth of DG corresponds to the number of seed blocks, denoted as n,

with the graph nodes at depth i representing the values in seed block sbi. Notably, a seed is

89

V00

V01

V0x

 V0...

V10

V11

V1y

 V1...

Vn0

Vn1

Vnz

Vn...
...

sb0 sb1
... sbn

S E

Figure 5.3 The block representation of a seed.

equivalent to a path from S to E, excluding the dummy nodes.

Nevertheless, practical scenarios often witness an escalation in seed length and the com-

plexity of the fuzzed program, which may potentially trigger an explosion issue within the

path (seed) space. The former can lead to a heightened graph depth, while the latter may

introduce more branch variables, further amplifying the predicted values (graph nodes) in

seed blocks. As a preventive measure against such explosion issues and to ensure the gener-

ation of a maximum number of effective paths, the seed generation phase is subdivided into

two sub-steps: (1) Weighted sampling and (2) Path construction.

Weighted sampling. Due to the diversity of the coverage of branch variable (CoBV) in

different seed blocks, sampling should also be biased to the blocks with good CoBV. Given

a limited path space M as budget and the number of predicted seed-block n, for a seed block

sbi, the sampling number SNi on sbi is calculated as follows:

(1) SNavg = power(M, 1
N ′)

(2) Wi = Nbvi /
∑n

j=1 Nbvj

(3) SNi =

 SNavg + (Nbvi − SNavg)×Wi Nbvi ̸= 0

1 Nbvi = 0

In formula (1), the power function is used to compute the average sampling number SNavg

for all seed blocks, considering them to be of equal importance. Subsequently, the weight

of block sbi is determined based on the number of covered branch variables, as outlined in

formula (2). In formula (3), the calculation of SNi is contingent upon adjusting the average

(SNavg) sampling size either upwards or downwards, depending on the weight when Nbvi ̸= 0.

90

If Nbvi=0, as previously discussed, the block is assigned the original seed value, effectively

setting SNi to 1 for that particular block.

Algorithm 12: Path construction in a depth-first traversal
Input: SBL: a seed block list

Input: SNL: the list of weighted sampling numbers for SBL

Input: D: the max depth of the graph

Input: p: current path in construction

Input: d: current depth of the path p

Output: PL: a list of paths

1 Function getPathByDF (SBL, SNL, D, p, d)

2 SNd ← SNL[d]; //get weighted sampling number for block d

3 SBV ← randomSampling (SBL[d], SNd); //sampling SNd seed block values

4 foreach v in SBV do

5 p[d] ← v; //insert v to the position d of p

6 if d == D then

7 insert (PL, p); ;//a full path generated

8 else

9 getPathByDF (SBL, SNL, D, p, d+ 1); //recursively process d+1

10 return

Path construction. Algorithm 12 outlines the path construction procedure in a depth-first

traversal. At the current depth d, the algorithm initiates by obtaining the pre-calculated

weighted sampling number (SNd) and then proceeds to randomly sample SNd seed block

values (SBV) (see line 3). Following this, the algorithm iterates through all the values

(nodes) present in SBV (lines 4-9). More specifically, for each value v within SBV , it is

inserted into the current path p at slot d. In case the iteration reaches the exit node (with a

maximum depth of D), a new path is generated (see line 7). If not, the algorithm recursively

executes the path generation procedure for the next depth d+1 (line 9).

5.2.4 Fuzzer

The Fuzzer is designed with two primary units: Fuzzing proxy and Core fuzzing. The Fuzzing

proxy plays a crucial role in facilitating communication with collaborative programs (such

91

as SASG in this context) and controlling the operational status of Core fuzzing. The com-

munication is structured around three fundamental message types: start_up, switch_mode,

and new_seed.

The start_up message is utilized for the initial handshaking process, ensuring the func-

tional status validation of both communication parties. During the seed sampling process in

learning mode, SASG uses the switch_mode message to notify the fuzzer posed. This pre-

cautionary measure is implemented to prevent potential conflicts arising from shared memory

read/write operations that occur when both the fuzzer and SASG execute simultaneously.

Upon receiving the new_seed message, the Fuzzing proxy loads the new seeds from

the database and alerts Core Fuzzing to initiate the fuzzing process with the newly loaded

seeds. Core fuzzing operates by the traditional fuzzing process, encompassing seed selection,

mutation, and bug reporting. Notably, in this design, all block information from various

language units is mapped onto the same shared memory byte-map. This approach allows for

the calculation of block- (or path-) coverage without differentiating between the language

types of the tested programs, thus fulfilling the language-agnostic requirement.

5.3 Implementation

The PolyFuzz implementation supports programs written in one or more of three widely

used languages: Python, Java, and C. The key components of PolyFuzz are illustrated in

Figure 5.4, featuring a shared C component responsible for static analysis and instrumenta-

tion. The essential component comprises three fundamental libraries: the SAIR parser, the

instrumentation guidance computation (IGC), and DynTrace. The language-specific analysis

layer has access to these libraries through the wrapper situated in the language interfacing

layer. For its fuzzing core, PolyFuzz integrates AFL++ [46]. The overall implementation

spans approximately 12KLoC, with 0.6 KLoC dedicated to Java, 1.2 KLoC to Python, and

0.3 KLoC to C.

Language-specific analysis and instrumentor. For each language, a SAIR translator

92

IGC DynTrace SASG

Language specific analysis and Instrumentor

Language Interfacing AFL++

SAIR Parser

Figure 5.4 An overview of PolyFuzz’s implementation.

and instrumentor have been implemented. In C, an LLVM pass is used for translation, along

with IGC for guidance computation, and dynamic tracing APIs from the DynTrace library.

The Java implementation, built on Soot, incorporates JNI wrappers for DynTrace and IGC.

In Python, the SAIR translator and instrumentor are developed separately, employing a

static parser based on AST and a dynamic instrumentor using Pybind. The process of adding

support for new languages remains straightforward, leveraging the existing C libraries for

complex algorithmic functionalities.

IGC. In the IGC module, the fusion of intraprocedural control dependence and data flow

analysis is rooted in the program’s SAIR. The resulting output articulates each instrumen-

tation guidance as a tailored value pair <block-id, statement-id> specific to individual func-

tions. Notably, the IGC implementation prioritizes thread safety, facilitating concurrent

operation with compilers or program analysis frameworks such as LLVM [76] and Soot [75].

Dynamic tracing (DynTrace). The C-based library implementation serves a triple role.

Initially, it provides an API to initialize the shared-memory byte map crucial for AFL++’s

coverage computation. Subsequently, it offers an API for setting up the shadow event queue,

responsible for caching covered branch variables during SASG. Lastly, it encompasses APIs

for tracing dynamic events, capturing block information, and logging branch variables. These

accessible APIs can be directly called by language instrumentors or accessed through tailored

wrappers for specific language interfaces, such as the JNI wrapper for Java, ensuring seamless

integration into the fuzzing targets.

SASG and AFL++. To enhance the efficiency of the fuzzing process, SASG and AFL++

run concurrently. Furthermore, SASG employs a staggered seed generation approach, prompt-

93

ing AFL++ to load and initiate fuzzing every 8K seeds generated. In the adaptive model

selection phase, regression accuracy is assessed by calculating the mean distance between

predicted and ground-truth seed-block values during model validation. A regression is con-

sidered unsuccessful if the accuracy falls below 80

Limitations. For a clean runtime environment during each fuzzing session, PolyFuzz op-

erates in non-persistent mode [46], creating a new process for each execution. While this

strategy ensures user convenience and system stability, it can slightly impede the fuzzing

efficiency due to the overhead of process forking. Moreover, the current implementation

assumes the fuzzing target single process, potentially limiting the detection of cross-process

bugs and making it challenging to fuzz multilingual code involving multiple processes, such

as cases where a C unit invokes other language units through separate processes.

5.4 Evaluation

PolyFuzz is evaluated through four primary aspects: effectiveness on real-world multilingual

programs, effectiveness on single-language programs, the impact of sensitivity analysis in

PolyFuzz, and real-world vulnerability discovery.

5.4.1 Experiment setup

Baselines. For evaluation, the comparison included PolyFuzz and three prominent single-

language fuzzers from the Google OSS-Fuzz framework [52]: Honggfuzz for C, Jazzer for

Java, and Atheris for Python. The evaluation was extended to modified versions of Jazzer

and Atheris incorporating C code coverage measurement, labeled Jazzer-C-ext and Atheris-

C-ext. Additionally, the sensitive analysis phase was disabled in a version of PolyFuzz

(PolyFuzz-NSA), which was then compared with AFL++ specifically on C benchmarks.

Benchmarks and initial input seeds. The evaluation encompassed testing PolyFuzz on

fifteen real-world multilingual systems (ten Python-C and five Java-C programs) as shown

94

Table 5.1 Fifteen real-world multi-language benchmarks.

Benchmark Size Languages #BV #BV-IntConst

Libsmbios [38] 8.3 Python:30.4% C:64.2% 6866 3269 (47.6%)

Tink [51] 257.7 Python:7.2% C++:33.5% 66282 27962 (42.2%)

Pillow [124] 75.8 Python:60.0% C:38.6% 15628 9090 (58.2%)

Ultrajson [153] 5.1 Python:34.3% C:64.8% 1361 903 (66.1%)

Aubio [9] 42.9 Python:25.4% C:73.3% 3445 2232 (64.8%)

Bottleneck [128] 16.9 Python:49.5% C:48.6% 3384 1814 (53.6%)

Pycurl [127] 14.6 Python:54.8% C:40.7% 433 264 (61.1%)

Simplejson [67] 6.2 Python:61.4% C:38.6% 858 544 (63.4%)

Msgpack [109] 15.1 Python:48.7% C:50.1% 2322 1056 (45.5%)

Pycryptodome [81] 65.5 Python:43.5% C:56.1% 2842 1595 (56.1%)

Jep [110] 18.9 Java:25.4% C:56.6% 2856 1454 (50.9%)

Jansi [47] 5.2 Java:66.6% C:22.7% 386 121 (31.3%)

Jna [71] 129.4 Java:76.9% C:16.1% 3017 941 (31.2%)

Onenio [113] 29.1 Java:86.0% C:14.0% 4371 1132 (25.9%)

Zstdjni [96] 47.9 Java:6.8% C:88.7% 47803 20384 (42.6%)

in Table 5.1 ((Size in KLOC, BV: branch variable, BV-IntConst: branch variable with

constant integer constraints)), chosen based on code size, language distribution, and branch

variable characteristics. Additionally, 5 benchmarks were randomly selected from Google’s

OSSFuzz for C, Python, and Java, respectively, as shown in Table 5.2, to assess PolyFuzz’s

performance on single-language projects. Custom drivers were crafted for PolyFuzz to suit

all fifteen multilingual systems. For Atheris (applied to the ten Python-C programs) and

Jazzer (employed for the five Java-C programs), the drivers were adjusted to accommodate

variances in the test-input interface. In the case of single-language projects, OSSFuzz drivers

were utilized for all single-language fuzzers, and fresh drivers were crafted exclusively for

PolyFuzz. To ensure equitable comparisons, all fuzzers underwent execution on the same

95

benchmark with identical initial inputs.

Table 5.2 Fifteen single-language benchmarks selected from OSSFuzz.

Benchmark Size Languages #BV #BV-IntConst

Bleach [108] 14.4 Python 1035 119 (11.5%)

Sqlalchemy [148] 391.9 Python 30637 2187 (7.1%)

Urllib [154] 18.5 Python 1948 121 (6.2%)

Pyyaml [163] 24.3 Python 2196 107 (4.9%)

Pygments [130] 96.6 Python 4993 381 (7.6%)

Jsonsanitizer [116] 2.3 Java 326 237 (72.7%)

Commonscompress [6] 73.7 Java 8563 5771 (67.4%)

Zxing [174] 47.1 Java 4453 3059 (68.7%)

Jsoup [70] 25.3 Java 2109 1101 (52.2%)

Javaparser [69] 183.9 Java 7743 4683 (60.5%)

Efsprogs [152] 118.4 C 19439 13279 (68.3%)

Bind [68] 275.4 C 56428 33538 (58.8%)

Civetweb [30] 521.7 C 6615 4080 (61.7%)

Cyclonedds [43] 225.9 C 22551 14286 (63.3%)

Igraph [65] 212.1 C 63013 35043 (55.6%)

Performance metrics. In the experimental setup, two primary fuzzing metrics were under

consideration: the count of covered basic blocks and the number of triggered bugs. The three

baseline single-language fuzzers all relied on basic block coverage as the main performance

indicator. Given that, PolyFuzz employed AFL++ [46] as its core fuzzing agent, the reported

metric included the number of paths identified by AFL++’s algorithm for reference. When

comparing PolyFuzz and PolyFuzz-NSA, the third metric was the number of paths found.

The coverage results were averaged over five repetitions of a 24-hour runtime. Additionally,

the number of detected bugs played a pivotal role. Recognizing potential inaccuracies in

96

the count of unique crashes reported by different fuzzers, all reported issues underwent

meticulous manual validation. For this validation, a proof of Concept (PoC) was created to

replicate each issue using the crash-triggering inputs. Bugs were considered new only if their

call stack differed from all other confirmed bugs.

5.4.2 Effectiveness on multilingual programs

Table 5.3 Performance comparison on the Python-C benchmarks.

