
Sotware Engineering for OpenHarmony: A Research Roadmap

LI LI, Beihang University, Beijing, China

XIANG GAO, School of Software, Beihang University, Beijing, China

HAILONG SUN, Beihang University, Beijing, China

CHUNMING HU, Beihang University, Beijing, China

XIAOYU SUN, Australian National University, Canberra, Australia

HAOYU WANG, Huazhong University of Science and Technology, Wuhan, China

HAIPENG CAI,Washington State University, Pullman, United States

TING SU, Software Institute, Shanghai Key Laboratory of Trustworthy Computing, shanghai, China

XIAPU LUO, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong

TEGAWENDÉ BISSYANDE, SnT, University of Luxembourg, Luxembourg, Luxembourg

JACQUES KLEIN, SnT, University of Luxembourg, Luxembourg, Luxembourg

JOHN GRUNDY, Faculty of Information Technology, Monash University, Clayton, Australia

TAO XIE, Computer Science, Peking University, Beijing, China

HAIBO CHEN, Shanghai Jiao Tong University, Shanghai, China

HUAIMIN WANG, Natl Univ Def Technol, Changsha, China

Mobile software engineering has been a hot research topic for decades. Our fellow researchers have proposed various

approaches (with over 7,000 publications for Android alone) in this ield that essentially contributed to the great success

of the current mobile ecosystem. Existing research eforts mainly focus on popular mobile platforms, namely Android and

iOS. OpenHarmony, a newly open-sourced mobile platform, has rarely been considered, although it is the one requiring the

most attention as OpenHarmony is expected to occupy one-third of the market in China (if not in the world). To ill the gap,

we present to the mobile software engineering community a research roadmap for encouraging our fellow researchers to

contribute promising approaches to OpenHarmony. Speciically, we start by presenting a tertiary study of mobile software

engineering, attempting to understand what problems have been targeted by the mobile community and how they have been

Authors’ Contact Information: Li Li, Beihang University, Beijing, Beijing, China; e-mail: lilicoding@ieee.org; Xiang Gao, School of Software,

Beihang University, Beijing, Beijing, China; e-mail: xiang_gao@buaa.edu.cn; Hailong Sun, Beihang University, Beijing, Beijing, China;

e-mail: sunhl@buaa.edu.cn; Chunming Hu, Beihang University, Beijing, Beijing, China; e-mail: hucm@buaa.edu.cn; Xiaoyu Sun, Australian

National University, Canberra, Australian Capital Territory, Australia; e-mail: xiaoyu.sun1@anu.edu.au; Haoyu Wang, Huazhong University

of Science and Technology, Wuhan, Hubei, China; e-mail: haoyuwang@hust.edu.cn; Haipeng Cai, Washington State University, Pullman,

Washington, United States; e-mail: haipengc@bufalo.edu; Ting Su, Software Institute, Shanghai Key Laboratory of Trustworthy Computing,

shanghai, China; e-mail: tsuletgo@gmail.com; Xiapu Luo, Department of Computing, The Hong Kong Polytechnic University, Hong Kong,

Hong Kong; e-mail: csxluo@comp.polyu.edu.hk; Tegawendé Bissyande, SnT, University of Luxembourg, Luxembourg, Luxembourg; e-mail:

tegawende.bissyande@uni.lu; Jacques Klein, SnT, University of Luxembourg, Luxembourg, Luxembourg; e-mail: jacques.klein@uni.lu; John

Grundy, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia; e-mail: john.grundy@monash.edu; Tao Xie,

Computer Science, Peking University, Beijing, China; e-mail: taoxie@pku.edu.cn; Haibo Chen, Shanghai Jiao Tong University, Shanghai,

China; e-mail: haibochen@sjtu.edu.cn; Huaimin Wang, Natl Univ Def Technol, Changsha, China; e-mail: whm_w@163.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7341/2025/2-ART

https://doi.org/10.1145/3720538

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0003-2990-1614
HTTPS://ORCID.ORG/0000-0001-9895-4600
HTTPS://ORCID.ORG/0000-0001-7654-5574
HTTPS://ORCID.ORG/0000-0003-3473-9703
HTTPS://ORCID.ORG/0000-0001-7434-0452
HTTPS://ORCID.ORG/0000-0003-1100-8633
HTTPS://ORCID.ORG/0000-0002-5224-9970
HTTPS://ORCID.ORG/0000-0003-1628-9796
HTTPS://ORCID.ORG/0000-0002-8211-257X
HTTPS://ORCID.ORG/0000-0001-7270-9869
HTTPS://ORCID.ORG/0000-0003-4052-475X
HTTPS://ORCID.ORG/0000-0003-4928-7076
HTTPS://ORCID.ORG/0000-0002-6731-216X
HTTPS://ORCID.ORG/0000-0002-9720-0361
HTTPS://ORCID.ORG/0000-0002-3245-1901
https://orcid.org/0000-0003-2990-1614
https://orcid.org/0000-0001-9895-4600
https://orcid.org/0000-0001-7654-5574
https://orcid.org/0000-0003-3473-9703
https://orcid.org/0000-0001-7434-0452
https://orcid.org/0000-0003-1100-8633
https://orcid.org/0000-0002-5224-9970
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0002-8211-257X
https://orcid.org/0000-0001-7270-9869
https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0003-4928-7076
https://orcid.org/0000-0003-4928-7076
https://orcid.org/0000-0002-6731-216X
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-3245-1901
https://doi.org/10.1145/3720538
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3720538&domain=pdf&date_stamp=2025-02-26


2 • L. Li et al.

resolved. We then summarize the existing (limited) achievements of OpenHarmony and subsequently highlight the research

gap between Android/iOS and OpenHarmony. This research gap eventually helps in forming the roadmap for conducting

software engineering research for OpenHarmony.

1 Introduction

Mobile Software Engineering has been a hot topic for many years. It concerns all the aspects of software engi-
neering in mobile, including the design, development, validation, execution, and evolution of mobile applications.
This has been considered extremely important as nowadays our lives have been empowered by the massive
increase in the use of mobile apps. Indeed, the number of mobile devices will reach 7 billion in 2023. The number
of mobile apps that can be run on each mobile device (for both Android and iOS) has exceeded the 2 million mark.
Furthermore, these igures are constantly increasing, thanks to app stores and marketplaces that allow users to
efortlessly download and install applications.

Mobile platforms are rapidly evolving as well in order to continuously integrate diverse and powerful capabili-
ties, including various sensors, cameras, wireless communication channels, as well as on-device memory and disk
capacities. As a result of ingeniously applying these technological developments, developers of mobile software
are pushing the boundaries with innovative mobile services and exciting mobile applications. Consequently, due
to the rapid development and evolution of mobile software, developers face new software engineering challenges.

To address these challenges, researchers in the software engineering community have explored various research
directions and developed lots of novel tools supported by formally grounded methods. Indeed, researchers
have proposed various static program analysis approaches (i.e., by just scanning the code without actually
running mobile apps) for characterizing issues (including ones related to mobile security, compatibility, energy
consumption, etc.) of mobile apps [56]. For example, Arzt et al. [8] have designed and developed the famous
FlowDroid approach that performs static taint analysis of Android apps for pinpointing privacy leaks. Except
static analysis approaches, researchers have also invented various dynamic testing approaches (i.e., by actually
running mobile apps on devices) for detecting potential defects of mobile apps at runtime [51]. For example,
Amalitano et al. [6] have proposed a GUI ripping approach for automated testing of Android apps. Su et al. [102]
have proposed to achieve the same purpose through a model-based approach. The aforementioned research
approaches have contributed to the huge success of the current lourishing mobile ecosystem, including both
Android and iOS.

Unfortunately, these approaches cannot directly beneit OpenHarmony1, which is a new open-sourced mobile
platform launched by the OpenAtom Foundation after receiving a donation of the open-source code fromHuawei.2

These approaches, theoretically, should be generic and hence should also work for OpenHarmony. However,
signiicant engineering eforts are still required to achieve that due to the following reasons (more details will be
given in the background section): (1) The Openharmony platform empowers a new framework supported by a
layered architecture; (2) Openharmony apps are written in a newly designed language called ArkTS.

Unlike Android and iOS, which have been well-established for many years and each has a thriving ecosystem
to support their growth, the development of the Openharmony ecosystem is still at an earlier stage. We, therefore,
argue that OpenHarmony requires more help from the software engineering research community.3 We call on
actions for conducting software engineering research for OpenHarmony.
As our initial attempt, we decided to present to the community an initial research roadmap for guiding our

mobile software engineering community in achieving that. Speciically, we start by conducting a tertiary study to
understand the current achievements (i.e., Section 2) achieved by the Mobile Software Engineering community.
We then discuss the current state of the OpenHarmony ecosystem, followed by a comparative study to locate the

1https://www.openharmony.cn
2More background info: https://lilicoding.github.io/resources/Background_of_OpenHarmony.pdf
3This could be regarded as new opportunities for the mobile software engineering community.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 3

technical gaps between mature platforms and OpenHarmony (i.e., Section 3). Based on that, we summarize the
technical deiciencies of OpenHarmony and propose a roadmap for our research community to complete (i.e.,
Section 4). After that, we discuss the possible challenges and future research opportunities faced by conducting
software engineering research for OpenHarmony (i.e., Section 5), before discussing the related work in Section 6
concluding this paper in Section 7.

2 Tertiary Study on Mobile Sotware Engineering

In this work, we are interested in building a research roadmap for conducting software engineering research for
OpenHarmony. Unfortunately, since OpenHarmony is still in its early stages, there is not much work proposed
for that. As what happened for its counterparts (Android or iOS), there will be huge software engineering issues
that need to be addressed before establishing a mature ecosystem. We hence resort to learning from the Android
ecosystem to form the research roadmap to guide software engineering studies for OpenHarmony. The rationale
behind this decision is that we believe all the research eforts contributed to improving the Android and iOS
ecosystem could be also conducted for OpenHarmony.

In this work, we resort to a tertiary study to understand the status quo of mobile software engineering research.
Tertiary studies, which summarize and synthesize indings from existing systematic reviews and meta-analyses on
a speciic topic (cf. [53]), align with the main objective of this project: to inform and guide the research direction
of Open Harmony by examining existing work in the ield of mobile SE. Here, we remind readers that the choice
of conducting a tertiary study rather than other types of studies because it allows for a comprehensive synthesis
of existing research, providing a broader perspective on the challenges and trends for research in OpenHarmony.
This approach aligns with our research objectives to identify gaps and future research directions in this ield.

2.1 Tertiary Study Method

In this work, we conduct a tertiary study following the methodologies outlined by Kitchenham and Charters et
al. [46]. This approach employs the same methods as a typical systematic literature review (SLR) but focuses on
collecting secondary studies. Speciically, the working process consists of three main phases: planning, conducting,
and reporting. In the planning phase, we determined the key elements of the tertiary study protocol (including
research questions (RQs), search keywords, selected databases, quality assessment, and studies selection criteria),
which was reviewed and agreed upon by all authors. In all manual activities requiring human judgment, we
followed the data extraction and checking approach suggested by Brereton et al. [17], with the second author
acting as the extractor and the irst author as the checker. The entire review method is depicted in Fig. 1, adhering
to the guidelines for systematic studies to visualize the adopted review process [106].

2.1.1 Planning. The planning phase aims to complete the irst two steps highlighted in Fig. 1, namely RQ
Identiication and Keywords Identiication.
[RQ Identiication] The goal is to analyze secondary studies of mobile software engineering for the purpose of
identifying the best research advancements with respect to target problems and solutions. We thus deined the
following RQ on top of this objective:

RQ: What problems are targeted by our fellow researchers in the MSE community and how they are

resolved?

[keywords Identiication] Then, in the next step, we identify the search keywords that could be used to ind
all the relevant publications, in order to answer the pre-deined research questions. In line with the approach
of other tertiary studies [11, 49], we resort to considering the existing survey and literature review papers (i.e.,
secondary studies), for which our fellow researchers have already systematically reviewed the diferent aspects
of mobile software engineering. We believe these survey papers are representative of the status quo of mobile
software engineering research. To this end, we identify the search keywords based on these concerns. Table 1

ACM Comput. Surv.



4 • L. Li et al.

RQ Identification Paper Search

Quality Assessment

Keywords Identification Inclusion & Exclusion
Filtering

Result Analysis Forward & Backward
SnowballingNew Papers

New Papers = 0

New Papers > 0

Fig. 1. The working process of our systematic literature review.

depicts the list of identiied keywords. In total, we have identiied two groups of keywords: keywords related to
mobile, and secondary studies (i.e., G1 and G2), respectively. Regarding the mobile ield, we include the keywords
on top of its deinition, which most commonly refers to smartphones such as Android, IOS and Phone. In addition,
to assemble the keywords for secondary studies, we carried a group of 35 keywords forward in this work from a
tertiary study on systematic literature reviews (SLRs) in software engineering by kotti et al. [53]. We then form
the query based on this rule 4 for which we require it to contain at least one keyword from each group.

Table 1. Repository Search Keywords.

Group (and) Keywords (or)

G1 Mobile, Android, iOS, *phone*

G2

analysis of research; body of published research; centralized tutorial; common practices; comparative study;
conceptual analysis; editorial; editor’s preview; evidence-based software engineering; in-depth analysis; literature
analysis; literature review; literature survey; lookup table; manifesto; meta-analysis; meta-survey; methodologies;
past studies; review of studies; strategic directions; structured review; study; subject matter expert; survey and
classiication; survey; systematic approach; systematic mapping study; systematic review; taxonomy

2.1.2 Conducting. The conducting phase aims to complete the following four steps highlighted in Fig. 1: Paper
Search, Inclusion & Exclusion Filtering, Quality Assessment, and Forward & Backward Snowballing. We now
detail these steps, respectively.
[Paper Search] After the query is formed, in Step 3, we directly applied to search relevant studies in the
following four online digital libraries for systematic querying: IEEE Xplore, ACM Digital Library, Science Direct,
and Springer, and leveraged another two indexing databases (i.e., DBLP and Scopus) for cross-comparison. These
databases were selected based on their comprehensive coverage of scholarly publications in the ield of computer
science.

Unfortunately, many of the located papers were either of low quality or outside our area of focus. To narrow
down to the most relevant studies, in Step 4, we reine the gathered list of relevant papers manually to ensure
their relevance to mobile software engineering (i.e., could indeed be helpful for answering the aforementioned
research question). Speciically, we evaluated all the collected papers using the following set of inclusion and
exclusion criteria (IC/EC) after reviewing their titles, keywords, and abstracts.
[Inclusion and Exclusion Filtering] The following set of IC/EC was applied to all papers obtained through the
search strategy to ensure that only relevant secondary studies were included in this tertiary study.

Inclusion Criteria.

(1) Only secondary studies are included. In other words, this encompasses research such as systematic literature
reviews (SLRs), systematic mapping studies, and meta-analyses that follow documented systematic methods.

4(�11 OR ... OR �1� ) AND (�21 OR ... OR �2� ), where �1� ∈ �1, �2� ∈ �2 and 1 ≤ � ≤ � , 1 ≤ � ≤ �, for which � and � are the number of

keywords in G1 and G2, respectively

ACM Comput. Surv.

https://ieeexplore.ieee.org/Xplore
https://dl.acm.org/
https://www.sciencedirect.com/
https://www.springer.com/gp
https://dblp.org/
https://www.scopus.com/


Sotware Engineering for OpenHarmony: A Research Roadmap • 5

(2) Publications must address fundamental software engineering topics, including but not limited to software
development methodologies, tools, and practices [120].

