
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Survey of Program Analysis for Distributed Software Systems

HAIPENG CAI, University at Buffalo, USA

Distributed software systems are pervasive today and they are increasingly developed/deployed to meet the growing needs for scalable

computing. Given their critical roles in modern information infrastructures, assuring the quality of distributed software is crucial. As a

fundamental methodology for software quality assurance in general, program analysis underlies a range of techniques and tools for

constructing and assuring distributed systems. Yet to this date there remains a lack of systematical understandings of what have been

done and how far we are in the field of program analysis for distributed systems. To gain a comprehensive and coherent view of this

area hence inform relevant future research, this paper provides a systematic literature review of the (1) technical approaches, including

analysis methodology, modality, underlying representation, algorithmic design, data utilized, and scope, (2) applications, with respect

to the quality aspects served, and (3) evaluation, including the datasets and metrics considered, of various program analyses in the

domain of distributed software in the past 30 years (1995–2024). In addition to knowledge systematization, we also extend our insights

into the limitations of and challenges faced by current technique and evaluation designs, which shed light on potentially promising

future research directions.

CCS Concepts: • Theory of computation → Program analysis; • Computer systems organization→ Distributed systems.

Additional Key Words and Phrases: program analysis, distributed system, program representation, analysis algorithm, software quality,

application technique, benchmarks, evaluation metrics, distributed program

ACM Reference Format:
Haipeng Cai. 2025. A Survey of Program Analysis for Distributed Software Systems. 1, 1 (May 2025), 41 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 Introduction

A distributed software system
1
consists of loosely coupled or entirely decoupled components that are located at

physically separate sites [55]. It helps users share different resources and capabilities in an integrated coherent net-

work [121, 203]. In recent years, with continuously increasing performance and scalability demands for a growing variety

of computation tasks, a rising number of distributed software systems have been designed, developed, and deployed to

leverage high-performance computing infrastructure and resources that are typically decentralized, including aircraft

control systems, airline reservation systems, banking/financial systems, industrial control systems, medical networks,

web search, and so on. Given their paramount roles and applications in our daily lives and the business/industrial world,

their quality (e.g., maintainability, performance efficiency, portability, reliability, security, usability [88, 106, 180, 209])

and corresponding quality assurance approaches are significantly important [82, 83, 85, 148, 156].

1
Without loss of generality but for brevity, we use “distributed software system", “distributed software", and “distributed system" exchangeably throughout

the paper—while a distributed system generally refers to a networked computing environment, this paper focuses on the software perspective.

Author’s Contact Information: Haipeng Cai, haipengc@buffalo.edu, University at Buffalo, Buffalo, New York, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-5224-9970
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-5224-9970

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Cai

As a primary form of software analysis, program analysis is an automatic technique or process of analyzing the

behaviors hence properties (e.g., correctness, robustness, safety) of software systems based on their programs [166].

There are generally three classes of program analysis approaches, categorized according to the kinds of data utilized

(i.e., actually analyzed) by a program analysis technique/algorithm: static analysis reasoning about program behaviors

based on the program code with respect to any possible program executions, (purely) dynamic analysis computing

run-time properties of specific program executions with respect to particular program inputs, and hybrid analysis

combining static and dynamic analysis, which may also be considered a kind of dynamic analysis that utilizes static

analysis results. Historically, program analysis of any of these classes has been the enabling technique for many fully-

or semi-automated application solutions to various software quality assurance issues and challenges.

Particularly for distributed software systems, program analysis remains a fundamental methodology for software

assurance. As for other software domains, this methodology has empowered typical software engineering and sys-

tems tasks, such as fault diagnosis, code optimization, performance tuning, security defenses, and various mainte-

nance/evolution activities [17, 115, 120, 224]. In fact, program analysis for distributed software systems as a research

area/topic can be dated back to 1980s [65, 66, 157], when the need for testing and debugging distributed systems was

recognized in distributed/parallel computing environments. While much of the work in the broad area of parallel and

distributed computing has been done from coarse, system-level perspectives such as those of architecture, networking,

and resource management, studies on code-level quality of distributed software via program analysis also went through

a long journey. These studies include both fine-grained, deeper program modeling and reasoning and those at coarse

levels. For instance, techniques have been devised to resolve dependencies in distributed systems for enhancing par-

allelization [181], system configuration [119], and high-level system modeling [1, 23]. And the underlying program

analyses include static [91, 161, 179], dynamic [38, 39, 79, 83], and hybrid [30, 82] ones.

Yet despite its long history and great significance, the area of program analysis for distributed software (i.e., analysis

of distributed programs2) has not been systematically surveyed. As demonstrated in such surveys of program analysis

for non-distributed systems (i.e., software running on one single computer, regardless in a single process or multiple

processes) [53, 223] as well as many other areas in computing, a literature review can serve many beneficial purposes.
First, for researchers in software engineering, programming languages, and systems, especially those who just get into

respective areas, a comprehensive survey offers an overview of what progresses have been made and what approaches

are available. For practitioners and distributed system researchers who do not have core expertise in program analysis,

this overview can be very valuable in helping them navigate through the literature for technique/tool selections for

immediate use or developing domain-specific solutions. Second, the survey can serve as systematization of knowledge

on program analysis for distributed software, summarizing challenges and limitations faced by existing techniques,

hence guiding both researchers and practitioners in discerning the strengths and weakness of different choices. Third,

the survey is essential for distilling insights into this topic regarding how far it is now and what gaps remain, hence

informing future research to take the most pressing problems in the right directions.

A few prior works summarized different program analysis techniques for specialized distributed systems. For example,

Alqahtani et al. [10] summarized of cloud system data security via information flow control. It first discussed how

different techniques were used with the CloudMonitor tool that guarantees the data protection of cloud systems, followed

by an overview of the operations of some information flow control systems, and the advantages and disadvantages

of those approaches. Also, Wei et al. [221] provided a survey on data-flow management, concerning sensing, control,

2
We refer to the code components of a distributed system together as a distributed program, where a component is the code running in a separate process.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Survey of Program Analysis for Distributed Software Systems 3

and security, in Internet of Things (IoT) systems. It started with the key challenges facing IoT data-flow management,

and then summarized relevant techniques in this area, with illustrations via representative management tools and/or

platforms as well as example application scenarios (e.g., smart city/transportation/manufacture). However, there has

been no systematic literature review on program analysis for distributed software in general (i.e., both common-purpose

and specialized systems), despite the aforementioned benefits of such a survey and the importance of this topic.

1 // NioEcho client component/process

2 public class NioClient implements Runnable {

3 public void send (...) ... {

4 SocketChannel socket = this.initiateConnection ();

5 this.rspHandlers.put(socket , handler);

6 synchronized (this.pendingData) {

7 List queue = (List) this.pendingData.get(socket); ...

8 this.pendingData.put(socket , queue);

9 queue.add(ByteBuffer.wrap(data)); }

10 this.selector.wakeup (); } ... }

11

12 public static void main(String [] args) {

13 String host = "localhost";

14 int port = 9090;

15 ...

16 NioClient client = new NioClient(InetAddress.getByName(host),

port);

17 Thread t = new Thread(client);

18 t.setDaemon(true);

19 t.start(); ... }

20

21 // NioEcho server component/process

22 public class NioServer implements Runnable {

23 public void run() { ...

24 synchronized (this.pendingChanges) {

25 Iterator changes = this.pendingChanges.iterator ();

26 while (changes.hasNext ()) { ...

27 SelectionKey key = change.socket.keyFor(this.selector);

28 key.interestOps(change.ops); ... }}

29

30 public static void main(String [] args) {

31 String host = "localhost";

32 int port = 9090;

33 if (args.length > 0) {

34 port = Integer.parseInt(args [0]); }

35 if (args.length > 1) {

36 host = args [1]; }

37 InetAddress serveraddr = InetAddress.getByName(host); ... }

1

Fig. 1. An example distributed program NioEcho [197] for illustration.

To fill this gap, we conduct a comprehensive re-

view of program analysis for distributed software

systems across 30 years (1995–2024), addressing the

long missing knowledge systematization on what is

unique with the program analysis for this particular

software domain. To offer a systematic understand-

ing of the status quo, we examined three high-level,

closely connected aspects of distributed-program

analysis: (1) the technical approach (i.e., analysis

method), (2) the application problem addressed by

and used for evaluating the technical approach (i.e.,

specific software quality problem the program anal-

ysis technique is applied to), and (3) the evaluation

approach (i.e., experiment design) followed for as-

sessing the technique in respective application con-

texts. In examining technical approaches, we take

an extensive list of angles relevant to program anal-

ysis in general, including the underlying program

representation, analysis modality and scope, algo-

rithmic design, and data utilized by the analysis.

Paper organization. Specifically, we start with necessary background on program analysis and distributed systems

(§2), followed by the survey guided by a principled methodology (§3,§4,§5). This methodology covers all the common

major steps of a systematic literature review, including (1) the literature search process (§4) which resulted in the

collection of papers that serve as the basis of survey, (2) the derivation of taxonomy (§5) of program analysis for

distributed systems which resulted in a paper-attribution framework, and (3) the paper attribution process that follows

the framework to produce our survey results (§6). Based on these results, we discuss the limitations and challenges

with existing distributed-program analysis techniques/tools surveyed (§7.1), from which we further identify future

research directions for overcoming those limitations/challenges in the field of program analysis for distributed software

(§7.2). Finally, we discuss the limitations of our survey itself (§8) before making brief concluding remarks (§9).

2 Background

This section provides essential background on program representations. Additional information on program analysis

and distributed systems can be found in Appendix A.

An analysis of a program is often performed on a representation of the program. Then, reasoning about the program

behaviors is based on that representation. Among others, graph representations are the most commonly used by various

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Cai

selected papersLiterature search Survey aspectsSurvey taxonomy derivation Survey resultsPaper attribution

Limitations, challenges, and future search directionsSurvey result analysis

(Section 7)

(Section 4) (Section 6)(Section 5)

Fig. 3. Overview of our survey methodology and workflow.

analysis techniques. As examples, we briefly introduce three basic graph representations as follows: control flow graph,

call graph, and program dependence graph, while mentioning a few other related ones. We use code excerpts from (the

version r69 of) NioEcho (shown in Figure 1) for illustration purposes. This is a simple distributed program consisting of

one server component and a number of client components, where the server echoes any messages sent by a client [197].

14
15

16

17
18

20
21

19

22

True

False

True

False

A

B
C

D
E

F

32 33

34

35

36

3731

Fig. 2. An example control flow graph (CFG)—of the
main method in the example distributed program
NioEcho’s NioServer class (Figure 1)

.

A control flow graph (CFG) [7] is a graph representing the control

flow relationships among code entities in a program, often used in

static analyses, such as those in a compiler. For example, the CFG

of the method main of the NioEcho server (class NioServer, Lines

31–37) is depicted in Figure 2. Moreover, in this case, Line 31 is the

method entry, Line 37 is the exit, and Lines 35 and 37 are branch

statements each including one conditional referred to as predicate (e.g., args.length>0).

A call graph (CG) is a directed graph that represents calling relationships among program subroutines (e.g., func-

tions/methods) [187]. Each CG node represents a subroutine, and each CG edge <n1,n2> connecting two nodes

𝑛1 and 𝑛2 represents that 𝑛1 calls 𝑛2. In the program NioEcho of Figure 1, for example, NioServer::run calls

SelectionKey::interestOps; thus, an edge between the two nodes representing the respective methods is included

in the call graph of the server component of this distributed program.

A fundamental way of modeling a program’s behavior is by modeling the dependencies among code entities of the

program, and one basic form of such models is program dependence graph (PDG). Each node of this graph represents a

code entity (e.g., statement) while an edge between two nodes represents either a data or control dependence between

the two respective entities that the two nodes represent. For example, in the mainmethod of NioEcho’s class NioClient,

Line 17 is data dependent on Line 16 as the former defines (writes to) the variable client while the latter uses (reads)

the same variable without any intermediate redefinition (overwrite) of it. A control dependence exists between two

statements when the evaluation result of one statement (e.g., Line 35) determines whether the other (e.g., Line 26)

executes or should be bypassed [9].

Per the original definition [74], PDG is intraprocedural—it consists of dependencies within a function/method.

Horwitz et al. [102] extended the PDG to an interprocedural representation of a program that consists of more than

one function/method, called a system dependence graph (SDG), which captures the calling context of data/control

dependencies within a PDG [140]. Given such a program, its SDG can be constructed from its per-method/function

PDGs while referring to its interprocedural control flow graph (or ICFG)—by default, a CFG is also intraprocedural. The

ICFG itself further relies on the call graph to be constructed from the per-method/function CFGs of the program.

Another important representation of programs is information flow graph (IFG) [60], a graphical representation used

in program analysis to model how information flows through a software system. In an IFG, nodes represent program

variables, memory locations, or other entities where information can be stored (while edges represent the flow of

information between nodes), versus nodes in a CFG/ICFG/PDG/SDG representing statements/instructions.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Survey of Program Analysis for Distributed Software Systems 5

filtering with inclusion/exclusion criteria
and summarizing

277 articles
Forward and backward

snowballing
284 articles

153 articles

Search with selected keywords
①

③Final set of papers

②

561 articles +

Google Scholar and major academic portals/digital libraries (ACM DL, IEEE Xplore, arXiv)

(Phase 1) (Phase 2)

(Phase 3)

Fig. 4. Overview of our literature search process, including its three phases and respective inputs and outputs.

3 Overview of Survey Methodology

To gain systematization and insights about program analysis for distributed systems, we conducted a comprehensive

survey on this topic following a principled methodology, as shown in Figure 3 and summarized below.

Starting with a systematic literature search (§4), we first searched and selected papers (using chosen, relevant

keywords). From these selected papers, we proceeded with the survey taxonomy derivation, resulting in the survey

aspects/attributes/items (§5) that form an attribution framework. Then, following the paper attribution process [53] we

attributed the surveyed papers within the taxonomy, hence producing the survey results (§6). Lastly, through the survey

result analysis, we identified the limitations/challenges in the field of program analysis for distributed software systems,

while offering our views on relevant future research directions for addressing those limitations and challenges (§7).

4 Literature Search

We searched, identified, and filtered studies related to program analysis for distributed software in three phases, as

shown in Figure 4. Next, we describe each of these phases in detail.

4.1 Phase 1

In this phase, we searched broadly for all potentially relevant research papers on Google Scholar and well-known

academic publication portals/digital libraries such as ACM digital library (DL), IEEE Xplore, and arXiv. We used the

following topic-relevant keywords and their combinations as queries: distributed software, distributed system, dis-

tributed program, distributed/parallel computing, cloud system, program/code analysis, static/dynamic analysis, dependence

analysis/slicing, taint analysis, information flow, quality/security/reliability/performance/dependability, and internet of

things. We chose these keywords because they are indicative of the software domain (i.e., distributed system) and

technical topic (i.e., program analysis) of our survey, or common types of program analysis (e.g., dynamic analysis) and

their typical applications (e.g., quality). And then we scooped a conservative, comprehensive list of publications related

to any of these queries, resulting in the initial set of 277 papers.We aimed to cover any papers that are relevant to our

survey domain and topic, regardless of where they were published and when.

4.2 Phase 2

To ensure comprehensive inclusion of relevant papers, we went further to scoop additional related papers that are

not in our initial list (i.e., the result of Phase 1) through manual forward and backward snowballing processes (i.e.,

including papers that cite, and are cited by, any of the 277 papers, respectively). These processes led us to 284 additional

papers that are potentially relevant according to the inclusion of any of the keywords (same as used in Phase 1) in the

paper title or body. As a result, our initial paper pool size grows to 561 (=277+284).

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Cai

4.3 Phase 3

This phase is our manual inspection and filtering step to select the relevant papers, for which we used the following

inclusion and exclusion criteria. In particular, we defined two inclusion criteria as follows:

• Studies about any kind of program analysis approach or its application, either technical or empirical.

• Studies that address any kind of distributed software systems, including common and specialized ones (e.g.,

event-based, cloud, and Internet of Things (IoT) systems, micro-services), as the subject program under analysis.

Meanwhile, to speed up the filtering process, we also defined the following exclusion criteria:

• Studies that do not involve development, use, or evaluation of any form of program analysis.

• Studies about single-process programs, either single-threaded or multi-threaded ones.

• Materials that are not official academic/research publications (e.g., abstracts, posters, and tutorials)

• Papers that are not written in English.

For each of the 561 papers in our pool resulting from Phase 2, we carefully looked into the paper, inspecting its title,

keywords, abstract, and the main text. We immediately dismissed the paper if it met any of the exclusion criteria;

otherwise, we used the two inclusion criteria to decide on inclusion or not and only kept the paper if it met both. In the

end of this phase, we selected 153 papers as the basis of our next survey steps, for which we manually summarized

and recorded about the following information for each included paper: the problem addressed, motivation, approach,

application, evaluation subjects, evaluation metrics, evaluation results, strengths and limitations, and future work—if

explicitly discussed or implicitly retrievable in the paper.

5 Survey Taxonomy Derivation

In this section, we describe the angles in which we examine the existing literature on program analysis for distributed

software. We start with the process of deriving all of these angles, which collectively form our survey taxonomy (§5.1,
§5.2). Then, we present the derivation results—i.e., the taxonomy itself (as outlined in Table 1), which covers all the

three high-level aspects of a program analysis: the technical approach (§5.3.1), the application of the analysis (§5.3.2),
and the evaluation of the analysis technique—either directly or through the application (§5.3.3).

Table 1. The Derived Taxonomy of Our Survey on (i.e., Examined Aspects of) Program Analysis for Distributed Software
Aspect Attribute Item Description

Approach

Analysis Methodology

Code-based analyzing the given program based solely on its code

Learning-based using machine/deep-learning technique(s)

Analysis Modality

Static analyzing the given program without executing it

Dynamic using the program’s execution/run-time information

Program Representation

CFG/ICFG representing control flows

CG representing calling relationships among functions

PDG/SDG representing data and control dependencies

IFG representing information flows

Algorithmic Parameter

Analysis Sensitivity if the analysis is context-/flow-/field-/object-/path-sensitive

Data Granularity the granularity of the data used

Analysis Data

Run-time Event run-time/execution events of the program

System Log log generated by the system during its operation

Artifact (code/non-code) items produced during software development

Analysis Scope targeted distributed-system types (common or specialized)

Application

Functional Testing verifying/validating software functionalities

Fault Localization identifying faulty program entities/locations

Security Support aiming to assure security requirements

Performance Diagnosis diagnosing performance efficiency

Maintenance/Evolution Support enabling/facilitating software maintenance/evolution tasks

Evaluation

Dataset

Benchmark Suite systems used purposely for comparison/measurement

Real-world System distributed systems used by real end-users

Metric

Effectiveness how effective (e.g., accurate/precise) the analysis is

Efficiency how (e.g., time/space) efficient the analysis is

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Survey of Program Analysis for Distributed Software Systems 7

5.1 Attribute/Item Identification

Our attribute identification step aims to refine each of the three aspects (Approach, Application, Evaluation) into

specific attributes. First, we studied all the articles and wrote down relevant words as attributes for particular aspects,

such as "Analysis Methodology" or "Analysis Modality" for the "Approach" aspect. Then, we recorded words of interest

as items that could be related to particular attributes, such as "static" or "dynamic" for the "Analysis Modality" attribute.

5.2 Attribute/Item Generalization

After the initial attributes and items have been identified, we generalize them to render their numbers manageable and

improve their reusability, through a few iterations. For example, regarding the target aspect "Application", the attributes

"system testing" and "unit testing" can intuitively be generalized to "Functional Testing". Similarly, regarding the target

attribute "Algorithmic parameter“ (of the "Approach" aspect), the items "context-sensitivity", "flow-sensitivity", "field-

sensitivity", and "object-sensitivity" can intuitively be generalized to "Analysis Sensitivity". After this generalization

step, the resulting attributes and items are documented.