Benchmark
PolyFuzz Atheris Atheris-C-ext

#Block #PythonBlk #Path #Bug #PythonBlk #Bug #Block #Bug

Libsmbios 198 51 35 1 24 0 149 0

Tink 2139 97 755 0 33 0 1891 0

Pillow 1363 1034 233 1 706 1 915 1

Ultrajson 377 126 151 1 39 0 238 0

Aubio 453 187 91 1 126 0 160 0

Bottleneck 1359 25 634 7 14 0 886 2

Pycurl 239 38 19 0 26 0 205 0

Simplejson 374 97 86 0 82 0 197 0

Msgpack 245 48 78 0 43 0 223 0

Pycryptodome 572 243 64 0 185 0 493 0

Total 7319 1946 2147 11 1278 1 5357 3

Improve — 52.3% ↑ 10 ↑ 36.7% ↑ 8 ↑

In Table 5.3, the comparative outcomes between PolyFuzz and Atheris/Atheris-C-ext

for the 10 Python-C benchmarks are presented. The table details the total number of

basic blocks covered (#Block) and the count of basic blocks covered in the Python unit

(#PythonBlk) by PolyFuzz. For Atheris, coverage measurement is limited to Python code

(#PythonBlk), whereas Atheris-C-ext incorporates both Python and C code coverage in

the overall (#Block). Analogously, Table 5.4 illustrates the performance contrast between

97

Table 5.4 Performance comparison on the Java-C benchmarks.

Benchmark
PolyFuzz Jazzer Jazzer-C-ext

#Block #JavaBlk #Path #Bug #JavaBlk #Bug #Block #Bug

Jep 418 145 59 0 90 0 354 0

Jansi 332 309 244 1 242 0 261 0

Jna 711 476 189 0 362 0 579 0

Onenio 364 316 131 0 289 0 312 0

Zstdjni 151 84 21 0 47 0 71 0

Total 1976 1330 644 1 1030 0 1577 0

Improve — 29.1% ↑ 1 ↑ 25.3% ↑ 1 ↑

PolyFuzz, Jazzer, and Jazzer-C-ext across the 5 Java-C benchmarks, replacing #PythonBlk

with #JavaBlk to signify the basic blocks covered in the Java unit.

Coverage. In Table 5.3, PolyFuzz exhibits 36.7% and 52.3% more basic block coverage

than Atheris-C-ext and Atheris in the overall and Python units, respectively. Similarly, as

indicated in Table 5.4, the respective coverage improvements over Jazzer amount to 25.3%

and 29.1%. These results highlight the significant enhancement in code coverage by PolyFuzz

across the entire system and specific language units. Analysis of the multilingual benchmarks

reveals that the C code ranges from 38.6% to 73.3% in the Python-C programs and 14.0%

to 88.7% in the Java-C programs (Table 5.1). While Atheris and Jazzer fail to respond to

coverage changes within C units, enabling native fuzzing substantially improves the coverage

evolution with complete coverage guidance. However, despite these advancements, PolyFuzz

still outperforms the extended baselines due to its superior seed generation capabilities. By

leveraging whole-system coverage and learned regression models, PolyFuzz identifies favored

seeds and explores untouched branches and program paths, achieving higher coverage com-

pared to both Atheris-C-ext and Jazzer-C-ext.

Bug triggering. The bug-triggering outcomes, as outlined in Table 5.3 and Table 5.4,

98

show that Atheris identified a single bug in Pillow, and Atheris-C-ext revealed two bugs in

Bottleneck, with neither Jazzer nor Jazzer-C-ext detecting any bugs. In contrast, PolyFuzz

successfully triggered 12 bugs across six projects, including 11 in Python-C and one in

Java-C programs. These results underwent manual verification, and proof-of-concept (PoC)

reproductions were generated for each bug. The comprehensive system coverage awareness

of PolyFuzz not only propels the evolution of the fuzzing process for achieving high code

coverage but also significantly improves bug detection in real-world multilingual projects.

5.4.3 Effectiveness on single-language programs

In this evaluation, Extensive comparisons between PolyFuzz and Atheris, Jazzer, and Hong-

gfuzz are performed across 15 real-world single-language benchmarks, emphasizing the two

performance metrics.

Table 5.5 Performance evaluation on the Python benchmarks.

Benchmark
PolyFuzz Atheris

#Block #Path #Bug #Block #Bug

Pyyaml 853 703 1 826 1

Bleach 1023 353 0 796 0

Sqlalchemy 1096 18 0 1047 0

Pygments 1276 229 0 799 0

Urllib 534 71 0 496 0

Total 4782 1474 1 3964 1

Improve — 20.1% ↑ 0 −

Coverage. Tables 5.5-5.7 indicate that PolyFuzz achieved 20.1%, 11.0%, and 10.1% more

coverage of basic blocks compared to Atheris, Jazzer, and Honggfuzz on these single-language

benchmarks. In contrast to the multi-language benchmarks, all the fuzzers in this case

utilized complete system coverage as feedback. Nevertheless, PolyFuzz outperformed all three

baseline fuzzers. Table 5.2 highlights that these benchmarks had a significant proportion of

99

Table 5.6 Performance evaluation on the Java benchmarks.

Benchmark
PolyFuzz Jazzer

#Block #Path #Bug #Block #Bug

Zxing 4604 1923 0 4575 0

Jsoup 3408 1082 0 3261 0

Javaparser 4729 377 1 3821 1

Commonscompress 339 453 0 296 0

Jsonsanitizer 595 309 0 547 0

Total 13675 4144 1 12319 1

Improve — 11.0% ↑ 0 −

branch variables with constant integer constraints, ranging from 4.9% in Pyyaml to 72.7%

in Jsonsanitizer (5th column). Utilizing its SASG module, PolyFuzz efficiently generated

seeds from these constant branch constraints. These generated seeds, when used as inputs,

enabled PolyFuzz to achieve improved block coverage with fewer random mutations. Overall,

PolyFuzz demonstrated an impressive ability to discover more favorable seeds by effectively

mutating seeds generated based on sensitivity analysis.

Table 5.7 Performance evaluation on the C benchmarks.

Benchmark
PolyFuzz Honggfuzz

#Block #Path #Bug #Block #Bug

Efsprogs 1173 302 0 1049 0

Bind 4154 2982 0 3955 0

Civetweb 232 157 0 195 0

Cyclonedds 1091 592 0 1003 0

Igraph 431 454 0 228 0

Total 7081 4457 0 6430 0

Improve — 10.1% ↑ 0 −

100

Bug triggering. Two issues are unveiled in PolyFuzz during testing: a Recursion error

emerged in Pyyaml, and a JVM hang occurred in Javaparser, with no bugs detected in

the C benchmarks. The Pyyaml bug was also identified by Atheris using a different seed

input, confirmed through the creation of a Proof of Concept (PoC) to reproduce the bug.

Similarly, the bug discovered by Jazzer was verified to be identical to the one triggered by

PolyFuzz. Although PolyFuzz did not exhibit a clear advantage in bug triggering compared

to these single-language fuzzers, its advanced code coverage capabilities suggest the potential

for uncovering additional bugs.

5.4.4 Importance of sensitivity analysis in PolyFuzz

In this evaluation, both PolyFuzz and PolyFuzz-NSA support cross-language fuzzing, em-

ploying distinct strategies. The comparative performance analysis between the two fuzzers

for 15 real-world multilingual programs was based on two vital metrics. The detailed compar-

ison results are presented in Table 5.8. Additionally, the effectiveness of sensitivity analysis

was assessed by comparing PolyFuzz with AFL++ across five C benchmarks. The results of

this evaluation are documented in Table 5.9.

Coverage. In the realm of basic block and path coverage, PolyFuzz showcases a substantial

edge over PolyFuzz-NSA. Take Pillow as an example, where PolyFuzz outperformed by

covering 320 (30.7% ↑) more basic blocks and 86 (58.5% ↑) more paths compared to PolyFuzz-

NSA. Overall, PolyFuzz recorded a 17.4% surge in basic block coverage and an impressive

21.8% rise in path coverage. It’s noteworthy that PolyFuzz-NSA, with its holistic coverage

awareness, surpassed single-language fuzzers by covering 30.5% more Python blocks than

Atheris and 19.5% more Java blocks than Jazzer. Similarly, juxtaposed with AFL++ on

the C benchmarks, PolyFuzz achieved a 7.6% boost in basic block coverage and an 11.4%

uptick in path coverage under the same feedback mechanism. This comparison accentuates

the broad efficacy of SASG in PolyFuzz, particularly extending its influence beyond multi-

language fuzzing and suggesting potential benefits for enhancing the performance of existing

101

Table 5.8 Performance evaluation between PolyFuzz and PolyFuzz-NSA.

Benchmark
PolyFuzz PolyFuzz-NSA

#Block #Path #Bug #Block #Path #Bug

Libsmbios 198 35 1 174 30 1

Tink 2139 755 0 1771 627 0

Pillow 1363 233 1 1043 147 1

Ultrajson 377 151 1 318 120 0

Aubio 453 92 1 349 85 0

Bottleneck 1359 634 7 1321 516 2

Pycurl 239 19 0 198 18 0

Simplejson 374 86 0 239 54 0

Msgpack 245 78 0 201 67 0

Pycryptodome 572 64 0 469 50 0

Jep 418 59 0 364 51 0

Jansi 332 244 1 313 211 0

Jna 711 189 0 671 181 0

Onenio 364 131 0 343 119 0

Zstdjni 151 21 0 145 19 0

Total 9295 2791 12 7853 2292 4

Improve — 17.4% ↑ 21.8% ↑ 8 ↑

102

Table 5.9 Performance evaluation between PolyFuzz and AFL++.

Benchmark
PolyFuzz AFL++

#Block #Path #Bug #Block #Path #Bug

Efsprogs 1173 302 0 1066 217 0

Bind 4154 2982 0 3996 2813 0

Civetweb 232 157 0 198 145 0

Cyclonedds 1091 592 0 1016 531 0

Igraph 431 454 0 308 322 0

Total 7081 4457 0 6584 4028 0

Improve — 7.6% ↑ 11.4% ↑ 0 −

single-language fuzzers.

Bug triggering. Notably, Only 4 of the 12 bugs uncovered by PolyFuzz were detected

by PolyFuzz-NSA. indicating its weaker bug-finding capability compared to SASG-enhanced

PolyFuzz. Nonetheless, PolyFuzz-NSA still outperformed single-language fuzzers in bug

triggering (Table 5.8 vs Tables 5.3 and 5.4).

5.4.5 Real-world vulnerabilities discovery

Table 5.10 summarizes the 14 previously unknown vulnerabilities discovered by PolyFuzz,

with 5 CVEs assigned.

5.5 Related Work

Single-language fuzzing. The majority of fuzzers concentrate on C/C++ [100], employ-

ing techniques like MOpt, GreyOne, REDQUEEN, ProFuzzer, and PATA for greybox

fuzzing [98, 48, 8, 166, 92]. These fuzzers also prioritize efficient seed generation and selec-

tion strategies [167, 23, 156, 16, 117, 168], with some exploring reinforcement learning and

code transformation to enhance their fuzzing capabilities [157, 119]. In contrast, PolyFuzz

distinguishes itself through its approach: (1) treating the input as a seed-block stream rather

103

Table 5.10 Vulnerabilities detected by PolyFuzz.

Benchmark #Bug Status PoC Symptom #CVE

Libsmbios 1 pending ✓ segment fault 0

Pillow 1 fixed ✓ out of memory 1

Ultrajson 1 fixed ✓ segment fault 1

Aubio 1 pending ✓ memory leak 0

Bottleneck 7 pending ✓ segment fault 1

Jansi 1 pending ✓ out of memory 1

Pyyaml 1 pending ✓ recursion error 0

Javaparser 1 confirmed ✓ JVM hung 1

Total 14 —— 5

than a byte-stream, (2) predicting seed-block values through regression modeling instead of

acquiring more seeds after mutation, (3) implementing sensitivity analysis-based seed gen-

eration with core regression modeling, and (4) dynamically selecting the regression model

on-the-fly, setting it apart from Eclipser’s fixed linear model [29] (refer to Algorithm 11).

Multi-language testing. Tools like Amleto and Gillian employ custom intermediate

representations (IRs) for testing embedded software and conducting multi-language sym-

bolic execution, with a focus on languages such as VHDL, SystemC, JavaScript, and C [45,

144]. Similarly, the mutation testing tool in [54] facilitates mutant generation across vari-

ous languages using regular-expression-based transformations. However, none of these tools

specifically target the testing of programs composed of code units in multiple languages si-

multaneously, distinguishing them from PolyFuzz, which caters to the testing of multilingual

code. Moreover, tools like FANS and Favocado focus on fuzzing Android native system

services and JavaScript engines, respectively, but they operate as single-language fuzzers,

lacking the capability to handle cross-language code interaction [94, 41]. Notably, no prior

work has explicitly addressed holistic fuzzing of multi-language programs as PolyFuzz does.

104

Cross-language security analysis. NDroid enables dynamic taint analysis (DTA) for

JNI code in Android apps, revealing cross-language information leakage [162]. Likewise,

PolyCruise facilitates application-level dynamic information flow analysis (DIFA) to un-

cover vulnerabilities at language interfaces in software units [86]. Despite their potential

for identifying security issues, these analyses rely on existing run-time inputs, posing chal-

lenges for supporting additional language combinations. In contrast, PolyFuzz addresses

these challenges by generating inputs to expose vulnerabilities in multi-language software,

ensuring enhanced extensibility. Moreover, the cross-language DTA/DIFA approach in prior

works can inform comprehensive multi-language fuzzing strategies, akin to the methodology

employed in PolyFuzz.

Program intermediate representation (IR). Existing IRs such as LLVM-IR and Soot/Jim-

ple [76, 75] cover complete code semantics, limiting their practicality as a unified IR across

multiple languages. Conversely, the custom IR in PolyCruise is designed for complex data-

flow analysis [88], unsuitable for greybox fuzzing. In contrast, the new custom IR in PolyFuzz

is tailored for fuzzing, capturing critical information like control-flow/branching and value

types, enhancing its compatibility with various languages [165]. It enables minimal language-

specific analysis for enabling coverage measurement, gathering branch variables for regression

model training. Harmonizing run-time value probing across languages renders the majority

of PolyFuzz language-agnostic.