(3) To ensure the relevance of the review, we focused on publications from the last 2013 years, depending on
the ield’s development and trends.

Exclusion Criteria.

(1) Since we only include survey or literature review papers, all the non-survey papers are simply excluded
from our study.

(2) Papers for which the PDFs cannot be found are excluded.
(3) Publications not written in English are also excluded.
(4) Although there are some papers that meet our selection criteria (i.e., whose title contains the group

keywords in Table 1), their topics may not strictly fall into the software engineering category. 5 To this end,
publications that do not fall within the software engineering category are excluded.

(5) Short papers (i.e., less than eight pages in double-column format or 11 pages in single-column format) were
excluded.

After the IC/EC is formed, we manually apply these IC/EC to ilter out irrelevant instances. In line with the
adopted guidelines [46], the selection process was based on the titles, author keywords, and abstracts of the
papers. We start by identifying two participants, namely the data extractor and the data checker. These two
participants will irst independently review a set of 30 randomly selected studies to determine their consensus
on the inclusion or exclusion criteria. Their level of agreement is measured using Cohen’s Kappa statistic [86],
assessed inter-rater reliability. Any discrepancies were resolved to reach a consensus. This process was repeated
until a Kappa score of at least 0.8 was achieved. This ensured that both participants shared the same understanding
of the IC/EC, allowing them to fairly review the remaining large number of studies. As a result, a total of 143
distinct secondary studies were retained.

Table 2. DARE-4 Criteria for uality Assessment.
QA Criterion Assessment Score Description

Inclusion & Exclusion
Yes
Partial
No

1
0.5
0

Explicit deinition of IC/EC
Implicit deinition of IC/EC
No IC/EC deined

Search space
Yes
Partial
No

1
0.5
0

4+ digital libraries searched and snowballing search strategies applied
3-4 digital libraries searched and snowballing search strategies applied
1-2 digital libraries searched

Quality assessment of primary studies
Yes
Partial
No

1
0.5
0

Quality criteria explicitly described and applied
Implicit quality assessment
No quality assessment

Information regarding primary studies
Yes
Partial
No

1
0.5
0

Complete information presented about primary studies
Summary information presented about primary studies
Results of primary studies not speciied

[Quality Assessment] We then conducted a manual quality assessment of the 143 selected secondary papers to
ensure the reliability of our study results. In this step, we adhered to a recommended quality assessment process
for tertiary studies [50], utilizing the DARE-4 criteria as outlined in Table 2, following the most recent tertiary
study and relevant to the goals of this work.

5For example, the paper entitled łA Taxonomy and Survey of Microscopic Mobility Models from the Mobile Networking Domainž is excluded

because its primary focus is on mobile network simulations and the development of realistic mobility models. Although it includes the survey

and mobile keywords, it is not really in the domain of software engineering and hence is excluded.

ACM Comput. Surv.



6 • L. Li et al.

Speciically, the DARE-4 criteria are based on four key questions, each of the questions is scored as Y (yes-1
point), P (partially-0.5 point), or N (no-0 points). The total score for a study is the sum of these points, with a
maximum possible score of four and a minimum of zero. Studies must score at least two points to be included.

In addition, we adhered to a systematic data extraction and checking process, achieving an inter-rater agreement
of 82%. Most disagreements occurred on the last question, which involves the information provided about the
reviewed primary studies due to the subjective nature of this question. As a result, 26 out of 143 studies (18.18%)
were excluded for scoring less than two. The total scores for accepted studies are shown in Table 3. We noted that
the excluded lower-quality secondary studies often lacked clear documentation of inclusion/exclusion criteria,
did not specify search sources, or failed to assess the quality of the included primary studies.
[Backward and Forward Snowballing] After iltering out irrelevant papers, we conduct forward and backward
snowballing (i.e., Step 5) by reviewing all referenced papers to determine if they should be included in our
study. Both backward and forward snowballing were applied. The backward snowballing involved reviewing the
references of the included papers, while forward snowballing examined papers that cited the included studies.
This approach ensured comprehensive coverage of the relevant literature. Two iterations of snowballing were
conducted. In each iteration, the papers identiied through snowballing were subjected to the same inclusion and
exclusion criteria, ensuring consistency in the selection process. Additionally, we have cross-checked the results
(i.e., Step 6) from the previous two steps (i.e., inclusion and exclusion criteria iltering and quality assessment) to
ensure the reliability of our indings.

2.1.3 Reporting. To form the inal report, we extract the following information from each of the quality-accepted
secondary studies.

• Title and Source: The publication’s title and its source, including journal, workshop proceedings, conference
proceedings, or book chapter.

• Publication Year : To track the annual evolution and research interest in ML4SE.
• Publication Venue: To identify key publishers within this speciic area of research.
• Author Names, Institutions, and Countries: To recognize leading research teams and their geographical
distribution.

• Target Problem: To examine the problem targeted by secondary studies.
• Research Method: To examine the techniques most commonly adopted by secondary studies to solve the
target problems.

[Result Analysis] We were able to eventually collect 51 papers to answer our research question deined at the
beginning of this study. Table 3 enumerates the list of selected papers, including their publication year and venue.
Once the relevant papers are collected, we carefully read all of them and attempt to extract the relevant data
(i.e., Step 7) from each paper to answer the research question. Speciically, we aim to extract the following two
types of information: (1) Targeted Problems, which involve understanding the issues within the Android/iOS
ecosystem that have been identiied by our MSE researchers as problems needing resolution to create a more
user-friendly mobile ecosystem, and (2) Fundamental Techniques, aimed at discovering the techniques required
to address the various challenges in the mobile community. Considering that OpenHarmony may encounter
similar issues to those faced by Android and iOS, we argue that insights gained from exploring these two aspects
could prove valuable in shaping the roadmap for conducting software engineering research for OpenHarmony.
Furthermore, similar to our approach in identifying relevant papers, we have conducted cross-checks of our
observations, involving at least two authors, to ensure the reliability of these observations, thereby enhancing
the trustworthiness of the research roadmap.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 7

Table 3. The List of Selected Publications.
Authors Title Year Venue

Senanayake et al. [96] Android Source Code Vulnerability Detection: A Systematic Literature Review 2023 CSUR

Wu et al. [112] A systematic literature review on Android-speciic smells 2023 JSS

Liu et al. [67] Deep Learning for Android Malware Defenses: A Systematic Literature Review 2022 CSUR

Júnior et al. [44] Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping
Study

2022 CSUR

Delgado-Santos et al. [26] A Survey of Privacy Vulnerabilities of Mobile Device Sensors 2022 CSUR

Lee et al. [55] A Systematic Survey on Android API Usage for Data-Driven Analytics with Smartphones 2022 CSUR

Nakamura et al. [75] What factors afect the UX in mobile apps? A systematic mapping study on the analysis of app store
reviews

2022 JSS

Wimalasooriya et al. [111] A systematic mapping study addressing the reliability of mobile applications: The need to move
beyond testing reliability

2022 JSS

Zhan et al. [123] Research on Third-Party Libraries in Android Apps: A Taxonomy and Systematic Literature Review 2021 TSE

Shamsujjoha et al. [98] Developing Mobile Applications Via Model Driven Development: A Systematic Literature Review 2021 IST

Ebrahimi et al. [28] Mobile app privacy in software engineering research: A systematic mapping study 2021 IST

De Munk and Malavolta [25] Measurement-based Experiments on the Mobile Web: A Systematic Mapping Study 2021 EASE

Yasuda et al. [119] Autonomous Visual Navigation for Mobile Robots: A Systematic Literature Review 2020 CSUR

Luo et al. [69] A Survey of Context Simulation for Testing Mobile Context-Aware Applications 2020 CSUR

C. et al. [19] Energy Diagnosis of Android Applications: A Thematic Taxonomy and Survey 2020 CSUR

Qiu et al. [89] A Survey of Android Malware Detection with Deep Neural Models 2020 CSUR

Li et al. [58] Rebooting Research on Detecting Repackaged Android Apps: Literature Review and Benchmark 2019 TSE

Al-Subaihin et al. [2] App store efects on software engineering practices 2019 TSE

Kaur and Kaur [45] Investigation on test efort estimation of mobile applications: Systematic literature review and survey 2019 IST

Barmpatsalou et al. [12] Current and Future Trends in Mobile Device Forensics: A Survey 2018 CSUR

Biùrn-Hansen et al. [16] A Survey and Taxonomy of Core Concepts and Research Challenges in Cross-Platform Mobile Devel-
opment

2018 CSUR

Jabangwe et al. [42] Software engineering process models for mobile app development: A systematic literature review 2018 JSS

Ahmad et al. [1] Perspectives on usability guidelines for smartphone applications: An empirical investigation and
systematic literature review

2018 IST

Kim et al. [48] A Survey on Recent OS-Level Energy Management Techniques for Mobile Processing Units 2018 TPDS

Kong et al. [52] Automated Testing of Android Apps: A Systematic Literature Review 2018 TRel

Genc-Nayebi and Abran [37] A systematic literature review: Opinion mining studies from mobile app store user reviews 2017 JSS

Li et al. [56] Static analysis of android apps: A systematic literature review 2017 IST

Xu et al. [113] Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 2016 CSUR

Martin et al. [73] A survey of app store analysis for software engineering 2016 TSE

Zein et al. [121] A systematic mapping study of mobile application testing techniques 2016 JSS

Sufatrio et al. [103] Securing Android: A Survey, Taxonomy, and Challenges 2015 CSUR

Hoseini-Tabatabaei et al. [41] A survey on smartphone-based systems for opportunistic user context recognition 2013 CSUR

Pereira and Rodrigues [85] Survey and analysis of current mobile learning applications and technologies 2013 CSUR

Shahzad et al. [97] Socio-technical challenges and mitigation guidelines in developing mobile healthcare applications 2017 JMIHI

Ali et al. [4] Self-adaptation in smartphone applications: Current state-of-the-art techniques, challenges, and future
directions

2021 DKE

Autili and others. [10] Software engineering techniques for statically analyzing mobile apps: research trends, characteristics,
and potential for industrial adoption

2021 JISA

Silva et al. [100] A mapping study on mutation testing for mobile applications 2022 STVR

Hort et al. [40] A survey of performance optimization for mobile applications 2021 TSE

Maniriho et al. [71] A Survey of Recent Advances in Deep Learning Models for Detecting Malware in Desktop and Mobile
Platforms

2024 CSUR

Qiu et al. [88] Diferentiated Location Privacy Protection in Mobile Communication Services: A Survey from the
Semantic Perception Perspective

2023 CSUR

Silva et al. [99] A survey on the tool support for the automatic evaluation of mobile accessibility 2018 MODELSWARD

Yan and Yan [118] A survey on dynamic mobile malware detection 2018 SQJ

Altaleb and Gravell [5] Efort Estimation across Mobile App Platforms using Agile Processes: A Systematic Literature Review 2018 JoS

Wang et al. [109] Runtime Permission Issues in Android Apps: Taxonomy, Practices, and Ways Forward 2022 TSE

Sadeghi et al. [93] A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment
of Android Software

2016 TSE

Nie et al. [76] A systematic mapping study for graphical user interface testing on mobile apps 2023 IET

Tramontana et al. [105] Automated functional testing of mobile applications: a systematic mapping study 2019 SQJ

Zein et al. [122] Systematic reviews in mobile app software engineering: A tertiary study 2023 IST

Zhan et al. [124] A Comparative Study of Android Repackaged Apps Detection Techniques 2019 SANER

Sadeghi et al. [93] A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment
of Android Software

2016 TSE

Tramontana et al. [105] Automated functional testing of mobile applications: a systematic mapping study 2019 SQJ

ACM Comput. Surv.



8 • L. Li et al.

App Store

Developer

App

Metadata &
User Reviews

Question&
Answer
Site

Code
Hosting
Site

Android
Framework

Library

Ads
Provider

Fig. 2. Overview of the Major Participants (or Artifacts) Involved in MSE Research.

2.2 Problem

Before going into the details in summarizing the top problems targeted by our fellow researchers in MSE, we
irst present the major participants (or artifacts) involved in MSE research. These participants have been closely
associated with the top problems identiied and handled in MSE. As illustrated in Fig. 2, developers play a core
role in MSE and contribute to the ecosystem by implementing mobile apps based on the Android framework

(also known as the SDK) provided by Google, along with various third-party libraries that are pre-developed
for facilitating app developments. The libraries also include the ones used to provide advertisements, which also
play a crucial role in Android as they are the major source for app developers to make proits.6 When there are
problems encountered while developing an app, developers frequently resort to question and answer website

(such as Stack Overlow) to search for solutions. The app’s source code is often managed on code hosting websites
such as Github, which is also one of the most important resources leveraged by mining software repository
researchers to learn for improving Android apps. Once the apps are developed, they will be uploaded to app

stores such as the oicial Google Play store, on which various metadata associated with the app (such as app’s
description, name, authors, etc.) will also be provided. The app stores are the main portal for users to ind and
install apps. Except for searching and installing apps, app stores also provide a platform for users to leave feedback
(i.e., user comments, which could be complaints about defects or suggestions regarding new app features) for
their apps on dedicated pages.

We now highlight the top problems targeted by our fellow researchers (cf. Table 4). These top problems could be
applied to any of the aforementioned participants highlighted in Fig. 2. The problems are mainly grouped into nine
categories, including app development, app deployment, user experience, security and privacy, quality, reliability,
performance, energy, and socio-technical issues. To help readers better understand each of the categories (i.e.,
the actual problems handled by our fellow researchers), we also provide various problem examples in the second
column of the table.

2.3 Technique

To solve the above software engineering problems, researchers have proposed various kinds of techniques. Note
that, while there are more techniques designed to solve the above problems, e.g., trust environment execution
(TEE) for increasing mobile application security, we will not include them but only consider the software
engineering techniques in this work. Also, resolving software engineering tasks often involves manual eforts,
such as conirming the warnings yielded by static analyzers or labelling datasets for training machine learning

6Indeed, app developers often cannot make proits directly from the apps per se as they are often made available to users as free apps.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 9

Table 4. The top problems targeted by the examined papers.
Category Problem Examples Papers

App Development Representative problems include (1) Learning new requirements by analyzing
user comments, (2) Facilitating app developments by recommending third-party
libraries, APIs, and code snippets, (3) Generating code for GUI components, (4)
Facilitating app testing by automatically generating test cases, etc.

[2, 4, 5, 10, 16, 19, 28, 37, 40ś42,
44, 45, 48, 52, 56, 67, 71, 75, 76, 85,
89, 93, 93, 96, 98ś100, 103, 105, 105,
109, 113, 118, 121, 122, 124]

App Deployment Problems related to app deployment include (1) Supporting code obfuscation,
(2) Supporting app hardening, and (3) Supporting obfuscation for AI models
inside apps.

[2, 4, 41, 42, 52, 85, 103, 113]

User Experience Example problems include (1) Optimizing user experience by analyzing end-
user perception, (2) Understanding user satisfaction by analyzing user reviews
(feedback on app stores), and (3) Characterizing human-centric issues related
to the success of apps.

[1, 2, 4, 5, 16, 19, 25, 26, 28, 37, 41,
42, 44, 48, 52, 55, 69, 75, 76, 85, 103,
105, 109, 109]

Security and Privacy Representative problems include (1) Detecting privacy leaks, (2) Discovering
sensitive hidden behaviors, (3) Exploiting component hijack attacks, (4) Explor-
ing privilege escalation attacks, (5) Uncovering cryptographic API misuses, (6)
Predicting malware and its families, etc.