5.3 Resulting Taxonomy

Following the attribute/item identification and generalization steps, we derived our taxonomy (as outlined in Table 1),

as elaborated below for each of the three high-level aspects separately.

5.3.1 Approach. In this aspect, we identified six attributes. In terms ofAnalysis Methodology, the existing approaches
fall in two major categories: Code-based, where the analysis directly reasons about the given program code in a

deterministic manner, and Learning-based, where the analysis leverages machine/deep learning methods.

The approach aspect also differentiates two general types of Analysis Modality: static and dynamic. A static

approach performs the analysis using program information with respect to all possible executions of the program (i.e.,

without executing it). While consuming fewer resources (when considering those needed for program executions),

static analysis cannot precisely capture the behaviors of a program during its concrete execution. In contrast, a dynamic

approach utilizes run-time program information obtained from the program’s concrete execution, including (purely)

dynamic analysis which only uses the run-time information and hybrid dynamic analysis which additionally utilizes

static program information. Dynamic analysis enables reasoning about the run-time behaviors hence validating program

properties or just understanding the system better [53]. While generally incurring higher overhead [34], it often offers

greater precision [31, 36]. In particular, hybrid dynamic analysis helps gain better balance between the precision and

overhead of the analysis [28, 32, 37], although it tends to be more complex and need more resources. Since hybrid

(dynamic) analysis is essentially a kind of dynamic analysis, we do not treat it as a separate analysis modality.

As for other domains of (e.g., centralized) software systems, analyses for distributed systems commonly work

on the basis of a certain kind of Program Representations. In particular, this attribute differentiates four types

of representations: CFG/ICFG, CG, PDG/SDG, and IFG, as defined/described earlier (§2). Control flow graph (CFG)

represents the control flow of a single procedure (i.e., function) [7], while interprocedural control flow graph (ICFG)

connects all of the CFGs of a program hence representing the control flow of the entire program. Call graph (CG)

represents calling relationships among functions in a program [187]. Program dependence graph (PDG) models the data

and control dependencies among program entities within a function, while system dependence graph (SDG) captures

those dependencies across functions. Information flow graph (IFG) represents the information flows of a program,

where each flow is often represented by a chain of data/control dependencies between an information source and an

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Cai

information sink. Each of these program representations may be constructed at different granularity (e.g., instruction,

statement, method) levels.

TheAlgorithmic Parameter attribute of distributed-program analysis distinguishes twomajor items (sub-attributes):

the sensitivity of the analysis and the granularity of data used by the analysis. More specifically, Analysis Sensitivity

concerns whether the analysis is context-, flow-, field-, object-, or path-sensitive. These sensitivity properties commonly

concern the differentiation between different execution scenarios when all possible executions need to be considered—

thus, they are usually only relevant to a static analysis. Enabling (disabling) a sensitivity property often implies a greater

(lower) level of precision at a higher (lower) level of cost; therefore, setting this algorithmic parameter immediately

affects the cost-effectiveness of the analysis [186]. Similarly, Data Granularity also has a clear effect on the balance

between analysis cost and effectiveness—usually, finer (coarser)-grained data bring higher (lower) precision while

incurring greater (lower) overhead. In our survey, this algorithmic parameter is only relevant to dynamic analysis,

which uses run-time data such as method-level execution events or statement-level coverage records.

Another key attribute of a program analysis approach for distributed programs (as for program analysis in general)

is the Analysis Data. This attribute further distinguishes three types of data used by the analysis as follows. Run-time

Event refers to execution events that externalize program run-time behaviors, such as method entry/exit [32], message

receiving/sending [39], and statement coverage [30]. These events are usually captured through code instrumentation.

System Log is another major kind of analysis data, which is produced through logging facilities provided by the

developers in the original program, rather than being inserted to the program via instrumentation. Analysis can often be

enriched by using non-code Artifact as well, such as README and manifest files, configuration/installation documents,

and commit logs and code comments, etc.

Finally, given the presence of different types of distributed systems, a program analysis for distributed programs

often has a targeted Analysis Scope. The relevant literature has addressed mainly two analysis scopes. The first is

Common Distributed System, which uses standard networking facilities (e.g., Socket-based message passing) for the

interaction between distributed components of the system, as defined in a commonly-used textbook on distributed

systems [55] (§A.2). The second subsumes all sorts of specialized distributed systems, such as distributed event-based

(DEB) [160], cloud systems [152], and Internet of Things (IoT) systems [218] (§2).

5.3.2 Application. In this aspect, we examine the concrete application of a program analysis for distributed programs

to solving a specific problem. From the current relevant literature, we derived five types of applications, according

to the common aspects of software quality. In particular, Functional Testing addresses any program analysis being

applied to verifying/validating functional correctness of distributed software, while Fault Localization addresses

applications on identifying faulty code locations (i.e., debugging). Security Support focuses on any technique/tool

support for securing distributed systems, concerning their confidentiality, integrity, accountability, non-repudiation,

and authenticity. According to the ISO/IEC 25010 [106] software quality model, these are the five sub-characteristics

of the security quality characteristic. Many software systems are designed as distributed ones due to higher-level

performance goals. Thus, intuitively Performance Diagnosis of distributed systems themselves is an important

application of distributed-program analysis, which aims at accurate identification of actual/desired performance levels

and/or specification of interventions to improve performance [211]. Maintenance/Evolution Support is another
major application area of program analysis of distributed programs, which addresses enabling/facilitating activities for

maintaining [212] the distributed system and those for continual development that changes the system’s functionality

or properties experienced by the system customer(s) [46].

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Survey of Program Analysis for Distributed Software Systems 9

5.3.3 Evaluation. To systematically understand the existing works on program analysis for distributed systems, it is

essential to also look at how the technical approach has been evaluated. As for evaluation of a technique, through the

evaluation aspect we examine two common attributes: the Dataset used in the evaluation studies and the Metric in

which evaluation results are measured.

The Dataset attribute distinguishes the following two main types of evaluation subjects (and the accompanying test

inputs if the analysis follows a dynamic approach). To evaluate in terms of metrics that rely on ground truth, standard

or commonly-adopted Benchmark Suite is often used, which is a collection of benchmarks that are test cases or sets

of test cases purposely aimed to enable rigorous assessment of the proposed technique and/or comparisons between

alternative techniques. To assess generalizability and practicality, however, it is desirable to use Real-world System (and

their run-time inputs in real operations) as study subjects, which gives more confidence to users regarding how the

proposed technique may perform in practice.

Regarding Metric, the literature we studied typically seek to measure the Effectiveness and/or Efficiency of analysis

techniques/tools in the evaluation against distributed software. Here effectiveness concerns efficacy of the technical

solution (to the targeted application problem), commonly quantified in terms of specific measures like precision and

recall (or false/true positive rates). Efficiency concerns how much (e.g., CPU, GPU) time and/or how many resources (e.g.,

peak memory, network bandwidth, external storage) are consumed by the proposed approach. For dynamic analysis in

particular, run-time overhead (e.g., measured via slowdown ratio) is also usually considered in efficiency evaluation.

6 Paper Attribution

The next phase of our survey process is to apply the attribution framework derived (in §5) to the relevant literature

identified (in §4). In this section, we focus on summarizing the surveyed papers as per (i.e., mapping them to) our

taxonomy of program analysis for distributed software. We start with statistics on the collected papers based on their

venues (𝑆6.1) and survey aspects/attributes (§6.2), followed by the summary of the research body in each of the three

aspects: Approach (§6.3), Application (§6.4), and Evaluation (§6.5).

6.1 Paper Distribution by Venues

The 153 relevant papers were published between October 1995 and July 2024 across over 90 venues, including 15

conferences and 9 journals each covering 2 papers or more surveyed, institutions of 7 PhD dissertations, as shown in

Table 2. The 71 miscellaneous other venues each covering only one paper, thus not enumerated.

Overall, related to program analysis techniques/tools for distributed software, these 153 papers are unevenly

distributed across four main research areas: (1) programming languages and software engineering, including 7 venues:

ICSE, FSE, ASE, PACMPL, TOSEM, TSE, and JSS, which contributed a total of 32 papers; (2) operating systems and

parallel/distributed computing, including 9 venues: EuroSys, SoCC, ATC, SOSE, OSDI, SOSP, DEBS, JCC, and TPDS,

which contributed 25 papers; (3) computational science, including 5 venues: CSCI, ICCCI, JPCS, Access, and IASC, which

contributed 11 papers; and (4) computer security, including 3 venues: DSN, CCS, and USENIX Security, which contributed

7 papers. This venue distribution can be explained by several reasons:

• Program analysis is one of the most important and popular topics in the general area of programming lan-

guages and software engineering; thus, intuitively a good number of papers in our survey scope have been

published in this area.

• Program analysis is also a main type of technical approach in the area of computer security, widely utilized to

address security problems; this leads to a noticeable presence of security venues among the surveyed papers.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Cai

Table 2. Distribution of Publication Venues of Surveyed Papers
Type Acronym Description # Papers

Conference

ICSE IEEE/ACM International Conference on Software Engineering 11

FSE ACM Symposium on the Foundations of Software Engineering 7

EuroSys European Conference on Computer Systems 6

SoCC ACM Symposium on Cloud Computing 4

USENIX ATC USENIX Annual Technical Conference 3

CSCI Computational Science and Computational Intelligence 3

DSN IEEE/IFIP International Conference on Dependable Systems and Networks 3

CCS ACM SIGSAC Conference on Computer and Communications Security 2

SOSE International Conference on Service-Oriented System Engineering 2

OSDI USENIX Symposium on Operating Systems Design and Implementation 2

SOSP ACM Symposium on Operating Systems Principles 2

ASE ACM/IEEE International Conference on Automated Software Engineering 2

DEBS ACM International Conference on Distributed Event-Based Systems 2

ICCCI International Conference on Computer Communication and the Internet 2

USENIX Security USENIX Security Symposium 2

Journal

PACMPL Proceedings of the ACM on Programming Languages 5

TOSEM ACM Transactions on Software Engineering and Methodology 3

JPCS Journal of Physics: Conference Series 2

IASC Intelligent Automation & Soft Computing 2

JCC Journal of Cloud Computing 2

JSS Journal of Systems and Software 2

Access IEEE Access 2

TPDS IEEE Transactions on Parallel and Distributed Systems 2

TSE IEEE Transactions on Software Engineering 2

Thesis PhD Dissertation Various institutions (each having only one thesis among the surveyed) 7

Various other venues Various venues (each having only one paper among the surveyed) 71

All venues Total 153

88.2%

13.1%
26.1%

73.2%

17.0% 14.4% 13.7%
4.6%

21.6% 24.2%

54.9%

17.6%

31.4%

71.9%

26.8%
20.3%

32.0% 31.4%

17.6%
26.1% 30.7%

68.6% 69.3%
60.8%

0%

20%

40%

60%

80%

100%

Approach Application Evaluation

Analysis Methodology Analysis Modality Program Representation Algorithmic Parameter Analysis Data Analysis Scope Dataset Metric

Fig. 5. Distribution of the surveyed papers over the three aspects (approach, application, and evaluation) and attributes/items.

• The others, OS and parallel and distributed computing and computational science, are primary areas addressing

the subject of distributed software systems; hence, multiple relevant venues contributed to the studied literature.

Meanwhile, the fact that these 153 papers were spread quite thin (over 90 venues) reveals the wide attention and

interest of broad research communities to/in the surveyed topic. On the other hand, ICSE and FSE dominates the

current literature (contributing 18 papers), followed by EuroSys and SoCC (accounting for 10 of the papers). A plausible

reason is that ICSE and FSE have long been a primary software-engineering (SE) venue publishing significant advances

in program analysis, while EuroSys and SoCC are flagship venues on cloud computing which is a key application

domain of distributed systems. Also, the vast majority of the papers are presented in conferences rather than journals, a

contrast common in computer science in general. The 71 venues not listed are mainly in SE, computer networks, and

high-performance computing.

6.2 Paper Categorization by Taxonomy

Figure 5 shows the distribution of the target literature over the derived survey aspects, attributes within each

aspect, and items (when available) within each attribute. The results reveal dominating subcategories within respective

categories among the 153 papers. For instance, the vast majority of these papers present code-based program analysis

approaches in terms of their analysis methodology—machine learning has yet to be widely exploited for program

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Survey of Program Analysis for Distributed Software Systems 11

analysis for distributed systems, and most of these approaches are dynamic analysis using various run-time events far

more often than using system logs while mainly addressing common distributed systems as opposed to specialized

ones. For another example, fault localization has been the primary application area of distributed-program analysis,

followed by security support and maintenance/evolution support. In terms of evaluating these approaches, real-world

systems have been used much more often than benchmark suites, while effectiveness is more attended than efficiency

when it comes to evaluation metrics. Note that for some (sub)categories (e.g., Application), the percentages sum up over

100% because a paper may fit more than one (e.g., it addresses multiple application tasks); while for some (e.g., Program

Representation) the total does not add up to 100% because some papers cannot be attributed to any of them (e.g., papers

on purely dynamic analysis do not use any of the program presentations—which are all static).

In the following three subsections, we look into each of these categories (along with their subcategories), examining

the actual research presented in the surveyed papers, with one subsection dedicated to each of the three high-level

survey aspects. To offer an overview of our results, Table 3 (years of 2022-2024), Table 4 (years of 2020-2021), Table 5

(2015-2019), and Table 6 (1995-2014) in Appendix B show the mapping of these papers (as linked in 1st column) to the

survey taxonomy (all the other columns to the right) we derived.3 These tables serve as useful references for seeking

relevant articles on particular topics addressing program analysis techniques/tools for distributed software. For example,

when a user looks for dynamic analysis techniques/tools supporting the security of distributed software, he or she only

needs to identify the articles with the item "Dynamic" of the attribute "Analysis Modality" within the aspect "Approach"

and the item "Security Support" within the aspect "Application", and so on.

6.3 Survey Result: Approach

We now present our summary of existing distributed-program analysis approaches along the six attributes identified

in our survey taxonomy, as separately examined as follows.

6.3.1 Analysis Methodology. Existing program analysis approaches for distributed systems have adopted two analysis

methodologies, predominantly Code-based and relatively a few Learning-based,

Code-based. As depicted in Figure 5, by far most (88%) of the current analysis techniques/tools for distributed systems

are based on the system’s code. In particular, the majority of these code-based studies [2, 21, 24, 47, 50, 89, 90, 98, 107,

119, 143, 146, 150, 151, 159, 162, 163, 165, 175, 178, 183, 188, 193–195, 199, 202, 206–208, 213, 220, 232] were based on

distributed program source code. For example, Acay et al. [2] proposed Viaduct, a system that allowed users to specify

security policies by annotating distributed programs with information flow labels and to enforce these policies by

compiling high-level source code in order to secure the programs.

Some studies [70, 93, 145, 147, 211, 231, 237] worked on the bytecode of distributed programs. For instance, Zhao et al.

[237] presented a non-intrusive request flow profiler named lprof, performing static analysis on distributed systems’

bytecode to stitch together and interpret the log messages of requests.

In addition, a number of analysis approaches [30, 38, 39, 76, 77, 79–84, 86, 91, 96, 130, 135–137, 200] used intermediate

representation (IR) code, including Soot (a Java analysis framework) [214] IR [30, 38, 39, 76, 77, 79–84, 91, 96] , WALA (a

Java/JavaScript analysis framework) [205] IR [130, 135–137, 200], and LLVM (a multilingual compiler framework) [126]

IR [96, 206, 207]. For example, Gu et al. [96] proposed a static analysis engine, named BigSpa, taking the LLVM IR and

Soot IR as its inputs for generating intra-component/process graphs of distributed programs written in C/C++ and

3
Our survey covers papers published and searchable online up to July 2024; thus, results for 2024 do not represent all relevant works in that entire year.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Cai

Java, respectively. As another example, Suminto et al. [200] presented their cascading outage bug elimination (COBE)

technique, which leverages WALA for initial program parsing.

Learning-based.A few analysis approaches (for distributed software) are based onmachine learning techniques, includ-

ing deep learning and traditional machine learning. For instance, both [236] and [108] utilized deep learning techniques.

In particular, Zhang et al. characterized the suitability of a new parallel deep-learning model selection/execution method

called Model Hopper Parallelism (MOP) for data systems and performed a comparative analysis of various distributed

deep learning approaches for that purpose [236]. Similarly, Jia et al. delivered insights and guidelines on how to fully

exploit distributed deep learning clusters for deploying deep learning applications [108]. Yu and Zhang [230] combines

graph convolutional network (GCN) and LSTM to learn the spatio-temporal dynamics in cloud systems for anomaly

detection. LSTM has also been used in [57] to facilitate the performance modeling of cloud and edge systems. Recently,

He et al. [100] uses Transformer with a novel anomaly attention mechanism and a graph neural network (GNN) to learn

spatio-temporal features to enable effectively detecting anomalies in distributed systems. With their generalizability

merits, large language models (LLMs) have emerged as the key enabler of state-of-the-art learning-based techniques.

For example, RCACopilot [48] integrates LLMs with automated incident handlers to streamline cloud incident Root

Cause Analysis (RCA). The system first collects focused diagnostic information through customized workflows, then

leverages GPT-3.5/4 to analyze this data, predict root cause categories, and provide explanations. As another example,

FaultProfIT [103] employs hierarchical textual classification and hierarchy-guided contrastive learning to automatically

profile fault patterns in incident tickets for cloud systems. The approach learns meaningful representations with limited

training data by focusing on similarities and differences between samples, using an optimized BERT model to encode

the raw text of incidents.

Other studies [4, 15, 83, 84, 87, 138] exploited traditional machine learning techniques. In [83, 84], Q-leaning (a type

of reinforcement learning) algorithms were utilized to adjust analysis configurations [61] to achieve scalable and cost-

effective dynamic dependence analysis for distributed software systems. Meng et al. [156] also leverages Q-learning but

for guiding a greybox fuzzer to select which fault to inject in the system state based on current observations of distributed

system execution. Astekin et al. [15] proposed a case study for evaluating distributed machine learning algorithms

that could detect the logs of large-scale systems. Fukuda et al. [87] also presented a computational framework for

distributed data analysis, applying traditional machine learning techniques (k-means and k-nearest neighbors (KNN)) to

clustering and classification tasks. Prism [139] proposes a coarse-to-fine clustering based approach to identifying hidden

functional clusters in large-scale cloud systems. DistFax [85] trains unsupervised (e.g., KNN-based) and supervised

(random-forest-based) models to predict quality anomalies in common distributed system executions.

6.3.2 Analysis Modality. Both static and dynamic analyses are present in the current literature of program analysis for

distributed systems, with dynamic approaches clearly dominating over static ones (Figure 5).

Static. For distributed software, static approaches have been applied to various, well-known types of program analyses,

including data flow analysis [41, 91, 96, 154, 200], taint analysis [189, 206, 207, 219], and pointer analysis [96]. For instance,

Gu et al. [96] proposed a static analysis engine, BigSpa, performing data flow analysis and pointer analysis. Wang et al.

[219] scaled static taint analysis to industrial service-oriented architecture (SOA) applications. MPCChecker [142] uses

a static data flow analysis to detect missing-permission-check (MPC) vulnerabilities in cloud systems.

Dynamic.Most (73%) of the surveyed analysis techniques/tools (for distributed systems) are dynamic. In particular,

many studies [2, 12, 13, 19, 24, 30, 38, 39, 76, 77, 79–84, 98, 107, 112, 130, 135–137, 146, 147, 158, 159, 165, 175, 179, 195,

199, 211, 213, 215, 237] adopted a hybrid approach to the dynamic analysis, rather than being purely dynamic. For

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Survey of Program Analysis for Distributed Software Systems 13

example, Mohapatra et al. [159] presented a hybrid slicing technique, DSDJ, for distributed Java programs; it statically

constructs the distributed program dependence graph (DPDG) prior to its run-time analysis—it is ultimately a dynamic

analysis. Maruf et al. [5] combines system traces, quality metrics, and log data to enable (hybrid) dynamic analysis of

micro-services for detecting quality anti-patterns in them. Another example is seen in Kim et al. [117], where concolic

execution is used for detecting/localizing XSS vulnerabilities in web-based IoT services based on dynamic taint analysis.

