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A Survey of Program Analysis for Distributed Software Systems

HAIPENG CAI, University at Buffalo, USA

Distributed software systems are pervasive today and they are increasingly developed/deployed to meet the growing needs for scalable

computing. Given their critical roles in modern information infrastructures, assuring the quality of distributed software is crucial. As a

fundamental methodology for software quality assurance in general, program analysis underlies a range of techniques and tools for

constructing and assuring distributed systems. Yet to this date there remains a lack of systematical understandings of what have been

done and how far we are in the field of program analysis for distributed systems. To gain a comprehensive and coherent view of this

area hence inform relevant future research, this paper provides a systematic literature review of the (1) technical approaches, including

analysis methodology, modality, underlying representation, algorithmic design, data utilized, and scope, (2) applications, with respect

to the quality aspects served, and (3) evaluation, including the datasets and metrics considered, of various program analyses in the

domain of distributed software in the past 30 years (1995–2024). In addition to knowledge systematization, we also extend our insights

into the limitations of and challenges faced by current technique and evaluation designs, which shed light on potentially promising

future research directions.
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application technique, benchmarks, evaluation metrics, distributed program
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1 Introduction

A distributed software system
1
consists of loosely coupled or entirely decoupled components that are located at

physically separate sites [55]. It helps users share different resources and capabilities in an integrated coherent net-

work [121, 203]. In recent years, with continuously increasing performance and scalability demands for a growing variety

of computation tasks, a rising number of distributed software systems have been designed, developed, and deployed to

leverage high-performance computing infrastructure and resources that are typically decentralized, including aircraft

control systems, airline reservation systems, banking/financial systems, industrial control systems, medical networks,

web search, and so on. Given their paramount roles and applications in our daily lives and the business/industrial world,

their quality (e.g., maintainability, performance efficiency, portability, reliability, security, usability [88, 106, 180, 209])

and corresponding quality assurance approaches are significantly important [82, 83, 85, 148, 156].

1
Without loss of generality but for brevity, we use “distributed software system", “distributed software", and “distributed system" exchangeably throughout

the paper—while a distributed system generally refers to a networked computing environment, this paper focuses on the software perspective.
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2 Cai

As a primary form of software analysis, program analysis is an automatic technique or process of analyzing the

behaviors hence properties (e.g., correctness, robustness, safety) of software systems based on their programs [166].

There are generally three classes of program analysis approaches, categorized according to the kinds of data utilized

(i.e., actually analyzed) by a program analysis technique/algorithm: static analysis reasoning about program behaviors

based on the program code with respect to any possible program executions, (purely) dynamic analysis computing

run-time properties of specific program executions with respect to particular program inputs, and hybrid analysis

combining static and dynamic analysis, which may also be considered a kind of dynamic analysis that utilizes static

analysis results. Historically, program analysis of any of these classes has been the enabling technique for many fully-

or semi-automated application solutions to various software quality assurance issues and challenges.

Particularly for distributed software systems, program analysis remains a fundamental methodology for software

assurance. As for other software domains, this methodology has empowered typical software engineering and sys-

tems tasks, such as fault diagnosis, code optimization, performance tuning, security defenses, and various mainte-

nance/evolution activities [17, 115, 120, 224]. In fact, program analysis for distributed software systems as a research

area/topic can be dated back to 1980s [65, 66, 157], when the need for testing and debugging distributed systems was

recognized in distributed/parallel computing environments. While much of the work in the broad area of parallel and

distributed computing has been done from coarse, system-level perspectives such as those of architecture, networking,

and resource management, studies on code-level quality of distributed software via program analysis also went through

a long journey. These studies include both fine-grained, deeper program modeling and reasoning and those at coarse

levels. For instance, techniques have been devised to resolve dependencies in distributed systems for enhancing par-

allelization [181], system configuration [119], and high-level system modeling [1, 23]. And the underlying program

analyses include static [91, 161, 179], dynamic [38, 39, 79, 83], and hybrid [30, 82] ones.

Yet despite its long history and great significance, the area of program analysis for distributed software (i.e., analysis

of distributed programs2) has not been systematically surveyed. As demonstrated in such surveys of program analysis

for non-distributed systems (i.e., software running on one single computer, regardless in a single process or multiple

processes) [53, 223] as well as many other areas in computing, a literature review can serve many beneficial purposes.
First, for researchers in software engineering, programming languages, and systems, especially those who just get into

respective areas, a comprehensive survey offers an overview of what progresses have been made and what approaches

are available. For practitioners and distributed system researchers who do not have core expertise in program analysis,

this overview can be very valuable in helping them navigate through the literature for technique/tool selections for

immediate use or developing domain-specific solutions. Second, the survey can serve as systematization of knowledge

on program analysis for distributed software, summarizing challenges and limitations faced by existing techniques,

hence guiding both researchers and practitioners in discerning the strengths and weakness of different choices. Third,

the survey is essential for distilling insights into this topic regarding how far it is now and what gaps remain, hence

informing future research to take the most pressing problems in the right directions.