105

CHAPTER SIX

COLLABORATIVE FUZZING OF PYTHON RUNTIMES

With Python’s pervasive usage and critical role, ensuring the security and reliability of its

runtime system becomes paramount. Despite the ongoing reporting of real-world bugs in

Python runtimes, automated bug detection tools are significantly lacking. To address this

gap, I propose PyRTFuzz, a pioneering fuzzing technique engineered to comprehensively test

Python runtimes, encompassing the language interpreter and its runtime libraries. Lever-

aging a combination of generation- and mutation-based fuzzing, PyRTFuzz seamlessly in-

tegrates static and dynamic analysis to extract runtime API descriptions. It employs a

declarative specification language for generating diverse Python code and implements a cus-

tomized type-guided mutation strategy for constructing structure-aware application inputs.

Extensive evaluation across three major CPython versions revealed PyRTFuzz to be highly

effective, uncovering 61 new demonstrably exploitable bugs, primarily within the interpreter

and runtime libraries. This underscores the tool’s scalability, cost-effectiveness, and signifi-

cant potential for further bug discovery.

6.1 Motivation

Empirical study on CPython bugs. CPython, the primary implementation of Python

[134], has been actively maintained for over two decades. Analyzing 98.3K historical issues

from its repository, I identified 23.4K bug-related issues, with an average of over 1,000 re-

ported annually since 2008. In the last five years, the number has consistently remained close

to 2,000, as depicted in Figure 6.1. A manual examination of 500 bug-related issues indicated

that over 98% of the bugs were triggered during Python application development, highlight-

ing the necessity for robust testing tools to ensure CPython’s quality and the potential for

testing the language runtime through its applications.

Upon analyzing the bug distribution in CPython, it was found that a significant major-

106

Figure 6.1 The number of bugs over twenty years in CPython.

ity (86.8%) of the bugs were located in the Python runtime libraries, while the remaining

13.2% were in the Python interpreter core. This analysis was conducted across 165 modules

extracted from the CPython source code, with 164 modules having reported bugs. These

findings underscore the importance of comprehensive testing for both Python runtime li-

braries and the interpreter core. They highlight the necessity for automated techniques to

effectively test the entire Python runtime to uncover potential vulnerabilities.

1 program A as seed | program B generated from A

2 --

3 n = 4 | n1 = 4

4 s = [0,3,5,8,7,9] | s1 = [0,3,5,8,7,9]

5 for i in range (0, n):| for n2 in range (0, n1):

6 s [i] = n | for n3 in range (0, n2):

7 s [n] = i | s1[n3] = n2

8 | s1[n2] = n3

Figure 6.2 Example of grammar-based code generation.

Python runtime fuzzing. In Python runtime testing, generating diverse and valid appli-

cations is vital. However, existing techniques may not be enough. In Figure 6.2, program

B is generated from program A using code bricks extracted via a grammar-based approach

like CodeAlchemist. Despite being correct, such methods face limitations:

(1) Unawareness of diverse domains. Most bugs were in various Python runtime libraries

107

spanning 165 domains. Current methods focus on code generation but overlook runtime API

utilization (Figure 6.2), potentially missing bugs.

(2) Insufficient application inputs. Covering various domains through diverse Python ap-

plications is insufficient for effective Python runtime testing. Recent CPython bug reports

suggest that unit tests alone are insufficient, as they cover only a limited range of inputs to

the runtime. Utilizing existing compiler testing techniques [58] may execute a newly gen-

erated program only once (as depicted in Figure 6.2), limiting the exploration of potential

bugs with different input scenarios.

(3) Lack of holistic testing. Python applications operate within the Python runtime envi-

ronment, encompassing both the interpreter core and runtime libraries. Focusing solely on

either component is insufficient for comprehensive testing. To thoroughly assess the Python

runtime, it is imperative to consider both the interpreter core and runtime libraries, along

with their interactions.

import locale
def localeTest(percent):
 try:
 ret = locale.format(percent, 2)
 except:
 pass

if __name__ == '__main__':
 localeTest (sys.argv[1])

[input B]: ”%777777777777777u”
[output]: MemoryError in locale.py
[bug type]: Unhandled Exception

[input C]: ”%7777777777u”
[output]: Hard crash
[bug type]: Out of Memory

[input A]: ”%2u”
[output]: “ 2”
[bug type]: None

Figure 6.3 Motivating example: bugs occur in the interpreter and runtime library.

In Figure 6.3, the API locale.format is shown formatting the integer 2 using the percent

input formatter. This example underscores several critical points: Firstly, the failure to

generate applications for specific runtime modules like locale may overlook bugs within those

modules (limitation (1)). Secondly, the generation of applications across various domains

may not be adequate to uncover all bugs, particularly without considering diverse inputs

(limitation (2)). Finally, the diverse results demonstrate the intricate interactions between

the interpreter core and runtime libraries, emphasizing the need for holistic testing to address

108

such complexities (limitation (3)).

Driven by the empirical findings and observations, I propose a collaborative two-level

fuzzing strategy to examine the Python runtime thoroughly. This approach integrates

Level-1 generation-based fuzzing, responsible for creating Python applications, with Level-2

mutation-based fuzzing, which generates a diverse set of application inputs. By coordinating

the two fuzzers, the framework aims to detect Python runtime bugs comprehensively.

6.2 Approach

In pursuit of comprehensive Python runtime testing, I introduced PyRTFuzz, an innovative

two-level collaborative fuzzing framework. The initial step involves a hybrid analysis ap-

proach, utilizing static extraction and dynamic refinement to meticulously capture detailed

runtime API descriptions. Leveraging these descriptions, I devised a specification-based

language capable of generating domain-specific applications with varying control flow com-

plexities. his process maintains data flow from application entry to API call through a

top-down wrapping strategy. The fuzzing framework acts as a singleton, using one instance

for both levels to share coverage feedback. Private data for each level, such as generators

and seed queues, is initialized individually.

Static
Extraction

Dynamic
Extraction

Run-time Libs

Untyped API
Descriptions

Unit tests

Typed API
Descriptions

CPython source

APP Selection

APP
Queue

Shared Coverage Feedback

A
P

P
 g

en
er

at
io

n

p
ro

xy

Interpreter

Phase 1. Run-time API DescriptionExtraction

Slang
Primitives

Specification
Generator

Level-1 Fuzzing
SLang

Interpreter

Language Feature
Summarization

Level-2 Fuzzing

SLang
Specifications

Python
APPs

Phase 2. SLang-based Python Application Generator

Invoke

Phase 3. Two-level Fuzzing Core

PyRTFuzz
input

Instrumented CPython RuntimeInstrument

Return

Seed Queue

Custom Mutator

APP n

APP ...

APP 0

PyRTFuzz
output

Figure 6.4 An overview of PyRTFuzz’s architecture.

109

6.2.1 Overview of PyRTFuzz

In Figure 6.4, PyRTFuzz utilizes PyRTFuzz Inputs and the CPython source code in three

main phases to uncover potential bugs or vulnerabilities. In Phase 1, the CPython source

code is analyzed, extracting API description details through static and dynamic extrac-

tion. Static extraction analyzes runtime libraries module by module, presenting Untyped

API Descriptions. Dynamic extraction involves running unit tests to obtain accurate type

information, forming Typed API Descriptions for API-guided application generation.

In Phase 2, using Typed API Descriptions, PyRTFuzz employs a SLang-based Python

APP generator (SLPyG) to create diverse applications. SLang scripts are randomly gener-

ated for a specified API and translated into Python applications with varied complexities.

In Phase 3, the Two-level Fuzzing Core with shared coverage feedback operates at two lev-

els. Level-1 Fuzzing uses a generation-based approach to fill the APP queue with Python

applications for each API. APP selection initiates Level-2 Fuzzing on selected applications

within a time budget. After one iteration of Level-2 Fuzzing, APP selection generates a

more complex application with the associated API or selects another from the queue based

on coverage changes. This iterative process continues until the APP queue is empty. Level-2

Fuzzing utilizes a mutation-based strategy with a Custom Mutator, working within a limited

budget to efficiently cover all runtime APIs.

6.2.2 Run-time API description extraction

This phase is particularly crucial for Python application generation, aiming to accurately

extract API descriptions in the following two subsections. Additionally, considering the

multitude of Python versions, the dynamic and accurate extraction of API descriptions

becomes even more essential.

110

6.2.2.1 Static extraction

In the static extraction phase, PyRTFuzz utilizes Python’s standard AST parser to sequen-

tially parse run-time library modules, extracting API descriptions. The fields of an API

description are defined in Table 6.1.

Table 6.1 Field definitions for an API description.

No Field Type Comment

1 module string module name

2 class string class name if exists

3 name string API name

4 argument {string:string} argument dict

5 return {string:string} return dict

6 exception [string] exception list may be thrown

Each defined field is crucial for generating functional Python applications. The module

field specifies the module to import, and a valid class mandates creating an object before

calling the API. Each API includes a 3-tuple of attributes: (name, argument, return). For an

API with a given name, all arguments are cataloged in a dictionary, where the key represents

the argument name, and the value signifies the argument type. Variable parameter APIs

include a label "...:..." in the dictionary. In the static phase, the ‘argument‘ and ‘return‘

dictionaries start with None (Untyped), with subsequent updates in the dynamic phase.

This is due to the limitations of static inference [60, 120, 106] in ensuring accurate type

inferences. The ‘exception‘ field meticulously compiles explicit exceptions triggered by the

API or implicit ones from imported modules. This information is instrumental in guiding

the handling of exceptions during application generation (§6.2.3).

As a reminder, functions extracted from source code may not all be the open APIs

published to developers. Only those that pass the Import test are reserved in descriptions

111

to filter out these internal functions.

6.2.2.2 Dynamic extraction

Utilizing Untyped API descriptions as input, PyRTFuzz executes and scrutinizes unit tests

to extract types in dynamic extraction, following the process outlined in Algorithm 13.

Algorithm 13: Dynamic API type extraction
Input: U : unit test set

Input: utSpec: untyped API specifications

Output: tSpec: typed API specifications

1 Function dynTypeExtract (U , utSpec)

2 foreach ui in U do

3 F ← dynInspect (ui) ; //inspect, get all functions’ frames

4 foreach fi in F do

5 N ← getApiName (fi) ;

6 Des ← getApiDescript (N , utSpec);

7 if Des is None then

8 continue;

9 foreach arg in Des.arg do

10 tDes ← updateArgType (Des, arg, fi);

11 tDes ← updateRetType (fi) ;

12 return tSpec;

PyRTFuzz processes one unit test in each iteration (line 2). For a given test, PyRTFuzz

executes and examines the frame objects of functions (line 3), capturing local variables like

parameters and return variables. From each frame fi, it extracts the function name (line 5),

which serves as input to retrieve the corresponding API description (line 6). When Des is

valid, PyRTFuzz uses the argument names as keys to obtain actual parameters (live objects)

from frame fi, extracting types and updating Des to tDes. It also extracts the return type

(lines 9–11).

While offering high accuracy, dynamic extraction may encounter false negatives due to

incomplete execution coverage. In the case of PyRTFuzz, API type extraction only requires

function-level coverage, which is achievable through unit testing. Furthermore, Python allows

112

variation in API argument or return types; PyRTFuzz ensures extraction of at least one type

for each argument or return, ensuring the capability to generate valid application inputs.

6.2.3 SLang-based Python application generation

To comprehensively fuzz Python runtimes, SLang-based Python APP generation (SLPAG)

focuses on generating diverse Python applications with APIs from the run-time libraries. It

possesses three key capabilities: (1) constructing applications for different APIs, (2) creating

applications with varied control flow complexities for a specified API, and (3) maintain-

ing data flow from the application’s entry to the API’s call site for a specified application

of an API. To achieve this, SLPAG introduces an API-independent, extensible script lan-

guage (SLang) and designs an SLang interpreter to interpret and translate a SLang script

(a sequence of SLang statements) into a Python application.

6.2.3.1 Slang definition

Accordingly, the formal syntax of Slang is as follows:

P ::= S∗

S ::= [c =]C(e)∗

e ::= c | A

In SLang, a program (script) P is a sequence S∗ of statements. Each statement S is exclu-

sive of the assignment type. In every assignment, the right-value C(e)∗ signifies a built-in

command C operating on an expression e, and the left-value c represents the result of C(e)∗.

As an expression, e can be a variable c or an expression of a Python API A.

SLang primitive. A SLang primitive can be summarized but not limited to Python’s

language features (e.g., control flow structures). In PyRTFuzz, the primitives are designed

into two categories: basic and extend.

Basic. The basic primitive is utilized to establish the foundational structure of a program,

be it object-oriented or procedure-oriented, and to specify the program’s entry point. This

113

primitive is tailored to exclusively accept an expression of a Python API as its input. Hence,

each SLang script must initiate with precisely one basic primitive.

Algorithm 14: Procedure of a basic primitive
Input: API: a Python API description

Output: P : a Python application

1 Function basicCmd (API)

2 T ← typeList (API); //prob API type list

3 P .insert (T);

4 D ← newFunc (demoFunc, argd);

5 pd ← getPara (D);

6 paras ← decodeArgs (T , pd); //prob decoder for API arguments

7 sd ← newCall (API.name, paras);

8 D.insert (wrapExcp (sd));

9 P .insert (D)

10 M ← newFunc (P , SLmain, argm);

11 pm ← getPara (M);

12 sm ← newCall (demoFunc, pm);

13 M .insert (sm);

14 P .insert (M)

15 return P ;

Algorithm 14 delineates the comprehensive process for a basic primitive. It inputs a

Python API description and initializes the program P with the probed API argument type

list T (line 3). The algorithm begins by creating a demoFunc to encapsulate the invoca-

tion of the API (line 4–8). Notably, to facilitate input format-aware mutation, a function

called decodeArgs is probed to decode the input (an encoded byte stream from the Fuzzer)

into individual arguments for the API call (line 6). This ensures the type correctness of

arguments. Furthermore, the invocation of the API is encapsulated in a try–except block to

filter out expected exceptions and allow the Fuzzer to capture unhandled exceptions. The

definition of demoFunc is then inserted into program P. Subsequently, the algorithm creates

the main function SLmain for P (line 10–13). Following a similar procedure, SLmain invokes

demoFunc and inputs its formal parameters to maintain inter-procedure data flow. Finally,

P designates SLmain as its entry point for fuzzing.