In other studies [6, 11, 15, 21, 22, 44, 45, 47, 50, 62, 70, 89, 93, 97, 99, 104, 108, 111, 114, 116, 119, 125, 127, 143, 145, 151,

155, 162–164, 172, 174, 177, 178, 185, 188, 189, 193, 194, 202, 208, 212, 220, 227, 229, 231–234, 236], purely dynamic analysis

(i.e., without any assistance of static analysis) was employed. For instance, Esteves et al. [70] presented a non-intrusive

framework CaT, using kernel-level tracing to dynamically capture the content and context of network/storage, and then

dynamically analyzing the exchanges and interactions among the distributed system components. In fuzz testing based

approaches [72, 148], typically instrumentation is necessary to monitor code coverage, which itself does not always

need any substantive static analysis; thus, they are considered purely (rather than hybrid) dynamic analysis. In fact, the

instance of purely dynamic analysis of distributed programs can be traced back to even earlier time [226], where a

distributed program’s execution data is used to build a program activity graph which models performance-relevant

activities in the program.

6.3.3 Program Representation. There are several types of program representations used in existing program analysis

techniques/tools for distributed software, including CFG/ICFG, CG, PDG/SDG, and IFG.

CFG/ICFG. The surveyed papers constructed and used CFGs at different levels, including rarely instruction level [129]

and commonly statement level [76, 77, 79–82, 86, 141, 206, 207]. For example, Li et al. [129] proposed DFix, a distributed

timing-bug fixing tool that first identifies individual instructions in the given program and then statically analyzes

every program path on the instruction-level CFG. In addition, Fu and Cai [82] proposed FlowDist, a multi-staged

refinement-based information flow analysis for common distributed software, which constructs the statement-level

interprocedural control flow graph (ICFG) of the distributed system under analysis [82] to guide the instrumentation

needed for its dynamic analysis. Note that some studies [72, 148, 156, 235] use control flow analysis by default as an

underlying step, although the papers may not always explicitly describe CFG construction.

CG. A number of prior studies [41, 90, 91, 96, 147, 154, 179, 200, 219, 237] used CGs as the main program representation,

at application level or whole-program level. An application-level CG only includes calling relationships in the application

code, ignoring those in the libraries or between application code and library code. Modern distributed programs

often involve extensive library calls (e.g., to the Java SDK APIs), for which application-level CGs are incomplete. A

whole-program CG includes calling relationships in both application and library code [8]. For example, Wang et al.

[219] developed ANTaint, a static taint analysis tool that builds the CG only for the application code, expands the CG

to cover other code selectively, and then propagates application-level taints through the CG. Instead, Garbervetsky et

al. [90] proposed a whole-program CG analysis framework that can scale reasonably well with the input code size. In

CFTaint [239], the CG of a given micro-service is constructed to enable static interprocedural taint flow analysis.

PDG/SDG. PDGs are used in [83, 84, 130, 135, 136, 159] while SDGs are utilized in [19, 159, 195, 206, 207], as the

representations of the analyzed distributed programs. For example, Li et al. [130] proposed a tool, PCatch, that could

automatically analyze system executions to predict performance cascading bugs, using WALA to build the PDG. And

Sirjan et al. [195] introduced a new state distribution policy based on the call dependency graph (CDG), which may be

considered a special variant of SDG. Fu [78] developed a series of hybrid dynamic analysis of distributed software using

PDG/SDG as the base program representation on which the application-specific analysis facts are derived.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Cai

IFG. A few distributed-program analyses are based on IFGs. For instance, in [188], an asymmetric bandwidth allocation

strategy was derived based on the IFG of the given distributed system. Maturana and Rashmi [155] modeled a code

conversion problem, also using IFGs. As another example, in [45], the IFG (i.e., IFD) was used to resolve node repair

problems in distributed storage systems.

Note that there are a few studies that do not directly utilize any of the above program representations, but instead

looking at abstract representations (e.g., formal model such as a state transition system). This is common in techniques

based on model checking [92, 113, 134, 204, 216] or other formal verification methods [3, 64, 149, 201].

6.3.4 Algorithmic Parameter. Distributed-program analysis algorithms are typically designed with parameters regarding

Analysis Sensitivity and Data Granularity, which immediately affect analysis behavior and cost-effectiveness.

Analysis Sensitivity. Some of the studies [22, 41, 83, 84, 90, 96, 200] presented context-sensitive analyses for distributed

software. In particular, two studies [83, 84] proposed scalable and cost-effective analysis techniques whose respective

configuration parameter can be enabled to perform context-sensitive analysis (1-CFA) or be disabled for context-

insensitive analysis (i.e., 0-CFA).

The analyses in some of the surveyed works [76, 79–84] are flow-sensitive or flow-insensitive. For example, Fu et

al. [83, 84] presented cost-effective dynamic dependence analysis framework, Seads and Dads, both supporting flow-

sensitive analyses when the configuration parameter "flow sensitivity" is enabled, while the analyses are flow-insensitive

when that configuration parameter is turned off.

Regarding field sensitivity, Gu et al. [96] developed a static analysis engine, BigSpa, which performs field-sensitive

pointer/alias analysis and dataflow analysis. Garbervetsky et al. [90] presented a framework whose intra-procedural

analysis is field-sensitive also. In contrast, the static analyses in [79, 82–84] are all field-insensitive.

Wang et al. [219] proposed a static taint analysis tool, ANTaint, using a 1-object sensitive analysis to only record the

types of variables being accessible along taint paths. Several other studies [82–84] use object-insensitive static analysis

to compute static dependencies in order to achieve better scalability overall.

Data Granularity. In several studies [13, 70, 83, 84, 104, 164, 211, 213, 215, 220, 229], the distributed-program analysis

worked at method instance level, i.e., using all of the execution instances of the exercised methods. Other studies

[30, 38, 39, 76, 79–84, 185] worked at method level, with only the first entry (i.e., program control entering a method)

and last returned-into (i.e., program control returning from a callee back into the caller) events of each executed method

being recorded and used. Depending on adjustable analysis configurations, two studies [83, 84] took both method

instance level and method level data. In addition, [30, 76, 79, 80, 82] utilized both dynamic data atmethod level and that at

statement level (i.e., mixed data granularity). In [20], the authors extended a real-time tracing framework to support the

analysis and visualization of the flow of messages; thus, the data is at the message level, even coarser than method level.

6.3.5 Analysis Data. There are three types of analysis data utilized by the surveyed program analysis techniques/tools

for distributed software, including Run-time Event, System Log, and (code or non-code) Artifact.

Run-time Event.Many studies (dynamic analyses) [12, 20, 24, 30, 38, 39, 41, 44, 70, 76, 77, 79–84, 111, 112, 125, 130, 135–

137, 143, 145, 146, 150, 151, 159, 164, 165, 172, 178, 179, 193, 195, 199, 202, 211, 212, 227, 229, 237] used message-passing

events (e.g., the event of receiving/sending a message from one process to another) as a major form of run-time events

in distributed system executions. Other studies [12, 24, 30, 38, 39, 41, 50, 76, 77, 79–84, 86, 104, 114, 125, 127, 130, 135–

137, 145, 146, 150, 151, 164, 172, 174, 178, 185, 188, 195, 199, 202, 211–213, 229, 231, 237] utilizedmethod-execution events

(e.g., the event of entering or exiting a method). Meanwhile, some other studies [50, 50, 114, 114, 188, 188, 236, 236]

exploited system events for (dynamically) analyzing distributed programs.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Survey of Program Analysis for Distributed Software Systems 15

For example, Cai and Thain [39] proposed DistIa, a dynamic analysis for distributed systems that exploits the

semantics of message-passing and the happens-before relationships between method-execution events, to compute the

change impacts of one method on others of a given distributed system. Instead, Kelbert and Pretschner [114] modeled

and implemented data-flow tracking across distributed systems via 1) monitoring system events, 2) tracking the flow

of data, 3) deciding whether data usage related system events should be allowed, delayed, inhibited, or modified, or

whether compensating actions need to be taken, and 4) enforcing the decisions.

System Log. In real-world distributed system executions, it is common that system-generated logs were produced—i.e.,

the logs are generated by the original system without post-deployment modifications (e.g., instrumentation), as opposed

to run-time events that result from instrumenting the code to capture relevant actions or occurrences during the

executions. Such logs were used in many prior studies [15, 16, 24, 70, 125, 143, 147, 151, 162, 163, 188, 208, 231, 236, 237].

For instance, Luo [147] presents approf, a non-intrusive dynamic-analysis tool that can reconstruct an approximate

run-time method-call hierarchy from the system-generated logs. In [109], the system logs are collected with adaptive

logging levels to enable anomaly detection. Cotroneo et al. [54] also provides the ability to utilize failure logs generated

by systems themselves to assist with run-time verification and failure detection, targeting cloud systems.

In contrast, some of the other studies [16, 24, 125, 150, 151, 193, 194, 208, 211] utilized instrumentation-based probing

logs—the logs produced by the probes inserted into the system via instrumentation. For example, Beschastnikh et al. [24]

introduced an approach to visualizing distributed system executions, which consists of (1) XVector that instruments a

distributed system to capture partial ordering information from the happens-before relations among system events and

(2) ShiViz that processes the resulting instrumentation-based logs and constructs time-space diagrams.

Artifact. Commonly, program analysis utilizes the code as the main form of artifact as the analysis data, regardless

of its being source code, binary code, or intermediate representations. Non-code artifacts have also been utilized by

some of the surveyed works. For instance, Chaturvedi et al. [47] proposed a service change classifier algorithm that

mines change information from two versions of an evolving distributed software system. In addition to the code that

implements the Web service itself, the analysis technique also utilized a specification that describes the Web service in

a non-programming language. Revelio [68] utilizes historical bug reports and debugging logs to train a deep neural

network to answer developers’ queries when debugging distributed systems. Likewise, COLA [122] takes a large set of

cloud system failure alerts as input to aggregate them hence helping developers sift out root causes using LLMs.

6.3.6 Analysis Scope. Some of our examined studies [91, 107, 179, 193, 212, 215] presented analysis techniques and tools

for distributed event-based systems (DEBS), which use events to organize the communications among their components

that typically run on different nodes [56]. For example, Popescu et al. [179] proposed Helios, an impact analysis

technique for DEBS, which combines component-level control flow analysis, system-level state-based dependency

analysis, and structural analysis that generates complete message dependence graphs. Since extracting information

relies on the specialized messaging interface in DEBS, the analysis only works with such a particular kind of systems.

In studies [11, 21, 95, 116, 175, 177, 200, 231, 233], the presented analyses are aimed at cloud systems, which are

generally considered an application variant of distributed systems [218]. For instance, Suminto et al. [200] presented

the cascading outage bug elimination (COBE) project to detect/eliminate cascading outage bugs to improve cloud

system availability. Likewise, a few studies [42, 71, 171, 190, 238, 239] are particularly focused on micro-services as

a special kind of distributed systems. In [184], the authors target distributed systems of a specific component-based

reconfiguration model, while the deadlock detection algorithm developed in [105] addresses MPI programs in particular.

A specialized study [20] targets distributed robot systems when developing a run-time tracing method.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Cai

Some of the studies [6, 41, 116, 154, 206, 207, 228] presented analysis techniques/tools for Internet of Things (IoT)

systems, which typically use embedded technologies to define environments where various physical objects interact

and cooperate with other ones [69]. For example, Alashjaee et al. [6] presented IoT-Taint, an IoT malware detection

framework based on dynamic taint analysis. Yavuz and Brant [228] proposed IFLOW, a static taint analysis for IoT

frameworks, to detect bugs and localize relevant components in those frameworks.

The analysis approaches proposed in all of the other surveyed studies generally work with common distributed

systems (§A.2), rather than only with specialized systems like DEBS [91, 107]. Meanwhile, distributed systems can be

categorized in other ways [203], with each category presenting unique characteristics and program analysis challenges—

and accordingly various analysis methods are potentially favorable. For instance, data-intensive systems process

and manage large volumes of data across distributed nodes, emphasizing scalability and parallel processing, while

microservices structure an application as a collection of small, independently deployable services each focusing on

specific business functionalities [43], thereby enhancing modularity and scalability. These characteristics introduce

unique challenges not typically encountered in traditional single-machine systems [30, 39, 84]. For example, due to

the emphasis on concurrency and synchronization, the need for managing simultaneous operations across distributed

nodes introduces complexities such as race conditions and deadlocks, necessitating specialized analysis techniques.

Also, unlike centralized systems, distributed systems must handle scenarios where individual components may fail

independently, requiring robust fault tolerance mechanisms. In response, specific program analysis methods are

particularly effective [96]. As an example, for data-intensive systems, dataflow analysis can optimize data processing

pipelines and ensure efficient data movement across nodes. For another example, dynamic analysis that monitors

inter-service communications and detects issues such as improper API usage or latency problems are desirable for

systems of microservice architectures.

6.4 Survey Result: Application

In the context of distributed systems, program analysis has enabled a range of concrete applications, including

Functional Testing, Fault Localization, Security Support, Performance Diagnosis, and Maintenance/Evolution Support.

6.4.1 Functional Testing. In several works [95, 104, 111, 127, 178, 213, 216, 232], the proposed techniques were aimed

to support system testing of distributed software. For instance, Lee and Levchenko [127] introduced a framework for

system testing, following black-box testing strategies; the framework provides a pattern-recognition-based deterministic

approach to replaying sequences of system events that may have caused defects and managing network messages by

proxying all connections through orchestrators. As another example, Pereira [178] presented Spider, an automated

approach that detects potential data races in distributed systems via SMT solving. Spider first performs a trace analysis

to eliminate useless events and then builds a causality model by encoding the happens-before relationships from the

rest of events. Spider utilizes an SMT solver to compute conflicting event pairs, so as to identify data races.

In addition, for unit testing of distributed software, Newsham et al. [165] proposed a tool chain that enables users to

develop assertions on interaction history written in regular expressions incorporating inter-process and inter-thread

dynamics in distributed systems.

6.4.2 Fault Localization. Some studies [77, 83, 84, 163, 213] were used to locate method-level faults. For example, Fu et

al. [84] presented Seads, a dynamic dependence analysis framework that works as an online dynamic analysis to solve

the fault localization problem (via dynamic slicing) against unbounded execution traces. Seads features with the ability

to automatically adjust itself to better cost-effectiveness tradeoffs (than otherwise) with user-specified time budgets.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A Survey of Program Analysis for Distributed Software Systems 17

This ability is realized by changing varied analysis parameters according to analysis time costs and precision. As a

result, the framework continuously provides method-level dependencies [35] to immediately empower fault localization.

In contrast, other studies [19, 30, 76, 79, 81, 82, 112, 219] work at a finer-grained level, reporting statement-level faults.

For instance, Wang et al. [219] proposed ANTaint, a static taint analysis tool for industrial service-oriented architecture

(SOA) applications. It improves the tool scalability by building a sound CG and provides a precise taint model by pruning

unrealizable paths, hence pinpointing statement-level faults with the correctness for 95% of production-benchmark

cases (the corresponding precision and recall was 95% and 98%, respectively).

Note that we only have a comparative qualification of fault localization regarding its granularity. In general, fine-

grained fault localization refers to identifying the precise elements within a system responsible for a fault, where the

localization granularity can vary depending on the system architecture and the methodologies employed. For example,

for fault localization focusing on the software’s codebase, statement-level localization is considered finer-grained than

method-level localization. In contrast, microservice architectures consist of numerous loosely coupled services, each

with its own set of quality metrics. In such systems, causal inference-based approaches have been developed to achieve

fine-grained root cause analysis at the quality-metric level (e.g., CPU usage, memory consumption, or response time).

6.4.3 Security Support. Program analysis has been a fundamental methodology for offering security support, which

we found is also the case with distributed-program analysis—in fact, it has served all of the different security objectives.

The analyses proposed in [2, 11, 13, 93, 114, 171, 177, 195, 220, 233] focused on distributed software confidentiality.

For example, Zavou et al. [233] presented Cloudopsy, a framework that remediates cloud users’ security concerns

through visualization and automated analysis based on the graphs produced by a visualization tool for data safety.

In a number of prior studies [2, 11, 13, 63, 116, 175, 177, 220], the program analysis techniques primarily concerned the

integrity of distributed systems. For instance, Acay et al. [2] proposed Viaduct, a tool that allows developers to annotate

a distributed system with information flow labels for specifying security policies regarding system integrity. Pilla et

al. [63] proposed a technique for system auditing to manage the complexity of distributed systems (blockchains) hence

defending the integrity of the systems. Kucab et al. [123] utilizes hardware capabilities to develop a new attestation

process for defending both static and runtime integrity of cloud deployments.

Some studies [99, 175, 177, 193] addressed the non-repudiation objective of distributed system security. For example,

Pappas et al. [175] proposed CloudFence, a framework aimed at preventing extensive security breaches so as to achieve

non-repudiation of cloud environments. CloudFence allows users to independently audit their data treatment through

third-party services, enables service providers to confine the use of sensitive information in well-defined domains, and

offers additional protection against inadvertent data leakage and unauthorized access.

The accountability objective of distributed software security also has been addressed as a main application goal [21, 99,

174, 193]. For instance, Hauser et al. [99] proposed an intrusion detection framework for validating the accountability of

distributed systems. Based on taint marking and implemented in the Linux kernel as a security module, the framework

uses tokens as security labels on network packets to carry taint information between multiple hosts.

Quite a few other studies [6, 30, 41, 76, 77, 79–82, 84, 86, 116, 154, 200, 206, 207, 219, 220] were aimed to address

authenticity problems with distributed systems and/or their executions. For example, Secure-CamFlow [116] focused

on securing the entire process of the data migration from devices to a cloud system, where the system data flow is

monitored through user-specified information flow control policies. It achieves user authenticity between the cloud

service provider (CSP) and users, via storing relevant security keys in a CSP directory with the signatures of a key

distribution center.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Cai

6.4.4 Performance Diagnosis. Most of the earlier works using distributed-program analysis to diagnose system per-

formance [16, 20, 24, 62, 87, 104, 108, 145, 147, 162, 189, 194, 208, 211, 234, 237] concerned the time cost of distributed

systems, including performance anomaly identification in cloud/IoT systems [16, 104, 211]. For example, Huang et al.

[104] presented an analysis tool named tprof, a performance profiler that aggregates the traces of a distributed system

to help diagnose time-wise performance inefficiencies (e.g., to identify the relatively slow regions of the system).

Neves et al. [164] proposed a black-box monitoring approach that gathers the detailed information about the processes

in a distributed system for helping the user diagnose performance problems but focusing on thememory that is available

to interim data and original cache. Performal [235] aims to verify whether the time latency property of a distributed

system is observed, proving rigorous upper bounds for the latency, using formal verification techniques.

Several other studies [45, 97, 151, 155, 164, 183, 208] considered network throughput as the focus of performance

issues. For instance, Rakotondravony et al. [183] presented an interactive and cost-aware visualization architecture for

monitoring data (e.g., network traffic) of distributed systems, benefiting developers to verify the system conformance to

network throughput requirements.

6.4.5 Maintenance/Evolution Support. Earlier works that provide this support often present analysis techniques that may

serve various maintenance/evolution (e.g., change-management) tasks. In particular, the analyses in [30, 38, 39, 47, 79, 81–

84, 91, 135–137, 179, 212, 238] can support change impact analysis [29] of distributed programs. For example, Chaturvedi

et al. [47] proposed an intelligent tool, AWSCM (short for Automatic Web Service Change Management), based on an

interface slicing algorithm that analyzes the change impact between two versions of an evolving distributed program. It

works by comparing the old and new versions through three classification labels "inserted", "deleted", and "modified".

Along with a service evolution analytic model, AWSCM supports change mining of evolving distributed systems.