A few prior works summarized different program analysis techniques for specialized distributed systems. For example,

Alqahtani et al. [10] summarized of cloud system data security via information flow control. It first discussed how

different techniques were used with the CloudMonitor tool that guarantees the data protection of cloud systems, followed

by an overview of the operations of some information flow control systems, and the advantages and disadvantages

of those approaches. Also, Wei et al. [221] provided a survey on data-flow management, concerning sensing, control,

2
We refer to the code components of a distributed system together as a distributed program, where a component is the code running in a separate process.
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A Survey of Program Analysis for Distributed Software Systems 3

and security, in Internet of Things (IoT) systems. It started with the key challenges facing IoT data-flow management,

and then summarized relevant techniques in this area, with illustrations via representative management tools and/or

platforms as well as example application scenarios (e.g., smart city/transportation/manufacture). However, there has

been no systematic literature review on program analysis for distributed software in general (i.e., both common-purpose

and specialized systems), despite the aforementioned benefits of such a survey and the importance of this topic.

1 // NioEcho client component/process

2 public class NioClient implements Runnable {

3 public void send (...) ... {

4 SocketChannel socket = this.initiateConnection ();

5 this.rspHandlers.put(socket , handler);

6 synchronized (this.pendingData) {

7 List queue = (List) this.pendingData.get(socket); ...

8 this.pendingData.put(socket , queue);

9 queue.add(ByteBuffer.wrap(data)); }

10 this.selector.wakeup (); } ... }

11

12 public static void main(String [] args) {

13 String host = "localhost";

14 int port = 9090;

15 ...

16 NioClient client = new NioClient(InetAddress.getByName(host),

port);

17 Thread t = new Thread(client);

18 t.setDaemon(true);

19 t.start(); ... }

20 ......

21 // NioEcho server component/process

22 public class NioServer implements Runnable {

23 public void run() { ...

24 synchronized (this.pendingChanges) {

25 Iterator changes = this.pendingChanges.iterator ();

26 while (changes.hasNext ()) { ...

27 SelectionKey key = change.socket.keyFor(this.selector);

28 key.interestOps(change.ops); ... }}

29

30 public static void main(String [] args) {

31 String host = "localhost";

32 int port = 9090;

33 if (args.length > 0) {

34 port = Integer.parseInt(args [0]); }

35 if (args.length > 1) {

36 host = args [1]; }

37 InetAddress serveraddr = InetAddress.getByName(host); ... }

1

Fig. 1. An example distributed program NioEcho [197] for illustration.

To fill this gap, we conduct a comprehensive re-

view of program analysis for distributed software

systems across 30 years (1995–2024), addressing the

long missing knowledge systematization on what is

unique with the program analysis for this particular

software domain. To offer a systematic understand-

ing of the status quo, we examined three high-level,

closely connected aspects of distributed-program

analysis: (1) the technical approach (i.e., analysis

method), (2) the application problem addressed by

and used for evaluating the technical approach (i.e.,

specific software quality problem the program anal-

ysis technique is applied to), and (3) the evaluation

approach (i.e., experiment design) followed for as-

sessing the technique in respective application con-

texts. In examining technical approaches, we take

an extensive list of angles relevant to program anal-

ysis in general, including the underlying program

representation, analysis modality and scope, algo-

rithmic design, and data utilized by the analysis.

Paper organization. Specifically, we start with necessary background on program analysis and distributed systems

(§2), followed by the survey guided by a principled methodology (§3,§4,§5). This methodology covers all the common

major steps of a systematic literature review, including (1) the literature search process (§4) which resulted in the

collection of papers that serve as the basis of survey, (2) the derivation of taxonomy (§5) of program analysis for

distributed systems which resulted in a paper-attribution framework, and (3) the paper attribution process that follows

the framework to produce our survey results (§6). Based on these results, we discuss the limitations and challenges

with existing distributed-program analysis techniques/tools surveyed (§7.1), from which we further identify future

research directions for overcoming those limitations/challenges in the field of program analysis for distributed software

(§7.2). Finally, we discuss the limitations of our survey itself (§8) before making brief concluding remarks (§9).

2 Background

This section provides essential background on program representations. Additional information on program analysis

and distributed systems can be found in Appendix A.

An analysis of a program is often performed on a representation of the program. Then, reasoning about the program

behaviors is based on that representation. Among others, graph representations are the most commonly used by various

Manuscript submitted to ACM
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selected papersLiterature search Survey aspectsSurvey taxonomy derivation Survey resultsPaper attribution

Limitations, challenges, and future search directionsSurvey result analysis

(Section 7)

(Section 4) (Section 6)(Section 5)

Fig. 3. Overview of our survey methodology and workflow.

analysis techniques. As examples, we briefly introduce three basic graph representations as follows: control flow graph,

call graph, and program dependence graph, while mentioning a few other related ones. We use code excerpts from (the

version r69 of) NioEcho (shown in Figure 1) for illustration purposes. This is a simple distributed program consisting of

one server component and a number of client components, where the server echoes any messages sent by a client [197].

14
15

16

17
18

20
21

19

22

True

False

True

False

A

B
C

D
E

F

32 33

34

35

36

3731

Fig. 2. An example control flow graph (CFG)—of the
main method in the example distributed program
NioEcho’s NioServer class (Figure 1)

.

A control flow graph (CFG) [7] is a graph representing the control

flow relationships among code entities in a program, often used in

static analyses, such as those in a compiler. For example, the CFG

of the method main of the NioEcho server (class NioServer, Lines

31–37) is depicted in Figure 2. Moreover, in this case, Line 31 is the

method entry, Line 37 is the exit, and Lines 35 and 37 are branch

statements each including one conditional referred to as predicate (e.g., args.length>0).