114

Extend. The extend primitive is a flexible construct that can be derived from language con-

trol flow structures or programming patterns observed in real-world software development.

Unlike the basic primitive, the extend primitive provides enhanced flexibility by allowing it

to take the results of other primitives as input.

Algorithm 15: Procedure of an extend command
Input: P : a previously generated Python application

Output: P ′: a new Python application

1 Function extendCmd (P)

2 M ← getMain (P); //get SLmain

3 BM ← getBody (M);

4 p ← getPara (M);

5 Block ← newBlock (BM , p); //wrap SLmain’s body into a new block

6 P ′ ← setBody (M , Block);

7 return P ′;

Algorithm 15 outlines the procedure for a extend primitive, generating new applications

by top-down wrapping the input program. Given a previously generated program P, the

extend primitive retrieves the main function M (i.e., SLmain) along with its body and pa-

rameters. It then wraps M’s body into a new block and replaces M’s body with the block

to create a new program P’. The new block can be either intraprocedural (e.g., a for or if

block) or interprocedural (e.g., a function call). For the intraprocedural case, it wraps M’s

body to the block and then pushes it back. For the interprocedural case, it generates a

new function with the same parameters as M, inserts M’s body into the new function, and

replaces the body of M with invoking the new function. This top-down wrapping approach

ensures a seamless data transfer from the top (i.e., SLmain) to the bottom (i.e., the API call

site) for primitives inducing interprocedural control and data flows, satisfying the data flow

requirement from the application’s entry point to the Python API’s call site.

Seven SLang primitives are built on Python abstract syntax tree (AST) operators, as

illustrated in Table 6.2. These primitives cover both basic intra-procedural (e.g., If) and

inter-procedural (e.g., Call) control flow structures. Each primitive is designed to operate

115

Table 6.2 SLang primitives implemented in PyRTFuzz.

No Command Type Comment

1 OO basic object-oriented program

2 PO basic procedure-oriented program

3 While extend a while structure wrapper

4 For extend a for structure wrapper

5 If extend a if structure wrapper

6 Call extend a call structure wrapper

7 With extend a with structure wrapper

universally on all Python runtime APIs, ensuring independence from the syntax or semantics

of specific API usage. This quality of SLang fulfills the capability requirement (1).

1 OO (sqlite3.dbapi2.DateFromTicks)

2 --

3 TypeList = ['ticks:int']

4 class demoCls ():

5 def demoFunc(self , p):

6 try:

7 ticks = decodeArgs(TypeList , p)

8 sqlite3.dbapi2.DateFromTicks(ticks)

9 except (AssertionError) as e:

10 pass

11 def SLmain(x): # entry point

12 dc=demoCls ()

13 dc.demoFunc(x)

Figure 6.5 Primitive OO to Python APP of equivalent semantics

In Figure 6.5, an illustration of applying the OO primitive to the Python API Date-

FromTicks in the library of sqlite3.dbapi2 (line 1) is presented. The corresponding Python

application (lines [3–13]) demonstrates equivalent semantics. The variable TypeList specifies

the name and type of the API’s parameters. The OO command generates a new class named

116

demoCls and encapsulates the API within its method demoFunc (lines [6–10]). Specifically,

a new variable ticks is defined by decoding the input parameter p (line 7). The call site

for the API is then created and enveloped within a try-except block. Finally, the entry

point SLmain is initialized, and a context for invoking demoCls.demoFunc is constructed,

completing the application generation.

6.2.3.2 SLang specification generator

In accordance with the definition outlined in §6.2.3, a SLang specification comprises a series

of SLang statements. Subsequently, a SLang specification generator (SLangSG) orchestrates

the creation of a SLang specification, adhering to the process delineated in Algorithm 16.

This entails the systematic construction of SLang statements sequentially utilizing primitives.

Algorithm 16: Generate a SLang specification
Input: Prm: SLang primitive set

Input: API: Python API name

Input: N : Statement number (≥ 1)

Output: SS: SLang specification

1 Function genSpecification (Prm, API, N)

2 Pb ← selectPrm (Prm, basic) ; //randomly select basic primitive

3 S ← genStmt (R, Pb, API) ; //statement: R = Pb (API)

4 pushBack (SS, S);

5 N ← N − 1;

6 while N > 0 do

7 Pe ← selectPrm (Prm, extend); //randomly select extend primitive

8 S ← genStmt (R, Pe, R); //statement: R = Pe (R)

9 pushBack (SS, S);

10 N ← N − 1;

11 return SS;

SLangSG, taking inputs of the primitive set (Prm), Python API name (API), and the

statement number (N), executes a two-step generation process. Initially, it constructs a basic

command statement by randomly selecting a basic primitive Pb from Prm and crafting an

assignment statement R = Pb (API), where R functions as a built-in variable for storing the

117

outcomes of Pb on API. This inaugural statement sets the overall structure of the Python ap-

plication tailored for API. Subsequently, it iteratively generates extend command statements

in each iteration, where R = Pe (R) is formed by randomly selecting a extend command Pe

from Prm, with Pe taking R as input and storing the result back into R. This process re-

peats until the script reaches the specified length N. This strategy, involving the selection of

basic and extend primitives and determining the specification’s length N, ensures the gen-

eration of Python applications for a specific API with diverse control flow complexities and

programming patterns, satisfying the capability requirement (2).

1 R = OO (sqlite3.dbapi2.DateFromTicks)

2 R = For (R)

3 R = Call (R)

Figure 6.6 An example of SLang specification with three statements.

As an example, considering the API sqlite3.dbapi2.DateFromTicks, Figure 6.6 illustrates

a randomly generated SLang specification comprising three statements. The first statement

employs a basic primitive, OO, to produce an object-oriented program for the API, with the

outcome stored in the built-in variable R. The second statement utilizes an extend primitive,

denoted as For, on R, wrapping a for-structure around the program R and storing the result

back in R. Analogously, the third statement employs a Call command to encapsulate a call

structure around the program R, and the result is once again stored in R. Ultimately, R

retains the execution results of the specification.

6.2.3.3 SLang interpreter

With a SLang specification as input, the SLang interpreter parses the specification and

executes each statement in sequence to translate the SLang to Python.

The execution details of the SLang specification are outlined in Algorithm 17. Initially,

it initializes the built-in variable R and the API spec Spec as None (line 2–3). Subsequently,

it loads all SLang statements into memory, labeled as Ls (line 4), and proceeds to parse

118

and interpret the statements sequentially (line 5–13). For each statement, the interpreter

extracts the primitive Cmd and corresponding input Arg (line 6). If Arg is the built-in

variable R, the interpreter loads the value of R as input and executes Cmd (line 9). Here, R

stores the program generated by the last statement, enabling the continuous superposition

of primitives to create highly complex programs. When Arg is an API spec, the interpreter

retrieves the API specification and stores it into Spec (line 11) as input for the execution

of command Cmd. The execution result is then assigned to the variable R (line 12). After

executing a statement, the temporary result (R) is stored in the stack for the next iteration.

Once all statements are executed, the interpreter retrieves the Import information from the

API spec Spec, inserts it into R, and generates the final Python application PyApp as the

output (line 14).

Algorithm 17: Intepret SLang specification to Python APP
Input: SS: SLang script

Input: PySpec: Python API specs

Output: PyApp: Python application

1 Function intepretSLang (SS, PySpec)

2 R ← None; //Initialize built-in variable R as None

3 Spec ← None; //Initialize API spec as None

4 Ls ← parseSript (SS); //parse the script and get statement list

5 foreach s in Ls do

6 Cmd, Arg ← parseStmt (s);

7 if Arg is ’R’ then

8 R ← loadR ();

9 R ← executeCmd (Cmd, R);

10 else

11 Spec ← getApec (PySpec, Arg);

12 R ← executeCmd (Cmd, Spec);

13 storeR (R)

14 PyApp ← import (Spec, R); //import all dependent modules

15 return PyApp;

Figure 6.7 illustrates a SLang specification (Figure 6.6) interpreted into a Python appli-

cation. Essentially, each primitive encapsulates the input program in a top-down manner.

119

Firstly, a simple program is generated by translating the OO statement, as shown in Fig-

ure 6.5. Then, For wraps all the statements of SLmain (at the top level) into a for loop and

embeds the for block back into SLmain. Similarly, in the third statement, Call wraps all the

statements of SLmain into a new function, PyCall_1681926341, and embeds its invocation

with input x back into SLmain. The distinction lies in the fact that the Call primitive induces

inter-procedure control flow. Both the formal and actual parameters of PyCall_1681926341

are assigned as the formal parameters of SLmain, ensuring the correctness of data flow.

Consequently, the final Python application is generated with import information.

1 from pyrtfuzz import decodeArgs

2 import sqlite3

3 TypeList = ['ticks:int']

4 class demoCls ():

5 def demoFunc(self , p):

6 try:

7 ticks = decodeArgs(TypeList , p)

8 sqlite3.dbapi2.DateFromTicks(ticks)

9 except (AssertionError) as e:

10 pass

11 def PyCall_1681926341(x):

12 for F_g1 in range(0, 1):

13 dc=demoCls ()

14 dc.demoFunc(x)

15 def SLmain(x): # entry point

16 PyCall_1681926341 (x)

Figure 6.7 Generated Python application from SLang specification in Figure 6.6

6.2.4 Two-level fuzzing core

During this phase, the fuzzing core operates within instrumented Python runtimes, employ-

ing a two-level Fuzzing approach encompassing both generation-based Level-1 Fuzzing and

mutation-based Level-2 Fuzzing. The collaboration between these two levels, facilitated by

shared coverage feedback, automates Python runtime testing, covering the interpreter core

120

and runtime libraries. The two-level design is structured to address distinct dimensions

of Python runtime. In essence, Level-1 Fuzzing is geared towards generating diverse ap-

plications, providing a thorough examination of the Python interpreter. This phase spans

multiple application domains, each featuring its runtime APIs. Within each domain, the

SLang-based approach facilitates the creation of applications exhibiting varied complexities.

On the flip side, Level-2 Fuzzing focuses on generating diverse inputs and executing ap-

plications specified by Level-1 Fuzzing. Here, the dynamic extraction (outlined in §6.2.2)

contributes precise application input types, enabling custom mutation tailored to each do-

main. This phase places a strong emphasis on testing the reliability of the runtime libraries,

complementing the efforts of Level-1 Fuzzing. The coordinated efforts of these two levels

ensure a comprehensive evaluation of the entire Python runtime.

To optimize fuzzing efficiency, I devised a unified custom mutator applicable to all ap-

plications. This mutator integrates the API type list and a data decoder into the target

applications, as illustrated in Figure 6.7. Throughout Level-2 Fuzzing, the mutator gener-

ates type-correct values for each type in the TypeList variable, encoding them into a byte

stream, and subsequently decoding them into individual API arguments within the applica-

tions. This approach eliminates the need to develop domain-specific mutators for each API,

opening avenues for exploring deeper execution paths with type-correct inputs.

Algorithm 18 provides a comprehensive view of the two-level collaborative fuzzing loop

within PyRTFuzz. The process commences with Level-1 fuzzing, establishing a dedicated

Python application generation server with a remote invocation handle (H) for iterative API

testing. Initial applications (InitApps) are generated for all APIs based on Python API de-

scriptions (PyDesc), and after a calibration step to filter out non-executable or low-potential

applications, the remaining ones are queued for Level-1 fuzzing. Comprehensive coverage

feedback is ensured by dynamically instrumenting Python code in the runtime libraries. The

fuzzer then continuously selects and fuzzes applications, monitoring for crashes or unex-

pected behaviors. Within each Level-1 iteration, a nested loop of Level-2 fuzzing is triggered

121

Algorithm 18: Overall procedure of the holistic two-level fuzzing
Input: PyDesc: Python API descriptions

Output: Bugs: Bugs detected

1 Function levelOneFuzz (PyDesc)

2 H ← startPyGen (PyDesc) //initialize the server handle for Python code generation

3 InitApps ← genInitAPPs (H); //generate initial APPs for each API

4 OkApps ← validate (InitApps);

5 AppQueue ← initAppQueue (OkApps);

6 probPyRuntime (); //dynamic instrumentation of the Python runtime

7 while true do

8 foreach App in AppQueue do

9 while true do

10 S ← randomSeeds ();

11 B ← randomBudget ();

12 M ← loadFuzzMain (App);

13 levelTwoFuzz (M , S, B);

14 covChanged ← covFeedback ();

15 if covChanged == false then

16 break;

17 App ← genPyApp (H, App); //generate more APPs around the API

122

for the selected application. Level-2 fuzzing begins by generating random seeds (S) and a

time budget (B), followed by loading the main function (M) of the application. This level

operates as traditional mutation-based fuzzing within the allocated time budget. After com-

pletion, overall coverage variation is collected, and new coverage detection prompts the fuzzer

to continue operating on the API used in the application, generating more applications for

Level-2 fuzzing.

6.2.4.1 Custom mutation at level-2

Diverging from the conventional holistic mutation strategy applied by greybox fuzzers,

PyRTFuzz pioneers a tailored mutation approach to augment the efficiency of Level-2 fuzzing.

This approach involves individually mutating values of distinct variables in the application

input based on their types. The required type information is extracted from associated API

descriptions obtained in Phase 1. Subsequently, the mutated values of these input variables

are encoded into a byte sequence, collectively conveyed by the Level-2 core to the current

application. During the execution of the fuzzed application, the mutated input byte se-

quence undergoes decoding into individual API arguments just before the API is invoked.