Other studies [19, 21, 42, 80, 107, 112, 119] targeted the program comprehension task hence supported the mainte-

nance and evolution of distributed software systems. For instance, Fu et al. [80, 86] presented multiple interprocess

communications (IPC) metrics for common distributed programs computed via dynamic dependence analysis, which

help understand various quality factors/aspects of the programs. Cerny et al. [42] developed a static-analysis-based

approach to micro-service-specific architecture reconstruction to support system understanding via visualizations,

similar to the work in [26] achieving the same using static code analysis of the microservice mesh. The micro-service

coupling metric proposed by Zhong et al. [238] can also support the understanding of the system itself and its quality.

6.5 Survey Result: Evaluation

We examined two attributes in the evaluations of program analysis for distributed programs: Dataset and Metric.

6.5.1 Dataset. The dataset used in the evaluation of a distributed-program analysis at least includes the subject

distributed systems, and optionally (as required by dynamic analysis) their run-time inputs. Regarding the subjects

alone, existing analyses have been evaluated against Benchmark Suites and Real-world Systems.

Benchmark Suite. A large number of prior studies [24, 104, 108, 114, 129, 135–137, 162, 163, 172, 177–179, 206, 207,

211, 215, 219] utilized open/standard benchmark suites (usually created by others) in their evaluations. For example,

Beschastnikh et al. [24] used the Yahoo! Cloud Serving Benchmark (YCSB-B) [51] to evaluate their tool that creates

visualizations of distributed system executions. Liu [135] took benchmarks from the TaxDC suite [128], all triggered

by the communications across nodes of a distributed system, for evaluating DCatch—a technique to model and detect

message timing bugs in the system. Jia et al. [108] evaluated the training performance of deep neural network (DNN)

models by using image classification benchmarks from the CIFAR-10 [144] open dataset which contains 60k images.

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A Survey of Program Analysis for Distributed Software Systems 19

Other studies [2, 16, 90, 107, 127, 146, 165, 188, 193, 199] used benchmark suites that were self-curated (by the authors

themselves). For instance, to evaluate the software model checker FlyMC for testing distributed systems, Lukman et

al. [146] used self-curated bug benchmarks that included the numbers of bug-triggering events (measured as the bug

"depths"). Also, Newsham et al. [165] evaluated a framework that they proposed for developing assertions on threads’

interaction history in a distributed program using two self-curated benchmarks: (1) a message-passing benchmark

designed to measure overheads and (2) a verification benchmark designed to verify the time scalability according to the

historical sizes of threads. Nunez [170] only considered a simulated environment (using a simulator to model different

distributed systems architectures) in their evaluation. In [118], the API extension to a graph-based distributed-memory

runtime system (to track dependencies on opaque node-local objects and transfer runtime-managed data) was only

evaluated on synthetic benchmarks created by the authors.

Real-world System.Most of the surveyed papers utilized large-scale real-world distributed systems as their evaluation

subjects [12, 15, 22, 30, 38, 39, 41, 47, 62, 70, 76, 79–84, 87, 89, 91, 96–99, 111, 116, 125, 127, 129, 130, 135–137, 143, 145,

147, 150, 151, 154, 162, 164, 172, 175, 179, 185, 194, 195, 199, 200, 202, 207, 208, 211–213, 215, 227, 229, 231, 232, 234, 236].

For example, Stuardo et al. [199] used stable versions of four large real-world distributed systems (i.e., Cassandra,

HDFS, Riak, and Voldemort) to evaluate ScaleCheck—an approach for finding scalability bugs in large-scale distributed

systems. Li et al. [129] evaluated DFix, a timing-bug-fixing tool for distributed programs, against 22 harmful bugs from

four widely used real-world distributed systems: Cassandra, Hadoop, HBase, and ZooKeeper. Yuan et al. [232] studied a

sophisticated error [110] in the transaction protocol of a real-world distributed system Cassandra [40] by modeling

the error in Erlang and using Concuerror [49], a systematic testing tool for Erlang, to check against such errors using

randomized and systematic strategies, each of which performed 100,000 trials in the evaluation.

There were also some studies [19, 50, 159, 183, 189] using small-scale distributed systems as study subjects in their

evaluations. For instance, Mohapatra et al. [159] evaluated their slicing tool DSDJ, using seven small-scale distributed

Java programs. The largest of those subject programs only had 894 lines of code.

In a preliminary study on detecting technical debt based on anti-patterns [71], the authors use both an open-source

project as a benchmark and a real-world (train ticketing) system for evaluation. This is similar to the evaluation setup

in CFTaint [239], MirrorTaint [171], and DisTA [217]. Yet, overall it is not common that both benchmark suites and

real-world subjects are considered in the evaluation among our survey works. On other hand, there are more-theoretical

works (e.g., [210]) that do not have any empirical evaluations and used neither benchmark suites nor real-world systems.

6.5.2 Metric. Existing evaluations of distributed-program analyses typically seek to measure the effectiveness and/or

efficiency of the analysis technique/tool [53].

Effectiveness.Many studies [15, 38, 39, 79, 81–84, 91, 150, 211, 229, 237] used precision as a key metric in evaluating the

effectiveness of the proposed analysis. For example, Astekin et al. [15] gauged the analysis precision when evaluating

their technique for anomaly detection based on large distributed system logs.

Some of the surveyed studies [15, 38, 39, 79, 81–84, 91, 229] utilized recall as an effectiveness metric, typically in

addition to precision. For instance, Garcia et al. [91] proposed a static analysis technique, Eos, whose analysis results

were compared with the "ground truth" to compute the technique’s recall.

False positive rates (FPRs) were reported in some studies [91, 219, 229, 232], while False negative rates (FNRs) were

presented in others [91, 130, 135–137, 232], also as part of the effectiveness metrics. In two studies [91, 200], True positive

rates (TPRs) were also measured in their evaluations. For example, the evaluation of Eos [91] considered spurious

(false-positive, FP), missing (False negative (FN)), and matching (true positive (TP)) results (i.e., message types and

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Cai

intra-flow dependencies) as indicators of effectiveness. Suminto et al. [91, 200] also evaluated their cascading outage

bug elimination (COBE) technique in terms of the number of true positive (TP) cases.

In the evaluation of their analysis, Astekin et al. [15] reported the F1 score as a common accuracy metric, according

to the precision/recall of the evaluation results—i.e., F1 = 2 * (precision * recall) / (precision + recall).

Efficiency. As the most frequently used efficiency metric, time (e.g., analysis time cost in absolute terms, run-time

overhead as a ratio) has been widely used in the prior studies we surveyed [2, 12, 15, 19, 22, 24, 30, 38, 39, 62, 70, 79, 82–

84, 87, 90, 91, 96, 98, 104, 107, 108, 114, 116, 125, 127, 129, 130, 135–137, 143, 145–147, 150, 151, 154, 159, 162–165, 175,

177, 178, 183, 188, 189, 193, 194, 199, 200, 202, 206, 208, 211–213, 215, 219, 227, 231, 232, 234, 236, 237]. For example,

Pereira et al. [178] assessed the efficiency of Spider, a tool for identifying data races from distributed system traces,

by measuring its time and space overhead. Another example is Halfmoon [182], which optimizes log placement in

serverless-computing runtime system in order to reduce latency and run-time overhead caused by logging.

Several studies [22, 127, 147, 190] also measured the memory usage of their analysis techniques/tools for distributed

systems in the evaluations. For instance, Benavides et al. [22] showed the memory usage of capturing system events

using DProf, a dynamic analysis tool used to construct distributed performance profiles.

The analyses in [96, 147, 193, 208] used CPU usage data as efficiency metrics. As a specific example, Thereska et al.

[208] measured the CPU time consumed in the client and storage-nodes and found that the CPU utilization had a direct

relationship with the data encoding scheme selected in the client.

Some studies [107, 114, 147, 151, 208] measured network usage when the corresponding analysis techniques/tools

were evaluated. For instance, Kelbert et al. [114] measured the impact of their data usage control infrastructure in terms

of network throughput in their evaluation.

In addition, a number of our surveyed studies [2, 24, 79, 81–84, 90, 96, 146, 147, 151, 162–164, 188, 189, 199, 211, 212,

215] took into account the scalability of their analysis techniques/tools for distributed systems when evaluating the

efficiency. For example, Lukman et al. [146] evaluated the efficiency of their testing approach for distributed systems in

terms of the scalability of the tool named FlyMC.

Some of the studies [43, 71, 210] do not consider any of the above metrics as they are preliminary and/or exploratory

in nature. Thus, they did not come with official evaluation experiments/results. For instance, Cerny and Taibi [43]

discuss how static analysis may help support the development/management of micro-services as emerging ideas.

7 Analysis and Discussion of Survey Results

In this section, we systematize the state of knowledge about program analysis for distributed software, discussing

the limitations of existing works and challenges facing them. Based upon these discussions, we shed light on several

future research directions for overcoming/mitigating those limitations and challenges.

7.1 Limitations and Challenges of Existing Works

By examining the surveyed analyses of distributed software, we observed a number of common limitations suffered

by existing relevant works, signifying challenges concerning their technical approaches, applications, and evaluation.

7.1.1 Scalability and Cost-effectiveness. Program analysis for distributed software often faces scalability challenges.

The reason is that when the analysis works at a fine granularity—for desirably precise results, the typically large sizes

and great complexity of distributed systems imply high analysis costs [82], which makes it difficult for the analysis to

scale to large-scale, complex systems.

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A Survey of Program Analysis for Distributed Software Systems 21

Achieving highly cost-effective program analysis for distributed software is also challenging because the two factors

here (cost and effectiveness) often counteract and compete for a given analysis. Specifically, an efficient and scalable

analysis is usually coarse and imprecise, while a precise analysis is typically expensive and unscalable. For example,

DistIa [39], a lightweight dynamic (impact) analysis for distributed programs, monitors method events and their

timestamps during the program execution hence approximating dynamic dependencies among relevant methods.

DistIa is highly efficient and scalable, but its results (dependency sets) are very coarse (imprecise), leading to overall

low cost-effectiveness. For instance, Cai and Fu [30] developed D
2
Abs, a dynamic dependence analysis approach for

distributed programs. Its most-precise version, referred to as Doda, when applied to Voldemort [14]—an industry-scale

distributed key-value storage system, could not even finish the analysis in over 12 hours on a high-performance server

(i.e., Ubuntu 16.04.3 LTS workstation with four 2.67 GHz processors and 512 GB DRAM). Apparently, with this level of

efficiency, Doda is neither practically scalable nor cost-effective for industry-scale distributed systems [84].

Moreover, what aggravates the cost-effectiveness balancing challenge is that different systems, as well as the different

executions of the same system, often exhibit varying characteristics that necessitate various trade-offs between the cost

and effectiveness of the same analysis. Thus, one tradeoff rarely fits all scenarios universally, and different tradeoffs are

needed [30, 82]. D
2
Abs [30] attempts to address this need by mixing the use of various kinds of program information

hence offering various cost-effectiveness tradeoff options. Yet the technique only offers a few options, and the particular

option must be manually set up specifically for each system and execution. Seads [84] made a further advance in this

regard by automatically tuning the cost-effectiveness of a dynamic dependence analysis for distributed systems through

reinforcement learning. Nevertheless, Seads still faces the challenge of meeting the diverse cost-effectiveness balancing

needs of different systems with varying characteristics.

7.1.2 Test Availability andQuality. Recall that among all the surveyed program analyses for distributed software, the vast

majority are dynamic analysis (Figure 5), which is commonly known to rely on the test inputs that trigger the program

executions underlying the analysis. Accordingly, most of the surveyed analyses are limited by the availability and

quality of those run-time tests. For example, Fu and Cai [82] proposed FlowDist, a multi-staged dynamic information

flow analysis approach for distributed software systems, which aims to identify vulnerabilities exercised at runtime

during the system executions. Yet FlowDist’s actual potential and capabilities for vulnerability discovery depend on the

underlying test inputs’ coverage (of any vulnerabilities). If some vulnerabilities are not covered during the executions

being analyzed, those vulnerabilities would not be found. As another example, Yuan and Yang [232] presented Morpheus,

an effective concurrency testing technique for real-world distributed systems in Erlang, which relies on given test cases

to drive the tested systems hence high-level invariants to check against fail-stop errors and infinite loops. Any such

defects not covered by those test cases would be missed by the technique.

Intuitively, high-quality test inputs are essential for dynamic analysis of distributed software to be practically useful.

However, in practice such test inputs are not always available. In fact, many software packages for distributed systems

come with quite limited test cases [82, 83], which is a major challenge facing dynamic analysis for distributed systems.

7.1.3 Applicability and Accommodations of Various Architectures/Platforms. Program analysis techniques/tools for

distributed systems are overall different from those targeting single-process programs. The former are generally

much fewer than the latter in terms of the overall presence in the current literature, while the latter are mostly not

immediately/effectively applicable to distributed systems. This forms a sharp contrast with, and a standing gap between,

the increasing dominance of distributed systems among any software application domains and total availability of

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Cai

techniques/tools for those systems. Thus, a critical challenge here lies in how to adapt existing program analysis

techniques/tools to distributed systems—as one way of mitigating the gap.

Another applicability issue is that even among the relatively few techniques/tools that do work for distributed systems,

some only fit specific system architectures, hence suffering from limited applicability scopes. For instance, several static

analyses [91, 107, 179, 212] of distributed programs were designed for and only work with event-based distributed

systems [56, 160], neither immediately working with nor readily adaptable for common distributed systems. Achieving

this adaptation or developing techniques that work well with a good variety of distributed-system architectures remains

a standing challenge.

The third type of applicability issues has to do with the platform on which the distributed systems are supposed

to run. For example, Sapountzis et al. [189] implemented a dynamic information flow tracking (DIFT) framework,

MITOS, on top of FAROS, which is an existing open-source DIFT system running on Windows 7; this apparently limits

the operating system choice of users who want to use MITOS. As another example, Yuan and Yang [232] presented a

concurrency testing tool, Morpheus, with limits ways to support interacting with non-Erlang code. And Chaturvedi et

al. [47] proposed an interface slicing algorithm that only works with distributed programs written in the web services

description language (WSDL). Essentially, the platform (language runtime here) restrictions lead to applicability barriers.

Finally, it is not uncommon that the applicability of an analysis is limited by how it is designed or its inner workings.

One prevalent evidence is that a great portion of the surveyed dynamic analyses for distributed programs rely on static

instrumentation, hence requiring modifications of (i.e., inserting probes into) the original distributed systems. For

instance, most of the state-of-the-art tools implementing such analyses (e.g., [30, 32, 37–39, 77, 81–84]) must statically

probe for relevant run-time information to enable their analysis. These restrictions make them inapplicable to real-world

scenarios where the subject (e.g., production) systems cannot be modified. Getting over such applicability limitations is

certainly not trivial—the analyses would need to be largely redesigned.

7.1.4 Evaluations. A major challenge to distributed-program analysis among the surveyed papers lies in the weak-

nesses/limitations with their evaluations. Among others, only a very few subject systems were considered and/or

the scale of the subjects evaluated against was often too small; and in many cases, the evaluation subjects were not

real-world distributed systems. For example, Barpanda and Mohapatra [19] presented a dynamic slicing algorithm

for distributed object-oriented systems where they defined various kinds of dependencies induced by interprocess

communications. However, the algorithm was not evaluated against enterprise-scale distributed systems in the real

world. And its largest evaluation subject had only 918 source code lines. Likewise, Mohapatra et al. [159] proposed a

dynamic slicing technique, DSDJ, which was not evaluated against any large real-world systems as evaluation subjects.

The challenge was that, without being evaluated against a diverse set of real-world systems, the analysis techniques/tools

have not been concinvingly assessed against their practical effectiveness and scalability.

In addition, some studies did not present reasonably sufficient evaluation results. For example, in the evaluation of

[154], Mandal et al. only reported information flow descriptions and cross-program taint analysis time on the edge

software and mobile applications, but there was not any result on accuracy, such as precision, recall, or F1, being

reported in the paper. Another example is [47], where only the reduction ratios of test cases were provided, but no

accuracy and/or performance metrics such as analysis time costs, overheads, etc., are reported. These limitations

increase threats to the validity of results reported in respective studies that cannot be easily justified/mitigated.

Notably, as recently found in the area of software vulnerability analysis [169], open science is not well practiced in

the field of program analysis for distributed systems according to our survey. The vast majority of the surveyed papers

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Survey of Program Analysis for Distributed Software Systems 23

did not provide accessible artifacts such as code and datasets developed/used in their evaluation. This significantly

hinders the advancement of the field with respect to the critical merits of reproducible and replicable research.

7.1.5 Practical Effectiveness. Among those surveyed prior works that were relatively more sufficiently evaluated, we

also identified, from the evaluation results, a lack of efficiency and/or effectiveness for wider practical adoptions as a

common limitation/challenge.

First, some of the existing analyses exhibited lower effectiveness in certain use scenarios than in others when

compared to peer approaches. In [193], Sigelman et al. introduced Dapper, Google’s tracing infrastructure for distributed

systems, targeting on-line systems rather than off-line data-intensive workloads, such as those that MapReduce fits [59].

Dapper is effective in determining system parts experiencing slowdowns but insufficient for finding the root causes. In

[87], Fukuda et al. developed an agent-based data-discovery approach, MASS (short for multi-agent spatial simulation),

for distributed data analysis. While meritorious, MASS cannot handle non-numeric data as effectively as MapReduce

and Apache Spark [173] do. Thereska et al. [208] proposed an infrastructure, Stardust, for collecting and tracking

traces in distributed systems. Yet Stardust does not help more than known software profiling tools for finding/fixing

algorithmic problems—e.g., a poor networking layer implementation may mean that requests handling spends most of

the time using network resources. Stardust identifies the network as the source of latency but does not have better

suggestions for fixing the problems compared to gprof under Linux [73, 94].

Second, some of the current analyses are not fully automated, requiring human intervention during the analysis

or much additional (e.g., post-analysis) effort. Toslali et al. [211] developed a variance-driven automated instrumen-

tation framework, VAIF, for distributed applications. The framework aims at automatically searching for possible

instrumentation space choices for diagnosing performance problems. However, VAIF requires additional assistance

for asynchronous design patterns if any latency is not reflected in the response time of critical paths. Moreover, VAIF

cannot identify whether observed variances are caused by the application code itself or low-level code (e.g., kernel

code); nor can it identify transient/infrequent problems that disappear before VAIF is used.

Third, some of the extant analysis approaches, especially those based on purely static analysis, face practicality

challenges due to great imprecision or low recall. Wang et al. [219] proposed ANTaint, a static taint analysis approach

for Java applications. An effectiveness challenge with this approach is that it suffers from great imprecision when

analyzing taint flow paths that involve multiple systems (because its scanner cannot recognize all possible data types in

the given application that includes such paths). Similarly, Mandal et al. [154] presented a cross-program taint analysis

approach for Internet of Things (IoT) systems, only considering communication channels as follows: a method is

conservatively assumed to be tainted if it reads data from a channel and any tainted data also reached the channel. The

approach suffers excessive imprecision against large industrial IoT systems using one channel for multiple different

communications, because the taint analysis is overly conservative for those systems. Concerning recall, Lu et al. [143]

developed an automatic tool, CloudRaid, to find distributed concurrency bugs by automatically analyzing the message

orderings that may expose errors. However, it cannot guarantee that the pruned message ordering will not trigger any

error. Also, it cannot detect bugs triggered when instrumenting delays in the middle of bug-message handlers.

7.2 Future Research Directions

Following the limitations and challenges with existing distributed-program analysis techniques/tools surveyed, we

now discuss important future research problems accordingly, while offering insights into the directions that may be

fruitful in addressing those problems.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Cai

7.2.1 Balancing Cost-Effectiveness and Achieving Scalability. As we revealed as discussed above, balancing cost and

effectiveness while achieving practical scalability is a fundamental challenge facing distributed-program analysis. From

some preliminary effort being invested towards dealing with this challenge, we identified several promising directions

in developing future scalable, cost-effective program analysis for distributed systems.