A call graph (CG) is a directed graph that represents calling relationships among program subroutines (e.g., func-

tions/methods) [187]. Each CG node represents a subroutine, and each CG edge <n1,n2> connecting two nodes

𝑛1 and 𝑛2 represents that 𝑛1 calls 𝑛2. In the program NioEcho of Figure 1, for example, NioServer::run calls

SelectionKey::interestOps; thus, an edge between the two nodes representing the respective methods is included

in the call graph of the server component of this distributed program.

A fundamental way of modeling a program’s behavior is by modeling the dependencies among code entities of the

program, and one basic form of such models is program dependence graph (PDG). Each node of this graph represents a

code entity (e.g., statement) while an edge between two nodes represents either a data or control dependence between

the two respective entities that the two nodes represent. For example, in the mainmethod of NioEcho’s class NioClient,

Line 17 is data dependent on Line 16 as the former defines (writes to) the variable client while the latter uses (reads)

the same variable without any intermediate redefinition (overwrite) of it. A control dependence exists between two

statements when the evaluation result of one statement (e.g., Line 35) determines whether the other (e.g., Line 26)

executes or should be bypassed [9].

Per the original definition [74], PDG is intraprocedural—it consists of dependencies within a function/method.

Horwitz et al. [102] extended the PDG to an interprocedural representation of a program that consists of more than

one function/method, called a system dependence graph (SDG), which captures the calling context of data/control

dependencies within a PDG [140]. Given such a program, its SDG can be constructed from its per-method/function

PDGs while referring to its interprocedural control flow graph (or ICFG)—by default, a CFG is also intraprocedural. The

ICFG itself further relies on the call graph to be constructed from the per-method/function CFGs of the program.

Another important representation of programs is information flow graph (IFG) [60], a graphical representation used

in program analysis to model how information flows through a software system. In an IFG, nodes represent program

variables, memory locations, or other entities where information can be stored (while edges represent the flow of

information between nodes), versus nodes in a CFG/ICFG/PDG/SDG representing statements/instructions.
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A Survey of Program Analysis for Distributed Software Systems 5

filtering with inclusion/exclusion criteria 
and summarizing

277 articles
Forward and backward 

snowballing
284 articles

153 articles

Search with selected keywords
①

③Final set of papers

②

561 articles +

Google Scholar and major academic portals/digital libraries (ACM DL, IEEE Xplore, arXiv)

(Phase 1) (Phase 2)

(Phase 3)

Fig. 4. Overview of our literature search process, including its three phases and respective inputs and outputs.

3 Overview of Survey Methodology

To gain systematization and insights about program analysis for distributed systems, we conducted a comprehensive

survey on this topic following a principled methodology, as shown in Figure 3 and summarized below.

Starting with a systematic literature search (§4), we first searched and selected papers (using chosen, relevant

keywords). From these selected papers, we proceeded with the survey taxonomy derivation, resulting in the survey

aspects/attributes/items (§5) that form an attribution framework. Then, following the paper attribution process [53] we

attributed the surveyed papers within the taxonomy, hence producing the survey results (§6). Lastly, through the survey

result analysis, we identified the limitations/challenges in the field of program analysis for distributed software systems,

while offering our views on relevant future research directions for addressing those limitations and challenges (§7).

4 Literature Search

We searched, identified, and filtered studies related to program analysis for distributed software in three phases, as

shown in Figure 4. Next, we describe each of these phases in detail.

4.1 Phase 1

In this phase, we searched broadly for all potentially relevant research papers on Google Scholar and well-known

academic publication portals/digital libraries such as ACM digital library (DL), IEEE Xplore, and arXiv. We used the

following topic-relevant keywords and their combinations as queries: distributed software, distributed system, dis-

tributed program, distributed/parallel computing, cloud system, program/code analysis, static/dynamic analysis, dependence

analysis/slicing, taint analysis, information flow, quality/security/reliability/performance/dependability, and internet of

things. We chose these keywords because they are indicative of the software domain (i.e., distributed system) and

technical topic (i.e., program analysis) of our survey, or common types of program analysis (e.g., dynamic analysis) and

their typical applications (e.g., quality). And then we scooped a conservative, comprehensive list of publications related

to any of these queries, resulting in the initial set of 277 papers.We aimed to cover any papers that are relevant to our

survey domain and topic, regardless of where they were published and when.

4.2 Phase 2

To ensure comprehensive inclusion of relevant papers, we went further to scoop additional related papers that are

not in our initial list (i.e., the result of Phase 1) through manual forward and backward snowballing processes (i.e.,

including papers that cite, and are cited by, any of the 277 papers, respectively). These processes led us to 284 additional

papers that are potentially relevant according to the inclusion of any of the keywords (same as used in Phase 1) in the

paper title or body. As a result, our initial paper pool size grows to 561 (=277+284).
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6 Cai

4.3 Phase 3

This phase is our manual inspection and filtering step to select the relevant papers, for which we used the following

inclusion and exclusion criteria. In particular, we defined two inclusion criteria as follows:

• Studies about any kind of program analysis approach or its application, either technical or empirical.