This decoding process is facilitated by a probe seamlessly inserted into the application dur-

ing its generation in Phase 2. The type-guided custom mutator ensures the production

of type-correct values tailored to each specific runtime API. In scenarios where this input-

format-aware mutation fails to deliver substantial runtime coverage gains over consecutive

iterations, the Level-2 core might revert to the default mutation strategy.

6.3 Implementation

Implemented in accordance with the outlined design in Figure 6.4, PyRTFuzz comprises

three core components: API description extraction, the SLang-based Python application

generator, and the Two-level fuzzing core.

API description extraction. StExtr, the static analyzer, utilizes the standard Python

123

AST parser [136] to translate Python libraries from the CPython source into ASTs. It

systematically iterates through all AST nodes to extract features outlined in §6.2.2. The

obtained information is then stored in XML format as untyped API descriptions. For a

more precise extraction of data type, I introduced DynExtr, a dynamic analyzer. DynExtr

scrutinizes all CPython unit tests by leveraging Python’s built-in tracing API (sys.settrace)

to systematically update argument and return types within the API descriptions.

SLang-based Python application generator. To facilitate SLang-based Python appli-

cation generation, I developed three sub-components. Initially, I designed a set of Python

AST-based operators that facilitate AST editing, simplifying the development of SLang

primitives. Leveraging these operators, I crafted seven primitives (refer to Table 6.2). Sub-

sequently, I implemented a SLang interpreter responsible for translating SLang specifications

into Python applications. Lastly, I created a suite of Remote Procedure Call (RPC) inter-

faces to enable remote invocation by the fuzzer.

Two-level fuzzing core. The implementation of the two-level fuzzing core utilizes Atheris [50]

and libFuzzer [95]. Initially, interfaces for level-1 fuzzing were added to Atheris. To enable

the execution of level-2 fuzzing within the same process as level-1, the entry point of each

application (i.e., SLmain) was dynamically imported and executed through invoking SLmain.

Subsequently, in libFuzzer, a single fuzzing core was initialized for the two-level fuzzing, al-

lowing the sharing of coverage feedback between the levels. For the seed queues, one queue

was initialized for level-1 fuzzing to store applications, while different queues were created for

each application in level-2 fuzzing to store favored seeds, ensuring non-interaction between

different level-2 fuzzing instances on applications. Regarding the level-2 time budget, it was

implemented as a resizable time window, with the size reset based on coverage changes. This

approach grants more fuzzing time to applications, triggering a higher number of covered

basic blocks. The custom mutators support the random generation of values for the top 20

data types commonly used in Python runtimes, including integers, floats, strings, and lists.

The entire implementation of the two-level fuzzing core comprises 14KLoC of code,

124

encompassing 11.4KLoC of Python, 2.1KLoC of C++, and 0.5KLoC of Shell. Extensive

testing was conducted on three commonly used CPython versions, including Python3.7.15,

Python3.8.15, and Python3.9.15.

Limitations. PyRTFuzz operates as an in-process fuzzer, limiting its coverage feedback to

a single running process. Consequently, APIs related to multi-process functionality, such

as multiprocessing and pipe, cannot be fuzzed by PyRTFuzz. When generating Python

applications, PyRTFuzz supports individual APIs without accounting for potential depen-

dencies among them. This design choice can lead to two potential issues: (1) The generated

applications may deviate from fair API usage practices, yielding unrealistic scenarios and

potentially false-positive bug detections. (2) The applications may lack executability due to

incomplete environments. For instance, an API relying on global variables or class members

initialized by other APIs may encounter issues if the necessary initializations are absent in

the generated application.

6.4 Evaluation

The evaluation of PyRTFuzz covers three main aspects: its effectiveness in fuzzing the

Python runtime, the scalability of Python application generation, and the factors influencing

its effectiveness. As the first fuzzer capable of fuzzing the entire Python runtime, direct com-

parisons with other tools are currently impractical. Nevertheless, extensive experiments on

a 64-bit Ubuntu 18.04 system, featuring a 32-core CPU (AMD Ryzen Threadripper 3970X)

and 256 GB memory, were conducted. Each fuzzer was run against target applications with

identical configurations on a single CPU core for 5 × 24 hours and the experiments were

repeated five times for reliability.

Benchmarks. Evaluated across three widely used versions of CPython—Python 3.9.15,

Python 3.8.15, and Python 3.7.15—PyRTFuzz’s effectiveness is summarized in Table 6.3.

The table includes information on code size, the count of APIs and typed-APIs, and the

number of valid initial seeds (applications). The Typed-API column indicates the number

125

of successfully extracted API descriptions, covering around 70% of APIs due to potential

gaps in unit test coverage. Initial seeds for level-1 fuzzing were generated by PyRTFuzz with

one application per runtime API, followed by calibration and exclusion of failed applications,

retaining a significant proportion of initial seeds (e.g., 91.3% for Python 3.9.15). Initial seeds

for level-2 fuzzing were randomly generated.

Table 6.3 Profiles of the 3 released CPython versions.

Benchmark Size (KLoC) #API #Typed-API #L1-Seeds

Python3.9.15 C: 529.5 Python: 287.6 4,208 2,998 (71.2%) 3,844 (91.3%)

Python3.8.15 C: 487.7 Python: 277.3 4,184 2,855 (68.2%) 3,481 (83.2%)

Python3.7.15 C: 416.4 Python: 267.9 4,115 2,773 (67.4%) 3,244 (78.8%)

Performance metrics. The evaluation of PyRTFuzz focused on two key metrics: the

number of covered basic blocks and the detection of triggered bugs. Coverage results were

obtained by averaging the count of basic blocks covered across five repetitions, each lasting

5× 24 hours, ensuring comprehensive coverage of all runtime APIs. The assessment of bug

detection involved a manual validation process, scrutinizing reported issues such as crashes,

hang-ups, or unhandled exceptions. For each reported bug, a proof of concept (PoC) was

created to reproduce the triggering inputs, and a bug was deemed valid only if its call stack

differed from all other confirmed bugs.

6.4.1 Effectiveness of PyRTFuzz

Coverage. Figure 6.8 illustrates the evolving coverage dynamics of PyRTFuzz on Python

3.9.15 with specific parameter settings, including a 90-second time budget for level-2 fuzzing

and a maximum APP specification size of 256. The left subplot depicts the continuous

generation of applications by level-1 fuzzing, steadily increasing their numbers (green line).

Notably, there are intervals, like the 40h–50h time zone, where the growth rate of applications

slightly decelerates, indicating that applications generated during these intervals cover more

126

basic blocks. Simultaneously, the growing coverage (black line) corresponds to the expanding

application count, with varied growth rates across time zones due to the diverse nature of

generated applications. The right subplot normalizes the data per unit time zone (8 hours),

providing a standardized view of coverage changes per application. Applications generated

during the 40h–50h time zone exhibit a higher coverage per application, suggesting that level-

2 fuzzing allocates more time to these applications while level-1 generates fewer applications,

which aligns with the observed slowdown in application growth.

Figure 6.8 Coverage evolves over the timeline on Python 3.9.15.

Bug triggering. Using a 5 × 24 hours time budget, PyRTFuzz successfully identified a

total of 61 bugs across three Python versions: 25 in Python 3.9.15, 15 in Python 3.8.15,

and 21 in Python 3.7.15. After removing duplicate reports, 45 unique bugs were identified.

A detailed breakdown is provided in Table 6.4.

6.4.2 Scalability of Python application generation

Figure 6.9 depicts the impact of different APP specification sizes on the time cost and

memory usage during both APP specification and Python APP generation in PyRTFuzz.

The left subplot reveals that for APP specification generation, the time cost and memory

usage remain negligible even with a specification size of 4,096. However, in Python APP

generation, both time and memory exhibit a linear relationship with the APP specification

size. With a maximum specification size of 4,096, it takes 2,714.47 seconds to generate

127

Table 6.4 Bugs detected by PyRTFuzz.

Benchmarks Bug Type #Bug PoC

Python 3.9.15

MemoryError 15 ✓

Out of Memory 4 ✓

RecursionError 3 ✓

Hang up 3 ✓

Python 3.8.15

MemoryError 12 ✓

Out of Memory 2 ✓

Stack Overflow 1 ✓

Python 3.7.15

MemoryError 8 ✓

RecursionError 6 ✓

Stack Overflow 4 ✓

Hang up 2 ✓

Out of Memory 1 ✓

Total 61 —

Python APPs using 291.71 MB of memory. Considering the time budget constraints, the

maximum acceptable APP specification size for PyRTFuzz is determined to be 1,024. The

right subplot illustrates a linear correlation between Python APP and specification sizes

with the implemented specification primitives, suggesting that increasing the specification

size generally results in more complex Python APPs.

6.4.3 Factors affecting effectiveness

In adherence to the design considerations, three pivotal factors influencing the effectiveness

of PyRTFuzz were identified: APP specification size, level-2 time budget, and the utilization

of typed or untyped API descriptions. To assess their impact, fuzzing experiments on Python

3.9.15 were conducted for 5× 24 hours, employing various values for each factor.

128

Figure 6.9 The time costs of Python application generation over specification sizes.

Figure 6.10 Coverage evolves with different APP specification sizes.

129

6.4.3.1 APP specification size

In Figure 6.10, different PyRTFuzz instances with APP specification sizes ranging from 1 to

256 exhibit nearly identical coverage trends, consistently surpassing the trend associated with

specifications [512, 1024]. The [512, 1024] specification requires more time for APP genera-

tion (as indicated in §6.4.2), resulting in fewer generated APPs, and potentially less time for

level-2 fuzzing. After normalizing the data, the [1024] specification achieves the highest basic

blocks per application between [75, 100] hours, suggesting that larger specification sizes can

potentially trigger more block coverage in level-2. Therefore, achieving a balance between

generating APPs (level-1) and the APP fuzzing process (level-2) can improve coverage.

6.4.3.2 Level-2 time budget

Figure 6.11 Coverage evolves with different level-2 budget.

In Figure 6.11, the coverage evolution of PyRTFuzz on Python 3.9.15 with different level-

2 time budgets is illustrated. The left subplot demonstrates significant variations in overall

coverage, with a rapid increase observed with a 10-second budget, resulting in a plateau

after 20 hours. This suggests that too small a budget might hinder deep-path exploration. In

contrast, a 90-second budget shows a continuous increase in coverage, outperforming budgets

of 180 and 360 seconds. The influence of the level-2 budget on PyRTFuzz’s effectiveness

becomes apparent as it directly affects the discovery of additional basic blocks. While an

increase in the budget tends to uncover more basic blocks, it’s crucial to note that an

130

excessively large budget may introduce redundancy in the analysis, potentially leading to

diminishing returns. Striking the right balance in budget allocation is essential for optimizing

PyRTFuzz’s performance in uncovering vulnerabilities.

6.4.3.3 Typed and untyped API descriptions

Figure 6.12 presents a comparative analysis of PyRTFuzz fuzzing on Python 3.9.15 using

typed (solid) and untyped (dot) API descriptions.

Figure 6.12 Coverage evolves with typed and untyped API descriptions.

The left subplot highlights PyRTFuzz ’s consistent superiority with typed API descrip-

tions regarding coverage feedback. While the untyped version may generate slightly more

applications, this is attributed to the limited exploration of deep execution paths within a

fixed time window, resulting in fewer new basic blocks being triggered. Consequently, the

untyped version quickly exhausts the time window, transitioning to level-1 APP generation

for subsequent level-2 fuzzing. In contrast, typed applications, with increased likelihood

of exploring deep paths and triggering new coverage, enable PyRTFuzz to reset the time

window and prolong level-2 fuzzing. After normalization (as shown in the right subplot),

the peak value of the typed version is nearly 50% higher than that of the untyped version,

underscoring the superior effectiveness of typed API descriptions in triggering basic blocks.

Despite constraints in implementation, such as support for a limited set of data types and ap-

proximately 70% success in type extraction, these findings emphasize the substantial impact

131

of type information on enhancing PyRTFuzz’s effectiveness, resulting in an improvement of

up to 20%.

6.5 Related Work

Compiler fuzzing has seen advancements through techniques like generation-based fuzzers

such as JSfunfuzz, TreeFuzz, Skyfire, and mutation-based counterparts like Superion, Fuzzil,

LangFuzz, and DeepSmith [143, 118, 158, 159, 55, 63, 35]. However, these methods often

prioritize testing compilers or interpreters while overlooking runtime libraries—a critical

component of the language runtime. In contrast, PyRTFuzz pioneers a unique two-level

collaborative fuzzing strategy to thoroughly assess the entire Python runtime, including

both interpreter and runtime libraries [133].

Unlike conventional fuzzers confined to a single level, PyRTFuzz integrates both generation-

based and mutation-based approaches in a two-level synergy. Collaborative fuzzers like En-

Fuzz, CollabFuzz, and Cupid collaborate at a single level, treating entities equally [26, 115,

57]. In contrast, PyRTFuzz introduces a distinctive two-level collaboration, where level-

1 generates diverse applications for level-2 and receives feedback to guide its application

generation [90].

In the domain of Python analysis and testing, earlier works such as PyPrecditor, Poly-

Cruise, PolyFuzz, and Atheris showcase capabilities in analyzing and testing Python appli-

cations [161, 86, 89, 50]. However, PyRTFuzz stands out by prioritizing the comprehensive

testing of the complete Python runtime, covering both the interpreter and runtime libraries

[90]. This unique positioning establishes PyRTFuzz as an innovative and comprehensive

solution for Python runtime testing.

132

CHAPTER SEVEN

FUTURE WORK

Looking ahead, the widespread adoption of multi-language software is anticipated across var-

ious domains. Ensuring the security of both the software and the hosting language runtimes

becomes paramount within these diverse domains. Expanding upon my current endeavors,

my forthcoming objectives are outlined as follows: Firstly, my unwavering commitment lies

in advancing security testing for cross-language applications. Subsequently, my focus shifted

toward the refinement of collaborative fuzzing techniques. This strategic enhancement aims

to achieve a thorough testing framework for the Python runtime and subsequently, to ex-

trapolate this refined approach to encompass a broader spectrum of language runtimes.