Variable cost-effectiveness. To address the challenge of balancing the analysis effectiveness and cost, several earlier

approaches for single-process software (e.g., DiaPro [33, 37], Diver [28, 32]) offer variable cost-effectiveness tradeoffs

to provide flexible choices and hence satisfy varying user requirements and budgets to some extent. Following a similar

path but targeting distributed systems, D
2
Abs[30] provides four versions of a dynamic dependence analysis each

offering a different level of cost-effectiveness tradeoff. While its current four options in total may still not meet all the

varying cost-effectiveness needs for the diverse world of distributed systems, D
2
Abs did point to a rewarding avenue

toward future research for addressing the challenge here—future distributed-program analysis may provide a number

of (potentially more than four) variants (e.g., via algorithmic configuration variations) that each works at a unique level

of cost-effectiveness. In this way, the analysis tool will fit more needs and use scenarios.

Self-adaptive design. While valuable as a mitigating solution, providing multiple cost-effectiveness tradeoff options

tends to be a short-term strategy—the options need to be manually predefined and are difficult to be predefined in

advance such that they meet the various needs of users; it is also hard to predict how many options are sufficient.

A longer-term solution, as recently debuted in Seads [84], is to adaptively and automatically set cost-effectiveness

tradeoffs for the varying given distributed system executions. To achieve practical scalability and cost-effectiveness,

Seads automatically adjusts its analysis configurations during the program execution, using a type of reinforcement

learning (i.e., Q-learning) strategy. Seads was found to lie in between DistIa and D
2
Abs; that is to say, Seads is more

precise than DistIa and more scalable than D
2
Abs.

Although showcasing a promising methodology at a very-high level, Seads suffers from low precision due to delays

in tuning its configuration, making the current query unable to benefit from the higher-precision configuration (the

tuning only benefits future queries). Seads cannot adapt to different subject executions to push the precision by

maximally utilizing the budget due to its using generic reinforcement learning in a black-box manner, applying the

same algorithmic setting (e.g., reward initialization) for any given subject and execution. Also, it does not adapt to

different subjects at all—it uses a constant reward function and initializes it the same way regardless of what subject

system is fed to the analysis. In this sense, Seads is not a truly self-adaptive analysis.

Looking forward, we believe a more promising future direction is to develop truly self-adaptive analysis, which should

automatically monitor relevant changes in dynamic/uncertain environments and then adapt itself to continuously meet

cost and effectiveness requirements for ensuring optimal adaptations. Importantly, such analyses should adapt to both

varying subjects and variations (in run-time behaviors) during a particular subject execution. As a specific example in

this future direction, one may realize the true self-adaptation by considering and controlling algorithmic configurations

in a much more fine-grained manner than what Seads currently does. For example, in reference to the configuration

design in Seads [84], instead of considering only binary values for each configuration parameter, we may consider more

options (e.g., the various depth values for the calling context for context-sensitivity rather than just context-sensitive

versus context-insensitive; similarly, the degree of object sensitivity can be considered as well). The finer granularity

here will lead to finer tuning of cost-effectiveness tradeoff hence more likely attaining optimal self-adaptation.

Leveraging machine learning and deep learning.Machine learning (ML), especially deep learning (DL), has been

applied to and achieved significant successes in advancing program analysis (e.g., source code analysis) [225], including

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

A Survey of Program Analysis for Distributed Software Systems 25

that for distributed systems. One immediate example is the ML-based cost-effectiveness balancing in Seads [84] as we

already discussed extensively. The nature of ML also makes it suitable for predicting the dynamics of distributed software

hence further assisting with understanding the systems. For example, studies [15, 67, 83, 85] utilize ML algorithms,

including reinforcement learning, supervised learning, unsupervised learning, and neural network based techniques, to

analyze distributed systems of different kinds (e.g., common distributed systems and cloud systems).

Furthermore, deep learning (DL) has gained growing momentum in recent years because of its significant promise

for automatically adapting agents to varying environments. In the context of reinforcement learning, deep learning

approaches typically exploit deep neural networks to model their decision-making capabilities by learning policy

functions; one main benefit of using DL is to encode high-dimensional (complex) environments. More broadly, to

capture the (static and/or dynamic) characteristics of distributed software and then analyze the software, DL may be a

good design choice. For instance, studies [108, 236] have explored relevant DL techniques for enhancing respective

distributed program analysis. In fact, according to our survey results (Figure 5), ML/DL currently has only seen little

use in distributed-program analysis; we believe much potential has yet to be tapped and should be in the future.

7.2.2 Accommodating Emerging System Architectures. The landscape of real-world distributed systems continues to

expand quickly, spawning a growing diversity of such systems in terms of system architectures. For example, many

Internet of Things (IoT) systems/platforms (e.g., AWS IoT, FIWARE, IBM Watson IoT Platform, Microsoft Azure IoT

Hub, OpenMTC, SiteWhere) have been developed and deployed in recent years, which has drawn much attention from

the relevant research (e.g., systems and security) communities. Developing program analysis and its applications for IoT

systems is a timely future research theme. For another example, edge computing has emerged lately as a new system

architecture in the general domain of distributed computing, which features several advantages over the traditional

(cloud-based) computing paradigm, such as improved response time and reduced energy consumption [192]. Thus, the

growing need for program analysis techniques/tools targeting edge-computing systems is also on the horizon.

Similar needs are also emerging for block-chain systems and distributed machine learning (e.g., federated learning)

systems. Currently, program analyses working with these systems are rare. Yet given the historical evidence of how

program analysis has enabled the wide range of useful and powerful applications, we believe that future research on

distributed-program analysis should attend these new/emerging computing architectures of distributed systems.

7.2.3 Testing Techniques. Asmentioned earlier, dynamic analysis has demonstrated tremendous successes in supporting

the development and quality assurance of distributed systems in the past—again, the majority of the surveyed distributed-

program analyses are dynamic. Yet as we discussed earlier (§7.1), the actual capabilities and benefits of those dynamic

analysis techniques/tools are bounded by the availability and quality of run-time test inputs that trigger the system

executions underlying the analysis. And the current status is that the availability and quality are critically lacking.

Thus, an urgent and promising research direction is to focus on improving the quality of distributed system run-

time input data, including providing them where they are not readily available. One viable approach is to manually

collect/curate such inputs, but a more promising avenue is to automatically generate them. In particular, fuzzing as a

random-testing (i.e., test-generation) technique has greatly evolved and is becoming increasingly popular for various

software application domains. Yet, practical fuzzers for distributed systems are not as available as they should be—even

the most recently developed fuzzer [133] which works with multi-language systems still do not work sufficiently with

distributed systems. Thus, future research should arise to fill this critical gap.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Cai

7.2.4 Evaluations. According to our survey results and our analysis of them, an urgent need observed is that of

evaluation subjects that represent real-world distributed systems and their execution scenarios. In a few prior works [2,

16, 90, 107, 127, 146, 165, 188, 193, 199], some benchmark suites were developed for evaluating corresponding program

analysis techniques/tools for distributed software. As a specific example, Newsham et al. [165] developed two benchmarks

designed to measure overheads and verify the time scalability with history size, respectively. However, these benchmarks

are mostly not representative of real-world systems. Thus, development/curation of realistic benchmarks should be part

of future research on distributed-program analysis. Some recent works, although not addressing distributed systems,

demonstrated a fruitful direction in this regard—automatically generating such benchmarks [167, 168] or curating a

standard benchmark manually [131, 132]. Similar efforts in future research would be highly valuable for advancing the

field of distributed-program analysis as well.

Besides filling the gap regarding benchmarks, another impending need for addressing limitations with evaluating

existing distributed-program analysis techniques/tools is to develop widely recognized/accepted evaluation metrics and

even empirical standards. The lack of such commonly adopted metrics/standards has impeded the progress of program

analysis for distributed software, as the use of inconsistent and widely-ranging metrics/procedures make the existing

evaluations hard to validate and existing techniques/tools hard to compare. In [80], Fu and Cai defined a novel set of

metrics for common distributed systems aimed to measure/characterize their interprocess communications (IPC), a

critical aspect of their run-time behaviors. While those metrics have not been shown to be immediately useful for

evaluating distributed-program analysis, effort of similar spirit should be promoted in future research.

8 Threats to Validity

In the previous sections, we have presented a series of findings from our article selection, attribution framework

formulation, and the attribution of surveyed papers. Given the manual nature of this entire workflow and the scale of

our survey, we do not claim that we can rule out our potential biases—other researchers conducting the same survey

might end up with with different findings and conclusions. Thus, our survey results are subject to various validity

threats, pertaining to each of the major steps/phases of our survey workflow (as shown in Figure 3), as elaborated below.

Literature search. In the process of collecting relevant articles, we selected papers through keyword searches. One

threat is related to our search engine (i.e., Google Scholar) not being designed for supporting literature reviews [25, 198]

hence possibly having produced errors in our literature search. We mitigated this threat by utilizing multiple keywords

mentioned earlier (§4.1). Furthermore, we have attempted to increase the representativeness of papers selected by the

forward and backward snowballing process that identified additional relevant articles cited by or citing original papers

(§4.2). Also, selection (inclusion and exclusion) criteria have been exploited to reduce this threat (§4.3).

Survey taxonomy derivation. A potential threat to the validity of our survey taxonomy derivation is that this process

is subjective and also depends on the search keywords used in the Phase 1 of our literature search (Figure 4). However,

the resulting derivation can be validated through its usefulness as reflected in our taxonomy/characterization results. In

addition, we have carefully checked corresponding attributes and items in each aspect within the taxonomy, as listed in

Table 1, demonstrating the applicability of our survey taxonomy derivation process.

Paper attribution. Like our survey taxonomy derivation, the paper attribution process is also subjective and may

be difficult to reproduce. A threat to validity in this respect is the duplication in the process and the resulting paper-

attribution statistics. If one and the same paper (content) was published multiple times (e.g., via extension/revision) in

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

A Survey of Program Analysis for Distributed Software Systems 27

different conference proceeding(s), journal(s), and other digital libraries, it should be taken into account only once in

the statistics. We have addressed this threat by ensuring uniqueness in the paper selection and attribution.

The bias of the original researchers concerning certain concepts and choices may also be a potential threat to the

validity of our survey results. As a remedy, we have examined the relations among attributes and items in Table 4,

Table 5, and Table 6, to avoid confounding overlaps. For example, the definitions of a common distributed system and a

specialized distributed system are mutually exclusive (§A.2). In other words, a distributed system cannot be both a

common distributed system and a specialized distributed system at the same time.

Survey result analysis. During our analysis of (i.e., discussion on) the survey results, we might have missed certain

limitations/challenges of existing work and hence ignored corresponding future research directions. This implies a

potential threat. To mitigate the threat, after carefully reviewing the selected articles, we recorded/listed all relevant

limitations and challenges in the field of program analysis for distributed software, and then thought over across the

aspects and attributes in our taxonomy when identifying future research directions according to how to overcome

those limitations/challenges.

9 Conclusion

In this paper, we presented the first systematic literature survey on program analysis for distributed software systems.

We selected 153 articles spanning from 1995 to 2024, derived a novel taxonomy, and characterized those articles on the

basis of the taxonomy including three main aspects (i.e., approach, application, and evaluation). Then, we mapped the

current relevant literature to each attribute under every aspect and, if applicable, each item (sub-attribute) under every

attribute, while summarizing major findings accordingly. Next, we went above the immediate observations and discussed

our insights into the key limitations and challenges with existing techniques/tools in the field of distributed-program

analysis. Finally, in accordance with the discussion and following the insights, we shed light on future research directions

in this field towards addressing open problems corresponding to those limitations/challenges, concerning the technical

development, empirical evaluation, and wider applications of program analysis for distributed software systems.

Acknowledgment

We thank our associate editor and reviewers for insightful and constructive comments. This work was supported in

part by the U.S. Office of Naval Research (ONR) under Grant N000142212111 and N000142512252.

References
[1] Jenny Abrahamson, Ivan Beschastnikh, Yuriy Brun, and Michael D Ernst. Shedding light on distributed system executions. In Companion

Proceedings of the 36th International Conference on Software Engineering, pages 598–599, 2014.
[2] Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C Myers, and Elaine Shi. Viaduct: An Extensible, Optimizing Compiler for Secure Distributed

Programs. In Proceedings of ACM SIGPLAN International Conference on Programming Language Design and Implementation, pages 740–755, 2021.
[3] Emma Ahrens, Marius Bozga, Radu Iosif, and Joost-Pieter Katoen. Local Reasoning About Parameterized Reconfigurable Distributed Systems.

Proceedings of the ACM on Programming Languages, 6(130):145–174, 2022.
[4] Abdel-Rahman Al-Ghuwairi, Yousef Sharrab, Dimah Al-Fraihat, Majed AlElaimat, Ayoub Alsarhan, and Abdulmohsen Algarni. Intrusion Detection

in Cloud Computing Based on Time Series Anomalies Utilizing Machine Learning. Journal of Cloud Computing, 12(1):127, 2023.
[5] Abdullah Al Maruf, Alexander Bakhtin, Tomas Cerny, and Davide Taibi. Using Microservice Telemetry Data For System Dynamic Analysis. In

International Conference on Service-Oriented System Engineering, pages 29–38, 2022.
[6] Abdullah Mujawib Alashjaee, Salahaldeen Duraibi, and Jia Song. IoT-Taint: IoT Malware Detection Framework Using Dynamic Taint Analysis. In

2019 International Conference on Computational Science and Computational Intelligence (CSCI), pages 1220–1223. IEEE, 2019.
[7] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers Principles, Techniques & Tools. Pearson Education, 2007.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Cai

[8] Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis without the whole program. In European Conference on Object-Oriented
Programming, pages 378–400. Springer, 2013.

[9] John R Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of Control Dependence to Data Dependence. In Proceedings of the 10th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 177–189, 1983.

[10] Fahad Alqahtani, Salahaldeen Duraibi, Predrag T Tošić, and Frederick T Sheldon. Information Flow Control to Secure Data in the Cloud. In 2020
International Conference on Computational Science and Computational Intelligence (CSCI), pages 1288–1294. IEEE, 2020.

[11] Fahad Alqahtani and Frederick Sheldon. CloudMonitor: Data Flow Filtering as a Service. In 2019 International Conference on Computational Science
and Computational Intelligence (CSCI), pages 1454–1457. IEEE, 2019.

[12] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and David Maier. Blazes: Coordination Analysis and Placement for Distributed Programs. ACM
Transactions on Database Systems (TODS), 42(4):1–31, 2017.

[13] Sepehr Amir-Mohammadian. A Semantic Framework for Direct Information Flows in Hybrid-Dynamic Systems. In Proceedings of the 7th ACM on
Cyber-Physical System Security Workshop, pages 5–15, 2021.

[14] Apache. Voldemort. https://github.com/voldemort, 2024. Accessed: 2024-07-24.

[15] Merve Astekin, Harun Zengin, and Hasan Sözer. Evaluation of Distributed Machine Learning Algorithms for Anomaly Detection from Large-Scale

System Logs: A Case Study. In 2018 IEEE international Conference on Big Data (Big Data), pages 2071–2077. IEEE, 2018.
[16] Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Megginson, Ayse K Coskun, and Raja R Sambasivan. An automated, cross-layer

instrumentation framework for diagnosing performance problems in distributed applications. In Proceedings of the ACM Symposium on Cloud
Computing, pages 165–170, 2019.

[17] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting with dynamic information flow analysis. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), volume 10, pages 1–14, 2010.

[18] Bamberg University. Open Chord. http://sourceforge.net/projects/open-chord/, 2024. Accessed: 2024-07-24.

[19] Soubhagya S. Barpanda and Durga P. Mohapatra. Dynamic slicing of distributed object-oriented programs. IET software, 5(5):425–433, 2011.
[20] Christophe Bédard, Pierre-Yves Lajoie, Giovanni Beltrame, and Michel Dagenais. Message Flow Analysis with Complex Causal Links for Distributed

ROS 2 Systems. Robotics and Autonomous Systems, 161:104361, 2023.
[21] Luciano Bello and Alejandro Russo. Towards a Taint Mode for Cloud Computing Web Applications. In Proceedings of the 7th Workshop on

Programming Languages and Analysis for Security, pages 1–12, 2012.
[22] Zachary Benavides, Keval Vora, and Rajiv Gupta. DProf: Distributed Profiler with Strong Guarantees. Proceedings of the ACM on Programming

Languages, 3(OOPSLA):1–24, 2019.
[23] Ivan Beschastnikh, Yuriy Brun, Michael D Ernst, and Arvind Krishnamurthy. Inferring models of concurrent systems from logs of their behavior

with CSight. pages 468–479, 2014.

[24] Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy Brun, and Michael D Ernst. Visualizing Distributed System Executions. ACM
Transactions on Software Engineering and Methodology (TOSEM), 29(2):1–38, 2020.

[25] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. Lessons from Applying the Systematic Literature

Review Process within the Software Engineering Domain. Journal of systems and software, 80(4):571–583, 2007.
[26] Vincent Bushong, Dipta Das, and Tomas Cerny. Reconstructing The Holistic Architecture Of Microservice Systems Using Static Analysis. In

International Conference on Cloud Computing and Services Science, 2022.
[27] Haipeng Cai. Cost-effective Dependency Analysis for Reliable Software Evolution. Ph.d. dissertation, University of Notre Dame, 2015.

[28] Haipeng Cai. Hybrid program dependence approximation for effective dynamic impact prediction. IEEE Transactions on Software Engineering,
44(4):334–364, 2017.

[29] Haipeng Cai. A reflection on the predictive accuracy of dynamic impact analysis. In 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 562–566. IEEE, 2020.

[30] Haipeng Cai and Xiaoqin Fu. D
2
Abs: A framework for dynamic dependence analysis of distributed programs. IEEE Transactions on Software

Engineering, 48(12):4733–4761, 2022.
[31] Haipeng Cai, Siyuan Jiang, Raul Santelices, Ying-Jie Zhang, and Yiji Zhang. SensA: Sensitivity analysis for quantitative change-impact prediction.

In 2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation, pages 165–174. IEEE, 2014.
[32] Haipeng Cai and Raul Santelices. Diver: Precise dynamic impact analysis using dependence-based trace pruning. In Proceedings of International

Conference on Automated Software Engineering, pages 343–348, 2014.
[33] Haipeng Cai and Raul Santelices. A framework for cost-effective dependence-based dynamic impact analysis. In 2015 IEEE 22nd International

Conference on Software Analysis, Evolution, and Reengineering (SANER), pages 231–240. IEEE, 2015.
[34] Haipeng Cai and Raul Santelices. TracerJD: Generic Trace-based Dynamic Dependence Analysis with Fine-grained Logging. In Proceedings of

International Conference on Software Analysis, Evolution, and Reengineering, pages 489–493, 2015.
[35] Haipeng Cai and Raul Santelices. Method-level program dependence abstraction and its application to impact analysis. Journal of Systems and

Software, 122:311–326, 2016.
[36] Haipeng Cai, Raul Santelices, and Siyuan Jiang. Prioritizing change-impact analysis via semantic program-dependence quantification. IEEE

Transactions on Reliability, 65(3):1114–1132, 2015.

Manuscript submitted to ACM

https://github.com/voldemort
http://sourceforge.net/projects/open-chord/

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A Survey of Program Analysis for Distributed Software Systems 29

[37] Haipeng Cai, Raul Santelices, and Douglas Thain. DiaPro: Unifying Dynamic Impact Analyses for Improved and Variable Cost-Effectiveness. ACM
Transactions on Software Engineering and Methodology (TOSEM), 25(2):1–50, 2016.