• Studies that address any kind of distributed software systems, including common and specialized ones (e.g.,

event-based, cloud, and Internet of Things (IoT) systems, micro-services), as the subject program under analysis.

Meanwhile, to speed up the filtering process, we also defined the following exclusion criteria:

• Studies that do not involve development, use, or evaluation of any form of program analysis.

• Studies about single-process programs, either single-threaded or multi-threaded ones.

• Materials that are not official academic/research publications (e.g., abstracts, posters, and tutorials)

• Papers that are not written in English.

For each of the 561 papers in our pool resulting from Phase 2, we carefully looked into the paper, inspecting its title,

keywords, abstract, and the main text. We immediately dismissed the paper if it met any of the exclusion criteria;

otherwise, we used the two inclusion criteria to decide on inclusion or not and only kept the paper if it met both. In the

end of this phase, we selected 153 papers as the basis of our next survey steps, for which we manually summarized

and recorded about the following information for each included paper: the problem addressed, motivation, approach,

application, evaluation subjects, evaluation metrics, evaluation results, strengths and limitations, and future work—if

explicitly discussed or implicitly retrievable in the paper.

5 Survey Taxonomy Derivation

In this section, we describe the angles in which we examine the existing literature on program analysis for distributed

software. We start with the process of deriving all of these angles, which collectively form our survey taxonomy (§5.1,
§5.2). Then, we present the derivation results—i.e., the taxonomy itself (as outlined in Table 1), which covers all the

three high-level aspects of a program analysis: the technical approach (§5.3.1), the application of the analysis (§5.3.2),
and the evaluation of the analysis technique—either directly or through the application (§5.3.3).

Table 1. The Derived Taxonomy of Our Survey on (i.e., Examined Aspects of) Program Analysis for Distributed Software
Aspect Attribute Item Description

Approach

Analysis Methodology

Code-based analyzing the given program based solely on its code

Learning-based using machine/deep-learning technique(s)

Analysis Modality

Static analyzing the given program without executing it

Dynamic using the program’s execution/run-time information

Program Representation

CFG/ICFG representing control flows

CG representing calling relationships among functions

PDG/SDG representing data and control dependencies

IFG representing information flows

Algorithmic Parameter

Analysis Sensitivity if the analysis is context-/flow-/field-/object-/path-sensitive

Data Granularity the granularity of the data used

Analysis Data

Run-time Event run-time/execution events of the program

System Log log generated by the system during its operation

Artifact (code/non-code) items produced during software development

Analysis Scope targeted distributed-system types (common or specialized)

Application

Functional Testing verifying/validating software functionalities

Fault Localization identifying faulty program entities/locations

Security Support aiming to assure security requirements

Performance Diagnosis diagnosing performance efficiency

Maintenance/Evolution Support enabling/facilitating software maintenance/evolution tasks

Evaluation

Dataset

Benchmark Suite systems used purposely for comparison/measurement

Real-world System distributed systems used by real end-users

Metric

Effectiveness how effective (e.g., accurate/precise) the analysis is

Efficiency how (e.g., time/space) efficient the analysis is
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A Survey of Program Analysis for Distributed Software Systems 7

5.1 Attribute/Item Identification

Our attribute identification step aims to refine each of the three aspects (Approach, Application, Evaluation) into

specific attributes. First, we studied all the articles and wrote down relevant words as attributes for particular aspects,

such as "Analysis Methodology" or "Analysis Modality" for the "Approach" aspect. Then, we recorded words of interest

as items that could be related to particular attributes, such as "static" or "dynamic" for the "Analysis Modality" attribute.

5.2 Attribute/Item Generalization

After the initial attributes and items have been identified, we generalize them to render their numbers manageable and

improve their reusability, through a few iterations. For example, regarding the target aspect "Application", the attributes

"system testing" and "unit testing" can intuitively be generalized to "Functional Testing". Similarly, regarding the target

attribute "Algorithmic parameter“ (of the "Approach" aspect), the items "context-sensitivity", "flow-sensitivity", "field-

sensitivity", and "object-sensitivity" can intuitively be generalized to "Analysis Sensitivity". After this generalization

step, the resulting attributes and items are documented.

5.3 Resulting Taxonomy

Following the attribute/item identification and generalization steps, we derived our taxonomy (as outlined in Table 1),

as elaborated below for each of the three high-level aspects separately.

5.3.1 Approach. In this aspect, we identified six attributes. In terms ofAnalysis Methodology, the existing approaches
fall in two major categories: Code-based, where the analysis directly reasons about the given program code in a

deterministic manner, and Learning-based, where the analysis leverages machine/deep learning methods.

The approach aspect also differentiates two general types of Analysis Modality: static and dynamic. A static

approach performs the analysis using program information with respect to all possible executions of the program (i.e.,

without executing it). While consuming fewer resources (when considering those needed for program executions),

static analysis cannot precisely capture the behaviors of a program during its concrete execution. In contrast, a dynamic

approach utilizes run-time program information obtained from the program’s concrete execution, including (purely)

dynamic analysis which only uses the run-time information and hybrid dynamic analysis which additionally utilizes

static program information. Dynamic analysis enables reasoning about the run-time behaviors hence validating program

properties or just understanding the system better [53]. While generally incurring higher overhead [34], it often offers

greater precision [31, 36]. In particular, hybrid dynamic analysis helps gain better balance between the precision and

overhead of the analysis [28, 32, 37], although it tends to be more complex and need more resources. Since hybrid

(dynamic) analysis is essentially a kind of dynamic analysis, we do not treat it as a separate analysis modality.