[4, 10, 12, 16, 26, 28, 40, 44, 52, 55,
56, 58, 67, 71, 88, 89, 93, 93, 100,
103, 109, 109, 113, 118, 121, 123,
124]

Quality Representative problems include (1) Detecting and ixing concurrency errors in
mobile apps, (2) Characterizing the app’s maintainability by understanding the
evolution of deprecated APIs, the usage of incompatible APIs, (3) Improving
efectiveness and eiciency of app testing approaches by automatically gener-
ating better test cases, estimating test eforts and prioritizing test cases.

[2, 4, 5, 10, 12, 16, 19, 25, 37, 40,
41, 44, 45, 52, 56, 58, 69, 75, 76, 85,
89, 93, 93, 96, 98, 105, 105, 111ś113,
118, 122ś124]

Reliability Targeted problems include understanding, locating, and automatically repairing
app crashes (caused by API misuses, and compatibility issues), failures, excep-
tions, and runtime errors.

[1, 10, 12, 16, 19, 26, 40, 44, 45, 52,
67, 69, 71, 76, 85, 89, 93, 96, 98, 100,
105, 105, 109, 111ś113, 119, 122,
124]

Performance Performance-related problems include (1) Assuring the app’s eiciency by
detecting and refactoring code smells and (2) Summarizing performance anti-
patterns and their potential improving counterparts.

[2, 4, 5, 10, 16, 19, 25, 40, 41, 44, 45,
48, 52, 67, 69, 85, 96, 98, 100, 103,
112, 113, 118, 119, 124]

Energy Energy Management problems include (1) Adjusting power states of processing
units (2) Exploiting computing resources, and (3) Characterizing and detecting
energy issues (e.g., bugs, leaks, hogs, hotspots, wakelock, sensors, network, and
display).

[4, 10, 19, 40, 44, 48, 52, 85, 100,
103, 109]

Socio-technical issues Targeted problems include (1) Understanding why mobile app users do not
adopt security precautions in the smartphone context and studying how to use
media campaigns to raise user awareness of security issues and (2) Identifying
the common risks that hinder mobile application development in the healthcare
domain and the mitigating strategies against those risks.

[4, 12, 45, 75, 97, 99, 124]

models, etc. In this work, we will not take into account those manual approaches. For the remaining techniques,
after discussing them among co-authors, we preliminarily categorize them as static-based, dynamic-based, and
learning-based approaches. Fig. 3 highlights the represented ones.
Static Approaches. Static approaches are the analysis of programs performed without executing them. The

widely used static approaches are listed in Fig. 3. These static approaches have been applied to the SE problems
of mobile applications, Android frameworks and mobile operating systems. Speciically, static approaches (e.g.,
taint analysis, symbolic execution, code instrumentation, model checking) are widely used to detect application
bugs, including functional errors, code smells, security weaknesses/vulnerabilities, energy and performance bugs,
permission escalations, etc. Beyond bug detection, static approaches (e.g., application hardening, code sign) are
also used to increase the security and reliability of mobile applications. Moreover, with the rapid development of
machine/deep learning, we have observed a trend to use static approaches to extract program features, which are
then provided to learning approaches.

ACM Comput. Surv.



10 • L. Li et al.

Reverse Engineering

Static Taint Analysis

Static Program Slicing

Symbolic Execution Similarity Computation

Abstract Interpretation

Static Code Instrumentation

Type Checking

Model Checking Static Program Synthesis

Static Program Repair

Program Hardening

Refactoring

Mobile

Software 

Engineering

Static Analysis

Dynam
ic Analysis M

achine Learn
ing

Search-based Testing

Model-based Testing

Fuzzing

Random Testing

Concolic Execution

Dynamic Program Slicing

Runtime Monitoring

Dynamic Program Synthesis

Program Hot-fix

Dynamic Taint Analysis

Mutation Testing

Traditional Machine Learning

Clustering

Federated Learning

Deep Learning

Reinforcement Learning

Natural Langurage Processing

Adversarial Attacks

Model Obfuscation

Feature Engineering

Fig. 3. Overview of the Representative Techniques Adopted in MSE.

Dynamic approaches. In contrast with static approaches, dynamic approaches are performed on programs
during their execution. Similar to static approaches, dynamic approaches are also applied for program testing.
Widely used dynamic testing techniques include search-based testing, black-box/random testing, grey-box fuzzing,
concolic execution, event-driven test generation, mutation testing, etc. Dynamic program analysis is also applied
for security analysis (e.g., dynamic taint analysis and runtime monitoring) and automated program repair.
Learning-based approaches Beyond the traditional static and dynamic approaches, we have seen an in-

creasing trend that applies machine/deep learning techniques to solve mobile software engineering problems.
Learning techniques train models by extracting features from large program artifacts and have achieved signii-
cant success in the ield of code analysis. Learning-based techniques have been applied to solve many mobile
software engineering tasks, including vulnerability detection, privacy issues detection, program testing, code
smell checking etc. Moreover, it has recently garnered considerable research attention to employ deep learning
techniques to thwart Android malware attacks.

3 The State of the OpenHarmony Ecosystem

As revealed in the previous literature review, despite Mobile Software Engineering being a longstanding and hot
topic, the eforts spent by our fellow researchers for exploring OpenHarmony have been limited. Indeed, there is
almost no contribution made to OpenHarmony in the current MSE community. Therefore, as our initial attempt
towards bringing OpenHarmony research to the Mobile Software Engineering (MSE) community, we summarize
the current achievements of OpenHarmony to help readers better understand the state of the OpenHarmony
ecosystem. Speciically, in this section, we briely introduce the existing toolchains and datasets available in the
community. We then go one step further to summarize other existing resources that may not be directly related
to OpenHarmony but could still be beneicial to grow the ecosystem of OpenHarmony.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 11

3.1 Existing Toolchains

We then look at the existing toolchains ofered by the oicial OpenHarmony framework to support app develop-
ments and these toolchains are considered important and essential. Indeed, these tools could provide fundamental
capabilities to support the implementation of more advanced OpenHarmony-speciic toolchains. Ideally, these
toolchains should cover the full lifecycle of app development, including development, build, testing, debugging,
code review, and publishing. Table 5 summarizes some of the tools provided by OpenHarmony. The second
column demonstrates the software engineering phase that the tool intends to support. At the moment, these
toolchains have covered almost all the aforementioned lifecycle phases, e.g., including app development-related
ones (e.g., IDE, Emulator, Device Manager), app building tools (e.g., hvigor), app testing tools (e.g., jsunit, uitest),
debugging tools (e.g., HiLog, proiler), code reviewing tools (e.g., Code Linter), command line tools (e.g., hdc), and
package management tool (e.g., ohpm). The only exception is the phase of publishing. At the moment, there is
no such tool ofered for OpenHarmony. It is nonetheless understandable as there is no app market available for
hosting OpenHarmony apps yet. We believe such a tool will be provided once a dedicated app market is ofered.
It is worth noting that, at the moment, we only conducted a high-level overview and did not check in detail

to what extent are the required functions in each phase covered by these tools. For example, there is a tool
called Monkey in Android that supports random exploration of Android apps, it is not clear to us if the existing
toolchains of OpenHarmony provide equivalent functions. As for our future work, we plan to have a more
detailed look at these tools and provide the community with a clearer overview of these toolchains.

Table 5. A selected list of OpenHarmony Toolchains.

Tool SE Phase Function

DevEco Studio Development The recommended integrated development environment for implementing OpenHarmony
apps.

Device Manager Development This tool provides an interface for developers to manage OpenHarmony devices, including
both emulator-based and real-world devices.

Emulator Development This tool can set up OpenHarmony emulators (either remotely or locally) that allow devel-
opers to install, run, and test their apps on an emulator instead of real-world OpenHarmony
devices.

hvigor Build The recommended tool for building OpenHarmony source code project to runnable apps.
arkXtest/jsunit Test This tool allows developers to run unit tests when implementing OpenHarmony apps.
arkXtest/uitest Test This tool allows developers to search and update certain widgets in a given GUI page,

which is essential for supporting automated OpenHarmony app testing.
HiLog Debug The default tool that is designed to log information such as user operations or system

running statuses for the system framework, services, and OpenHarmony apps.
proiler Debug This tool provides a visual interface for developers to quickly check the proiling infor-

mation such as the currently used system and memory resources, including the heap and
stack memories of each task.

Code Linter Code Review This tool is responsible for grammatically checking the correctness of ArkTS code, which
is the default programming language for implementing OpenHarmony apps.

hdc Other The OpenHarmony Device Connector tool allows developers to connect their PC-side
development machine to a given OpenHarmony device.

ohpm Other OpenHarmony Package Manager.

ACM Comput. Surv.



12 • L. Li et al.

3.2 Existing Datasets

As shown in Section 2, the datasets targeted by our MSE community can be mainly divided into four types: (1)
Mobile apps (including both open-sourced7 and closed-sourced apps8), (2) Mobile App Development Framework,
(3) Third-party Libraries, (4) App Store Info (including app reviews). We now respectively summarize the current
situation of these types of datasets in OpenHarmony, respectively. We further go one step deeper to harvest the
relevant datasets, if possible, and make them publicly available to support our fellow researchers in conducting
OpenHarmony-related software engineering research.

Table 6. The framework repository comparison between OpenHarmony and Android.

Type OpenHarmony Android

Name OpenHarmony/interface_sdk-js aosp-mirror/platform_frameworks_base
Platform Gitee Github

#. Branches 136 500
#. Tags 34 2,026
#. Forks 1,900 6,300
#. Stars 83 10,600

#. Commits 10,898 946,393
#. Contributors 627 1,399

OpenHarmony Framework. Recall that OpenHarmony is a fully open-sourced system, its app development
framework is open-sourced. The framework is the irst gate that OpenHarmony apps need to interact with before
running into the system. The interaction is mainly through APIs provided by the app development SDK, as part
of the OpenHarmony framework. Some of the meta-data of the OpenHarmony framework are shown in Table 6.
The current framework is open-sourced at the interface_sdk-js repository9 on Gitee and it currently has 105
branches, 30 tags, 1,400 forks, 57 stars, 7,833 commits, and 627 contributors. As a comparison, the last column of
Table 6 shows the meta-data of the Android framework repository, respectively. It is obvious that OpenHarmony
has a big step to go in order to catch up with Android, which poses lots of opportunities for our MSE community
to mitigate the gap between the OpenHarmony framework and the Android framework.
We further look into the number of APIs ofered by the OpenHarmony framework. Since there is no such

information directly provided on the web, we decided to write a parser to directly harvest that from the open-
source repository. We select the latest version (i.e., OpenHarmony 4.0) and only count the number of functions
(including static and non-static functions). In the latest version, there are 10,435 APIs. This number is also
signiicantly smaller than that of the Android framework, which already has over 30,000 APIs in 2018 (i.e., API
version 28 [57]). Nonetheless, as illustrated in Fig. 4, the number of APIs (again, any functions are considered) is
continuously increasing, showing that the capabilities of OpenHarmony are keeping maturing. We believe as
time goes by, such a diference between the APIs of Android and OpenHarmony will be much smaller.

OpenHarmony Apps. One of the most important reasons that make mobile software engineering (especially
for the Android community) a longstanding hot topic is due to the existence of a large number of mobile
apps [32, 43]. Indeed, there are over 2 million Android apps (there is a similar number for the iOS community)
available on the oicial Google Play store. In the famous AndroZoo dataset [60], there are over 23 million Android

7AndroZooOpen: https://github.com/HumaniSELab/AndroZooOpen
8AndroZoo: https://androzoo.uni.lu
9We remind the readers that the framework and the SDK are not exactly the same as the framework may contain more capabilities that are

reserved for system apps while SDK is only supposed to be used by third-party apps. For simplicity, in this work, we will not diferentiate this

as there is no direct repository provided for hosting the framework code of OpenHarmony.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 13

Fig. 4. The evolution of the number of APIs ofered by the OpenHarmony framework. The X-axis includes all the tags (ranked
based on their released time, the earlier, the former) available in the OpenHarmony repository.

apps collected from various sources (e.g., the oicial Google Play store and over 10 third-party markets such as
PlayDrone, AppChina, etc.) spanning various years. Liu et al. have subsequently harvested the open-sourced
Android apps and formed them as a dataset called AndroZooOpen [64]. This dataset is also made publicly available
to the software engineering community and has been demonstrated to be useful in supporting Android research
tasks. Inspired by this, we hypothesize that OpenHarmony apps will be one of the most important resources for
supporting OpenHarmony research. We, therefore, take our initial attempt to harvest existing OpenHarmony apps.
Since there is no app market available for OpenHarmony yet, we solely focus on open-sourced OpenHarmony
apps. Speciically, we take OpenHarmony as well as HarmonyOS as the search keyword and apply it to two
famous cloud-based software version control websites, namely GitHub and Gitee, which are the most famous
sites of such in the world and in China, respectively.

Our initial search results in 3,804 repositories10, for which 910 of them are from GitHub while the remaining
2,894 from Gitee. We remind the readers that these identiied repositories may not always be OpenHarmony
apps. Therefore, we resort to a Shell script (with manually identiied features of OpenHarmony apps considered)
to select such repositories that indeed contain OpenHarmony apps. Our experiment has eventually discovered
174 such repositories, with 147 and 27 from Gitee and Github, respectively. To facilitate further research, we have
also made this list publicly available on the same site.11

Third-party Libraries We remind the readers that OpenHarmony takes a newly introduced language called
ArkTS to support app implementations. In this work, we also look at the existing third-party libraries that are
available for supporting the development of OpenHarmony apps. Speciically, we would like to understand to what

10The full list is made available on GitHub (https://github.com/SMAT-Lab/SE4OpenHarmony).
11Our further investigation inds that most of these apps are not comprehensive ones (i.e., might be toy apps or demonstrating the usability

of certain libraries). We hence commit to keep updating this list toward forming a more useful dataset for supporting OpenHarmony-based

software engineering research.

ACM Comput. Surv.



14 • L. Li et al.

extent are ArkTS-based libraries available in our community and what are they designed for. In OpenHarmony,
the oicial team has introduced a tool called ohpm (as also shown in Table 5) for managing all the third-party
libraries designed for developing OpenHarmony apps. In the current central registry12, there are already 96
libraries and the number is growing. The functions of these libraries can be divided into 10 categories. Table 7
enumerates some of the representative ones for each category. Generally, we show one or two libraries for each
category. The two are randomly chosen if there are more libraries available for the given category.

Table 7. A sample list of OpenHarmony’s third-party libraries (available in OpenHarmony’s central registry).

Category Count Repo

UI 2
@ohos/pulltorefresh Pull-to-refresh and pull-up loading component
@ohos/mpchart Support the implementation of various types of charts such as Pie chart,

Candle chart, etc.

Animation 2
@ohos/lottie The animation library for OpenHarmony. Similar to Java’s lottie, Android-

ViewAnimations, and Leonids libraries.
@ohos/svg SVG-formatted image parser and rendering library.

Network 1 @ohos/axios The promise-based HTTP Client implementation library for OpenHar-
mony.

Image 2
@ohos/imageknife An eicient, lightweight, and simple image loading cache library
@ohos/xmlgraphicsbatik For working with images in SVG format

Multimedia 1 @ohos/ijkplayer FFmpeg-based video player

Data Storage 2
@ohos/disklrucache Support cache functions for accessing disks
@ohos/mmkv A lightweight key-value storage framework

Event 2
@ohos/mqtt Support MQTT-based actions such as message subscription
@ohos/liveeventbus Support inter-process and inter-app message broadcast

Security 1 @ohos/crypto-js Support the implementation of cryptographic functions such as MD5,
SHA256, etc.