Furthermore, I am dedicated to addressing the forefront of current interests. I am actively

immersed in the security analysis of AI compilers and runtimes, encompassing prominent

platforms such as PyTorch and MindSpore.

Cross-language security testing. PolyCruise and PolyFuzz have made significant ad-

vancements in cross-language information flow analysis and comprehensive greybox fuzzing.

However, there is still room for improving cross-language vulnerability discovery. While

PolyFuzz has enhanced fuzzing efficiency through semantic relationships and whole system

coverage, its current limited semantics don’t accurately model complex data flow informa-

tion, which is crucial for vulnerability exploration, as prior research indicates. To address

this, my next focus is on seamlessly integrating cross-language information flow analysis into

holistic fuzzing. The plan involves developing methods like taint-guided holistic fuzzing us-

ing insights from cross-language data flow analysis and exploring directed fuzzing based on

potentials identified by cross-language data flow analysis. These strategies aim to concen-

trate fuzzing efforts on areas highlighted by data flow analysis as having higher vulnerability

likelihood, thus optimizing resources and intensifying security weakness identification.

Language runtime fuzzing. The SLang-based approach has successfully generated appli-

133

cations with varying control flow complexities tailored to specific runtime APIs. Nevertheless,

it falls short in representing realistic software scenarios, mainly due to the lack of potential de-

pendencies among runtime APIs. This deficiency hampers the ability to simulate real-world

application interactions, potentially limiting its effectiveness in capturing intricate software

behaviors. Additionally, comprehensive testing of interpreters necessitates consideration of

broader language features or characteristics beyond control flow structures. Focusing solely

on control flow features could result in incomplete testing, potentially overlooking critical

language behaviors.

Furthermore, the security of mainstream language compilers and runtimes hosting various

languages has emerged as a critical concern within multi-language software. This challenge

is particularly pronounced in languages like JVM, JavaScript, Python, and their combined

scenarios. Despite the theoretical promise of the proposed approach to span different lan-

guage runtimes, practical implementation encounters obstacles stemming from the nuanced

differences among languages. Bridging the gap between theoretical potential and practical

application demands a focused endeavor to develop an adaptable framework. This frame-

work should be flexible to accommodate the unique attributes of diverse language ecosys-

tems, thereby enhancing runtime security across the spectrum of multi-language software

and ensuring robust protection across varied language runtimes.

AI compiler and runtime security assurance. Much like traditional language compilers

and runtimes catering to applications across various domains, the security of AI compilers

and runtimes is gaining increasing importance within artificial intelligence and machine learn-

ing. As AI technologies advance and integrate into diverse applications, security assurance

within AI compiler and runtime environments becomes a central concern, encompassing

several crucial dimensions. Firstly, these compilers and runtimes often encounter sensitive

information due to the nature of the data they handle. Consequently, establishing secure

processing environments is paramount to avert unauthorized data exposure. Moreover, akin

to conventional software, AI runtimes can exhibit vulnerabilities susceptible to exploitation

134

by malicious actors. Furthermore, the gamut of security threats extends to issues such as

insecure execution or the injection of malicious models. These intricacies demand meticulous

consideration within the architecture and operation of AI runtimes. As the landscape of AI

technology evolves, secure compilers and runtimes will persist as a linchpin in constructing

dependable and credible AI systems across various domains. As a significant stride within

the scope of my long-term research, I am fully committed to investigating robust and feasible

techniques that ensure the security of AI compilers and runtimes.

135

CHAPTER EIGHT

CONCLUSION

8.1 Summary

In my dissertation, I addressed the challenges associated with multi-language software vul-

nerabilities through a comprehensive approach. I conducted empirical investigations into

vulnerability susceptibility, as evidenced by prior studies [84, 87, 85]. This research led to

the development of PolyCruise [86], a novel dynamic cross-language information flow analysis

technique. PolyCruise utilizes a unified intermediate representation and employs symbolic

dependence analysis to achieve effective analysis of real-world multi-language software with

large code bases. Notably, PolyCruise successfully identified vulnerabilities in open-source

multi-language systems during its execution. However, as a dynamic approach, its effective-

ness is influenced by input coverage limitations.

Recognizing the pivotal role of test input coverage, I introduced PolyFuzz [89], a com-

prehensive greybox fuzzing methodology. Through the incorporation of sensitivity analysis

and whole-system coverage measurements, PolyFuzz generates powerful test inputs, thereby

enhancing the identification of vulnerabilities.

Shifting the focus to runtime security, I developed PyRTFuzz [90], a two-level collab-

orative fuzzing framework designed for Python runtime. By combining generation- and

mutation-based fuzzers, PyRTFuzz achieves comprehensive testing of Python runtime. Par-

ticularly, the use of a SLang-based approach ensures the generation of applications with

diverse domains and complexities, thereby significantly contributing to fundamental soft-

ware system safeguarding.

Looking forward, my plan involves strengthening cross-language security testing by in-

tegrating holistic fuzzing and comprehensive cross-language data flow facts. Furthermore,

I will delve into compiler and language runtime testing. First, I intend to enhance col-

laborative fuzzing by merging program analysis and semantic mining techniques, and then

136

generalize these methodologies across diverse runtimes, encompassing platforms like JVM

and JavaScript engines. Additionally, I am enthusiastic about exploring the intersection of

machine learning frameworks and runtimes. This convergence between machine learning and

security holds immense potential for pioneering research endeavors.

8.2 Implications

In summary, my Ph.D. work introduces generalizable methodologies that extend beyond

specific instances, offering valuable insights and tools for researchers, industry professionals,

developers, and security analysts in the broad domain of software security and testing.

8.2.1 Academic and industry impact

Researchers and academia. My study contributes empirical investigations into vulnera-

bility susceptibility in multi-language software, shedding light on challenges and providing

insights into dynamic cross-language information flow analysis. The development of Poly-

Cruise, PolyFuzz, and the collaborative fuzzing framework PyRTFuzz establishes a solid

foundation for advancing research in software security and testing methodologies.

Industry professionals. Practitioners in the software industry can gain practical ap-

proaches to identifying vulnerabilities in large code bases. The dynamic cross-language

analysis technique in PolyCruise and the comprehensive greybox fuzzing methodology in

PolyFuzz provide actionable insights for enhancing the security of multi-language systems.

8.2.2 Relevance to diverse researchers and developers

Developers and software engineers. The dissertation emphasizes the significance of

input coverage in dynamic approaches like PolyCruise and addresses this concern with Poly-

Fuzz, offering strategies to enhance vulnerability identification through improved testing

methodologies. The collaboration of fuzzing techniques in PyRTFuzz for Python runtime

security provides practical measures for safeguarding software systems during runtime.

137

Security analysts and testers. Stakeholders involved in security testing can gain valu-

able knowledge about challenges associated with multi-language software vulnerabilities. The

presented methodologies, especially the collaborative fuzzing framework and the two-level

approach in PyRTFuzz, offer practical tools for identifying and addressing security vulnera-

bilities in real-world scenarios.

8.2.3 Generalizable security solutions

My Ph.D. study generates a set of generalizable security solutions for multi-language appli-

cations and their respective language runtimes.

Holistic fuzzing approach. The integration of PolyFuzz and PyRTFuzz showcases a

holistic fuzzing approach adaptable to various contexts. The developed methodologies can

be generalized to enhance security testing in different multi-language software systems and

runtime environments.

Cross-language data flow analysis. The use of a unified intermediate representation

and symbolic dependence analysis in PolyCruise introduces a generalizable methodology

for effective cross-language data flow analysis. This approach can be extended to other

multi-language software systems with large code bases, providing a foundation for improving

security analysis in diverse environments.

Collaborative fuzzing framework. The collaborative fuzzing framework developed for

Python runtime in PyRTFuzz can serve as a generalizable methodology for testing and

securing applications in different runtime environments. The two-level approach, combining

generation- and mutation-based fuzzers, offers a comprehensive testing strategy adaptable

to various programming languages and runtimes.

138

REFERENCES

[1] Mouna Abidi, Manel Grichi, and Foutse Khomh. “Behind the scenes: developers’ per-
ception of multi-language practices”. In: Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineering. 2019, pp. 72–81.

[2] Mouna Abidi et al. “Are multi-language design smells fault-prone? An empirical
study”. In: ACM Transactions on Software Engineering and Methodology 30.3 (2021),
pp. 1–56.

[3] Vitor Afonso et al. “Going Native: Using A Large-Scale Analysis of Android Apps
to Create A Practical Native-Code Sandboxing Policy”. In: Network and Distributed
System Security Symposium. 2016, pp. 1–15.

[4] Ajax. Pyo. https://github.com/belangeo/pyo. 2020.

[5] Paul D Allison and Richard P Waterman. “Fixed–effects negative binomial regression
models”. In: Sociological methodology 32.1 (2002), pp. 247–265.

[6] Apache. Apache Commons Compress. https://github.com/apache/commons-compress.
2022.

[7] Steven Arzt, Tobias Kussmaul, and Eric Bodden. “Towards Cross-Platform Cross-
Language Analysis with Soot”. In: State Of the Art in Program Analysis (SOAP).
2016, pp. 1–6.

[8] Cornelius Aschermann et al. “REDQUEEN: Fuzzing with Input-to-State Correspon-
dence.” In: Network and Distributed System Security Symposium. Vol. 19. 2019, pp. 1–
15.

[9] aubio. A library to label music and sounds. https://github.com/aubio/aubio.git.
2019.

[10] Sora Bae, Sungho Lee, and Sukyoung Ryu. “Towards Understanding and Reasoning
about Android Interoperations”. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering. 2019, pp. 223–233.

[11] Emery D Berger et al. “On the impact of programming languages on code quality: a
reproduction study”. In: ACM Transactions on Programming Languages and Systems
41.4 (2019), pp. 1–24.

[12] Guru Bhandari, Amara Naseer, and Leon Moonen. “CVEfixes: automated collection
of vulnerabilities and their fixes from open-source software”. In: Proceedings of the
17th International Conference on Predictive Models and Data Analytics in Software
Engineering. 2021, pp. 30–39.

139

https://github.com/belangeo/pyo
https://github.com/apache/commons-compress
https://github.com/aubio/aubio.git

[13] David Binkley et al. “ORBS: Language-Independent Program Slicing”. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 2014, pp. 109–120.

[14] Tegawendé F Bissyandé et al. “Popularity, interoperability, and impact of program-
ming languages in 100,000 open source projects”. In: 2013 IEEE 37th annual computer
software and applications conference. 2013, pp. 303–312.

[15] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-based grey-
box fuzzing as markov chain”. In: IEEE Transactions on Software Engineering 45.5
(2017), pp. 489–506.

[16] Marcel Böhme et al. “Directed greybox fuzzing”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 2017, pp. 2329–
2344.

[17] Bounter. Web. https://tinyurl.com/4667pnkv. 2017.

[18] Fraser Brown et al. “Finding and Preventing Bugs in JavaScript Bindings”. In: 2017
IEEE Symposium on Security and Privacy. 2017, pp. 559–578.

[19] Achim D Brucker and Michael Herzberg. “On the Static Analysis of Hybrid Mobile
Apps”. In: Engineering Secure Software and Systems. 2016, pp. 72–88.

[20] Haipeng Cai. “Hybrid Program Dependence Approximation for Effective Dynamic
Impact Prediction”. In: IEEE Transactions on Software Engineering (2017).

[21] Haipeng Cai and Raul Santelices. “TracerJD: Generic trace-based dynamic depen-
dence analysis with fine-grained logging”. In: 2015 IEEE 22nd International Confer-
ence on Software Analysis, Evolution, and Reengineering. IEEE. 2015, pp. 489–493.

[22] categories of security vulnerabilities. https://cwe.mitre.org/top25/archive/2011/
2011_cwe_sans_top25.pdf. 2020.

[23] Hongxu Chen et al. “Hawkeye: Towards a desired directed grey-box fuzzer”. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 2018, pp. 2095–2108.

[24] Junjie Chen et al. “A survey of compiler testing”. In: ACM Computing Surveys 53.1
(2020), pp. 1–36.

[25] Yaofei Chen et al. “An empirical study of programming language trends”. In: IEEE
software 22.3 (2005), pp. 72–79.

[26] Yuanliang Chen et al. “EnFuzz: Ensemble Fuzzing with Seed Synchronization among
Diverse Fuzzers.” In: USENIX Security Symposium. 2019, pp. 1967–1983.

140

https://tinyurl.com/4667pnkv
https://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.pdf
https://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.pdf

[27] Yuting Chen, Ting Su, and Zhendong Su. “Deep differential testing of JVM implemen-
tations”. In: 2019 IEEE/ACM 41st International Conference on Software Engineering.
IEEE. 2019, pp. 1257–1268.

[28] Yuting Chen et al. “Coverage-directed differential testing of JVM implementations”.
In: proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 2016, pp. 85–99.

[29] Jaeseung Choi et al. “Grey-box concolic testing on binary code”. In: 2019 IEEE/ACM
41st International Conference on Software Engineering. IEEE. 2019, pp. 736–747.

[30] civetweb. An embeddable web server with optional CGI, SSL and Lua support. https:
//github.com/civetweb/civetweb. 2022.

[31] Code-Intelligence. Coverage-guided, in-process fuzzing for the JVM. https://github.
com/CodeIntelligenceTesting/jazzer. 2022.

[32] Adam Cohen. “FuzzyWuzzy: Fuzzy string matching in python”. In: ChairNerd Blog
22 (2011).

[33] PoC Consul and Felix Famoye. “Generalized Poisson regression model”. In: Commu-
nications in Statistics-Theory and Methods 21.1 (1992), pp. 89–109.