As for other domains of (e.g., centralized) software systems, analyses for distributed systems commonly work

on the basis of a certain kind of Program Representations. In particular, this attribute differentiates four types

of representations: CFG/ICFG, CG, PDG/SDG, and IFG, as defined/described earlier (§2). Control flow graph (CFG)

represents the control flow of a single procedure (i.e., function) [7], while interprocedural control flow graph (ICFG)

connects all of the CFGs of a program hence representing the control flow of the entire program. Call graph (CG)

represents calling relationships among functions in a program [187]. Program dependence graph (PDG) models the data

and control dependencies among program entities within a function, while system dependence graph (SDG) captures

those dependencies across functions. Information flow graph (IFG) represents the information flows of a program,

where each flow is often represented by a chain of data/control dependencies between an information source and an
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8 Cai

information sink. Each of these program representations may be constructed at different granularity (e.g., instruction,

statement, method) levels.

TheAlgorithmic Parameter attribute of distributed-program analysis distinguishes twomajor items (sub-attributes):

the sensitivity of the analysis and the granularity of data used by the analysis. More specifically, Analysis Sensitivity

concerns whether the analysis is context-, flow-, field-, object-, or path-sensitive. These sensitivity properties commonly

concern the differentiation between different execution scenarios when all possible executions need to be considered—

thus, they are usually only relevant to a static analysis. Enabling (disabling) a sensitivity property often implies a greater

(lower) level of precision at a higher (lower) level of cost; therefore, setting this algorithmic parameter immediately

affects the cost-effectiveness of the analysis [186]. Similarly, Data Granularity also has a clear effect on the balance

between analysis cost and effectiveness—usually, finer (coarser)-grained data bring higher (lower) precision while

incurring greater (lower) overhead. In our survey, this algorithmic parameter is only relevant to dynamic analysis,

which uses run-time data such as method-level execution events or statement-level coverage records.

Another key attribute of a program analysis approach for distributed programs (as for program analysis in general)

is the Analysis Data. This attribute further distinguishes three types of data used by the analysis as follows. Run-time

Event refers to execution events that externalize program run-time behaviors, such as method entry/exit [32], message

receiving/sending [39], and statement coverage [30]. These events are usually captured through code instrumentation.

System Log is another major kind of analysis data, which is produced through logging facilities provided by the

developers in the original program, rather than being inserted to the program via instrumentation. Analysis can often be

enriched by using non-code Artifact as well, such as README and manifest files, configuration/installation documents,

and commit logs and code comments, etc.

Finally, given the presence of different types of distributed systems, a program analysis for distributed programs

often has a targeted Analysis Scope. The relevant literature has addressed mainly two analysis scopes. The first is

Common Distributed System, which uses standard networking facilities (e.g., Socket-based message passing) for the

interaction between distributed components of the system, as defined in a commonly-used textbook on distributed

systems [55] (§A.2). The second subsumes all sorts of specialized distributed systems, such as distributed event-based

(DEB) [160], cloud systems [152], and Internet of Things (IoT) systems [218] (§2).

5.3.2 Application. In this aspect, we examine the concrete application of a program analysis for distributed programs

to solving a specific problem. From the current relevant literature, we derived five types of applications, according

to the common aspects of software quality. In particular, Functional Testing addresses any program analysis being

applied to verifying/validating functional correctness of distributed software, while Fault Localization addresses

applications on identifying faulty code locations (i.e., debugging). Security Support focuses on any technique/tool

support for securing distributed systems, concerning their confidentiality, integrity, accountability, non-repudiation,

and authenticity. According to the ISO/IEC 25010 [106] software quality model, these are the five sub-characteristics

of the security quality characteristic. Many software systems are designed as distributed ones due to higher-level

performance goals. Thus, intuitively Performance Diagnosis of distributed systems themselves is an important

application of distributed-program analysis, which aims at accurate identification of actual/desired performance levels

and/or specification of interventions to improve performance [211]. Maintenance/Evolution Support is another
major application area of program analysis of distributed programs, which addresses enabling/facilitating activities for

maintaining [212] the distributed system and those for continual development that changes the system’s functionality

or properties experienced by the system customer(s) [46].
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5.3.3 Evaluation. To systematically understand the existing works on program analysis for distributed systems, it is

essential to also look at how the technical approach has been evaluated. As for evaluation of a technique, through the

evaluation aspect we examine two common attributes: the Dataset used in the evaluation studies and the Metric in

which evaluation results are measured.

The Dataset attribute distinguishes the following two main types of evaluation subjects (and the accompanying test

inputs if the analysis follows a dynamic approach). To evaluate in terms of metrics that rely on ground truth, standard

or commonly-adopted Benchmark Suite is often used, which is a collection of benchmarks that are test cases or sets

of test cases purposely aimed to enable rigorous assessment of the proposed technique and/or comparisons between

alternative techniques. To assess generalizability and practicality, however, it is desirable to use Real-world System (and

their run-time inputs in real operations) as study subjects, which gives more confidence to users regarding how the

proposed technique may perform in practice.