[38] Haipeng Cai and Douglas Thain. DistEA: Efficient Dynamic Impact Analysis for Distributed Systems. arXiv preprint arXiv:1604.04638, 2016.
[39] Haipeng Cai and Douglas Thain. DistIA: A Cost-Effective Dynamic Impact Analysis for Distributed Programs. In 2016 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 344–355. IEEE, 2016.
[40] Apache Cassandra. Apache cassandra. Website. Available online at http://planetcassandra.org/what-is-apache-cassandra, 13, 2014.
[41] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan, Patrick McDaniel, and A Selcuk Uluagac. Sensitive Information

Tracking in Commodity IoT. In 27th USENIX Security Symposium (USENIX Security 18), pages 1687–1704, 2018.
[42] Tomas Cerny, Amr S Abdelfattah, Vincent Bushong, Abdullah Al Maruf, and Davide Taibi. Microvision: Static Analysis-Based Approach To

Visualizing Microservices In Augmented Reality. In International Conference on Service-Oriented System Engineering, pages 49–58, 2022.
[43] Tomas Cerny and Davide Taibi. Microservice-Aware Static Analysis: Opportunities, Gaps, and Advancements. In Joint Post-Proceedings of the

International Conference on Microservices, 2023.
[44] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM, 43(2):225–267, 1996.

[45] Rong Chang, Chuanxu Yang, and Yuankang Lei. An adaptive selection method for repair nodes in distributed storage systems. In Journal of
Physics: Conference Series, volume 1744, page 032209. IOP Publishing, 2021.

[46] Ned Chapin, Joanne E Hale, Khaled Md Khan, Juan F Ramil, and Wui-Gee Tan. Types of software evolution and software maintenance. Journal of
software maintenance and evolution: Research and Practice, 13(1):3–30, 2001.

[47] Animesh Chaturvedi, Aruna Tiwari, Dave Binkley, and Shubhangi Chaturvedi. Service Evolution Analytics: Change and Evolution Mining of a

Distributed System. IEEE Transactions on Engineering Management, 68(1):137–148, 2020.
[48] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong Gao, Hao Fan, and Ming Wen. Automatic Root Cause

Analysis via Large Language Models for Cloud Incidents. In European Conference on Computer Systems, pages 674–688, 2024.
[49] Maria Christakis, Alkis Gotovos, and Konstantinos Sagonas. Systematic Testing for Detecting Concurrency Errors in Erlang Programs. In 2013

IEEE Sixth International Conference on Software Testing, Verification and Validation, pages 154–163. IEEE, 2013.
[50] Laurent Christophe, Coen De Roover, Elisa Gonzalez Boix, and Wolfgang De Meuter. Orchestrating Dynamic Analyses of Distributed Processes for

Full-Stack JavaScript Programs. ACM SIGPLAN Notices, 53(9):107–118, 2018.
[51] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In

Proceedings of the 1st ACM symposium on Cloud computing, pages 143–154, 2010.
[52] Marshall Copeland, Julian Soh, Anthony Puca, Mike Manning, and David Gollob. Microsoft azure. New York, NY, USA:: Apress, 2015.
[53] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer Koschke. A Systematic Survey of Program Comprehension through

Dynamic Analysis. IEEE Transactions on Software Engineering, 35(5):684–702, 2009.
[54] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto Natella. Run-Time Failure Detection via Non-Intrusive Event Analysis in a

Large-Scale Cloud Computing Platform. Journal of Systems and Software, 198:111611, 2023.
[55] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed Systems: Concepts and Design. Addison-Wesley Publishing

Company, 5th edition, 2011.

[56] Valentin Cristea, Florin Pop, Ciprian Dobre, and Alexandru Costan. Distributed Architectures for Event-Based Systems. In Reasoning in event-based
distributed systems, pages 11–45. Springer, 2011.

[57] Ismet Dagli, Andrew Depke, Andrew Mueller, Md Sahil Hassan, Ali Akoglu, and Mehmet Esat Belviranli. Contention-Aware Performance Modeling

for Heterogeneous Edge and Cloud Systems. In Proceedings of the Workshop on Flexible Resource and Application Management on the Edge, pages
27–31, 2023.

[58] Cleidson RB de Souza and David F Redmiles. An Empirical Study Of Software Developers’ Management Of Dependencies And Changes. In

Proceedings of the 30th international conference on Software engineering, pages 241–250, 2008.
[59] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[60] Dorothy E Denning and Peter J Denning. Certification of Programs for Secure Information Flow. Communications of the ACM, 20(7):504–513, 1977.

[61] Chandan Dhal, Xiaoqin Fu, and Haipeng Cai. A Control-Theoretic Approach to Auto-Tuning Dynamic Analysis for Distributed Services. In

IEEE/ACM International Conference on Software Engineering: Companion, pages 330–331, 2023.
[62] Praveen M Dhulavvagol, Vijayakumar H Bhajantri, and SG Totad. Performance Analysis of Distributed Processing System using Shard Selection

Techniques on Elasticsearch. Procedia Computer Science, 167:1626–1635, 2020.
[63] Piergiuseppe Di Pilla, Remo Pareschi, Francesco Salzano, and Federico Zappone. Listening to What the System Tells Us: Innovative Auditing for

Distributed Systems. Frontiers in Computer Science, 4:1020946, 2023.
[64] Luca Di Stefano, Rocco De Nicola, and Omar Inverso. Verification Of Distributed Systems Via Sequential Emulation. ACM Transactions on Software

Engineering and Methodology, 31(3):1–41, 2022.
[65] Edsger W Dijkstra, Wim HJ Feijen, and A.J.M Van Gasteren. Derivation of a Termination Detection Algorithm for Distributed Computations.

Information processing letters, 16(5):217–219, 1983.
[66] Edsger W Dijkstra, Wim HJ Feijen, and A.J.M Van Gasteren. Derivation of a Termination Detection Algorithm for Distributed Computations. In

Control Flow and Data Flow: concepts of distributed programming, pages 507–512. Springer, 1986.
[67] Frank Doelitzscher. Security Audit Compliance for Cloud Computing, 2014.

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Cai

[68] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, Shiv Saini, George Varghese, and Ravi Netravali. Revelio: Ml-Generated Debugging

Queries For Finding Root Causes In Distributed Systems. Proceedings of Machine Learning and Systems, 4:601–622, 2022.
[69] Mohsen Dorodchi, Maryam Abedi, and Bojan Cukic. Trust-based Development Framework for Distributed Systems and IoT. In Proceedings of the

40th Annual Computer Software and Applications Conference (COMPSAC), volume 2, pages 437–442. IEEE, 2016.

[70] Tânia Esteves, Francisco Neves, Rui Oliveira, and João Paulo. Cat: content-aware tracing and analysis for distributed systems. In Proceedings of the
22nd International Middleware Conference, pages 223–235, 2021.

[71] Hongzhou Fang, Yuanfang Cai, Rick Kazman, and Jason Lefever. Identifying Anti-Patterns in Distributed Systemswith Heterogeneous Dependencies.

In International Conference on Software Architecture: Companion, pages 116–120, 2023.
[72] Wenhan Feng, Qiugen Pei, Yu Gao, Dong Wang, Wensheng Dou, Jun Wei, Zheheng Liang, and Zhenyue Long. FaultFuzz: A Coverage Guided Fault

Injection Tool for Distributed Systems. In IEEE/ACM International Conference on Software Engineering: Companion, pages 129–133, 2024.
[73] Jay Fenlason and Richard Stallman. GNU gprof. GNU Binutils. Available online: http://www.gnu.org/software/binutils, 1988.
[74] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The Program Dependence Graph and Its Use in Optimization. ACM Transactions on

Programming Languages and Systems (TOPLAS), 9(3):319–349, 1987.
[75] Colin J Fidge. Timestamps in message-passing systems that preserve the partial ordering, 1987.

[76] Xiaoqin Fu. On the Scalable Dynamic Taint Analysis for Distributed Systems. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 1247–1249, 2019.

[77] Xiaoqin Fu. Towards Scalable Defense of Information Flow Security for Distributed Systems. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 438–442, 2019.

[78] Xiaoqin Fu. Scalable and Cost-Effective Data Flow Analysis for Distributed Software: Algorithms and Applications. Ph.d. thesis, Washington State

University, 2022.

[79] Xiaoqin Fu and Haipeng Cai. A Dynamic Taint Analyzer for Distributed Systems. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 1115–1119, 2019.

[80] Xiaoqin Fu and Haipeng Cai. Measuring Interprocess Communications in Distributed Systems. In 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC), pages 323–334. IEEE, 2019.

[81] Xiaoqin Fu and Haipeng Cai. Scaling Application-Level Dynamic Taint Analysis to Enterprise-Scale Distributed Systems. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings, pages 270–271, 2020.

[82] Xiaoqin Fu and Haipeng Cai. FlowDist: Multi-Staged Refinement-Based Dynamic Information Flow Analysis for Distributed Software Systems. In

30th USENIX Security Symposium (USENIX Security 21), pages 2093–2110, 2021.
[83] Xiaoqin Fu, Haipeng Cai, and Li Li. Dads: Dynamic Slicing Continuously-Running Distributed Programs with Budget Constraints. In Proceedings

of European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 1566–1570, 2020.
[84] Xiaoqin Fu, Haipeng Cai, Wen Li, and Li Li. Seads: Scalable and Cost-effective Dynamic Dependence Analysis of Distributed Systems via

Reinforcement Learning. ACM Transactions on Software Engineering and Methodology (TOSEM), 30(1):1–45, 2020.
[85] Xiaoqin Fu, Boxiang Lin, and Haipeng Cai. DistFax: A Toolkit For Measuring Interprocess Communications And Quality Of Distributed Systems.

In IEEE/ACM International Conference on Software Engineering: Companion, pages 51–55, 2022.
[86] Xiaoqin Fu, Asif Zaman, and Haipeng Cai. DistMeasure: A framework for runtime characterization and quality assessment of distributed software

via interprocess communications. ACM Transactions on Software Engineering and Methodology, 34(3):1–53, 2025.
[87] Munehiro Fukuda, Collin Gordon, Utku Mert, and Matthew Sell. An Agent-Based Computational Framework for Distributed Data Analysis.

Computer, 53(3):16–25, 2020.
[88] Daniel Galin. Software Quality Assurance: From Theory to Implementation. Addison-Wesley, 2003.

[89] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui Huang, Li Zhou, and Yongming Wu. An Empirical Study on Crash

Recovery Bugs in Large-Scale Distributed Systems. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 539–550, 2018.

[90] Diego Garbervetsky, Edgardo Zoppi, and Benjamin Livshits. Toward Full Elasticity in Distributed Static Analysis: The Case of Callgraph Analysis.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pages 442–453, 2017.
[91] Joshua Garcia, Daniel Popescu, Gholamreza Safi, William GJ Halfond, and Nenad Medvidovic. Identifying Message Flow in Distributed Event-Based

Systems. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 367–377, 2013.
[92] Manuel Gieseking. Correctness Of Data Flows In Asynchronous Distributed Systems: Model Checking And Synthesis. PhD thesis, Universität Oldenburg,

2022.

[93] Anitha Gollamudi, Stephen Chong, and Owen Arden. Information Flow Control for Distributed Trusted Execution Environments. In 2019 IEEE
32nd Computer Security Foundations Symposium (CSF), pages 304–30414. IEEE, 2019.

[94] Susan L Graham, Peter B Kessler, and Marshall K McKusick. gprof: a Call Graph Execution Profiler. ACM Sigplan Notices, 39(4):49–57, 2004.
[95] Jiawei Tyler Gu, Xudong Sun, Wentao Zhang, Yuxuan Jiang, Chen Wang, Mandana Vaziri, Owolabi Legunsen, and Tianyin Xu. Acto: Automatic

End-to-End Testing for Operation Correctness of Cloud System Management. In ACM Symposium on Operating Systems Principles, pages 96–112,
2023.

[96] Rong Gu, Zhiqiang Zuo, Xi Jiang, Han Yin, Zhaokang Wang, Linzhang Wang, Xuandong Li, and Yihua Huang. Towards Efficient Large-Scale

Interprocedural Program Static Analysis on Distributed Data-Parallel Computation. IEEE Transactions on Parallel and Distributed Systems,

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

A Survey of Program Analysis for Distributed Software Systems 31

32(4):867–883, 2020.

[97] Shushi Gu, Fugang Wang, Qinyu Zhang, Tao Huang, and Wei Xiang. Global Repair Bandwidth Cost Optimization of Generalized Regenerating

Codes in Clustered Distributed Storage Systems. IET Communications, 15:2469–2481, 2021.
[98] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang, Fan Long, Chaoqiang Deng, Changshu Liu, and Lidong Zhou. G2: A Graph Processing System

for Diagnosing Distributed Systems. In 2011 USENIX Annual Technical Conference (USENIX ATC 11), 2011.
[99] Christophe Hauser, Frédéric Tronel, Colin Fidge, and Ludovic Mé. Intrusion Detection in Distributed Systems, an Approach based on Taint

Marking. In 2013 IEEE International Conference on Communications (ICC), pages 1962–1967. IEEE, 2013.
[100] Hongxia He, Xi Li, Peng Chen, Juan Chen, Ming Liu, and Lei Wu. Efficiently Localizing System Anomalies for Cloud Infrastructures: A Novel

Dynamic Graph Transformer based Parallel Framework. Journal of Cloud Computing, 13(1):115, 2024.
[101] Michael Hind. Pointer Analysis: Haven’t We Solved This Problem Yet? In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, pages 54–61, 2001.
[102] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural Slicing Using Dependence Graphs. ACM Transactions on Programming Languages

and Systems (TOPLAS), 12(1):26–60, 1990.
[103] Junjie Huang, Jinyang Liu, Zhuangbin Chen, Zhihan Jiang, Yichen Li, Jiazhen Gu, Cong Feng, Zengyin Yang, Yongqiang Yang, and Michael R Lyu.

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems. In IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice, pages 392–404, 2024.

[104] Lexiang Huang and Timothy Zhu. tprof: Performance Profiling via Structural Aggregation and Automated Analysis of Distributed Systems Traces.

In Proceedings of the ACM Symposium on Cloud Computing, pages 76–91, 2021.
[105] Yu Huang, Tao Wang, Zihui Yin, Eric Mercer, and Benjamin Ogles. Improving The Efficiency Of Deadlock Detection In MPI Programs Through

Trace Compression. IEEE Transactions on Parallel and Distributed Systems, 34(1):400–415, 2022.
[106] ISO/IEC. ISO/IEC 25010:2011 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) —

System and software quality models. https://iso25000.com/index.php/en/iso-25000-standards/iso-25010, 2011. Accessed: 2024-07-24.

[107] KR Jayaram and Patrick Eugster. Program Analysis for Event-based Distributed Systems. In ACM International Conference on Distributed Event-based
System, pages 113–124, 2011.

[108] Danlin Jia, Manoj Pravakar Saha, Janki Bhimani, and Ningfang Mi. Performance and Consistency Analysis for Distributed Deep Learning

Applications. In 2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC), pages 1–8. IEEE, 2020.
[109] Yijiang Jia, Kefei Li, Ping Lu, Baodi Xie, Huayang Wang, and Jincai Chen. An Anomaly Detection Method Based on Adaptive Log and Dual Feature

Fusion Analysis for Distributed Systems. In International Conference on Information Systems and Computing Technology, pages 111–114, 2023.
[110] JIRA. Cassandra-6023. https://issues.apache.org/jira/browse/CASSANDRA6023. Accessed: 2024-07-24.

[111] Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti Gupta, and Nadia Papakonstantinou. SETSUDŌ: Perturbation-based Testing Framework for

Scalable Distributed Systems. In Proceedings of the First ACM SIGOPS Conference on Timely Results in Operating Systems, pages 1–14, 2013.
[112] Mariam Kamkar and Patrik Krajina. Dynamic Slicing of Distributed Programs. In Proceedings of International Conference on Software Maintenance,

pages 222–229. IEEE, 1995.

[113] Byeongjee Kang and Kyungmin Bae. Symbolic Reachability Analysis Of Distributed Systems Using Narrowing And Heuristic Search. In International
Workshop on Formal Techniques for Safety-Critical Systems, pages 34–44, 2022.

[114] Florian Kelbert and Alexander Pretschner. Data Usage Control for Distributed Systems. ACM Transactions on Privacy and Security (TOPS),
21(3):1–32, 2018.

[115] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D Keromytis. libdft: Practical Dynamic Data Flow Tracking for Commodity

Systems. In Acm Sigplan Notices, volume 47, pages 121–132. ACM, 2012.

[116] Anum Khurshid, Abdul Nasir Khan, Fiaz Gul Khan, Mazhar Ali, Junaid Shuja, and Atta ur Rehman Khan. Secure-CamFlow: A Device-Oriented

Security Model to Assist Information Flow Control Systems in Cloud Environments for IoTs. Concurrency and Computation: Practice and Experience,
31(8):e4729, 2019.

[117] Jemin Kim and Joonseok Park. Enhancing Security of Web-Based IoT Services via XSS Vulnerability Detection. Sensors, 23(23):9407, 2023.
[118] Fabian Knorr, Peter Thoman, and Thomas Fahringer. Declarative Data Flow in a Graph-Based Distributed Memory Runtime System. International

Journal of Parallel Programming, 51(2):150–171, 2023.
[119] Fabio Kon and Roy H Campbell. Dependence Management in Component-Based Distributed Systems. IEEE Concurrency, 8(1):26–36, 2000.
[120] Jacob Kreindl, Daniele Bonetta, and Hanspeter Mössenböck. Towards Efficient, Multi-Language Dynamic Taint Analysis. In ACM SIGPLAN

International Conference on Managed Programming Languages and Runtimes, pages 85–94, 2019.
[121] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms, and Systems. Cambridge University Press, 2011.

[122] Jinxi Kuang, Jinyang Liu, Junjie Huang, Renyi Zhong, Jiazhen Gu, Lan Yu, Rui Tan, Zengyin Yang, and Michael R Lyu. Knowledge-aware Alert

Aggregation in Large-scale Cloud Systems: a Hybrid Approach. In IEEE/ACM International Conference on Software Engineering: Software Engineering
in Practice, pages 369–380, 2024.

[123] Michał Kucab, Piotr Boryło, and Piotr Chołda. Hardware-Assisted Static and Runtime Attestation for Cloud Deployments. IEEE Transactions on
Cloud Computing, 2023.

[124] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. In Concurrency: the Works of Leslie Lamport, pages 179–196.
2019.

Manuscript submitted to ACM

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://issues.apache.org/jira/browse/CASSANDRA6023

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Cai

[125] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan Mace. Sifter: Scalable Sampling for Distributed Traces, without Feature

Engineering. In Proceedings of the ACM Symposium on Cloud Computing, pages 312–324, 2019.
[126] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In International Symposium

on Code Generation and Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.
[127] Edward Lee and Ivan Levchenko. Applying a Deterministic Approach for Distributed Systems Black-Box Testing. Technical report, Stanford

University, 2020.

[128] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and Haryadi S Gunawi. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs

in Datacenter Distributed Systems. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 517–530, 2016.

[129] Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S Gunawi, and Shan Lu. DFix: Automatically Fixing Timing Bugs in Distributed Systems. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 994–1009, 2019.
[130] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S Gunawi, Xiaohui Gu, Xicheng Lu, and Dongsheng Li. PCatch: Automatically

Detecting Performance Cascading Bugs. In Proceedings of the Thirteenth EuroSys Conference, pages 1–14, 2018.
[131] Wen Li, Li Li, and Haipeng Cai. On the Vulnerability Proneness of Multilingual Code. In ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 847–859, 2022.
[132] Wen Li, Li Li, and Haipeng Cai. PolyFax: A Toolkit for Characterizing Multi-Language Software. In ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), Tool Demos, pages 1662–1666, 2022.
[133] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai. PolyFuzz: Holistic Greybox Fuzzing of Multi-Language Systems. In

32nd USENIX Security Symposium (USENIX Security 23), 2023.
[134] Bingzhe Liu, Gangmuk Lim, Ryan Beckett, and P Brighten Godfrey. Kivi: Verification for Cluster Management. In USENIX Annual Technical

Conference, pages 509–527, 2024.
[135] Haopeng Liu. Modeling and Tackling Timing Bugs in Multi-threaded Systems and Distributed Systems. PhD thesis, The University of Chicago, 2019.