Utility 2
@ohos/zxing Support read or generate QR Code for OpenHarmony
@ohos/pinyin4js Translating Chinese characters to pinyin

Other 2
@ohos/arouteronactivityresult Support message transmission when performing inter-page or inter-app

communications.
@ohos/coap Support Constrained Application Protocol (CoAP) capabilities.

Furthermore, as mentioned previously, ArkTS is not entirely new. It actually extends Typescript, which has
been a popular programming language for more than 10 years. Typescript is Javascript with syntax for types,
i.e., adding static typing with optional type annotations to Javascript. Theoretically, existing Typescript code (as
well as Javascript code) can be directly reused for developing OpenHarmony apps. Those Typescript/Javascript
implementations could be regarded as third-party libraries as well. By taking Typescript and Javascript as the
search keywords, Github returns 513,000 and 1.7 million repositories for Typescript and Javascript, respectively.
Such a large number of repositories (despite not all of them being code-related repositories) indicates that there
are already a lot of potential third-party libraries available for OpenHarmony.13 Those libraries could be leveraged
(either directly or with additional eforts contributed by our fellow researchers) to facilitate the development of
OpenHarmony apps and its broad ecosystem.

App Store Info. Our software engineering researchers have leveraged app store info (such as the app’s author
information, description, user rating, user reviews, etc.) to support various studies. For example, Gorla et al. [39]
have leveraged the app’s description to check against the app’s behaviour. Obie et al. [78] have leveraged the

12https://ohpm.openharmony.cn
13We hypothesize that this is one of the major reasons why ArkTS is proposed as the default programming language for developing

OpenHarmony apps.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 15

app’s review data to investigate the violation of honesty in mobile apps. To the best of our knowledge, there is
barely any app store hosting OpenHarmony apps at the moment. Therefore, there is no such dataset that can be
collected so far. Nonetheless, the OpenHarmony version of a given app will also share much of such information
as that available in Android or iOS. This information could also be helpful when mining OpenHarmony-speciic
app store information.

3.3 Existing OpenHarmony Research

As our initial attempt towards building the research roadmap for guiding our software engineering researchers
to contribute to OpenHarmony, we start by conducting a tertiary study about OpenHarmony. Our method is
straightforward. We use OpenHarmony and HarmonyOS as the search keywords and we apply them separately to
search for relevant publications on both Google Scholar and DBLP, respectively. At this step, when applied to
Google Scholar, we will only consider the top 100 results. Table 8 enumerates the list of OpenHarmony-related
publications. In total, we only found 8 papers among which only one (i.e., the one published at the APWeb
conference) can be found on DBLP, while all of them can be found on Google Scholar. At this step, we only consider
a paper relevant if and only if it directly contributes to the OpenHarmony project or if it takes OpenHarmony as its
dataset to evaluate their approaches. There are several other papers that are not included in this review although
they do involve OpenHarmony/HarmonyOS systems. They are excluded because they do not contribute anything
to OpenHarmony as they only involve running their approaches on OpenHarmony/HarmonyOS systems. For
example, the work proposed by Qiu et al. [87] is not included in this paper because it only leverages HarmonyOS
to support their model implementation about supporting distributed user interfaces to be dynamically conigured
on multiple IoT devices based on user preferences.

Table 8. The list of OpenHarmony-related primary publications.

Year Title Relevance Venue CORE-Rank

2023 CiD4OhOs: A Solution to HarmonyOS Compatibility Is-
sues

API-induced compatibility issues Industry Challenge Track of ASE A

2023 HiLog: A High Performance Log System of OpenHar-
mony

Targeted OpenHarmony’s log sys-
tem

Journal of Software -

2023 Design and Implementation of HiLog, the high-
performance log system of OpenHarmony

Targeted OpenHarmony’s log sys-
tem

Journal of Software -

2023 Breaking the Trust Circle in HarmonyOS by Chaining
Multiple Vulnerabilities

Investigated the security of Har-
monyOS’s trust circle service

ACCTCS -

2023 Unveiling the Landscape of Operating System Vulnera-
bilities

Studied HarmonyOS’s vulnerabil-
ities

Future Internet -

2022 A Deep Looking at the Code Changes in OpenHarmony Studied OpenHarmony’s code
changes

APWeb B

2022 Cross Platform API Mappings based on API Documenta-
tion Graphs

Studied HarmonyOS’s API docu-
mentation

QRS B

2021 SparrowHawk: Memory Safety Flaw Detection via Data-
driven Source Code Annotation

Applied to detect vulnerabilities
in OpenHarmony

Inscrypt National

As shown in Table 8, there are only eight OpenHarmony-related papers published in the community. The
eforts could be neglected if compared to those for Android, where there are over 7,000 papers published as
recorded in DBLP (searching by taking Android as the keyword). This evidence conirms our previous argument
that there is still a huge gap between OpenHarmony and Android. This, however, also demonstrates that there
are huge opportunities open for our community. Ideally, the research methods applied to Android or iOS could
also be applied to OpenHarmony. Despite there being only eight papers published, it is motivating to ind that the
number of relevant papers keeps growing. The venues where the current papers are published are generally not
in reputed journals or conferences. Indeed, among the eight papers, only four of them are published at venues

ACM Comput. Surv.



16 • L. Li et al.

Requirement Design Development Test Code Review Deployment

App-related Research

Framework-related Research Ecosystem-related Research

App Store
Consistency Check

App Store
Compliance Check

App Review
Human Values

Other
Blackmarket Analysis

Runtime
Instrumentation

Evolution
Analysis

Permission
Analysis

Framework
Customisation

Review-based
Requirement Understanding

Sketch 
Recognition

Design 
Recommendation

Code 
Recommendation

GUI Component 
Implementation

Random 
Testing

Mock
Testing

Targeted 
Fuzzing

Record-and-
Relay

Crowdsourced 
Testing

Static Analysis 
Framework

Static Taint 
Analysis

Code Similarity 
Analysis

App Lineage 
Analysis

Automated 
Program Repair

Hybrid 
Analysis

Machine/Deep 
Learning

Code 
Obfuscation

App
Hardening

New Research Opportunities

LLM-based SE Approaches for 
OpenHarmony

Cross-platform Framework for 
Supporting OpenHarmony

Learning from the Massive 
Android/iOS Resources

Cross-language 
Static Analysis

Access Control 
Enforcement

GUI
Modeling

Vulnerability 
Detection

Fig. 5. Overview of Research Gaps between OpenHarmony and MSE.

recorded by CORE and only three of them are ranked. We would hope that our community could spend more
efort in developing software engineering approaches for OpenHarmony and publish more papers at mainstream
venues.

4 A Research Roadmap for OpenHarmony

As our initial attempt to prompt software engineering research for OpenHarmony, we now present the preliminary
research roadmap by summarizing the research gaps between Android/iOS and OpenHarmony. When detailing
the gaps, we also present example works that we believe should be proposed for OpenHarmony. We hope these
works could be contributed by our fellow researchers so as to ill the aforementioned gaps, making OpenHarmony
a popular mobile platform and a popular research topic in the mobile software engineering ield.
Speciically, at a high-level matter, we summarize a set of research gaps between OpenHarmony with the

existing software engineering works as follows:

(1) As discussed in this work, based on our tertiary study, we found that there are many papers that propose
static program analysis approaches for Android apps. Many of those approaches (such as FlowDroid, IccTA,
DroidRA, etc.) leverage a common static analysis framework called Soot. In OpenHarmony, we have found
that the community has also started to build such a common static analysis framework, aiming at facilitating
the implementation of more OpenHarmony-speciic software engineering approaches [80].

(2) Except for software engineering works based on static program analysis, there are also many approaches
proposed based on dynamic app tests. To facilitate automated app testing approaches, the OpenHarmony

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 17

platform has provided the uitest tool [83] for helping users quickly test the UI pages of given apps, as well
as the Wukong tool for testing the stability of the OS [81].

(3) One of the big problems faced by Android is its security, many software engineering works have been
proposed to secure Android apps. Similar to that, the OpenHarmony community also feels security will be
a big issue and thereby has created a Security-SIG dedicated to handling security threats [82].

(4) Similar to Android, which has encountered signiicant compatibility issues when adopted by downstream
companies such as Samsung or Xiaomi. Similarly, since OpenHarmony, as an open-sourced mobile system,
would be also adopted by other downstream companies, it may also sufer from similar compatibility
issues, as that have been faced by Android. To this end, compatibility tests have been adopted by the
OpenHarmony community to mitigate this [79].

In the following sections, we will break down these gaps further, exploring speciic areas where existing works
can converge to enhance the OpenHarmony ecosystem.

4.1 Gaps in App-related Research

As highlighted in Section 2, the majority of MSE studies focus on mobile apps. At the beginning of this section,
we irst summarize some of the representative works that propose software engineering techniques to support
their studies. Speciically, we summarize them based on the general software development processes, including
Requirement, Design, Development, Test, Code Review, and Deployment. As expected, there are fewer works
that target the phases before app development. Indeed, most of the works are proposed to examine mobile apps
once they are developed.

(1) [Requirement] Mining User Reviews for Requirement Analysis. Since it is generally not possible to
obtain the original requirements of mobile apps (e.g., what functions to ofer and how should they interact
with users), which are often considered conidential, the research community mainly focuses on mining
user reviews for requirement understanding. Here, user reviews can be collected either through actual
interviews or through user comments made to the app’s release page on the app store. Fortunately, such
eforts can directly be leveraged to improve OpenHarmony apps as the identiied requirements are often
independent of mobile platforms. Nevertheless, the proposed techniques could be also leveraged to mine
user reviews that are speciically made for OpenHarmony apps.
−→Representative Works: Chen et al. [20] argue that it is possible to dig out user needs and preferences
by analyzing user online comments, which can subsequently beneit app developers to make accurate
market positioning and thereby increase the volume of app downloads. By using a set of NLP techniques
such as semantic analysis, and word frequency analysis, the authors demonstrate the possibility of obtaining
useful requirements. Similarly, Palomba et al. [84] propose to support the evolution of mobile apps via
crowdsourcing user reviews. By surveying 73 developers, they have found that over 75% of developers will
take user reviews into consideration when updating their apps and such updates are often rewarded in
terms of signiicant increases of user ratings.

(2) [Design] Sketch Recognizing App designers often use sketches to quickly draw the app’s user interfaces
so as to accelerate the iterative design process when designing apps. Such sketches, however, cannot be
directly used to build a prototype app that can be immediately tested to collect user feedback. To bridge
the gap, researchers have proposed techniques to automatically recognise sketches and subsequently
transform them into UI components. In this way, app developers can focus on designing the user experience
rather than building the prototypes with various tools. Such approaches could be extremely beneicial to
OpenHarmony developers when designing their apps.
−→Representative Works: Kim et al. [47] have presented to the community an approach to identify
UI widgets of mobile apps directly from sketch images using geometric and text analysis features. The

ACM Comput. Surv.



18 • L. Li et al.

extraction of graphic elements such as text or shapes from the input sketch image using the Optical
Character Recognition (OCR) technique and edge detection. Similarly, Li et al. [61] have proposed to the
community a sketch-based prototyping tool called Xketch for accelerating mobile app design processes.
They have demonstrated that Xketch is indeed useful and can beneit app developers in designing apps
quickly on their tablets.

(3) [Design] Visual Search for Recommending Design Examples. Since it is non-trivial to design a
beautiful user interface from scratch, developers often resort to relative UI design examples to gain
inspiration and compare design alternatives. However, inding such design examples is challenging as
existing search systems only support text-based queries. To mitigate this, our community has proposed
to conduct a visual search, which takes as input a UI design image and outputs visually similar designs.
Since visual search is independent of mobile platforms, such eforts can directly be leveraged to beneit
the OpenHarmony community as well. Nevertheless, OpenHarmony apps may have speciic preferences
in their UI pages, there is also a need to invent dedicated visual search systems to support the design of
OpenHarmony apps.
−→Representative Works: Bunian et al. [18] have proposed to the community a visual search system,
which includes an object-detection-based image retrieval framework that models the UI context and
hierarchical structure. Based on a large-scale UI dataset, the authors have shown that their visual search
framework can achieve high performance in querying similar UI designs.

(4) [Development] Code Recommendation. Mobile apps are developed based on an oicial SDK with
thousands of APIs, and there are hundreds of thousands of APIs available in the wild through the so-called
third-party libraries. There is hence a strong need to automatically recommend appropriate APIs (or
libraries) for developers to choose when they implement their apps. Furthermore, libraries have been
demonstrated to be extremely useful for facilitating app development as they provide lots of existing
function implementations that are reusable and are often high-quality (e.g., being already validated by
their various usages). It is not uncommon to encourage developers to leverage third-party libraries for
implementing OpenHarmony apps. As the number of available libraries keeps growing, it is non-trivial
for developers to search for the appropriate libraries. Therefore, there is a strong need to automatically
recommend the required libraries for OpenHarmony app developers.
−→Representative Work: Zhao et al. [129] have presented to the community a prototype tool called
APIMatchmaker that automatically matches the correct APIs for supporting the development of Android
apps. The recommended APIs are learned from other Android apps that are deemed similar to the one
under development.

(5) [Development] GUI Component Implementation. Mobile apps involve lots of icons. To maintain the
same look and feel, similar GUI components (icons or animations) across diferent mobile apps often reserve
similar functionalities. Therefore, it is possible to learn the semantics behind popular GUI components and
subsequently recommend code implementations to developers when relevant GUI components are used.
−→Representative Work: Zhao et al. [128] have proposed an approach called Icon2Code that leverages
an intelligent recommendation system for helping app developers eiciently and efectively implement the
callback methods of Android icons. The recommendation system is built based on a large-scale dataset that
contains mappings from icons to their code implementations. Similarly, Wang et al. [108] have proposed
an approach to recommend APIs for implementing Android UI animations. This approach constructs a
database containing mappings between UI animations in GIF/video format and their corresponding APIs
and subsequently leverages it to achieve the recommendation.

(6) [Test] Random Testing (Test Case Generation). Like any software, mobile apps must be thoroughly
tested before release, and this is equally true for OpenHarmony. Two key scenarios require test case
generation to ensure app reliability: unit testing, which veriies the correctness of speciic functions, and

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 19

input generation for apps running on mobile operating systems. These needs are also relevant to the
OpenHarmony community. Random testing is widely recognized for its ease of use and scalability in
generating test cases to explore mobile apps. Researchers have demonstrated that Monkey, a simple random
testing tool for Android apps, is surprisingly efective, often achieving higher code coverage than more
sophisticated tools. Similarly, OpenHarmony can beneit from adopting random testing approaches, which
serve as a foundation for developing advanced app testing tools.
−→Representative Work: Amalitano et al. [6] have presented to the community a research prototype
named AndroidRipper, which embeds an automated technique that tests Android apps via their Graphical
User Interface (by automatically explores the app’s GUI with the aim of exercising the application in
a structured manner). Existing experimental results show that AndroidRipper outperforms the random
testing approach, being capable of detecting severe and previously unknown faults in open-source Android
apps.