Regarding Metric, the literature we studied typically seek to measure the Effectiveness and/or Efficiency of analysis

techniques/tools in the evaluation against distributed software. Here effectiveness concerns efficacy of the technical

solution (to the targeted application problem), commonly quantified in terms of specific measures like precision and

recall (or false/true positive rates). Efficiency concerns how much (e.g., CPU, GPU) time and/or how many resources (e.g.,

peak memory, network bandwidth, external storage) are consumed by the proposed approach. For dynamic analysis in

particular, run-time overhead (e.g., measured via slowdown ratio) is also usually considered in efficiency evaluation.

6 Paper Attribution

The next phase of our survey process is to apply the attribution framework derived (in §5) to the relevant literature

identified (in §4). In this section, we focus on summarizing the surveyed papers as per (i.e., mapping them to) our

taxonomy of program analysis for distributed software. We start with statistics on the collected papers based on their

venues (𝑆6.1) and survey aspects/attributes (§6.2), followed by the summary of the research body in each of the three

aspects: Approach (§6.3), Application (§6.4), and Evaluation (§6.5).

6.1 Paper Distribution by Venues

The 153 relevant papers were published between October 1995 and July 2024 across over 90 venues, including 15

conferences and 9 journals each covering 2 papers or more surveyed, institutions of 7 PhD dissertations, as shown in

Table 2. The 71 miscellaneous other venues each covering only one paper, thus not enumerated.

Overall, related to program analysis techniques/tools for distributed software, these 153 papers are unevenly

distributed across four main research areas: (1) programming languages and software engineering, including 7 venues:

ICSE, FSE, ASE, PACMPL, TOSEM, TSE, and JSS, which contributed a total of 32 papers; (2) operating systems and

parallel/distributed computing, including 9 venues: EuroSys, SoCC, ATC, SOSE, OSDI, SOSP, DEBS, JCC, and TPDS,

which contributed 25 papers; (3) computational science, including 5 venues: CSCI, ICCCI, JPCS, Access, and IASC, which

contributed 11 papers; and (4) computer security, including 3 venues: DSN, CCS, and USENIX Security, which contributed

7 papers. This venue distribution can be explained by several reasons:

• Program analysis is one of the most important and popular topics in the general area of programming lan-

guages and software engineering; thus, intuitively a good number of papers in our survey scope have been

published in this area.

• Program analysis is also a main type of technical approach in the area of computer security, widely utilized to

address security problems; this leads to a noticeable presence of security venues among the surveyed papers.
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Table 2. Distribution of Publication Venues of Surveyed Papers
Type Acronym Description # Papers

Conference

ICSE IEEE/ACM International Conference on Software Engineering 11

FSE ACM Symposium on the Foundations of Software Engineering 7

EuroSys European Conference on Computer Systems 6

SoCC ACM Symposium on Cloud Computing 4

USENIX ATC USENIX Annual Technical Conference 3

CSCI Computational Science and Computational Intelligence 3

DSN IEEE/IFIP International Conference on Dependable Systems and Networks 3

CCS ACM SIGSAC Conference on Computer and Communications Security 2

SOSE International Conference on Service-Oriented System Engineering 2

OSDI USENIX Symposium on Operating Systems Design and Implementation 2

SOSP ACM Symposium on Operating Systems Principles 2

ASE ACM/IEEE International Conference on Automated Software Engineering 2

DEBS ACM International Conference on Distributed Event-Based Systems 2

ICCCI International Conference on Computer Communication and the Internet 2

USENIX Security USENIX Security Symposium 2

Journal

PACMPL Proceedings of the ACM on Programming Languages 5

TOSEM ACM Transactions on Software Engineering and Methodology 3

JPCS Journal of Physics: Conference Series 2

IASC Intelligent Automation & Soft Computing 2

JCC Journal of Cloud Computing 2

JSS Journal of Systems and Software 2

Access IEEE Access 2

TPDS IEEE Transactions on Parallel and Distributed Systems 2

TSE IEEE Transactions on Software Engineering 2

Thesis PhD Dissertation Various institutions (each having only one thesis among the surveyed) 7

Various other venues Various venues (each having only one paper among the surveyed) 71

All venues Total 153

88.2%

13.1%
26.1%

73.2%

17.0% 14.4% 13.7%
4.6%

21.6% 24.2%

54.9%

17.6%

31.4%

71.9%

26.8%
20.3%

32.0% 31.4%

17.6%
26.1% 30.7%

68.6% 69.3%
60.8%

0%

20%

40%

60%

80%

100%

Approach Application Evaluation

Analysis Methodology Analysis Modality Program Representation Algorithmic Parameter Analysis Data Analysis Scope Dataset Metric

Fig. 5. Distribution of the surveyed papers over the three aspects (approach, application, and evaluation) and attributes/items.

• The others, OS and parallel and distributed computing and computational science, are primary areas addressing

the subject of distributed software systems; hence, multiple relevant venues contributed to the studied literature.