[34] Juliet Corbin and Anselm Strauss. Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage publications, 2014.

[35] Chris Cummins et al. “Compiler fuzzing through deep learning”. In: Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis.
2018, pp. 95–105.

[36] Cvxopt. Web. https://tinyurl.com/4k4v9646. 2016.

[37] Ali Davanian et al. “{DECAF++}: Elastic {Whole-System} dynamic taint analysis”.
In: 22nd International Symposium on Research in Attacks, Intrusions and Defenses.
2019, pp. 31–45.

[38] dell. A library to interface with the SMBIOS tables. https : / / github . com / dell /
libsmbios. 2007.

[39] Daniel P Delorey, Charles D Knutson, and Christophe Giraud-Carrier. “Program-
ming language trends in open source development: An evaluation using data from all
production phase sourceforge projects”. In: Second International Workshop on Public
Data about Software Development. 2007.

[40] Isil Dillig et al. “Precise and Compact Modular Procedure Summaries for Heap Ma-
nipulating Programs”. In: 2011, pp. 567–577.

141

https://github.com/civetweb/civetweb
https://github.com/civetweb/civetweb
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://tinyurl.com/4k4v9646
https://github.com/dell/libsmbios
https://github.com/dell/libsmbios

[41] Sung Ta Dinh et al. “Favocado: Fuzzing the Binding Code of JavaScript Engines
Using Semantically Correct Test Cases”. In: Network and Distributed System Security
Symposium. 2021.

[42] Jeff Donahue et al. “Decaf: A deep convolutional activation feature for generic visual
recognition”. In: International conference on machine learning. PMLR. 2014, pp. 647–
655.

[43] Eclipse Cyclone DDS. An open-source implementation of the OMG DDS specification.
https://github.com/eclipse-cyclonedds/cyclonedds. 2022.

[44] Jiahao Fan et al. “AC/C++ Code Vulnerability Dataset with Code Changes and CVE
Summaries”. In: Proceedings of the 17th International Conference on Mining Software
Repositories. 2020, pp. 508–512.

[45] Alessandro Fin, Franco Fummi, and Graziano Pravadelli. “Amleto: A multi-language
environment for functional test generation”. In: Proceedings International Test Con-
ference. IEEE. 2001, pp. 821–829.

[46] Andrea Fioraldi et al. “AFL++: Combining incremental steps of fuzzing research”.
In: 14th USENIX Workshop on Offensive Technologies. 2020.

[47] fusesource. A java library for using ANSI escape codes to format the console output.
https://github.com/fusesource/jansi. 2021.

[48] Shuitao Gan et al. “{GREYONE}: Data Flow Sensitive Fuzzing”. In: USENIX Secu-
rity Symposium. 2020, pp. 2577–2594.

[49] GitHub. The 2020 State of the OCTO——VERSE. https://octoverse.github.com/.
2020.

[50] google. A Coverage-Guided, Native Python Fuzzer. https : / / github . com/google /
atheris. 2022.

[51] google. A multi-language, cross-platform library of cryptographic APIs. https : / /
github.com/google/tink. 2021.

[52] google. Continuous Fuzzing Framework for Open Source Software. https://github.
com/google/oss-fuzz. 2022.

[53] Manel Grichi et al. “On the impact of interlanguage dependencies in multilanguage
systems empirical case study on java native interface applications (JNI)”. In: IEEE
Transactions on Reliability 70.1 (2020), pp. 428–440.

[54] Alex Groce et al. “An extensible, regular-expression-based tool for multi-language
mutant generation”. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion. IEEE. 2018, pp. 25–28.

142

https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/fusesource/jansi
https://octoverse.github.com/
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/google/tink
https://github.com/google/tink
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

[55] Samuel Groß. “Fuzzil: Coverage guided fuzzing for javascript engines”. In: Department
of Informatics, Karlsruhe Institute of Technology (2018).

[56] gRPC. gRPC Tutorial. https://grpc.io/docs. 2020.

[57] Emre Güler et al. “Cupid: Automatic fuzzer selection for collaborative fuzzing”. In:
Annual Computer Security Applications Conference. 2020, pp. 360–372.

[58] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. “CodeAlchemist: Semantics-
Aware Code Generation to Find Vulnerabilities in JavaScript Engines”. In: Network
and Distributed System Security Symposium. 2019.

[59] Mary Jean Harrold, Gregg Rothermel, and Alex Orso. “Representation and analysis
of software”. In: Lecture Notes (2005).

[60] Mostafa Hassan et al. “MaxSMT-based type inference for Python 3”. In: Computer
Aided Verification: 30th International Conference. Springer. 2018, pp. 12–19.

[61] John L Hennessy and David A Patterson. Computer architecture: a quantitative ap-
proach. 2011.

[62] Fauna Herawati et al. “ANTIBIOTIC CONSUMPTION AT A PEDIATRIC WARD
AT A PUBLIC HOSPITAL IN INDONESIA”. In: Asian Journal of Pharmaceutical
and Clinical Research 12.8 (2019), pp. 64–67.

[63] Christian Holler, Kim Herzig, Andreas Zeller, et al. “Fuzzing with Code Fragments.”
In: USENIX Security Symposium. 2012, pp. 445–458.

[64] Sungjae Hwang et al. “JUSTGen: Effective Test Generation for Unspecified JNI Be-
haviors on JVMs”. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering. IEEE. 2021, pp. 1708–1718.

[65] igraph. A C library for creating, manipulating and analysing graphs. https://github.
com/igraph/igraph. 2022.

[66] Immutables. Web. http://immutables.github.io/.

[67] Bob Ippolito. Simplejson a JSON encoder/decoder for Python. https://tinyurl.com/
2s4y5hhr. 2020.

[68] ISC. A Classic, full-featured and mostly standards-compliant DNS. https://gitlab.isc.
org/isc-projects/bind9. 2022.

[69] javaparser. A set of libraries implementing a Java 1.0 - Java 15 Parser. https://
github.com/javaparser/javaparser. 2022.

[70] jhy. Java HTML Parser. https://github.com/jhy/jsoup. 2022.

[71] jna. Java Native Access. https://github.com/java-native-access/jna. 2020.

143

https://github.com/igraph/igraph
https://github.com/igraph/igraph
http://immutables.github.io/
https://tinyurl.com/2s4y5hhr
https://tinyurl.com/2s4y5hhr
https://gitlab.isc.org/isc-projects/bind9
https://gitlab.isc.org/isc-projects/bind9
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://github.com/jhy/jsoup
https://github.com/java-native-access/jna

[72] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. “A Large Scale Study of
Multiple Programming Languages and Code Quality”. In: 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering. 2016, pp. 563–
573.

[73] Goh Kondoh and Tamiya Onodera. “Finding bugs in Java native interface programs”.
In: Proceedings of the 2008 international symposium on Software testing and analysis.
2008, pp. 109–118.

[74] Jacob Kreindl et al. “Multi-Language Dynamic Taint Analysis in a Polyglot Virtual
Machine”. In: Proceedings of the 17th International Conference on Managed Program-
ming Languages and Runtimes. 2020, pp. 15–29.

[75] Patrick Lam et al. “The Soot framework for Java program analysis: a retrospective”.
In: Cetus Users and Compiler Infastructure Workshop. 15 35. 2011.

[76] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation”. In: International Symposium on Code Generation
and Optimization. IEEE. 2004, pp. 75–86.

[77] Seongmin Lee et al. “Evaluating Lexical Approximation of Program Dependence”. In:
Journal of Systems and Software 160 (2020), p. 110459.

[78] Sungho Lee. “JNI program analysis with automatically extracted C semantic sum-
mary”. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. 2019, pp. 448–451.

[79] Sungho Lee, Julian Dolby, and Sukyoung Ryu. “HybriDroid: static analysis framework
for Android hybrid applications”. In: Proceedings of the 31st IEEE/ACM international
conference on automated software engineering. 2016, pp. 250–261.

[80] Sungho Lee, Hyogun Lee, and Sukyoung Ryu. “Broadening Horizons of Multilingual
Static Analysis: Semantic Summary Extraction from C Code for JNI Program Anal-
ysis”. In: Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. 2020, pp. 127–137.

[81] Legrandin. An self-contained Python package of low-level cryptographic primitives.
https://github.com/Legrandin/pycryptodome. 2018.

[82] Penghui Li et al. “On the Feasibility of Automated Built-in Function Modeling for
PHP Symbolic Execution”. In: Proceedings of the Web Conference. 2021, pp. 58–69.

[83] Siliang Li and Gang Tan. “Finding Bugs in Exceptional Situations of JNI Programs”.
In: Proceedings of the 16th ACM conference on Computer and communications secu-
rity. 2009, pp. 442–452.

144

https://github.com/Legrandin/pycryptodome

[84] Wen Li, Li Li, and Haipeng Cai. “On the vulnerability proneness of multilingual code”.
In: Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2022, pp. 847–859.

[85] Wen Li, Li Li, and Haipeng Cai. “PolyFax: a toolkit for characterizing multi-language
software”. In: Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 2022, pp. 1662–
1666.

[86] Wen Li et al. “{PolyCruise}: A {Cross-Language} Dynamic Information Flow Anal-
ysis”. In: USENIX Security Symposium. 2022, pp. 2513–2530.

[87] Wen Li et al. “How are Multilingual Systems Constructed: Characterizing Language
Use and Selection in Open-Source Multilingual Software”. In: ACM Transactions on
Software Engineering and Methodology (2023).

[88] Wen Li et al. “PCA: memory leak detection using partial call-path analysis”. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 2020, pp. 1621–
1625.

[89] Wen Li et al. “PolyFuzz: Holistic Greybox Fuzzing of Multi-Language Systems”. In:
USENIX Security Symposium. 2023, pp. 1379–1396. url: https://www.usenix.org/
conference/usenixsecurity23/presentation/li-wen.

[90] Wen Li et al. “PyRTFuzz: Detecting Bugs in Python Runtimes via Two-Level Collab-
orative Fuzzing”. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. 2023, pp. 1645–1659.

[91] Wen Li et al. “Understanding Language Selection in Multi-Language Software Projects
on GitHub”. In: 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering: Companion Proceedings. 2021, pp. 256–257.

[92] Jie Liang et al. “PATA: Fuzzing with Path Aware Taint Analysis”. In: IEEE Sympo-
sium on Security and Privacy. 2022, pp. 154–170.

[93] Libgit2.org. pygit. https://tinyurl.com/2hpw3pwt. 2014.

[94] Baozheng Liu et al. “{FANS}: Fuzzing Android Native System Services via Auto-
mated Interface Analysis”. In: USENIX Security Symposium. 2020, pp. 307–323.

[95] LLVM. LibFuzzer: A library for coverage-guided fuzz testing. https://llvm.org/docs/
LibFuzzer.html. 2020.

[96] luben. JNI bindings for Zstd native library. https://github.com/luben/zstd-jni. 2021.

[97] lukarao. PyLLVM. https://tinyurl.com/yckr397m. 2020.

145

https://www.usenix.org/conference/usenixsecurity23/presentation/li-wen
https://www.usenix.org/conference/usenixsecurity23/presentation/li-wen
https://tinyurl.com/2hpw3pwt
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/luben/zstd-jni
https://tinyurl.com/yckr397m

[98] Chenyang Lyu et al. “{MOPT}: Optimized mutation scheduling for fuzzers”. In:
USENIX Security Symposium. 2019, pp. 1949–1966.

[99] M.Zalewski. Technical "whitepaper" for afl-fuzz. https://lcamtuf.coredump.cx/afl/
technical_details.txt. 2014.

[100] Valentin JM Manes et al. “Fuzzing: Art, science, and engineering”. In: arXiv preprint
arXiv:1812.00140 (2018).

[101] Bob Martin et al. “2011 CWE/SANS top 25 most dangerous software errors”. In:
(2011).

[102] Philip Mayer and Alexander Bauer. “An empirical analysis of the utilization of mul-
tiple programming languages in open source projects”. In: Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering.
2015, pp. 1–10.

[103] Philip Mayer, Michael Kirsch, and Minh Anh Le. “On multi-language software devel-
opment, cross-language links and accompanying tools: a survey of professional soft-
ware developers”. In: Journal of Software Engineering Research and Development 5.1
(2017), pp. 1–33.

[104] Leo A Meyerovich and Ariel S Rabkin. “Empirical analysis of programming language
adoption”. In: Proceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & applications. 2013, pp. 1–18.

[105] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. Qualitative data anal-
ysis: A methods sourcebook. Sage publications, 2018.

[106] Amir M Mir et al. “Type4Py: Practical deep similarity learning-based type infer-
ence for Python”. In: Proceedings of the 44th International Conference on Software
Engineering. 2022, pp. 2241–2252.

[107] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. “A Multilanguage Static
Analysis of Python Programs with Native C Extensions”. In: Static Analysis Sympo-
sium. 2021.

[108] mozilla. An allowed-list-based HTML sanitizing library. https://github.com/mozilla/
bleach. 2022.

[109] msgpack. An efficient binary serialization format. https ://github.com/msgpack/
msgpack-python. 2021.

[110] ninia. Java Embedded Python. https://github.com/ninia/jep. 2018.

[111] Yu Nong and Haipeng Cai. “A preliminary study on open-source memory vulnera-
bility detectors”. In: 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering. IEEE. 2020, pp. 557–561.

146

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/mozilla/bleach
https://github.com/mozilla/bleach
https://github.com/msgpack/msgpack-python
https://github.com/msgpack/msgpack-python
https://github.com/ninia/jep

[112] NumPy.org. NumPy. https://github.com/numpy/. 2018.

[113] OK.ru. A library for building high performance Java servers. https://github.com/
odnoklassniki/one-nio. 2020.

[114] Oracle. JNI 6.0. https://tinyurl.com/2p94tvhp. 2009.

[115] Sebastian Österlund et al. “Collabfuzz: A framework for collaborative fuzzing”. In:
Proceedings of the 14th European Workshop on Systems Security. 2021, pp. 1–7.