(7) [Test] Mock Testing. Performing unit tests for mobile apps, including OpenHarmony apps, is non-trivial.
Indeed, certain functions under testing require the context that is a part of the app’s lifecycle or the
system. This context information is only available when the app is running on the mobile system, which is
contradictory to the fact that unit tests do not expect to have the apps actually run on mobile devices.
−→Representative Work: There are several well-known frameworks such as Mockito in MSE that are
provided by practitioners to support mock unit testing. Similar frameworks are highly demanded by
the OpenHarmony community as well. On the research side, Beresford et al. [15] have proposed to the
community a novel approach called MockDroid that allows a user to ’mock’ an app’s access to a resource.
The resource is subsequently reported as empty or unavailable whenever the app requests it. Their work is
demonstrated to be useful for testing mobile apps w.r.t. their tolerance to resource failures.

(8) [Test] Targeted Fuzzing. Modern mobile apps run on touch-sensitive displays with numerous GUI pages,
each involving various lifecycle methods and widgets linked to callback methods. This complexity makes
achieving highly eicient random testing challenging. To address this, researchers have proposed targeted
fuzzing, which generates test inputs to guide the app toward speciic states. Given the GUI-intensive nature
of OpenHarmony apps, the limitations of random testing also apply. Thus, there is a strong need to develop
targeted fuzzing approaches to efectively test OpenHarmony apps.
−→Representative Work: Rasthofer et al. [91] present to the community a targeted fuzzing approach,
namely FuzzDroid, for automatically generating an Android execution environment where an app exposes
malicious behaviour. This objective is achieved by combining an extensible set of static and dynamic
analyses through a search-based algorithm that steers the app toward a conigurable target location.

(9) [Test] Record-and-Replay. After release, mobile apps must run on various devices with difering frame-
work versions and screen sizes, including customized frameworks. To ensure consistent behavior across
devices, researchers propose Record-and-Replay testing, which records a test scenario on one device and re-
plays it on others to verify identical results. Given OpenHarmony’s ł1+8+Nž strategyÐsupporting one main
device (e.g., smartphone), eight key devices (e.g., TV, Smartwatch, Pad, PC), and numerous user-customized
devicesÐRecord-and-Replay testing is crucial for ensuring the strategy’s success.
−→Representative Work: Gomez et al. [38] present a prototype tool called RERAN that achieves timing-
and touch-sensitive record-and-replay for Android. RERAN attempts to directly capture the low-level event
stream on the phone and replay it later on with microsecond accuracy. Since mobile apps may be run on
diferent devices with diverse screen sizes, a record-and-replay tool may be applied to apps that could have
diferent GUI layouts on diferent devices.

(10) [Test] Crowdsourced Testing. Automated app testing cannot achieve 100% coverage and hence user
commitments are always needed in order to ensure the quality of mobile apps. However, manually exploring
an app in a comprehensive way is diicult and time-consuming. To alleviate that, researchers have proposed

ACM Comput. Surv.



20 • L. Li et al.

to leverage crowdsourcing eforts to achieve the aforementioned testing purpose. Indeed, crowdsourced
testing provides a promising way to conduct large-scale and user-oriented testing scenarios. Such an
approach could be also leveraged to comprehensively test OpenHarmony apps.
−→Representative Work: Ge et al. [36] ind that most crowdsourced app testing is of low quality as
crowd workers are often unfamiliar with the app under test and do not know which part of the app
should be tested. To ill this gap, the authors propose to construct an Annotated Window Transition Graph
(AWTG) model for the app under test by merging dynamic and static analysis results and subsequently
leverage the AWTG model to implement a testing assistance pipeline that ofers test task extraction, test
task recommendation, and test task guidance for crowd workers. Recently, Sun et al. [104] present to the
community a lightweight approach that aims to achieve fully automated crowdsourced app testing by only
dispatching the app’s partial code for crowdsourced execution. The experimental results involving tests of
API-related code only (of real-world apps) show that their approach is useful (as demonstrated by being
able to ind many API-induced compatibility issues) and welcome in practice.

(11) [Code Review] Static Analysis Framework. Static analysis is a fundamental technical that has been
frequently applied to resolve various Android app analysis problems. Such solutions are often implemented
based on the so-called static analysis frameworks that ofer implementations to core static analysis functions
such as control-low graph construction, call graph constructions, etc. OpenHarmony takes a new program
language called ArkTS to develop its apps. Therefore, an ArkTS-speciic static analysis framework is required
to support the implementation of other purpose-oriented static analysis approaches (e.g., vulnerability
detection).
−→RepresentativeWork: Soot [54] is one of the most popular static analysis frameworks that are capable
of analyzing Android apps. Soot is initially designed for Java program analysis and is further extended for
Android apps (which are written in Java) thanks to the Dexpler module contributed by Bartel et al. [14].
Another popular static analysis framework should be the one named WALA [95], which is developed
and maintained by IBM. In Android, both Soot and WALA have been recurrently adopted by our fellow
researchers to support the implementation of static analysis approaches.

(12) [Code Review] GUIModeling.Android apps rely on complex graphical user interfaces (GUIs), challenging
static analysis. GUI pages often contain numerous UI widgets, arranged via various layout strategies, each
handling diverse user events (e.g., clicks). Android GUIs further complicate analysis as they can be deined
both statically (XML) and dynamically (Java code). Consequently, specialized methods are required to
model GUIs and analyze app behavior efectively.
−→Representative Work: ArchiDroid [68] statically analyzes the transition relationship among activities
of apps and constructs the activity transition graph. It also models the activity semantic and graph structure
information via graph convolution network to automatically predict transitions between activities and
augment the activity transition graph built by static analysis. Besides static analysis-based approaches,
SceneDroid [125] explores activities and extracts the GUI scenes by a series of dynamic analysis techniques,
and then presents the GUI scenes as a scene transition graph to model the GUI of apps.

(13) [Code Review] Static Taint Analysis (for Detecting Privacy Leaks). One of the most popular usages
of static analysis is to perform static taint analysis for pinpointing sensitive data lows (also known as
privacy leaks). Static taint analysis works by irst coloring some variables that contain sensitive data such
as the user’s phone number and then tracking their lows in the code. A sensitive data low is considered
detected if such coloured data eventually lows to sensitive operations (e.g., sending the coloured data
outside the device via SMS). OpenHarmony apps will be run on mobile devices and hence will have similar
requirements. Therefore, it is also essential ed to invent static taint analysis approaches for examining
OpenHarmony apps.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 21

−→Representative Work: Arzt et al. [8] have presented to the MSE community an open-source tool
called FlowDroid, which performs context-, low-, ield-, and object-sensitive and lifecycle-aware taint
analysis for Android apps. The authors further provide on-demand algorithms for FlowDroid to achieve
high eiciency and precision at the same time.

(14) [Code Review] Code Similarity Analysis. Code similarity analysis is another common application
of static analysis that has also been recurrently adopted by developers to achieve various functions, e.g.,
to detect code clones, the usage of third-party libraries, and repackaged (or piggybacked) apps. Code
similarity analysis is also essential to understand the diference between two code snippets, including the
two timestamped versions of the same code snippet. Such a diference can then be leveraged to support the
implementation of various software engineering tasks such as automatically generating commit messages
or inferring patches to given code defects, etc.
−→Representative Work: Russell et al. [22] have presented to the MSE community a prototype tool
called AnDarwin for detecting semantically similar Android apps. AnDarwin leverages a clustering-based
approach, for which it attempts to cluster similar apps into the same group based on semantic information
extracted from the apps’ code.

(15) [Code Review] App Lineage Analysis. Due to the fast evolution of the OS framework as well as the
requirement to ix bugs or add new features, mobile apps are continuously updated by their developers
(often over app stores). Such updates will lead to a series of releases of the same app, which is referred to by
the community as app lineages. Because these app lineages have recorded all the app changes, our fellow
researchers have proposed to mine them14 to learn why the mobile apps updated. Similar approaches could
also be applied to OpenHarmony, e.g., to mine knowledge for updating (or ixing) existing apps.
−→Representative Work: Gao et al. [34] presents an experimental study about the evolution of Android
app vulnerabilities. They irst deine the term łapp lineagež (i.e., the series of a given app’s historical
versions). Then, they collect a dataset of app lineages and subsequently leverage it to understand the
vulnerability evolution by mining the updates between an app’s two consecutive versions. Their empirical
study has revealed various interesting indings. The authors further conduct another work to mine app
lineages for understanding the evolution of Android app complexities [33]. Their experimental results
reveal a controversial inding where app developers might not really be aware of controlling the complexity
of their apps.

(16) [Code Review] Automated Program Repair. Automated Program Repair (APR) has been a hot topic in
the software engineering community for years. The idea of APR is for computers to automatically produce
source code-level patches for bugs and vulnerabilities. Our fellow researchers have also attempted to invent
techniques to automatically repair mobile apps. We argue that such techniques should also be explored to
target OpenHarmony apps.
−→Representative Work: Marginean et al. [72] present an industry tool called SapFix that achieves
end-to-end fault ixing, from test case design to deployed repairs in production code. SapFix achieves its
purpose by combining a number of diferent techniques, including mutation testing, search-based software
testing, and fault localization. Zhao et al. [127] have presented to the community another prototype tool
called RepairDroid, which aims at automatically repairing compatibility issues directly in published Android
apps (at the bytecode level). To support lexible repair, the authors have introduced a generic app patch
description language that allows users to create ix templates using IR code.

(17) [Code Review] Cross-language Static Analysis.Mobile apps are not always written in a single program-
ming language. Indeed, there are various apps that are implemented in multiple languages. For example,
the module requiring high performance in Android apps could be written in C or C++ while the main part

14Researchers have to focus on the app’s released versions because it is often not possible to obtain its source code.

ACM Comput. Surv.



22 • L. Li et al.

is still written in Java, which is the default language to implement Android apps. As another example, for
such Android apps that leverage web-related components, certain functions could be written in Javascript,
in order to supplement the main functions written in Java. In order to properly analyze these apps involving
multiple programming languages, we argue that there is a need to conduct cross-language static analysis,
for which the data-low analysis should propagate variables from one language to another.
−→RepresentativeWork:Wei et al. [110] and Zhou et al. [130] demonstrate that it is important to support
inter-language static analysis in order to support security vetting of Android apps. To do so, Samhi et
al. [94] present to the community a prototype tool called Jucify that aims to unify Android code (between
Java and C/C++) to support static analysis. Their work is able to build a comprehensive call graph across
all the methods written in the app, no matter they are written in Java or C/C++. Xue et al. [114] have also
invented a prototype tool called NDroid for tracking information lows across multiple Android contexts,
including the analysis of native code in Android apps [131].

(18) [Code Review] Hybrid Analysis. As discussed previously, both testing (also known as dynamic analysis)
and static analysis techniques are recurrently adopted by our fellow researchers to dissect mobile apps.
However, both of these two techniques are known to have drawbacks, e.g., testing approaches sufer from
code coverage problems that eventually lead to false negative results, meanwhile, static analysis is known
to likely yield false positive results. To mitigate this, our fellow researchers have proposed to combine
these two approaches to conduct the so-called hybrid analysis of mobile apps. We believe there is also a
need to invent hybrid approaches for analyzing OpenHarmony apps.
−→Representative Work:Wang et al. [107] present an automated hybrid analysis of Android malware
through augmenting fuzzing with forced execution. They propose an approach called DirectDroid, which
aims to trigger hidden malicious behaviour by bypassing some related checks when adopting fuzzing
to feed the necessary program input. Spreitzenbarth et al. [101] have developed another hybrid analysis
approach called Mobile-Sandbox, for which static analysis is leveraged to reach higher code coverage
during dynamic analysis (i.e., app testing).

(19) [Code Review] Machine/Deep Learning. Machine Learning has become one of the most popular
techniques that are frequently adopted by our fellow researchers for reviewing apps’ logic code. Indeed, a
lot of research eforts are spent to ind the best feature set that could closely represent the app’s behaviour.
Such a feature set is then leveraged to support two types of machine learning approaches: supervised
learning and unsupervised learning. Supervised learning requires knowing the labels of the training dataset,
e.g., it is essential to collect a set of known malware in order to train a malware predictor. On the contrary,
unsupervised learning does not need to know the labels of the dataset. This type of approach is often used
to cluster similar samples into the same group. When deep learning is concerned, feature engineering is no
longer needed.
−→Representative Work: Liu et al. [66] have recently conducted a systematic literature review about
deep learning approaches applied to defend Android malware. The authors have surveyed papers published
from 2014 to 2021 and have located 132 closely related papers. The authors ind that static analysis is the
most used technique to obtain features from Android apps and there are 13 works that achieve malware
classiication by directly encoding the raw bytecode of Android apps into feature vectors. Machine learning
is not only applied to dissect malware but is also used for resolving other software engineering tasks. For
example, Rasthofer et al. [90] have presented to the community a machine learning-based approach for
classifying and categorizing sources and sinks in Android, which can then be leveraged to support taint
analysis of Android apps, so as to detect privacy leaks.

(20) [Deployment] Code Obfuscation. Because of the nature of mobile devices, mobile apps need to be
downloaded to the devices before installation. This, unfortunately, makes it possible for attackers to directly
access the mobile apps. Even worse, the attackers might be able to directly access the code implementations

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 23

of the apps if reverse engineering techniques are applied. To prevent attackers from easily understanding
the code, the MSE community has adopted the practice of performing code obfuscation before assembling
the app code to a release version. Since OpenHarmony apps need to be installed on users’ devices, it is also
essential to invent code obfuscation techniques to prevent OpenHarmony apps from being exploited by
attackers.
−→Representative Work: Aonzo et al. [7] has developed an open-source black-box obfuscation tool for
Android apps. The authors named their approach Obfuscapk and have designed a modular architecture
for users to straightforwardly extend so as to support the implementation of new obfuscation strategies.
Dong et al. [27] conduct a large-scale empirical study of Android obfuscation techniques, with the hope
of better understanding the usage of obfuscation. The authors have speciically looked into four popular
obfuscation approaches: identiier renaming, string encryption, Java relection, and packing, leading to
various indings that could help developers select the most suitable obfuscation approach.

(21) [Deployment] App Hardening. Code obfuscation is a useful technique to prevent attackers from easily
understanding the code. It is nonetheless not possible to prevent attackers from obtaining the code. With
the help of deobfuscation approaches, attackers could still understand the implementation details. To
prevent that from happening, the MSE community further introduced to the community the so-called app
hardening technique, which aims to make it diicult to extract code implementation from the apps (e.g.,
will stop reverse engineering tools from disassembling released apps).
−→Representative Work: Russello et al. [92] present to the MSE community a policy-based framework
called FireDroid that enforces security policies without modifying Android OS or the actual applications.
FireDroid includes a novel mechanism to attach, monitor, and enforce policies for any process spawned by
the Android’s mother process Zygote.With that, FireDroid can be applied to block OS and app vulnerabilities,
hardening security on Android phones. Zhang et al. [126] have conducted the irst systematic investigation
on Android packing services toward understanding the major techniques used by state-of-the-art packing
services and their efects on apps. They further ind that the protection given by those packing services is
not reliable, i.e., the Dex can be recovered. To demonstrate that, the authors have designed and implemented
a prototype tool called DexHunter for extracting Dex iles from packed Android apps. Following that, Xue et
al. [115ś117] have gone steps further to achieve unpacking through variousmethods, e.g., Hardware-assisted
approach, VM-based approach, etc.

4.2 Gap in OS Framework-related Research

As highlighted in Fig. ??, the OS framework is the layer that connects the apps with the system capabilities. It
provides all the necessary capabilities (including all the APIs ofered by the SDK) to support apps running on
mobile devices. Since this part is closely related to apps, it has also been a frequent topic targeted by our SE
researchers. We now summarize the representative ones.