Meanwhile, the fact that these 153 papers were spread quite thin (over 90 venues) reveals the wide attention and

interest of broad research communities to/in the surveyed topic. On the other hand, ICSE and FSE dominates the

current literature (contributing 18 papers), followed by EuroSys and SoCC (accounting for 10 of the papers). A plausible

reason is that ICSE and FSE have long been a primary software-engineering (SE) venue publishing significant advances

in program analysis, while EuroSys and SoCC are flagship venues on cloud computing which is a key application

domain of distributed systems. Also, the vast majority of the papers are presented in conferences rather than journals, a

contrast common in computer science in general. The 71 venues not listed are mainly in SE, computer networks, and

high-performance computing.

6.2 Paper Categorization by Taxonomy

Figure 5 shows the distribution of the target literature over the derived survey aspects, attributes within each

aspect, and items (when available) within each attribute. The results reveal dominating subcategories within respective

categories among the 153 papers. For instance, the vast majority of these papers present code-based program analysis

approaches in terms of their analysis methodology—machine learning has yet to be widely exploited for program
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analysis for distributed systems, and most of these approaches are dynamic analysis using various run-time events far

more often than using system logs while mainly addressing common distributed systems as opposed to specialized

ones. For another example, fault localization has been the primary application area of distributed-program analysis,

followed by security support and maintenance/evolution support. In terms of evaluating these approaches, real-world

systems have been used much more often than benchmark suites, while effectiveness is more attended than efficiency

when it comes to evaluation metrics. Note that for some (sub)categories (e.g., Application), the percentages sum up over

100% because a paper may fit more than one (e.g., it addresses multiple application tasks); while for some (e.g., Program

Representation) the total does not add up to 100% because some papers cannot be attributed to any of them (e.g., papers

on purely dynamic analysis do not use any of the program presentations—which are all static).

In the following three subsections, we look into each of these categories (along with their subcategories), examining

the actual research presented in the surveyed papers, with one subsection dedicated to each of the three high-level

survey aspects. To offer an overview of our results, Table 3 (years of 2022-2024), Table 4 (years of 2020-2021), Table 5

(2015-2019), and Table 6 (1995-2014) in Appendix B show the mapping of these papers (as linked in 1st column) to the

survey taxonomy (all the other columns to the right) we derived.3 These tables serve as useful references for seeking

relevant articles on particular topics addressing program analysis techniques/tools for distributed software. For example,

when a user looks for dynamic analysis techniques/tools supporting the security of distributed software, he or she only

needs to identify the articles with the item "Dynamic" of the attribute "Analysis Modality" within the aspect "Approach"

and the item "Security Support" within the aspect "Application", and so on.

6.3 Survey Result: Approach

We now present our summary of existing distributed-program analysis approaches along the six attributes identified

in our survey taxonomy, as separately examined as follows.

6.3.1 Analysis Methodology. Existing program analysis approaches for distributed systems have adopted two analysis

methodologies, predominantly Code-based and relatively a few Learning-based,

Code-based. As depicted in Figure 5, by far most (88%) of the current analysis techniques/tools for distributed systems

are based on the system’s code. In particular, the majority of these code-based studies [2, 21, 24, 47, 50, 89, 90, 98, 107,

119, 143, 146, 150, 151, 159, 162, 163, 165, 175, 178, 183, 188, 193–195, 199, 202, 206–208, 213, 220, 232] were based on

distributed program source code. For example, Acay et al. [2] proposed Viaduct, a system that allowed users to specify

security policies by annotating distributed programs with information flow labels and to enforce these policies by

compiling high-level source code in order to secure the programs.

Some studies [70, 93, 145, 147, 211, 231, 237] worked on the bytecode of distributed programs. For instance, Zhao et al.

[237] presented a non-intrusive request flow profiler named lprof, performing static analysis on distributed systems’

bytecode to stitch together and interpret the log messages of requests.

In addition, a number of analysis approaches [30, 38, 39, 76, 77, 79–84, 86, 91, 96, 130, 135–137, 200] used intermediate

representation (IR) code, including Soot (a Java analysis framework) [214] IR [30, 38, 39, 76, 77, 79–84, 91, 96] , WALA (a

Java/JavaScript analysis framework) [205] IR [130, 135–137, 200], and LLVM (a multilingual compiler framework) [126]

IR [96, 206, 207]. For example, Gu et al. [96] proposed a static analysis engine, named BigSpa, taking the LLVM IR and

Soot IR as its inputs for generating intra-component/process graphs of distributed programs written in C/C++ and

3
Our survey covers papers published and searchable online up to July 2024; thus, results for 2024 do not represent all relevant works in that entire year.
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Java, respectively. As another example, Suminto et al. [200] presented their cascading outage bug elimination (COBE)

technique, which leverages WALA for initial program parsing.

Learning-based.A few analysis approaches (for distributed software) are based onmachine learning techniques, includ-

ing deep learning and traditional machine learning. For instance, both [236] and [108] utilized deep learning techniques.

In particular, Zhang et al. characterized the suitability of a new parallel deep-learning model selection/execution method

called Model Hopper Parallelism (MOP) for data systems and performed a comparative analysis of various distributed

deep learning approaches for that purpose [236]. Similarly, Jia et al. delivered insights and guidelines on how to fully

exploit distributed deep learning clusters for deploying deep learning applications [108]. Yu and Zhang [230] combines

graph convolutional network (GCN) and LSTM to learn the spatio-temporal dynamics in cloud systems for anomaly

detection. LSTM has also been used in [57] to facilitate the performance modeling of cloud and edge systems. Recently,

He et al. [100] uses Transformer with a novel anomaly attention mechanism and a graph neural network (GNN) to learn

spatio-temporal features to enable effectively detecting anomalies in distributed systems. With their generalizability

merits, large language models (LLMs) have emerged as the key enabler of state-of-the-art learning-based techniques.