[116] OWASP. A JSON encoder in Java. https ://github.com/OWASP/json- sanitizer.
2017.

[117] Shankara Pailoor, Andrew Aday, and Suman Jana. “Moonshine: Optimizing {OS}
fuzzer seed selection with trace distillation”. In: USENIX Security Symposium. 2018,
pp. 729–743.

[118] Jibesh Patra and Michael Pradel. “Learning to fuzz: Application-independent fuzz
testing with probabilistic, generative models of input data”. In: TU Darmstadt, De-
partment of Computer Science, Tech. Rep. (2016).

[119] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. “T-Fuzz: fuzzing by program trans-
formation”. In: 2018 IEEE Symposium on Security and Privacy. IEEE. 2018, pp. 697–
710.

[120] Yun Peng et al. “Static inference meets deep learning: a hybrid type inference ap-
proach for python”. In: Proceedings of the 44th International Conference on Software
Engineering. 2022, pp. 2019–2030.

[121] Havoc Pennington. “D-Bus Tutorial”. In: (2020).

[122] Raffaele Perego, Salvatore Orlando, and P Palmerini. “Enhancing the apriori algo-
rithm for frequent set counting”. In: International Conference on Data Warehousing
and Knowledge Discovery. 2001, pp. 71–82.

[123] Henning Perl et al. “Vccfinder: Finding potential vulnerabilities in open-source projects
to assist code audits”. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. 2015, pp. 426–437.

[124] pillow. Python Imaging Library. https://github.com/python-pillow/Pillow. 2019.

[125] Pawel Piotr Przeradowski. Japronto a Python 3.5+ HTTP toolkit. https://tinyurl.
com/v37799mp. 2017.

[126] Psycopg. Web. https://tinyurl.com/27buex7n. 2018.

[127] pycurl. A Python Interface To The cURL library. https://github.com/pycurl/pycurl.
2022.

147

https://github.com/numpy/
https://github.com/odnoklassniki/one-nio
https://github.com/odnoklassniki/one-nio
https://tinyurl.com/2p94tvhp
https://github.com/OWASP/json-sanitizer
https://github.com/python-pillow/Pillow
https://tinyurl.com/v37799mp
https://tinyurl.com/v37799mp
https://tinyurl.com/27buex7n
https://github.com/pycurl/pycurl

[128] pydata. A a collection of fast NumPy array functions. https://github.com/pydata/
bottleneck. 2020.

[129] Pygame. Web. https://tinyurl.com/nhhdtj4f. 2020.

[130] pygments. A generic syntax highlighter written in Python. https : / / github . com/
pygments/pygments. 2022.

[131] PyTables. Web. https://tinyurl.com/ywbr9jm3. 2019.

[132] Pytest. Web. https://tinyurl.com/45sajhuw. 2021.

[133] Python. 3.9.2 docs. https://docs.python.org/3.9. 2020.

[134] Python. CPython Repository. https://github.com/python/cpython. 2022.

[135] Python. “Extending Python with C or C++”. In: (2020).

[136] Python. Python 3.8 Abstract Syntax Trees. https://docs.python.org/3.8/library/ast.
html. 2022.

[137] Python. Unit test. https://tinyurl.com/2fewd6ca. 2021.

[138] PyTorch. Web. https://tinyurl.com/5n8pfv9m. 2016.

[139] Foyzur Rahman and Premkumar Devanbu. “How, and why, process metrics are bet-
ter”. In: 2013 35th International Conference on Software Engineering. IEEE. 2013,
pp. 432–441.

[140] Sebastian Raschka. Mlxtend: (machine learning extensions), a Python library of useful
tools for the day-to-day data science tasks. http://rasbt.github.io/mlxtend. 2020.

[141] Sanjay Rawat et al. “VUzzer: Application-aware Evolutionary Fuzzing.” In: Network
and Distributed System Security Symposium. Vol. 17. 2017, pp. 1–14.

[142] Baishakhi Ray et al. “A large scale study of programming languages and code quality
in GitHub”. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 2014, pp. 155–165.

[143] Jesse Ruderman. “Introducing jsfunfuzz”. In: http:// www.squarefree.com/ 2007/ 08/
02/ introducing-jsfunfuzz 20 (2007), pp. 25–29.

[144] José Fragoso Santos et al. “Gillian, part i: a multi-language platform for symbolic
execution”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2020, pp. 927–942.

[145] Hossain Shahriar and Mohammad Zulkernine. “Injecting comments to detect JavaScript
code injection attacks”. In: 2011 IEEE 35th Annual Computer Software and Applica-
tions Conference Workshops. IEEE. 2011, pp. 104–109.

148

https://github.com/pydata/bottleneck
https://github.com/pydata/bottleneck
https://tinyurl.com/nhhdtj4f
https://github.com/pygments/pygments
https://github.com/pygments/pygments
https://tinyurl.com/ywbr9jm3
https://tinyurl.com/45sajhuw
https://docs.python.org/3.9
https://github.com/python/cpython
https://docs.python.org/3.8/library/ast.html
https://docs.python.org/3.8/library/ast.html
https://tinyurl.com/2fewd6ca
https://tinyurl.com/5n8pfv9m
http://rasbt.github.io/mlxtend
http://www. squarefree. com/2007/08/02/introducing-jsfunfuzz
http://www. squarefree. com/2007/08/02/introducing-jsfunfuzz

[146] Qingkai Shi et al. “Pinpoint: Fast and precise sparse value flow analysis for million lines
of code”. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2018, pp. 693–706.

[147] SourceForge: The Complete Open-Source and Business Software Platform. https://
sourceforge.net. 2020.

[148] SQLAlchemy. The Python SQL Toolkit and Object Relational Mapper. https://github.
com/sqlalchemy/sqlalchemy. 2022.

[149] Robert Swiecki. “Honggfuzz”. In: Available online at: http: // code.google.com/ p/
honggfuzz (2016).

[150] Gang Tan and Greg Morrisett. “ILEA: Inter-language analysis across Java and C”.
In: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems, languages and applications. 2007, pp. 39–56.

[151] Federico Tomassetti and Marco Torchiano. “An empirical assessment of polyglot-ism
in GitHub”. In: Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering. 2014, pp. 1–4.

[152] tytso. The filesystem utilities for use with the ext2 filesystem. https://github.com/
tytso/e2fsprogs. 2022.

[153] ultrajson. An ultra fast JSON encoder and decoder. https://github.com/ultrajson/
ultrajson. 2020.

[154] urllib3. A HTTP client for Python. https://github.com/urllib3/urllib3. 2022.

[155] Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ van den Brand. “The Ba-
bel of software development: Linguistic diversity in Open Source”. In: International
Conference on Social Informatics. Springer. 2013, pp. 391–404.

[156] Vasudev Vikram, Rohan Padhye, and Koushik Sen. “Growing a Test Corpus with
Bonsai Fuzzing”. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering. 2021.

[157] Jinghan Wang, Chengyu Song, and Heng Yin. “Reinforcement Learning-based Hier-
archical Seed Scheduling for Greybox Fuzzing”. In: Network and Distributed System
Security Symposium. 2021.

[158] Junjie Wang et al. “Skyfire: Data-driven seed generation for fuzzing”. In: 2017 IEEE
Symposium on Security and Privacy. IEEE. 2017, pp. 579–594.

[159] Junjie Wang et al. “Superion: Grammar-aware greybox fuzzing”. In: 2019 IEEE/ACM
41st International Conference on Software Engineering. IEEE. 2019, pp. 724–735.

[160] Fengguo Wei et al. “JN-SAF: Precise and Efficient NDK/JNI-Aware Inter-Language
Static Analysis Framework for Security Vetting of Android Applications with Na-

149

https://sourceforge.net
https://sourceforge.net
https://github.com/sqlalchemy/sqlalchemy
https://github.com/sqlalchemy/sqlalchemy
http://code.google.com/p/honggfuzz
http://code.google.com/p/honggfuzz
https://github.com/tytso/e2fsprogs
https://github.com/tytso/e2fsprogs
https://github.com/ultrajson/ultrajson
https://github.com/ultrajson/ultrajson
https://github.com/urllib3/urllib3

tive Code”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 2018, pp. 1137–1150.

[161] Zhaogui Xu et al. “Python predictive analysis for bug detection”. In: Proceedings of
the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering. 2016, pp. 121–132.

[162] Lei Xue et al. “NDroid: Toward tracking information flows across multiple Android
contexts”. In: IEEE Transactions on Information Forensics and Security 14.3 (2018),
pp. 814–828.

[163] yaml. A full-featured YAML processing framework for Python. https://github.com/
yaml/pyyaml. 2022.

[164] Lok Kwong Yan and Heng Yin. “DroidScope: Seamlessly reconstructing the OS and
dalvik semantic views for dynamic android malware analysis”. In: USENIX Security
Symposium. 2012, pp. 569–584.

[165] Haoran Yang, Wen Li, and Haipeng Cai. “Language-Agnostic Dynamic Analysis of
Multilingual Code: Promises, Pitfalls, and Prospects”. In: ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Ideas, Visions and Reflections. 2022, pp. 1621–1626.

[166] Wei You et al. “Profuzzer: On-the-fly input type probing for better zero-day vulner-
ability discovery”. In: 2019 IEEE Symposium on Security and Privacy. IEEE. 2019,
pp. 769–786.

[167] Wei You et al. “Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017, pp. 2139–2154.

[168] Tai Yue et al. “EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the
Adversarial Multi-Armed Bandit”. In: USENIX Security Symposium. 2020, pp. 2307–
2324.

[169] Drew Zagieboylo and Andrew C. Myers. JLang. https://tinyurl.com/2tsrbkdt. 2020.

[170] Jie Zhang et al. “A Study of Programming Languages and Their Bug Resolution
Characteristics”. In: IEEE Transactions on Software Engineering (2019).

[171] Yunhui Zheng et al. “D2A: a dataset built for AI-based vulnerability detection meth-
ods using differential analysis”. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice. IEEE. 2021, pp. 111–120.

[172] Yaqin Zhou and Asankhaya Sharma. “Automated identification of security issues from
commit messages and bug reports”. In: Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 2017, pp. 914–919.

150

https://github.com/yaml/pyyaml
https://github.com/yaml/pyyaml
https://tinyurl.com/2tsrbkdt

[173] Peiyuan Zong et al. “Fuzzguard: Filtering out unreachable inputs in directed grey-
box fuzzing through deep learning”. In: USENIX Security Symposium. 2020, pp. 2255–
2269.

[174] zxing. A multi-format 1D/2D barcode image processing library. https://github.com/
zxing/zxing. 2022.

151

https://github.com/zxing/zxing
https://github.com/zxing/zxing

	Title Page
	Copyright
	Graduate Committee Approval
	ACKNOWLEDGMENT
	Acknowledgments

	ABSTRACT
	Abstract
	LIST OF TABLES
	LIST OF FIGURES
	Dedication Page
	1 INTRODUCTION
	1.1 Research Overview
	1.2 Dissertation Organization

	2 BACKGROUND
	2.1 Language Interfacing Mechanisms
	2.2 Multi-Language Program Analysis
	2.3 Greybox Fuzzing
	2.4 Compiler Testing

	3 SYSTEMATIC EMPIRICAL INVESTIGATION ON MULTILINGUAL CODE
	3.1 Motivation
	3.2 Approach
	3.2.1 Vulnerability-fixing commit categorization
	3.2.2 Language interfacing mechanism categorization
	3.2.3 Functionality domain identification
	3.2.4 Statistical methods

	3.3 Empirical Results
	3.3.1 Association between functionality & language selection
	3.3.2 Language selection's security relevance
	3.3.3 Factors contributing to the relevance

	3.4 Implications
	3.5 Related Work

	4 CROSS-LANGUAGE DYNAMIC INFORMATION FLOW ANALYSIS
	4.1 Motivation
	4.2 Approach
	4.2.1 Overview of PolyCruise
	4.2.2 Static analyses and instrumentation
	4.2.3 Online dynamic analysis

	4.3 Implementation
	4.3.1 Static analysis
	4.3.2 Runtime libraries
	4.3.3 Dynamic information flow analysis engine
	4.3.4 Limitations

	4.4 Evaluation
	4.4.1 Experiment setup
	4.4.2 Effectiveness of PolyCruise
	4.4.3 Efficiency of PolyCruise
	4.4.4 Real-world vulnerability discovery

	4.5 Related Work

	5 HOLISTIC GREYBOX FUZZING OF MULTI-LANGUAGE SYSTEMS
	5.1 Motivation
	5.2 Approach
	5.2.1 Overview of PolyFuzz
	5.2.2 Static analysis and instrumentation
	5.2.3 Sensitive-analysis-based seed generation
	5.2.4 Fuzzer

	5.3 Implementation
	5.4 Evaluation
	5.4.1 Experiment setup
	5.4.2 Effectiveness on multilingual programs
	5.4.3 Effectiveness on single-language programs
	5.4.4 Importance of sensitivity analysis in PolyFuzz
	5.4.5 Real-world vulnerabilities discovery

	5.5 Related Work

	6 COLLABORATIVE FUZZING OF PYTHON RUNTIMES
	6.1 Motivation
	6.2 Approach
	6.2.1 Overview of PyRTFuzz
	6.2.2 Run-time API description extraction
	6.2.3 SLang-based Python application generation
	6.2.4 Two-level fuzzing core

	6.3 Implementation
	6.4 Evaluation
	6.4.1 Effectiveness of PyRTFuzz
	6.4.2 Scalability of Python application generation
	6.4.3 Factors affecting effectiveness

	6.5 Related Work

	7 FUTURE WORK
	8 CONCLUSION
	8.1 Summary
	8.2 Implications
	8.2.1 Academic and industry impact
	8.2.2 Relevance to diverse researchers and developers
	8.2.3 Generalizable security solutions

	REFERENCES