(20) [Static] Evolution Analysis. Like what has been done for mobile apps, our fellow researchers have also
proposed approaches to study the evolution of OS frameworks. They have shown that understanding the
evolution of the framework could provide useful information for the mobile community. However, unlike
mobile apps, the studies related to the evolution of OS framework are mainly based on source code as
the framework (mainly Android framework) is open-sourced. Since OpenHarmony’s framework is also
open-sourced, such techniques applied to study the evolution of the Android framework could be also
applied to OpenHarmony.
−→Representative Work: Li et al. [57] have proposed to study the evolution of the Android framework to
characterize deprecated APIs. Their empirical study has revealed various interesting indings including the
inconsistency among the API’s implementation, its comments, and annotations. They have also found that

ACM Comput. Surv.



24 • L. Li et al.

the Android framework includes a lot of inaccessible APIs that are not designed to be invoked by client apps
but have actually been accessed in practice [59]. As argued by Liu et al. [63], by looking into the evolution
of Android APIs, we could ind the silently evolved APIs that could eventually lead to indiscoverable
compatibility issues [104] as the API’s implementation is updated during the evolution while its comment
remained the same.

(21) [Static] Permission Analysis. The Android permission system, a key security mechanism, has been ex-
tensively studied by the software engineering community. Ideally, apps should declare only the permissions
they require, but the lack of a clear mapping between permissions and the APIs provided to developers often
leads to over-declaration. This enlarges the attack surface, making apps more vulnerable. Researchers have
addressed this by analyzing framework code to build permission-to-API mappings, enabling iner-grained
permission analysis. Since OpenHarmony also employs a permission system to secure apps, it is likely to
face similar challenges as Android. Therefore, conducting analogous research on OpenHarmony is crucial
to identify weaknesses, ensure proper permission use, and mitigate potential security risks.
−→Representative Work: Au et al. [9] present to the community a prototype tool called PScout that
automatically extracts the permission speciication from the Android OS source code (i.e., over a million
lines of code) using static analysis. Their approach has resolved several challenges including the one to
take into account permission enforcement due to Android’s use of IPC and Android’s diverse permission-
checking mechanisms. Bartel et al. [13] have conducted a similar study by leveraging static analysis for
extracting permission checks from the Android framework. Their approach is designed to be ield-sensitive
with an advanced class-hierarchy analysis strategy and uses novel domain-speciic optimizations dedicated
to Android.

(22) [Static] Access Control Enforcement. Security is not only the biggest problem in mobile apps, it is
also one of the biggest problems in the OS framework side. To ensure the security of the system, the OS
framework often relies on access control mechanisms to achieve the purpose. However, such access control
mechanisms could be bypassed by malware so as to achieve unauthorized security-sensitive operations.
Therefore, there is a need to enforce the access control function being properly applied.
−→Representative Work: Zhou et al. [132] have presented to the community a prototype tool called
IAceFinder that aims to extract and contrast the access control enforced in the Java and native contexts of
Android and subsequently to discover cross-context inconsistencies, as a major means to stop access control
functions from being bypassed. The authors have applied their approach to analyzing 14 open-source
Android OS frameworks (i.e., ROMs), from which they are able to disclose 23 inconsistencies that can be
abused by attackers to compromise the device.

(23) [Static] Framework Customization. Due to the openness of Android and the requirement to provide
vendor-speciic user experience, the Android framework has been recurrently customized by smartphone
vendors. For example, Xiaomi has done that and named the customized version MIUI. Similarly, Huawei has
released EMUI to feature a more personalized user experience when using Huawei phones. Unfortunately,
such a wide range of customizations has introduced signiicant compatibility issues to the community,
making it diicult for app developers to implement an app that is compatible with all the available mobile
devices. Our SE researchers have hence proposed approaches to mine the diference between the customized
frameworks so as to mitigate the compatibility issues in the mobile community. As an open-source system,
OpenHarmony could face similar problems. Therefore, there is also a need to spend research eforts to
control the customization and thereby keep such problems from happening in OpenHarmony.
−→Representative Work: Liu et al. [62] have conducted an empirical study to understand whether
customized Android frameworks keep pace with the oicial Android. They have looked at the evolution of
eight downstream frameworks (e.g., AOKP, AOSPA, LineageOS, SlimROMs, etc.) and discovered various
interesting indings (e.g., Downstream projects perform merge operations only for a small portion of all

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 25

the version releases in the upstream project and most of the downstream projects take more than 20 days
to bring changes from their corresponding upstream projects). The authors further look at the diferences
among the customized frameworks (including the ones modiied by popular technical companies such as
Xiaomi and Huawei) and ind that this customization has led to serious compatibility issues (also known as
the fragmentation problem) in the Android community [65]. This result strongly suggests that more eforts
are required to ensure framework customization is properly handled and managed.

(24) [Static/Dynamic] Vulnerability Detection. Due to the complexity and huge codebase of the Android
system, vulnerable implementations commonly exist in diferent aspects of the Android framework. There
is hence a need to continuously scan for vulnerabilities so as to improve the system’s security. Our fellow
researchers have hence proposed various approaches to achieve that, either statically or dynamically. Note
that mobile frameworks are often developed with multiple programming languages, vulnerability detection
approaches are hence required to support cross-language analyses.
−→Representative Work: Luo et al. [70] have proposed a tool called CENTAUR that discovers the
vulnerable interfaces of Android system services that can be exploited by malicious apps to steal private
data. In detail, CENTAUR leverages symbolic execution and taint analysis to monitor the variables in
the Android framework, which can be compromised by malicious apps to steal private data. In dynamic
analysis, Liu et al. [132] proposed an approach called FANS that employs fuzzing techniques to detect
vulnerable system services. It statically analyzes the data structure of each parameter of the interfaces of
system services and then randomly generates arguments to drive the execution of interfaces for triggering
vulnerabilities in system services.

(25) [Dynamic] Runtime Instrumentation. As not all issues can be resolved statically, researchers have
explored dynamic analysis of frameworks, such as controlling framework execution. A notable approach
involves instrumenting the framework by adding hook methods to speciic functions. At runtime, these
hooks provide valuable runtime information, aiding in understanding the framework’s behavior and that
of the apps running on it. This technique should also be made available to the OpenHarmony community
to enable advanced framework and app analysis.
−→Representative Work: One of the most famous runtime instrumentation approaches in Android is
the Xposed framework, which allows developers to install little programs (called modules) to Android
devices to customize their look and functionality. On the research side, Costamagna et al. [21] present a
similar approach called ARTDroid that supports virtual method hooking on Android ART runtime. As
another example, the most representative work related to runtime instrumentation is the one proposed by
Enck et al. [29], who have presented to the MSE community one of the irst approaches targeting runtime
instrumentation in Android. They have implemented an information-tracking system called TaintDroid,
aiming to achieve real-time privacy monitoring on smartphones. The runtime instrumentation of TaintDroid
is enabled by leveraging Android’s virtualized execution environment.

4.3 Gaps in Ecosystem-related Research

Except for the aforementioned research studies related to mobile apps and frameworks, there are also a signiicant
number of studies focusing on the other aspects of MSE, which we refer to in this work as ecosystem-related
studies. We now discuss some of the representative ones.

(24) [App Store] Consistency Check. App stores, such as Google Play and the Apple Store, have become
integral to modern life, serving as centralized repositories for discovering, purchasing, installing, and
managing apps. They record extensive app metadata, provided either by authors (e.g., app name, description)
or collected by the platform (e.g., user ratings), which aids users in app discovery and decision-making.
To maintain a healthy ecosystem, vetting systems ilter out low-quality apps with vulnerabilities or

ACM Comput. Surv.



26 • L. Li et al.

compatibility issues. Ensuring consistency between apps and their metadata is crucial, as inconsistencies
can negatively afect user experience. Such dissatisfaction may extend to the overall perception of the app
store itself, emphasizing the need for maintaining alignment between app functionality and its metadata.
−→RepresentativeWorks:Gorla et al. [39] have proposed to check app behaviour against app descriptions
as they believe that there is no guarantee the code of the app does what it claims to do when uploaded to the
app store. Their experimental results on a set of 22,500+ Android apps show that such inconsistency indeed
exists in the community, conirming the hypothesis that the app store does not yet perform consistency
checks at the time when apps are uploaded.

(25) [App Store] Compliance Check. Except for consistency checks, there is also a need to perform compli-
ance checks before allowing mobile apps submitted to app stores. There are various policies that mobile
apps need to follow. Such policies include the ones made by the government (e.g., the General Data Pro-
tection Regulation (GDPR) by the European Union), by the app store itself (e.g., the Spam and Minimum
Functionality policies by Google Play), as well as the ones made by certain libraries (the content policies
and behavioural policies by AdMob & AdSense.) These compliance checks should be also conducted for
vetting OpenHarmony apps and hence dedicated eforts are needed to implement such approaches.
−→Representative Works: Fan et al. [30] have conducted a study to explore the violations of GDPR
compliance in Android eHealth apps. Their experimental study shows that such violations (including
the incompleteness of privacy policy, the inconsistency of data collection, and the insecurity of data
transmission) are indeed widely presented in the Android community.

(26) [App Review] Human Values.Mobile apps are developed for users, making it essential to align with
human values. Violations of values like privacy, fairness, integrity, curiosity, honesty, or social justice
can cause severe negative impacts. Early identiication of such violations allows developers to address
and mitigate them before release. Similarly, OpenHarmony should prioritize human values and support
violation detection methods.
−→Representative Works: Obie et al. [77] have presented to the MSE community the irst study about
human values-violation in app reviews given by real-world app users. Through 22,119 app reviews collected
from the Google Play store, the authors ind that 26.5% of the reviews contained text indicating user-
perceived violations of human values, with benevolence and self-direction as the most violated value
categories.

(27) [Other] Black Market Analysis. The rapid growth of the mobile ecosystem has attracted attackers
seeking illegal proits, such as injecting ads into benign apps, sending SMS to premium-rate numbers, or
collecting and selling user data for malicious purposes. Researchers term these activities the black market

and have worked to understand and counter them. Similar risks exist for OpenHarmony, necessitating
eforts to mitigate the black market, inviting researchers to explore this critical area collaboratively.
−→Representative Works: Gao et al. [35] have conducted an exploratory study to demystify illegal
mobile gambling apps, which have become one of the most popular and lucrative underground businesses.
Their study reveals that, in order to bypass the strict regulations from both government authorities and
app markets, the devious app authors have developed a number of covert channels to distribute their apps
and abused fourth-party payment services to gain proits.

4.4 New Research Opportunities

• LLM-based SE Approaches for OpenHarmony. As summarized in Section 2, the majority of Mobile
Software Engineering research works focus on the analyzing phase. There are only a limited number of
studies focusing on app development phases. This does make sense as Android app development has already
been quite mature (with a lot of support from Google and the community) when our fellow researchers

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 27

jumped into this ield. This is, however, not the case for OpenHarmony. Indeed, OpenHarmony is still
at a very early stage, with only a small number of apps developed and a limited number of third-party
libraries made available to the community. It will be extremely beneicial to the OpenHarmony community
if there are more works proposed to facilitate the development of OpenHarmony apps. Now, with the fast
development of large language models (especially the development-focused ones such as Github’s Copilot),
we feel this is an even better opportunity to support that now. LLMs could help developers quickly learn
the basic knowledge of OpenHarmony, understand the usage of APIs, automatically generate code (one
line or multiple lines), generate unit test cases, recommend repair options, etc.

• Cross-platfrom Framework for Supporting OpenHarmony. To embrace the idea of developing once,
running everywhere, the MSE community has invented the so-called cross-platform frameworks such as
ReactNative and Flutter to support that. These cross-platform frameworks by themselves have deined a
way to develop the universal app. For example, with ReactNative, the codebase of the app is usually formed
via Javascript. This codebase can then be compiled into both a native Android app and a native iOS app.
The best part of using cross-language platforms is that the app’s maintenance is also uniied. No matter it
is to ix bugs or add new features, it only needs to be done once. Considering this great beneit, we believe
it will be extremely helpful to OpenHarmony’s ecosystem if these cross-platform frameworks can support
OpenHarmony. In that case, all the existing apps that are developed via cross-platform frameworks can
be directly running on OpenHarmony devices. Therefore, we highly recommend our fellow researchers
considering exploring this research direction.

• Learn from Android/iOS. In this work, we have summarized lots of Android/iOS-related approaches and
believe it is necessary to learn from them by building dedicated approaches for OpenHarmony. While that
is certainly true, we also feel that there is a need to learn from the large number of artifacts accumulated
in Android and iOS. Indeed, the MSE community has gained a lot of artifacts, including millions of real-
world apps, thousands of open-source apps, documentation, question-and-answer records, user reviews,
etc. Although harvested from diferent platforms, we argue that these artifacts could be still useful for
supporting the implementation of OpenHarmony-related tasks. For example, one possibility is to explore
the direction of automatically transforming the Java-written Android apps (or Swift-written iOS apps)
to ArkTS-written OpenHarmony apps. In this work, we also invite our fellow researchers to explore this
direction, lourishing the OpenHarmony ecosystem by standing on the shoulders of giants.

5 Discussion

OpenHarmony, as an emerging mobile platform, is still in its early stage, and so is OpenHarmony-focused
software engineering research. As summarized previously, although there are plenty of opportunities for our
fellow researchers to explore in this ield, there are still various challenges that need to be addressed. In this
section, we highlight some of the representative ones.

5.1 Challenges in App/Library Development.

In this work, we have highlighted the gaps that require to be illed in order to catch up with the popular mobile
platforms (i.e., Android and iOS). Towards illing the gaps we argue that there are still a number of challenges
that need to be addressed.
Lacking Data for (AI-based ) Learning. The rise of large language models has been demonstrated to be

promising for automated code generation, automated test case generation, library API recommendation, etc.
However, it is not yet possible to directly achieve that for OpenHarmony as there is generally no data available
for training (or ine-tuning). Even with a set of OpenHarmony-related software data (e.g., ArkTS code and its
comments), there is also a requirement to further distil high-quality ones in order to achieve a highly precise

ACM Comput. Surv.



28 • L. Li et al.

large language model, as the performance of large language models is known to be highly correlated with the
quality of the training dataset.
Lacking Third-party Libraries. At the moment, there are only a limited number of libraries (in ArkTS)

available for supporting the implementation of OpenHarmony apps. The lack of third-party libraries makes it
diicult for developers to implement OpenHarmony apps as many of the functions need to be developed from
scratch. To ill this gap, the OpenHarmony community is currently encouraging practitioners and researchers to
translate popular libraries in other languages to ArkTS. However, this simple translation campaign will introduce
another challenge, which is to keep updating the library following the updates of the original version. To that
end, we argue that dedicated eforts are required to ensure the maintainability of these libraries.