[136] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu, Haryadi S Gunawi, and Chen Tian. DCatch: Automatically Detecting Distributed

Concurrency Bugs in Cloud Systems. ACM SIGARCH Computer Architecture News, 45(1):677–691, 2017.
[137] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian. FCatch: Automatically Detecting Time-of-fault Bugs in Cloud Systems.

ACM SIGPLAN Notices, 53(2):419–431, 2018.
[138] Jinyang Liu, Shilin He, Zhuangbin Chen, Liqun Li, Yu Kang, Xu Zhang, Pinjia He, Hongyu Zhang, Qingwei Lin, and Zhangwei Xu. Incident-Aware

Duplicate Ticket Aggregation for Cloud Systems. In IEEE/ACM International Conference on Software Engineering, pages 2299–2311, 2023.
[139] Jinyang Liu, Zhihan Jiang, Jiazhen Gu, Junjie Huang, Zhuangbin Chen, Cong Feng, Zengyin Yang, Yongqiang Yang, and Michael R Lyu. Prism:

Revealing Hidden Functional Clusters from Massive Instances in Cloud Systems. In IEEE/ACM International Conference on Automated Software
Engineering, pages 268–280, 2023.

[140] Panos E Livadas and Theodore Johnson. An Optimal Algorithm for the Construction of the System Dependence Graph. Information Sciences,
125(1-4):99–131, 2000.

[141] Teng Long, Xingtao Ren, Qing Wang, and Chao Wang. Verifying The Safety Properties Of Distributed Systems Via Mergeable Parallelism. Journal
of Systems Architecture, 130:102646, 2022.

[142] Jie Lu, Haofeng Li, Chen Liu, Lian Li, and Kun Cheng. Detecting Missing-Permission-Check Vulnerabilities In Distributed Cloud Systems. In ACM
SIGSAC Conference on Computer and Communications Security, pages 2145–2158, 2022.

[143] Jie Lu, Chen Liu, Feng Li, Lian Li, Xiaobing Feng, and Jingling Xue. CloudRaid: Detecting Distributed Concurrency Bugs via Log Mining and

Enhancement. IEEE Transactions on Software Engineering, 48(2):662–677, 2020.
[144] Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Hossein Vahabi, Yair Carmon, and Ludwig Schmidt. Harder or Different? A Closer

Look at Distribution Shift in Dataset Reproduction. In ICML Workshop on Uncertainty and Robustness in Deep Learning, volume 5, page 15, 2020.

[145] Nyalia Lui and James H Hill. A Generalized Approach for Non-Intrusive Real-Time Instrumentation of Standards-Based Distributed Middleware.

In IEEE International Symposium on Real-Time Distributed Computing (ISORC), pages 158–166. IEEE, 2020.
[146] Jeffrey F Lukman, Huan Ke, Cesar A Stuardo, Riza O Suminto, Daniar H Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye,

Tanakorn Leesatapornwongsa, et al. FlyMC: Highly Scalable Testing of Complex Interleavings in Distributed Systems. In Proceedings of the
Fourteenth EuroSys Conference 2019, pages 1–16, 2019.

[147] Yu Luo. approf: A Non-intrusive Call Hierarchy Profiler for Distributed Systems. PhD thesis, University of Toronto (Canada), 2018.

[148] Tao Lyu, Liyi Zhang, Zhiyao Feng, Yueyang Pan, Yujie Ren, Meng Xu, Mathias Payer, and Sanidhya Kashyap. Monarch: A Fuzzing Framework for

Distributed File Systems. In USENIX Annual Technical Conference, pages 529–543, 2024.
[149] Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldweber, Jean-Baptiste Jeannin, Manos Kapritsos, and Baris Kasikci. Sift: Using Refinement-Guided

Automation To Verify Complex Distributed Systems. In USENIX Annual Technical Conference, pages 151–166, 2022.
[150] Jonathan Mace and Rodrigo Fonseca. Universal Context Propagation for Distributed System Instrumentation. In Proceedings of the Thirteenth

EuroSys Conference, pages 1–18, 2018.
[151] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems. In Proceedings of the 25th

Symposium on Operating Systems Principles, pages 378–393, 2015.

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

A Survey of Program Analysis for Distributed Software Systems 33

[152] SomayyaMadakam, Vihar Lake, Vihar Lake, Vihar Lake, et al. Internet of Things (IoT): A Literature Review. Journal of Computer and Communications,
3(05):164, 2015.

[153] Ilias Maglogiannis, Constantinos Delakouridis, and Leonidas Kazatzopoulos. Enabling Collaborative Medical Diagnosis Over the Internet via

Peer-to-Peer Distribution of Electronic Health Records. Journal of Medical Systems, 30(2):107–116, 2006.
[154] Amit Mandal, Pietro Ferrara, Yuliy Khlyebnikov, Agostino Cortesi, and Fausto Spoto. Cross-Program Taint Analysis for IoT Systems. In Proceedings

of the 35th Annual ACM Symposium on Applied Computing, pages 1944–1952, 2020.
[155] Francisco Maturana and KV Rashmi. Bandwidth Cost of Code Conversions in Distributed Storage: Fundamental Limits and Optimal Constructions.

In 2021 IEEE International Symposium on Information Theory (ISIT), pages 2334–2339. IEEE, 2021.
[156] Ruijie Meng, George Pîrlea, Abhik Roychoudhury, and Ilya Sergey. Greybox Fuzzing of Distributed Systems. In ACM SIGSAC Conference on

Computer and Communications Security, pages 1615–1629, 2023.
[157] Barton P Miller and Jong-Deok Choi. A mechanism for efficient debugging of parallel programs. ACM Sigplan Notices, 23(7):135–144, 1988.
[158] VP Mochalov, N Yu Bratchenko, and SV Yakovlev. Analytical Model of Integration System for Program Components of Distributed Object

Applications. In 2018 International Russian Automation Conference (RusAutoCon), pages 1–4. IEEE, 2018.
[159] Durga P Mohapatra, Rajeev Kumar, Rajib Mall, DS Kumar, and Mayank Bhasin. Distributed Dynamic Slicing of Java Programs. Journal of Systems

and Software, 79(12):1661–1678, 2006.
[160] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-based Systems. Springer Science & Business Media, 2006.

[161] Gail C Murphy and David Notkin. Lightweight Lexical Source Model Extraction. ACM Transactions on Software Engineering and Methodology,
5(3):262–292, 1996.

[162] Francisco Neves, Nuno Machado, et al. Falcon: A Practical Log-based Analysis Tool for Distributed Systems. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 534–541. IEEE, 2018.

[163] Francisco Neves, Nuno Machado, Ricardo Vilaça, and José Pereira. Horus: Non-Intrusive Causal Analysis of Distributed Systems Logs. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 212–223. IEEE, 2021.

[164] Francisco Neves, Ricardo Vilaça, and José Pereira. Detailed Black-Box Monitoring of Distributed Systems. ACM SIGAPP Applied Computing Review,
21:24–36, 2021.

[165] Zack Newsham, Augusto Born De Oliveira, Jean-Christophe Petkovich, Ahmad Saif Ur Rehman, GuyMartin Tchamgoue, and Sebastian Fischmeister.

Intersert: Assertions on Distributed Process Interaction Sessions. In 2017 IEEE International Conference on Software Quality, Reliability and Security
(QRS), pages 216–223. IEEE, 2017.

[166] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of Program Analysis. Springer Science & Business Media, 2004.

[167] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. Generating Realistic Vulnerabilities via Neural Code Editing: An Empirical

Study. In ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 1097–1109, 2022.

[168] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. VulGen: Realistic Vulnerable Sample Generation via Pattern Mining and Deep

Learning. In IEEE/ACM International Conference on Software Engineering (ICSE), 2023.
[169] Yu Nong, Rainy Sharma, Abdelwahab Hamou-Lhadj, Xiapu Luo, and Haipeng Cai. Open science in software engineering: A study on deep

learning-based vulnerability detection. IEEE Transactions on Software Engineering, 49(4):1983–2005, 2022.
[170] Alberto Núñez, Pablo C Cañizares, Pablo Gómez-Abajo, Esther Guerra, and Juan de Lara. Analyzing The Reliability Of Simulated Distributed

Systems Using Metamorphic Testing. In International Workshop on Metamorphic Testing, pages 34–41, 2022.
[171] Yicheng Ouyang, Kailai Shao, Kunqiu Chen, Ruobing Shen, Chao Chen, Mingze Xu, Yuqun Zhang, and Lingming Zhang. MirrorTaint: Practical

Non-Intrusive Dynamic Taint Tracking for JVM-Based Microservice Systems. In IEEE/ACM International Conference on Software Engineering, pages
2514–2526, 2023.

[172] Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. Trace Aware Random Testing for Distributed Systems. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1–29, 2019.

[173] Muhammed Maruf Öztürk. MFRLMO: Model-Free Reinforcement Learning for Multi-Objective Optimization of Apache Spark. EAI Endorsed
Transactions on Scalable Information Systems, 11(5), 2024.

[174] Ioannis Papagiannis and Peter Pietzuch. CloudFilter: Practical Control of Sensitive Data Propagation to the Cloud. In Proceedings of the 2012 ACM
Workshop on Cloud computing security workshop, pages 97–102, 2012.

[175] Vasilis Pappas, Vasileios P Kemerlis, Angeliki Zavou, Michalis Polychronakis, and Angelos D Keromytis. CloudFence: Data Flow Tracking as a

Cloud Service. In International Workshop on Recent Advances in Intrusion Detection, pages 411–431. Springer, 2013.
[176] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A Qualitative Study of Dependency Management and Its Security Implications. In ACM SIGSAC

Conference on Computer and Communications Security, pages 1513–1531, 2020.
[177] Thomas FJM Pasquier, Jean Bacon, and David Eyers. FlowK: Information Flow Control for the Cloud. In 2014 IEEE 6th International Conference on

Cloud Computing Technology and Science, pages 70–77. IEEE, 2014.
[178] João Carlos Pereira, Nuno Machado, and Jorge Sousa Pinto. Testing for Race Conditions in Distributed Systems via SMT Solving. In International

Conference on Tests and Proofs, pages 122–140. Springer, 2020.
[179] Daniel Popescu, Joshua Garcia, Kevin Bierhoff, and Nenad Medvidovic. Impact Analysis for Distributed Event-Based Systems. In Proceedings of the

6th ACM International Conference on Distributed Event-Based Systems, pages 241–251, 2012.

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Cai

[180] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill Education, 8th edition, 2014.

[181] Kleanthis Psarris and Konstantinos Kyriakopoulos. An Experimental Evaluation of Data Dependence Analysis Techniques. IEEE Transactions on
Parallel and Distributed Systems, 15(3):196–213, 2004.

[182] Sheng Qi, Xuanzhe Liu, and Xin Jin. Halfmoon: Log-Optimal Fault-Tolerant Stateful Serverless Computing. In ACM Symposium on Operating
Systems Principles, pages 314–330, 2023.

[183] Noëlle Rakotondravony, Johannes Köstler, and Hans P Reiser. Towards a Generic Architecture for Interactive Cost-Aware Visualization of

Monitoring Data in Distributed Systems. In Proceedings of the 4th Workshop on Security in Highly Connected IT Systems, pages 25–30, 2017.
[184] Simon Robillard and Hélène Coullon. SMT-Based Planning Synthesis For Distributed System Reconfigurations. In FASE, pages 268–287, 2022.
[185] Yineng Rong and X San Liang. Panel Data Causal Inference Using a Rigorous Information Flow Analysis for Homogeneous, Independent and

Identically Distributed Datasets. IEEE Access, 9:47266–47274, 2021.
[186] Barbara Ryder. Dimensions of Precision in Reference Analysis of Object-Oriented Programming Languages. In Compiler Construction, pages

126–137, 2003.

[187] Barbara G Ryder. Constructing the Call Graph of a Program. IEEE Transactions on Software Engineering, 3:216–226, 1979.
[188] Malte Sandstede. Online Analysis of Distributed Dataflows with Timely Dataflow. arXiv preprint arXiv:1912.09747, 2019.
[189] Nikolaos Sapountzis, Ruimin Sun, Xuetao Wei, Yier Jin, Jedidiah Crandall, and Daniela Oliveira. MITOS: Optimal Decisioning for the Indi-

rect Flow Propagation Dilemma in Dynamic Information Flow Tracking Systems. In 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS), pages 1090–1100. IEEE, 2020.

[190] Micah Schiewe, Jacob Curtis, Vincent Bushong, and Tomas Cerny. Advancing Static Code Analysis With Language-Agnostic Component

Identification. IEEE Access, 10:30743–30761, 2022.
[191] Mariana Sharp and Atanas Rountev. Static Analysis of Object References in RMI-based Java Software. IEEE Transactions on Software Engineering,

32(9):664–681, 2006.

[192] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge Computing: Vision and Challenges. IEEE Internet of Things, 3(5):637–646, 2016.
[193] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.

Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Technical report, Google, 2010.

[194] Jiri Simsa, Randy Bryant, and Garth Gibson. dBug: Systematic Evaluation of Distributed Systems. In 5th International Workshop on Systems
Software Verification (SSV 10), 2010.

[195] Marjan Sirjani, Ehsan Khamespanah, and Fatemeh Ghassemi. Reactive Actors: Isolation for Efficient Analysis of Distributed Systems. In 2019
IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pages 1–10. IEEE, 2019.

[196] Yannis Smaragdakis and George Balatsouras. Pointer Analysis. Foundations and Trends in Programming Languages, 2(1):1–69, 2015.
[197] SourceForge. NioEcho. http://rox-xmlrpc.sourceforge.net/niotut/index.html#Thecode, 2024. Accessed: 2024-07-24.

[198] Mark Staples and Mahmood Niazi. Experiences Using Systematic Review Guidelines. Journal of Systems and Software, 80(9):1425–1437, 2007.
[199] Cesar A Stuardo, Tanakorn Leesatapornwongsa, Riza O Suminto, Huan Ke, Jeffrey F Lukman, Wei-Chiu Chuang, Shan Lu, and Haryadi S Gunawi.

ScaleCheck: A Single-Machine Approach for Discovering Scalability Bugs in Large Distributed Systems. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 359–373, 2019.

[200] Riza O. Suminto, Shan Lu, Cindy Rubio-González, and Haryadi S. Gunawi. Database-Backed Program Analysis for Finding Cascading Outage Bugs

in Distributed Systems. Technical report, University of Chicago, 2021.

[201] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed, Jon Howell, Andrea Lattuada, Oded Padon, Lalith Suresh, Adriana Szekeres, and

Tianyin Xu. Anvil: Verifying Liveness of Cluster Management Controllers. In USENIX Symposium on Operating Systems Design and Implementation,
pages 649–666, 2024.

[202] Zhuo Sun. A Method and Tool for Finding Concurrency Bugs Involving Multiple Variables with Application to Modern Distributed Systems. PhD thesis,

Florida International University, 2018.

[203] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and Paradigms. Pearson Education, 2nd edition, 2007.

[204] Ruize Tang, Xudong Sun, Yu Huang, Yuyang Wei, Lingzhi Ouyang, and Xiaoxing Ma. SandTable: Scalable Distributed System Model Checking

with Specification-Level State Exploration. In European Conference on Computer Systems, pages 736–753, 2024.
[205] WALA Team. Wala: A static analysis framework. https://github.com/wala/WALA, 2024. Accessed: 2024-07-24.

[206] Fernando A Teixeira, Fernando MQ Pereira, Hao-Chi Wong, José MS Nogueira, and Leonardo B Oliveira. SIoT: Securing Internet of Things through

Distributed Systems Analysis. Future Generation Computer Systems, 92:1172–1186, 2019.
[207] Fernando Augusto Teixeira et al. Securing Networked Embedded Systems Through Distributed Systems Analysis. PhD thesis, Universidade Federal de

Minas Gerais, 2015.

[208] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez, and Gregory R Ganger. Stardust: Tracking

Activity in a Distributed Storage System. ACM SIGMETRICS Performance Evaluation Review, 34(1):3–14, 2006.
[209] Jeff Tian. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement. Wiley-Interscience, 1st edition, 2005.

[210] Shukun Tokas, Olaf Owe, and Toktam Ramezanifarkhani. Static Checking Of GDPR-Related Privacy Compliance For Object-Oriented Distributed

Systems. Journal of Logical and Algebraic Methods in Programming, 125:100733, 2022.
[211] Mert Toslali, Emre Ates, Alex Ellis, Zhaoqi Zhang, Darby Huye, Lan Liu, Samantha Puterman, Ayse K Coskun, and Raja R Sambasivan. Automating

Instrumentation Choices for Performance Problems in Distributed Applications with VAIF. In Proceedings of the ACM Symposium on Cloud

Manuscript submitted to ACM

http://rox-xmlrpc.sourceforge.net/niotut/index.html#The code
https://github.com/wala/WALA

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

A Survey of Program Analysis for Distributed Software Systems 35

Computing, pages 61–75, 2021.
[212] Simon Tragatschnig, Huy Tran, and Uwe Zdun. Impact Analysis for Event-based Systems using Change Patterns. In Proceedings of the 29th Annual

ACM Symposium on Applied Computing, pages 763–768, 2014.
[213] Vidhya Tekken Valapil. Achieving Reliable Distributed Systems: Through Efficient Run-time Monitoring and Predicate Detection. Michigan State

University, 2020.

[214] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a Java Bytecode Optimization Framework.

In CASCON First Decade High Impact Papers, pages 214–224, 2010.
[215] Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A Multiparty Session Typing Discipline for Fault-Tolerant Event-Driven

Distributed Programming. Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–30, 2021.
[216] Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang. Model Checking Guided Testing for Distributed Systems. In European

Conference on Computer Systems, pages 127–143, 2023.
[217] Dong Wang, Yu Gao, Wensheng Dou, and Jun Wei. DisTA: Generic Dynamic Taint Tracking For Java-Based Distributed Systems. In International

Conference on Dependable Systems and Networks, pages 547–558, 2022.
[218] Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He, Zhengping Qian, and Lidong Zhou. Distributed Systems Meet Economics: Pricing in

the Cloud. In 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10), 2010.
[219] Jie Wang, Yunguang Wu, Gang Zhou, Yiming Yu, Zhenyu Guo, and Yingfei Xiong. Scaling Static Taint Analysis to Industrial SOA Applications:

A Case Study at Alibaba. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1477–1486, 2020.

[220] Nan Wang and Aimin Pan. Research and Implementation of New Distributed Information Interactive Platform. In Journal of Physics: Conference
Series, volume 1883, page 012061. IOP Publishing, 2021.

[221] Dawei Wei, Huansheng Ning, Feifei Shi, Yueliang Wan, Jiabo Xu, Shunkun Yang, and Li Zhu. Dataflow Management in the Internet of Things:

Sensing, Control, and Security. Tsinghua Science and Technology, 26(6):918–930, 2021.
[222] Bill Wilder. Cloud Architecture Patterns: using Microsoft Azure. O’Reilly Media, Inc., 2012.

[223] Wolfgang Wögerer. A Survey of Static Program Analysis Techniques. Technical report, Technische Universität Wien, 2005.

[224] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A Survey on Software Fault Localization. TSE, 42(8):707–740, 2016.
[225] Hongfa Xue, Shaowen Sun, Guru Venkataramani, and Tian Lan. Machine Learning-Based Analysis of Program Binaries: A Comprehensive Study.