5.2 Challenges in App/Library Analysis

After app (or library) development, there is a strong need to ensure that the app/library satisies the requirements
and is of high quality. The relevant challenges include the newly designed system architecture of OpenHarmony,
the comprehensive GUI interactions, the newly introduced app programming language, etc. We now summarize
the representative ones.
System-related Challenges. The Android system has introduced various challenges to the software engi-

neering community in order to develop automated approaches to analyze Android apps. First, Android takes
components to construct apps, for which the components themselves are independently developed. The compo-
nents will not be directly connected at the code side and the actual invocation (via the so-called Inter-Component
Communication (ICC) mechanism) will be done over the system. This ICC mechanism could also be leveraged
to implement inter-app communications, making it a challenge to perform inter-app analyses. Second, the
components in Android are designed to be run over a set of pre-deined methods (known as lifecycle methods)
that will be triggered by the system following a certain order. These lifecycle methods are not connected at the
code site as well, making it also a challenge for static app analysis (from the analyzer’s point of view, there is
no relationship between two lifecycle methods, despite they may be continuously called by the system). Third,
similar to that of lifecycle methods, there are callback methods that are not directly connected to the app code as
well. These callback methods are directly invoked by the system when certain events (either system events such
as receiving an SMS or UI events such as clicking a button) are triggered. OpenHarmony generally shares the
same challenges as that of Android.
GUI-related Challenges. The GUI part has been known to be a challenge for precisely analyzing Android

apps. First of all, a given GUI page often contains a comprehensive view tree that includes various widgets with
diferent types positioned via diferent layout strategies. The widgets in the GUI page are further associated with
interactive actions (e.g., a button is associated with a click event). Furthermore, a given GUI page may contain
diferent groups of widgets that will only be rendered if a certain condition is satisied. In OpenHarmony, the
analysis of GUI pages is even more challenging as its design principle encourages to use of a single component
(i.e., Ability) to implement multiple visual pages, which would be implemented via multiple components (i.e.,
Activities, one page per Activity) in Android.

Language-inducedChallenges. The language used to implement mobile apps per se may introduce challenges
to the software engineering community. For example, in the Android world, the relection mechanism (inherited
from Java) has been known to be a challenge for static analysis. OpenHarmony takes a new language called
ArkTS for developers to implement OpenHarmony apps and the ArkTS language per se may introduce various
challenges to the software engineering community as well. Indeed, ArkTS allows deining functions with optional
parameters and default parameters, which may cause inconsistency between the function signature and its usage
in practice.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 29

6 Related Work

OpenHarmony software engineering is in its early stage and there are only limited works contributed to this ield.
Indeed, as highlighted in Section 3.3, there are only 8 papers presented on this aspect. In this section, we will not
discuss these OpenHarmony-related works anymore. Instead, we take this opportunity to highlight related works
that provide a research roadmap or position statement for guiding a new research ield, or a survey including
literature reviews for summarizing a mature research direction. We now highlight the representative ones.
Research Roadmap. One of the most representative research roadmap reports is the one presented by

Cheng et al. [23] who have proposed ato conduct software engineering research roadmap for self-adaptive
systems, following. After thorough discussions among the authors at a Dagstuhl seminar. They identiied four on
Software Engineering for Self-Adaptive Systems, the authors have identiied four views that are deemed essential
views forto the software engineering in this domain. of self-adaptive systems. For each view, the authors then
summarize the state-of-the-art and highlight the challenges to enable software to autonomously handlehat should
be addressed in order to achieve the inal goal, i.e., the software is able to automatically cope with the complexity
of mtodernay’s software-intensive systems. The authors released another version (called the second research
roadmap) ive years later after the success of the irst version. The goal of this second roadmap paper [24] remains
the same, i.e., to summarize the state-of-the-art and to identify critical challenges for the systematic software
engineering of self-adaptive systems. Other representative research roadmap papers include the one proposed
by France et al. [31] who advocate model-driven development of complex software. Both of these works have
summarized the state-of-the-art and challenges faced by ongoing research activities. More recently, McDermott
et al. [74] present a research roadmap about Artiicial Intelligence for Software Engineering (AI4SE) and Software
Engineering for Artiicial Intelligence (SE4AI), presenting key aspects aiming at enabling traditional systems
engineering practice automation (AI4SE), and encourage new systems engineering practices supporting a new
wave of automated, adaptive, and learning systems (SE4AI).

Literature Review. A literature review surveys scholarly sources on a speciic topic, ofering an overview
of the state-of-the-art supported by a critical evaluation. Beyond relecting on past research, it provides a clear
understanding of current knowledge, guiding future research directions. Due to these beneits, this work focuses
on surveying literature review papers rather than primary publications in mobile software engineering. Notably,
conducting a survey of surveys is not new to the community. Our fellow researchers have explored this type of
study in various domains when the number of primary publications kept increasing until it became diicult to
follow the growing body of literature papers in the ield. For example, AI-Zewairi et al. [3] have conducted a
survey of surveys related to agile software development methodologies, which have gained rigorous attention in
the software engineering community with an excessive number of research studies published.

7 Conclusion

It has been evidenced that summarizing the research roadmap for a given topic is important as it highlights
various research opportunities that communicate broad research goals to the community, connects researchers
working on individual projects to larger impact opportunities, and helps professional societies and practitioners
focus on more strategic goals. Following this guidance, in this work, we propose to the community a research
roadmap about software engineering for OpenHarmony, aiming at creating a synergy for the various stakeholders
to work together to make OpenHarmony a successful mobile platform. Speciically, we have summarized the
status quo of OpenHarmony software engineering research, for which we show OpenHarmony research is still
in its early stage. We then highlight the research opportunities by summarizing the gap between OpenHarmony
research and Mobile software engineering research, which is summarized through a survey of literature review
papers. After that, we briely discuss the challenges in order to ill such a gap.

ACM Comput. Surv.



30 • L. Li et al.

Acknowledgements

The authors would like to thank the anonymous reviewers who have provided insightful and constructive
comments that have led to important improvements in several parts of the manuscript. This work is supported
by National Natural Science Foundation of China under Grant Nos (62141209, 61932007). Grundy is supported by
ARC Laureate Fellowship FL190100035.

References
[1] Naveed Ahmad, Aimal Rextin, and Um E Kulsoom. 2018. Perspectives on usability guidelines for smartphone applications: An empirical

investigation and systematic literature review. IST 94 (2018), 130ś149.

[2] Afnan A. Al-Subaihin, Federica Sarro, Sue Black, Licia Capra, and Mark Harman. 2021. App Store Efects on Software Engineering

Practices. TSE 47, 2 (2021), 300ś319.

[3] Malek Al-Zewairi et al. 2017. Agile software development methodologies: Survey of surveys. Journal of Computer and Communications

5, 05 (2017), 74.

[4] Mughees Ali, Saif Ur Rehman Khan, and Shahid Hussain. 2021. Self-adaptation in smartphone applications: Current state-of-the-art

techniques, challenges, and future directions. Data & Knowledge Engineering 136 (2021), 101929.

[5] Abdullah Altaleb and Andrew Gravell. 2018. Efort estimation across Mobile app platforms using agile processes: a systematic literature

review. Journal of Software 13, 4 (2018), 242.

[6] Domenico Amalitano et al. 2012. Using GUI ripping for automated testing of Android applications. In ASE. 258ś261.

[7] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo. 2020. Obfuscapk: An open-source black-box obfuscation

tool for Android apps. SoftwareX 11 (2020), 100403.

[8] Steven Arzt and others. 2014. Flowdroid: Precise context, low, ield, object-sensitive and lifecycle-aware taint analysis for android

apps. Acm Sigplan Notices 49, 6 (2014), 259ś269.

[9] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout: analyzing the android permission speciication. In CCS.

217ś228.

[10] Autili and others. 2021. Software engineering techniques for statically analyzing mobile apps: research trends, characteristics, and

potential for industrial adoption. Journal of Internet Services and Applications 12 (2021), 1ś60.

[11] Muneera Bano, Didar Zowghi, and Naveed Ikram. 2014. Systematic reviews in requirements engineering: A tertiary study. In EmpiRE.

IEEE, 9ś16.

[12] Konstantia Barmpatsalou, Tiago Cruz, Edmundo Monteiro, and Paulo Simoes. 2018. Current and future trends in mobile device

forensics: A survey. ACM Computing Surveys (CSUR) 51, 3 (2018), 1ś31.

[13] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2014. Static Analysis for Extracting Permission Checks of a

Large Scale Framework: The Challenges And Solutions for Analyzing Android. TSE (2014).

[14] Alexandre Bartel and others. 2012. Dexpler: converting android dalvik bytecode to jimple for static analysis with soot. In SOAP. 27ś38.

[15] Alastair R Beresford et al. 2011. Mockdroid: trading privacy for application functionality on smartphones. In Proceedings of the 12th

workshop on mobile computing systems and applications. 49ś54.

[16] Andreas Biùrn-Hansen, Tor-Morten Grùnli, and Gheorghita Ghinea. 2018. A survey and taxonomy of core concepts and research

challenges in cross-platform mobile development. ACM Computing Surveys (CSUR) 51, 5 (2018), 1ś34.

[17] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. 2007. Lessons from applying the systematic

literature review process within the software engineering domain. JSS 80, 4 (2007), 571ś583.

[18] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif Seif El-Nasr. 2021. Vins: Visual search for mobile user

interface design. In CHI. 1ś14.

[19] Marimuthu C., K. Chandrasekaran, and Sridhar Chimalakonda. 2020. Energy Diagnosis of Android Applications: A Thematic Taxonomy

and Survey. ACM Comput. Surv. 53, 6, Article 117 (dec 2020), 36 pages.

[20] Tinggui Chen, Chu Zhang, Jianjun Yang, and Guodong Cong. 2022. Grounded Theory-Based User Needs Mining and Its Impact on

APP Downloads: Exampled With WeChat APP. Frontiers in Psychology 13 (2022), 875310.

[21] Valerio Costamagna and Cong Zheng. 2016. Artdroid: A virtual-method hooking framework on android art runtime.. In IMPS@ ESSoS.

20ś28.

[22] Jonathan Crussell, Clint Gibler, and Hao Chen. 2013. Andarwin: Scalable detection of semantically similar android applications. In

ESORICS. Springer, 182ś199.

[23] Rogério De Lemos et al. 2013. Software engineering for self-adaptive systems: A second research roadmap. In Software Engineering for

Self-Adaptive Systems II. Springer, 1ś32.

[24] Rogério De Lemos et al. 2013. Software engineering for self-adaptive systems: A second research roadmap. In Software Engineering for

Self-Adaptive Systems II. Springer, 1ś32.

ACM Comput. Surv.



Sotware Engineering for OpenHarmony: A Research Roadmap • 31

[25] Omar De Munk and Ivano Malavolta. 2021. Measurement-based experiments on the mobile web: A systematic mapping study. EASE

(2021), 191ś200.

[26] Paula Delgado-Santos, Giuseppe Stragapede, Ruben Tolosana, Richard Guest, Farzin Deravi, and Ruben Vera-Rodriguez. 2022. A Survey

of Privacy Vulnerabilities of Mobile Device Sensors. ACM Comput. Surv. 54, 11s, Article 224 (sep 2022), 30 pages.

[27] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang.

2018. Understanding android obfuscation techniques: A large-scale investigation in the wild. In SecureComm. Springer, 172ś192.

[28] Fahimeh Ebrahimi, Miroslav Tushev, and Anas Mahmoud. 2021. Mobile app privacy in software engineering research: A systematic

mapping study. IST 133 (2021), 106466.

[29] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and

Anmol N Sheth. 2014. Taintdroid: an information-low tracking system for realtime privacy monitoring on smartphones. TOCS 32, 2

(2014), 1ś29.

[30] Ming Fan et al. 2020. An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. In ISSRE. 253ś264.

[31] Robert France and Bernhard Rumpe. 2007. Model-driven development of complex software: A research roadmap. In FOSE. IEEE, 37ś54.

[32] Rita Francese et al. 2017. Mobile app development and management: results from a qualitative investigation. In MOBILESoft. IEEE,

133ś143.

[33] Jun Gao et al. 2019. On the Evolution of Mobile App Complexity. In ICECCS 2019.

[34] Jun Gao et al. 2019. Understanding the Evolution of Android App Vulnerabilities. TRel (2019).

[35] Yuhao Gao et al. 2021. Demystifying Illegal Mobile Gambling Apps. In WWW 2021.

[36] Xiuting Ge, Shengcheng Yu, Chunrong Fang, Qi Zhu, and Zhihong Zhao. 2022. Leveraging android automated testing to assist

crowdsourced testing. TSE 49, 4 (2022), 2318ś2336.

[37] Necmiye Genc-Nayebi and Alain Abran. 2017. A systematic literature review: Opinion mining studies from mobile app store user

reviews. JSS 125 (2017), 207ś219.

[38] Lorenzo Gomez et al. 2013. Reran: Timing-and touch-sensitive record and replay for android. In ICSE. IEEE, 72ś81.

[39] Alessandra Gorla et al. 2014. Checking App Behavior against App Descriptions (ICSE 2014). 1025ś1035.

[40] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. 2021. A survey of performance optimization for mobile applications.

TSE 48, 8 (2021), 2879ś2904.

[41] Seyed Amir Hoseini-Tabatabaei, Alexander Gluhak, and Rahim Tafazolli. 2013. A survey on smartphone-based systems for opportunistic

user context recognition. ACM Computing Surveys (CSUR) 45, 3 (2013), 1ś51.

[42] Ronald Jabangwe, Henry Edison, and Anh Nguyen Duc. 2018. Software engineering process models for mobile app development: A

systematic literature review. JSS 145 (2018), 98ś111.

[43] Mona Erfani Joorabchi et al. 2013. Real challenges in mobile app development. In ESEM. IEEE, 15ś24.

[44] Misael C. Júnior, Domenico Amalitano, Lina Garcés, Anna Rita Fasolino, Stevão A. Andrade, and Márcio Delamaro. 2022. Dynamic

Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study. ACM Comput. Surv. 54, 10s, Article

214 (sep 2022), 38 pages.

[45] Anureet Kaur and Kulwant Kaur. 2019. Investigation on test efort estimation of mobile applications: Systematic literature review and

survey. Information and Software technology 110 (2019), 56ś77.

[46] Stafs Keele et al. 2007. Guidelines for performing systematic literature reviews in software engineering. Technical report (2007).

[47] Seoyeon Kim, Jisu Park, Jinman Jung, Seongbae Eun, Y-S Yun, S So, B Kim, H Min, and J Heo. 2018. Identifying UI widgets of mobile

applications from sketch images. (2018).

[48] Young Geun Kim, Joonho Kong, and Sung Woo Chung. 2018. A Survey on Recent OS-Level Energy Management Techniques for Mobile

Processing Units. TPDS 29, 10 (2018), 2388ś2401.

[49] Barbara Kitchenham et al. 2010. Systematic literature reviews in software engineeringśa tertiary study. Information and software

technology 52, 8 (2010), 792ś805.

[50] Barbara Kitchenham and Pearl Brereton. 2013. A systematic review of systematic review process research in software engineering. IST

55, 12 (2013), 2049ś2075.

[51] Pingfan Kong et al. 2018. Automated Testing of Android Apps: A Systematic Literature Review. IEEE Transactions on Reliability (2018).

[52] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein. 2019. Automated Testing of Android Apps: A

Systematic Literature Review. IEEE Transactions on Reliability 68, 1 (2019), 45ś66.

[53] Zoe Kotti, Rafaila Galanopoulou, and Diomidis Spinellis. 2023. Machine learning for software engineering: A tertiary study. Comput.

Surveys 55, 12 (2023), 1ś39.

[54] Patrick Lam et al. 2011. The Soot framework for Java program analysis: a retrospective. In CETUS, Vol. 15.

[55] Hansoo Lee, Joonyoung Park, and Uichin Lee. 2022. A Systematic Survey on Android API Usage for Data-Driven Analytics with

Smartphones. ACM Comput. Surv. 55, 5, Article 104 (dec 2022), 38 pages.

[56] Li Li, , et al. 2017. Static Analysis of Android Apps: A Systematic Literature Review. Information and Software Technology (2017).

[57] Li Li et al. 2020. CDA: Characterising Deprecated Android APIs. EMSE (2020).

ACM Comput. Surv.



32 • L. Li et al.

[58] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. Rebooting research on detecting repackaged android apps: Literature review

and benchmark. TSE 47, 4 (2019), 676ś693.

[59] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Accessing Inaccessible Android APIs: An Empirical Study. In

ICSME.

[60] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre Bartel, Jacques Klein, and Yves Le Traon. 2017.

AndroZoo++: Collecting Millions of Android Apps and Their Metadata for the Research Community. arXiv preprint arXiv:1709.05281

(2017).

[61] Shu-Hui Li, Jia-Jyun Hsu, Chih-Ya Chang, Pin-Hsuan Chen, and Neng-Hao Yu. 2017. Xketch: A sketch-based prototyping tool to

accelerate mobile app design process. In DIS. 301ś304.

[62] Pei Liu, Mattia Fazzini, John Grundy, and Li Li. 2022. Do Customized Android Frameworks Keep Pace with Android?. In MSR.

[63] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. 2021. Identifying and Characterizing Silently-Evolved Methods in the

Android API. In ICSE-SEIP.

[64] Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, and John Grundy. 2020. AndroZooOpen: Collecting Large-scale Open Source Android Apps for

the Research Community. In MSR-Data.

[65] PEI LIU, YANJIE ZHAO, MATTIA FAZZINI, HAIPENG CAI, JOHN GRUNDY, and LI LI. 2023. Automatically Detecting Incompatible

Android APIs. TSE (2023).

[66] Yue Liu et al. 2022. Deep Learning for Android Malware Defenses: a Systematic Literature Review. ACM Computing Surveys (CSUR)

(2022).

[67] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep Learning for Android Malware Defenses: A Systematic

Literature Review. ACM Comput. Surv. 55, 8, Article 153 (dec 2022), 36 pages.

[68] Zhe Liu et al. 2023. Ex pede Herculem: Augmenting Activity Transition Graph for Apps via Graph Convolution Network. In ICSE.

IEEE, 1983ś1995.

[69] Chu Luo, Jorge Goncalves, Eduardo Velloso, and Vassilis Kostakos. 2020. A Survey of Context Simulation for Testing Mobile Context-

Aware Applications. ACM Comput. Surv. 53, 1, Article 21 (feb 2020), 39 pages.

[70] Lannan Luo et al. 2019. Tainting-assisted and context-migrated symbolic execution of Android framework for vulnerability discovery

and exploit generation. IEEE Transactions on Mobile Computing 19, 12 (2019), 2946ś2964.

[71] Pascal Maniriho et al. 2024. A survey of recent advances in deep learning models for detecting malware in desktop and mobile platforms.

Comput. Surveys 56, 6 (2024), 1ś41.

[72] Alexandru Marginean et al. 2019. Sapix: Automated end-to-end repair at scale. In ICSE-SEIP. IEEE, 269ś278.

[73] William Martin et al. 2016. A survey of app store analysis for software engineering. TSE 43, 9 (2016), 817ś847.

[74] Tom McDermott et al. 2020. AI4SE and SE4AI: A research roadmap. Insight 23, 1 (2020), 8ś14.

[75] Walter T Nakamura et al. 2022. What factors afect the UX in mobile apps? A systematic mapping study on the analysis of app store

reviews. JSS 193 (2022), 111462.

[76] Liming Nie, Kabir Sulaiman Said, Lingfei Ma, Yaowen Zheng, and Yangyang Zhao. 2023. A systematic mapping study for graphical

user interface testing on mobile apps. IET Software 17, 3 (2023), 249ś267.

[77] Humphrey Obie, Waqar Hussain, Xin Xia, John Grundy, Li Li, Burak Turhan, Jon Whittle, and Mojtaba Shahin. 2021. A First Look at

Human Values-Violation in App Reviews. In ICSE-SEIS.

[78] Humphrey Obie, Idowu Ilekura, Hung Du, Mojtaba Shahin, John Grundy, Li Li, Jon Whittle, and Burak Turhan. 2022. On the Violation

of Honesty in Mobile Apps: Automated Detection and Categories. In MSR.

[79] openharmony. 2024. 47 new products qualiied for OpenHarmony compatibility test. https://www.huaweicentral.com/47-new-products-

qualiied-for-openharmony-compatibility-test-in-june-2024/.

[80] OpenHarmony. 2024. ArkAnalyzer: The static analysis framework for OpenHarmony. https://gitee.com/openharmony-sig/arkanalyzer.

[81] OpenHarmony. 2024. OpenHarmony/ostest_wukong. https://gitee.com/openharmony/ostest_wukong. Accessed: 2024-10-22.

[82] openharmony. 2024. Security Issue Response Team Work Charter. https://gitee.com/openharmony/security/blob/master/README_en.

md.

[83] OpenHarmony. 2024. UiTest Features. https://gitee.com/openharmony/testfwk_arkxtest.

[84] Fabio Palomba et al. 2018. Crowdsourcing user reviews to support the evolution of mobile apps. JSS 137 (2018), 143ś162.

[85] Orlando RE Pereira and Joel JPC Rodrigues. 2013. Survey and analysis of current mobile learning applications and technologies. ACM

Computing Surveys (CSUR) 46, 2 (2013), 1ś35.

[86] Jorge Pérez, Jessica Díaz, Javier Garcia-Martin, and Bernardo Tabuenca. 2020. Systematic literature reviews in software engineer-

ingÐEnhancement of the study selection process using Cohen’s kappa statistic. JSS 168 (2020), 110657.

[87] Fangze Qiu, Huaxiao Huang, and Yuji Dong. 2022. A Re-conigurable Interaction Model in Distributed IoT Environment. In CyberC.

IEEE, 80ś86.

[88] Guoying Qiu et al. 2023. Diferentiated Location Privacy Protection in Mobile Communication Services: A Survey from the Semantic

Perception Perspective. Comput. Surveys 56, 3 (2023), 1ś36.

ACM Comput. Surv.

https://www.huaweicentral.com/47-new-products-qualified-for-openharmony-compatibility-test-in-june-2024/
https://www.huaweicentral.com/47-new-products-qualified-for-openharmony-compatibility-test-in-june-2024/
https://gitee.com/openharmony-sig/arkanalyzer
https://gitee.com/openharmony/ostest_wukong
https://gitee.com/openharmony/security/blob/master/README_en.md
https://gitee.com/openharmony/security/blob/master/README_en.md
https://gitee.com/openharmony/testfwk_arkxtest


Sotware Engineering for OpenHarmony: A Research Roadmap • 33

[89] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. 2020. A Survey of Android Malware Detection with Deep

Neural Models. ACM Comput. Surv. 53, 6, Article 126 (dec 2020), 36 pages.

[90] Siegfried Rasthofer and Aothers. 2014. A Machine-learning Approach for Classifying and Categorizing Android Sources and Sinks.

NDSS (2014).

[91] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. 2017. Making malory behave maliciously: Targeted fuzzing of

android execution environments. In ICSE. IEEE, 300ś311.

[92] Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der Mark. 2013. Firedroid: Hardening security in almost-stock

android. In ACSAC. 319ś328.

[93] Alireza Sadeghi et al. 2016. A taxonomy and qualitative comparison of program analysis techniques for security assessment of android

software. TSE 43, 6 (2016), 492ś530.

[94] Jordan Samhi et al. 2022. Jucify: A step towards android code uniication for enhanced static analysis. In ICSE. 1232ś1244.

[95] Joanna Cecilia Da Silva Santos and Julian Dolby. 2022. Program Analysis using WALA. In FSE.

[96] Janaka Senanayake, Harsha Kalutarage, Mhd Omar Al-Kadri, Andrei Petrovski, and Luca Piras. 2023. Android Source Code Vulnerability

Detection: A Systematic Literature Review. CSUR 55, 9, Article 187 (jan 2023), 37 pages.

[97] Basit Shahzad, Abdullatif M Abdullatif, Kashif Saleem, and Wasif Jameel. 2017. Socio-technical challenges and mitigation guidelines in

developing mobile healthcare applications. JMIHI 7, 3 (2017), 704ś712.

[98] Md Shamsujjoha, John Grundy, Li Li, Hourieh Khalajzadeh, and Qinghua Lu. 2021. Developing mobile applications via model driven

development: a systematic literature review. IST 140 (2021), 106693.

[99] Camila Silva et al. 2018. A survey on the tool support for the automatic evaluation of mobile accessibility. In DSAI. 286ś293.

[100] Henrique Neves Silva, Jackson Prado Lima, Silvia Regina Vergilio, and Andre Takeshi Endo. 2022. A mapping study on mutation testing

for mobile applications. Software Testing, Veriication and Reliability 32, 8 (2022), e1801.

[101] Michael Spreitzenbarth et al. 2013. Mobile-sandbox: having a deeper look into android applications. In SAC. 1808ś1815.

[102] Ting Su et al. 2017. Guided, stochastic model-based GUI testing of Android apps. In FSE. 245ś256.

[103] Sufatrio, Darell JJ Tan, Tong-Wei Chua, and Vrizlynn LL Thing. 2015. Securing android: a survey, taxonomy, and challenges. ACM

Computing Surveys (CSUR) 47, 4 (2015), 1ś45.

[104] Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy, and year=2023 publisher=IEEE Li, journal=TSE. [n. d.]. Taming Android Fragmen-

tation through Lightweight Crowdsourced Testing. ([n. d.]).

[105] Poririo Tramontana et al. 2019. Automated functional testing of mobile applications: a systematic mapping study. SQJ 27 (2019),

149ś201.

[106] Hai Vu-Ngoc et al. 2018. Quality of low diagram in systematic review and/or meta-analysis. PloS one 13, 6 (2018), e0195955.

[107] Xiaolei Wang, Yuexiang Yang, and Sencun Zhu. 2018. Automated hybrid analysis of android malware through augmenting fuzzing

with forced execution. IEEE Transactions on Mobile Computing 18, 12 (2018), 2768ś2782.

[108] Yihui Wang, Huaxiao Liu, Shanquan Gao, and Xiao Tang. 2023. Animation2API: API Recommendation for the Implementation of

Android UI Animations. TSE (2023).

[109] Ying Wang, Yibo Wang, Sinan Wang, Yepang Liu, Chang Xu, Shing-Chi Cheung, Hai Yu, and Zhiliang Zhu. 2022. Runtime permission

issues in android apps: Taxonomy, practices, and ways forward. TSE 49, 1 (2022), 185ś210.

[110] Fengguo Wei et al. 2018. Jn-saf: Precise and eicient ndk/jni-aware inter-language static analysis framework for security vetting of

android applications with native code. In CCS. 1137ś1150.

[111] Chathrie Wimalasooriya, Sherlock A Licorish, Daniel Alencar da Costa, and Stephen G MacDonell. 2022. A systematic mapping study

addressing the reliability of mobile applications: The need to move beyond testing reliability. JSS 186 (2022), 111166.

[112] Zhiqiang Wu, Xin Chen, and Scott Uk-Jin Lee. 2023. A systematic literature review on Android-speciic smells. JSS 201 (2023), 111677.

[113] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang, Byoungyoung Lee, Chenxiong

Qian, et al. 2016. Toward engineering a secure android ecosystem: A survey of existing techniques. ACM Computing Surveys (CSUR) 49,

2 (2016), 1ś47.

[114] Lei Xue et al. 2018. NDroid: Toward tracking information lows across multiple Android contexts. IEEE Transactions on Information

Forensics and Security 14, 3 (2018), 814ś828.

[115] Lei Xue et al. 2021. Happer: Unpacking android apps via a hardware-assisted approach. In SP. IEEE, 1641ś1658.

[116] Lei Xue et al. 2021. Parema: an unpacking framework for demystifying VM-based Android packers. In ISSTA. 152ś164.

[117] Lei Xue and Zothers. 2020. Packergrind: An adaptive unpacking system for android apps. TSE 48, 2 (2020), 551ś570.

[118] Ping Yan and Zheng Yan. 2018. A survey on dynamic mobile malware detection. SQJ 26, 3 (2018), 891ś919.

[119] Yuri D. V. Yasuda, Luiz Eduardo G. Martins, and Fabio A. M. Cappabianco. 2020. Autonomous Visual Navigation for Mobile Robots: A

Systematic Literature Review. ACM Comput. Surv. 53, 1, Article 13 (feb 2020), 34 pages.

[120] Samer Zein et al. 2016. A systematic mapping study of mobile application testing techniques. JSS 117 (2016), 334ś356.

[121] Samer Zein, Norsaremah Salleh, and John Grundy. 2016. A systematic mapping study of mobile application testing techniques. J. Syst.

Softw. 117 (2016), 334ś356.

ACM Comput. Surv.



34 • L. Li et al.

[122] Samer Zein, Norsaremah Salleh, and John Grundy. 2023. Systematic reviews in mobile app software engineering: A tertiary study. IST

164 (2023), 107323.

[123] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang Liu. 2021. Research on third-party libraries in android

apps: A taxonomy and systematic literature review. TSE (2021).

[124] Xian Zhan, Tao Zhang, and Yutian Tang. 2019. A comparative study of android repackaged apps detection techniques. In SANER. IEEE,

321ś331.

[125] Xiangyu Zhang et al. 2023. Scene-Driven Exploration and GUI Modeling for Android Apps. arXiv (2023).

[126] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. 2015. Dexhunter: toward extracting hidden code from packed android applications. In

ESORICS. Springer, 293ś311.

[127] Yanjie Zhao, Li Li, Kui Liu, and John Grundy. 2022. Towards Automatically Repairing Compatibility Issues in Published Android Apps.

In ICSE.

[128] Yanjie Zhao, Li Li, Xiaoyu Sun, Pei Liu, and John Grundy. 2021. Icon2Code: Recommending code implementations for Android GUI

components. IST 138 (2021), 106619.

[129] Yanjie Zhao, Li Li, Haoyu Wang, Qiang He, and John Grundy. 2022. APIMatchmaker: Matching the Right APIs for Supporting the

Development of Android Apps. TSE (2022).

[130] Hao Zhou et al. 2021. Finding the missing piece: permission speciication analysis for Android NDK. In ASE. IEEE, 505ś516.

[131] Hao Zhou et al. 2022. NCScope: hardware-assisted analyzer for native code in Android apps. In ISSTA. 629ś641.

[132] Hao Zhou et al. 2022. Uncovering Intent based Leak of Sensitive Data in Android Framework. In CCS. 3239ś3252.

Received 24 January 2024; revised 23 January 2025; accepted 3 February 2025

ACM Comput. Surv.


	Abstract
	1 Introduction
	2 Tertiary Study on Mobile Software Engineering
	2.1 Tertiary Study Method
	2.2 Problem
	2.3 Technique

	3 The State of the OpenHarmony Ecosystem
	3.1 Existing Toolchains
	3.2 Existing Datasets
	3.3 Existing OpenHarmony Research

	4 A Research Roadmap for OpenHarmony
	4.1 Gaps in App-related Research
	4.2 Gap in OS Framework-related Research
	4.3 Gaps in Ecosystem-related Research
	4.4 New Research Opportunities

	5 Discussion
	5.1 Challenges in App/Library Development.
	5.2 Challenges in App/Library Analysis

	6 Related Work
	7 Conclusion
	References