IEEE Access, 7:65889–65912, 2019.
[226] Cui-Qing Yang and Barton P. Miller. Critical path analysis for the execution of parallel and distributed programs. In International Conference on

Distributed Computing Systems, pages 366–373, 1988.
[227] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MODIST:

Transparent Model Checking of Unmodified Distributed Systems. In NSDI’09, pages 213–228, 2009.
[228] Tuba Yavuz and Christopher Brant. Security Analysis Of IoT Frameworks Using Static Taint Analysis. In ACM Conference on Data and Application

Security and Privacy, pages 203–213, 2022.
[229] Sorrachai Yingchareonthawornchai, Duong N Nguyen, Vidhya Tekken Valapil, Sandeep S Kulkarni, and Murat Demirbas. Precision, Recall, and

Sensitivity of Monitoring Partially Synchronous Distributed Systems. In International Conference on Runtime Verification, pages 420–435, 2016.
[230] Mingguang Yu and Xia Zhang. Anomaly Detection for Cloud Systems with Dynamic Spatiotemporal Learning. Intelligent Automation & Soft

Computing, 37(2), 2023.
[231] Jinfeng Yuan, Weizhong Qiang, Hai Jin, and Deqing Zou. CloudTaint: An Elastic Taint Tracking Framework for Malware Detection in the Cloud.

The Journal of Supercomputing, 70(3):1433–1450, 2014.
[232] Xinhao Yuan and Junfeng Yang. Effective Concurrency Testing for Distributed Systems. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems, pages 1141–1156, 2020.
[233] Angeliki Zavou, Vasilis Pappas, Vasileios P Kemerlis, Michalis Polychronakis, Georgios Portokalidis, and Angelos D Keromytis. Cloudopsy: An

Autopsy of Data Flows in the Cloud. In International Conference on Human Aspects of Information Security, Privacy, and Trust, pages 366–375, 2013.
[234] Shudong Zhang, Dongxue Liu, Lijuan Zhou, Zhongshan Ren, and Zipeng Wang. Diagnostic Framework for Distributed Application Performance

Anomaly Based on Adaptive Instrumentation. In International Conference on Computer Communication and the Internet, pages 164–169, 2020.
[235] Tony Nuda Zhang, Upamanyu Sharma, and Manos Kapritsos. Performal: Formal Verification of Latency Properties for Distributed Systems.

Proceedings of the ACM on Programming Languages, 7(PLDI):368–393, 2023.
[236] Yuhao Zhang, Frank McQuillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna, Orhan Kislal, Domino Valdano, and Arun Kumar. Distributed Deep

Learning on Data Systems: A Comparative Analysis of Approaches. Proceedings of the VLDB Endowment, 14(10):1769–1782, 2021.
[237] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding Yuan, and Michael Stumm. lprof: A Non-intrusive Request Flow

Profiler for Distributed Systems. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 629–644, 2014.
[238] Chenxing Zhong, He Zhang, Chao Li, Huang Huang, and Daniel Feitosa. On Measuring Coupling Between Microservices. Journal of Systems and

Software, 200:111670, 2023.
[239] Zexin Zhong, Jiangchao Liu, Diyu Wu, Peng Di, Yulei Sui, Alex X Liu, and John CS Lui. Scalable Compositional Static Taint Analysis for Sensitive

Data Tracing on Industrial Micro-Services. In IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice, pages
110–121, 2023.

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Cai

A More Background on Program Analysis and Distributed Systems
In this appendix section, we provide additional background regarding our survey topic, concerning concepts and

algorithms in program analysis and charactristics of distributed software systems that are relevant to the analysis of

distributed programs.

A.1 Fundamental Analysis Concepts and Algorithms

Among the large variety of program analyses, there are a relatively few ones that serve in supporting/enabling roles,

referred to as fundamental analyses. Accordingly, the supported/enabled analyses are client/application analyses. Below

we exemplify such analyses with two instances: pointer/alias analysis and dependence analysis.

A.1.1 Pointer Analysis and Alias Analysis. Pointer analysis (i.e., points-to or reference analysis) is a type of static

program analysis that resolves which memory locations (objects) a pointer/reference variable (i.e., pointers) can point

to. It approximately computes the set of such objects and their relationships to determine the possible run-time

values of pointers [101]. Then, the resulting information can be used to determine the aliasing relationships in the

program [196] (i.e., alias analysis). If two variables point to the same memory location, they are considered aliases to

each other. Changing the value pointed to by one of these two pointer variables would indirectly change the value

pointed to by the other. For example, as shown in Figure 1, in the NioEcho client (class NioClient), the statement at

Line 7 leads to an alias: in particular, the List variable queue becomes an alias of the List object returned by the call

this.pendingData.get(socket) through the assignment. Both pointer and alias analyses are fundamental analysis.

A.1.2 Dependence Analysis. Developers often analyze dependencies among program entities of a software system to

help them better understand the behaviors and structure of the system, for various purposes like implementation, testing,

debugging, and other maintenance/evolution tasks [58, 176]. Dependence analysis is an analysis that aims to compute

these (data and control) dependencies [27, 28]. For a complex program such as a common distributed program, which

runs in multiple threads/processes, the users (e.g., developers) need to understand (thus the dependence analysis should

computer) both explicit (induced by explicit object reference or function invocation, typically within an individual

thread/process) [37] and implicit (induced by implicit reference/invocation, e.g., via message passing, typically across

different threads/processes) [38] dependencies. Data/control dependence analysis is a fundamental form of control/data

flow analysis, respectively. Meanwhile, it is also considered an application/client analysis of points-to/alias analysis.

A.2 Distributed Software Systems

Due to increasing requirements for computational scalability and performance, there are more and more real-world

software systems designed as distributed systems today [55]. Formally, software systems that perform general-purpose

distributed computations are broadly defined as distributed systems [55]—since this is the textbook definition, we

refer to them as common distributed systems. As opposed to these systems, there also exist specialized distributed

systems, such as RMI-based systems [191], distributed event-based (DEB) systems [160], cloud systems [218], and

Internet of Things (IoT) systems [152], etc. Important for the analysis of distributed programs, distributed systems

have some key features [55]: (1) the executions of components (i.e., processes) in a distributed system are concurrent;

(2) the components/processes interact/communicate but generally asynchronously in nature; and (3) hardware and

software resources can be shared across distributed components/processes. For example, the distributed system NioEcho

has a server and one or more clients that each simply sends messages to the server, as shown in Figure 1. NioEcho

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

A Survey of Program Analysis for Distributed Software Systems 37

components/processes (e.g., the server and one client) communicate and coordinate their actions by socket-based

message passing through relevant statements (e.g., Lines 7 and 8 in the NioClient class).

A.2.1 Architectures. There are mainly three types of architectures of distributed software systems: peer-to-peer (P2P),

client-server (C/S), and N-tier. Peer-to-peer (P2P) is a popular type of distributed system architecture in which each

process/node has equivalent responsibilities and capabilities. P2P differs from C/S in which some processes/nodes are

dedicated to serving other processes/nodes [153]. For instance, OpenChord is a typical peer-to-peer distributed software,

providing network services through distributed hash tables [18].

Client-server (C/S) is a type of network architecture in which each process/node on the network is either a server or

a client—the popular browser/server (B/S) architecture can be considered a special instance of C/S (commonly for web

applications), where the client is a web browser. Servers are relatively more powerful for controlling and managing

relevant resources (e.g., disk drives, printers, network traffic), and clients rely on servers for those resources [153]. For

example, NioEcho is a typical client-server distributed program, which includes one or more clients and a server [197].

The n-tier architecture breaks up an application into tiers, providing flexibility and reusability for developers who

only need to modify or add a specific tier (layer), rather than to rewrite the whole application when they decide to

change the application. In the term n-tier, "n" can be any number (larger than 1) of distinct tiers used in a specific

architecture, such as 2-tier, 3-tier, or 4-tier, and so on [153]. For example, Microsoft Azure is a typical n-tier distributed

system that provides cloud computing services [52, 222].

Process 1

Process 2

Process 3

1 2

3 4

1 5

m1

m2

time

0

0

0

fe

a b

dc

Fig. 6. Lamport logical clocks in a distributed program running in
three processes: Process 1, Process 2, and Process 3.

A.2.2 Lamport Timestamps for Distributed Software.

There are many different approaches to managing the

timing in distributed systems. One of them maintains a

logical clock for all processes with a simple algorithm,

called Lamport Timestamps (LTS) [124]. In LTS, each

process maintains an integer value, initially zero, which

periodically increments, once after every atomic event.

The value is attached to the record of the execution of each event (e.g., a message passed from one process to another) as

its timestamp [75], centrally or separately. In brief, LTS works as follows: (1) A process increments its counter for each

event in it; (2) When sending a message, a process includes its counter value with the message; and (3) On receiving a

message, the counter of the recipient is updated (e.g., increased by one). In terms of the communication mechanism,

LTS may be implemented to work either asynchronously or synchronously.

To illustrate LTS, suppose there are three processes concurrently running during the execution of a distributed

program, as shown in Figure 6. Each process has its logical clock initialized to zero and the clock value (i.e., timestamp)

increments by 1 for each event—e.g., 1 for event a, 2 for event b, etc. When the message m1 was sent from Process 1

to Process 2, the timestamp 2 was piggybacked to m1. Next, the (message-receiving) event c (in Process 2) is given a

timestamp 3, which is the greater value between the piggybacked timestamp 2 and its local timestamp 0 (initial value)

incremented by 1—max(0,2)+1=3. Then, the timestamp of the event d is 4 (= 3 + 1). Next, the message m2 was sent

from Process 2 to Process 3 with the clock value 4 piggybacked. Finally, the event f (in Process 3) has its timestamp 5 (=

max(1,4) + 1), where 1 is the timestamp of the previous event e in the same process (i.e., Process 3) [75, 124].

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Cai

Table 3. Paper Attribution Results (Years of 2022-2024)

L
i
n
k

Y
e
a
r

Approach Application Evaluation

Analysis

Methodology

Analysis

Modality

Program

Representation

Algorithmic

Parameter

Analysis

Data

Analysis

Scope

F
u
n
c
t
i
o
n
a
l

T
e
s
t
i
n
g

F
a
u
l
t

L
o
c
a
l
i
z
a
t
i
o
n

S
e
c
u
r
i
t
y

S
u
p
p
o
r
t

P
e
r
f
o
r
m
a
n
c
e

D
i
a
g
n
o
s
i
s

M
a
i
n
t
./
E
v
o
l
.

S
u
p
p
o
r
t

Dataset Metric

C
o
d
e

-
b
a
s
e
d

L
e
a
r
n
i
n
g

-
b
a
s
e
d

S
t
a
t
i
c

D
y
n
a
m
i
c

C
F
G
/
I
C
F
G

C
G

P
D
G
/
S
D
G

I
F
G

A
n
a
l
y
s
i
s

S
e
n
s
i
t
i
v
i
t
y

D
a
t
a

G
r
a
n
u
l
a
r
i
t
y

R
u
n
-
t
i
m
e

E
v
e
n
t

S
y
s
t
e
m

L
o
g

A
r
t
i
f
a
c
t

C
o
m
m
o
n

S
y
s
t
e
m

S
p
e
c
i
a
l
i
z
e
d

S
y
s
t
e
m

B
e
n
c
h
m
a
r
k

S
u
i
t
e

R
e
a
l
-
w
o
r
l
d

S
y
s
t
e
m

E
ff
e
c
t
i
v
e
n
.

E
ffi
c
i
e
n
c
y

[148]

2024

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[204] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[72] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[100] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[48] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[201] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[134] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[103] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[122] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[156]

2023

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[235] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[71] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[239] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[216] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[171] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[238] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[182] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[43] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[117] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[118] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[63] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[109] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[54] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[230] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[4] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[95] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[123] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[57] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[138] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[139] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[170]

2022

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[85] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[78] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[217] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[64] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[113] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[184] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[68] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[210] ✓ ✓ ✓ ✓ ✓ ✓

[141] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[3] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[105] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[149] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[26] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[190] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[142] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[228] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[92] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B Mapping of Surveyed Papers to Survey Taxonomy

In section, we provide the detailed paper attribution results, summarizing the mapping of the surveyed papers

according to the survey taxonomy we derived.

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

A Survey of Program Analysis for Distributed Software Systems 39

Table 4. Paper Attribution Results (Years of 2020-2021)

L
i
n
k

Y
e
a
r

Approach Application Evaluation

Analysis

Methodology

Analysis

Modality

Program

Representation

Algorithmic

Parameter

Analysis

Data

Analysis

Scope

F
u
n
c
t
i
o
n
a
l

T
e
s
t
i
n
g

F
a
u
l
t

L
o
c
a
l
i
z
a
t
i
o
n

S
e
c
u
r
i
t
y

S
u
p
p
o
r
t

P
e
r
f
o
r
m
a
n
c
e

D
i
a
g
n
o
s
i
s

M
a
i
n
t
./
E
v
o
l
.

S
u
p
p
o
r
t

Dataset Metric

C
o
d
e

-
b
a
s
e
d

L
e
a
r
n
i
n
g

-
b
a
s
e
d

S
t
a
t
i
c

D
y
n
a
m
i
c

C
F
G
/
I
C
F
G

C
G

P
D
G
/
S
D
G

I
F
G

A
n
a
l
y
s
i
s

S
e
n
s
i
t
i
v
i
t
y

D
a
t
a

G
r
a
n
u
l
a
r
i
t
y

R
u
n
-
t
i
m
e

E
v
e
n
t

S
y
s
t
e
m

L
o
g

A
r
t
i
f
a
c
t

C
o
m
m
o
n

S
y
s
t
e
m

S
p
e
c
i
a
l
i
z
e
d

S
y
s
t
e
m

B
e
n
c
h
m
a
r
k

S
u
i
t
e

R
e
a
l
-
w
o
r
l
d

S
y
s
t
e
m

E
ff
e
c
t
i
v
e
n
.

E
ffi
c
i
e
n
c
y

[236]

2021

✓ ✓ ✓ ✓ ✓ ✓ ✓

[97] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[229] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[185] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[2] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[45] ✓ ✓ ✓ ✓ ✓ ✓

[220] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[155] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[30] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[82] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[215] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[13] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[211] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[70] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[200] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[164] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[163] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[104] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[213]

2020

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[154] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[108] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[62] ✓ ✓ ✓ ✓ ✓ ✓

[219] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[96] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[234] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[87] ✓ ✓ ✓ ✓ ✓ ✓

[145] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[47] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[143] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[189] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[84] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[83] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[81] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[232] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[178] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[127] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Cai

Table 5. Paper Attribution Results (Years of 2015-2019)

L
i
n
k

Y
e
a
r

Approach Application Evaluation

Analysis

Methodology

Analysis

Modality

Program

Representation

Algorithmic

Parameter

Analysis

Data

Analysis

Scope

F
u
n
c
t
i
o
n
a
l

T
e
s
t
i
n
g

F
a
u
l
t

L
o
c
a
l
i
z
a
t
i
o
n

S
e
c
u
r
i
t
y

S
u
p
p
o
r
t

P
e
r
f
o
r
m
a
n
c
e

D
i
a
g
n
o
s
i
s

M
a
i
n
t
./
E
v
o
l
.

S
u
p
p
o
r
t

Dataset Metric

C
o
d
e

-
b
a
s
e
d

L
e
a
r
n
i
n
g

-
b
a
s
e
d

S
t
a
t
i
c

D
y
n
a
m
i
c

C
F
G
/
I
C
F
G

C
G

P
D
G
/
S
D
G

I
F
G

A
n
a
l
y
s
i
s

S
e
n
s
i
t
i
v
i
t
y

D
a
t
a

G
r
a
n
u
l
a
r
i
t
y

R
u
n
-
t
i
m
e

E
v
e
n
t

S
y
s
t
e
m

L
o
g

A
r
t
i
f
a
c
t

C
o
m
m
o
n

S
y
s
t
e
m

S
p
e
c
i
a
l
i
z
e
d

S
y
s
t
e
m

B
e
n
c
h
m
a
r
k

S
u
i
t
e

R
e
a
l
-
w
o
r
l
d

S
y
s
t
e
m

E
ff
e
c
t
i
v
e
n
.

E
ffi
c
i
e
n
c
y

[206]

2019

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[79] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[16] ✓ ✓ ✓ ✓ ✓ ✓

[11] ✓ ✓ ✓ ✓

[129] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[146] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[93] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[6] ✓ ✓ ✓ ✓

[80] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[135] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[76] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[188] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[195] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[199] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[116] ✓ ✓ ✓ ✓ ✓ ✓

[125] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[77] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[172] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[202]

2018

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[89] ✓ ✓ ✓ ✓ ✓ ✓

[158] ✓ ✓ ✓ ✓

[147] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[114] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[162] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[137] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[50] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[130] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[41] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[150] ✓ ✓ ✓ ✓ ✓ ✓

[12]

2017

✓ ✓ ✓ ✓ ✓ ✓ ✓

[136] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[165] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[90] ✓ ✓ ✓ ✓ ✓ ✓

[183] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[229]

2016

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[38] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[39] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[151]

2015

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[207] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Manuscript submitted to ACM

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

A Survey of Program Analysis for Distributed Software Systems 41

Table 6. Paper Attribution Results (Years of 1995-2014)

L
i
n
k

Y
e
a
r

Approach Application Evaluation

Analysis

Methodology

Analysis

Modality

Program

Representation

Algorithmic

Parameter

Analysis

Data

Analysis

Scope

F
u
n
c
t
i
o
n
a
l

T
e
s
t
i
n
g

F
a
u
l
t

L
o
c
a
l
i
z
a
t
i
o
n

S
e
c
u
r
i
t
y

S
u
p
p
o
r
t

P
e
r
f
o
r
m
a
n
c
e

D
i
a
g
n
o
s
i
s

M
a
i
n
t
./
E
v
o
l
.

S
u
p
p
o
r
t

Dataset Metric

C
o
d
e

-
b
a
s
e
d

L
e
a
r
n
i
n
g

-
b
a
s
e
d

S
t
a
t
i
c

D
y
n
a
m
i
c

C
F
G
/
I
C
F
G

C
G

P
D
G
/
S
D
G

I
F
G

A
n
a
l
y
s
i
s

S
e
n
s
i
t
i
v
i
t
y

D
a
t
a

G
r
a
n
u
l
a
r
i
t
y

R
u
n
-
t
i
m
e

E
v
e
n
t

S
y
s
t
e
m

L
o
g

A
r
t
i
f
a
c
t

C
o
m
m
o
n

S
y
s
t
e
m

S
p
e
c
i
a
l
i
z
e
d

S
y
s
t
e
m

B
e
n
c
h
m
a
r
k

S
u
i
t
e

R
e
a
l
-
w
o
r
l
d

S
y
s
t
e
m

E
ff
e
c
t
i
v
e
n
.

E
ffi
c
i
e
n
c
y

[231]

2014

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[177] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[212] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[237] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[175]

2013

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[233] ✓ ✓ ✓ ✓

[91] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[99] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[111] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[174]

2012

✓ ✓ ✓ ✓

[179] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[21] ✓ ✓ ✓ ✓ ✓

[19]

2011

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[98] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[107] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[193]

2010

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[194] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[227] 2009 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[159]

2006

✓ ✓ ✓ ✓ ✓ ✓ ✓

[208] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[119] 2000 ✓ ✓ ✓ ✓

[44] 1996 ✓ ✓ ✓ ✓

[112] 1995 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background
	3 Overview of Survey Methodology
	4 Literature Search
	4.1 Phase 1
	4.2 Phase 2
	4.3 Phase 3

	5 Survey Taxonomy Derivation
	5.1 Attribute/Item Identification
	5.2 Attribute/Item Generalization
	5.3 Resulting Taxonomy

	6 Paper Attribution
	6.1 Paper Distribution by Venues
	6.2 Paper Categorization by Taxonomy
	6.3 Survey Result: Approach
	6.4 Survey Result: Application
	6.5 Survey Result: Evaluation

	7 Analysis and Discussion of Survey Results
	7.1 Limitations and Challenges of Existing Works
	7.2 Future Research Directions

	8 Threats to Validity
	9 Conclusion
	References
	A More Background on Program Analysis and Distributed Systems
	A.1 Fundamental Analysis Concepts and Algorithms
	A.2 Distributed Software Systems

	B Mapping of Surveyed Papers to Survey Taxonomy