For example, RCACopilot [48] integrates LLMs with automated incident handlers to streamline cloud incident Root

Cause Analysis (RCA). The system first collects focused diagnostic information through customized workflows, then

leverages GPT-3.5/4 to analyze this data, predict root cause categories, and provide explanations. As another example,

FaultProfIT [103] employs hierarchical textual classification and hierarchy-guided contrastive learning to automatically

profile fault patterns in incident tickets for cloud systems. The approach learns meaningful representations with limited

training data by focusing on similarities and differences between samples, using an optimized BERT model to encode

the raw text of incidents.

Other studies [4, 15, 83, 84, 87, 138] exploited traditional machine learning techniques. In [83, 84], Q-leaning (a type

of reinforcement learning) algorithms were utilized to adjust analysis configurations [61] to achieve scalable and cost-

effective dynamic dependence analysis for distributed software systems. Meng et al. [156] also leverages Q-learning but

for guiding a greybox fuzzer to select which fault to inject in the system state based on current observations of distributed

system execution. Astekin et al. [15] proposed a case study for evaluating distributed machine learning algorithms

that could detect the logs of large-scale systems. Fukuda et al. [87] also presented a computational framework for

distributed data analysis, applying traditional machine learning techniques (k-means and k-nearest neighbors (KNN)) to

clustering and classification tasks. Prism [139] proposes a coarse-to-fine clustering based approach to identifying hidden

functional clusters in large-scale cloud systems. DistFax [85] trains unsupervised (e.g., KNN-based) and supervised

(random-forest-based) models to predict quality anomalies in common distributed system executions.

6.3.2 Analysis Modality. Both static and dynamic analyses are present in the current literature of program analysis for

distributed systems, with dynamic approaches clearly dominating over static ones (Figure 5).

Static. For distributed software, static approaches have been applied to various, well-known types of program analyses,

including data flow analysis [41, 91, 96, 154, 200], taint analysis [189, 206, 207, 219], and pointer analysis [96]. For instance,

Gu et al. [96] proposed a static analysis engine, BigSpa, performing data flow analysis and pointer analysis. Wang et al.

[219] scaled static taint analysis to industrial service-oriented architecture (SOA) applications. MPCChecker [142] uses

a static data flow analysis to detect missing-permission-check (MPC) vulnerabilities in cloud systems.

Dynamic.Most (73%) of the surveyed analysis techniques/tools (for distributed systems) are dynamic. In particular,

many studies [2, 12, 13, 19, 24, 30, 38, 39, 76, 77, 79–84, 98, 107, 112, 130, 135–137, 146, 147, 158, 159, 165, 175, 179, 195,

199, 211, 213, 215, 237] adopted a hybrid approach to the dynamic analysis, rather than being purely dynamic. For
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example, Mohapatra et al. [159] presented a hybrid slicing technique, DSDJ, for distributed Java programs; it statically

constructs the distributed program dependence graph (DPDG) prior to its run-time analysis—it is ultimately a dynamic

analysis. Maruf et al. [5] combines system traces, quality metrics, and log data to enable (hybrid) dynamic analysis of

micro-services for detecting quality anti-patterns in them. Another example is seen in Kim et al. [117], where concolic

execution is used for detecting/localizing XSS vulnerabilities in web-based IoT services based on dynamic taint analysis.

In other studies [6, 11, 15, 21, 22, 44, 45, 47, 50, 62, 70, 89, 93, 97, 99, 104, 108, 111, 114, 116, 119, 125, 127, 143, 145, 151,

155, 162–164, 172, 174, 177, 178, 185, 188, 189, 193, 194, 202, 208, 212, 220, 227, 229, 231–234, 236], purely dynamic analysis

(i.e., without any assistance of static analysis) was employed. For instance, Esteves et al. [70] presented a non-intrusive

framework CaT, using kernel-level tracing to dynamically capture the content and context of network/storage, and then

dynamically analyzing the exchanges and interactions among the distributed system components. In fuzz testing based

approaches [72, 148], typically instrumentation is necessary to monitor code coverage, which itself does not always

need any substantive static analysis; thus, they are considered purely (rather than hybrid) dynamic analysis. In fact, the

instance of purely dynamic analysis of distributed programs can be traced back to even earlier time [226], where a

distributed program’s execution data is used to build a program activity graph which models performance-relevant

activities in the program.

6.3.3 Program Representation. There are several types of program representations used in existing program analysis

techniques/tools for distributed software, including CFG/ICFG, CG, PDG/SDG, and IFG.

CFG/ICFG. The surveyed papers constructed and used CFGs at different levels, including rarely instruction level [129]

and commonly statement level [76, 77, 79–82, 86, 141, 206, 207]. For example, Li et al. [129] proposed DFix, a distributed

timing-bug fixing tool that first identifies individual instructions in the given program and then statically analyzes

every program path on the instruction-level CFG. In addition, Fu and Cai [82] proposed FlowDist, a multi-staged

refinement-based information flow analysis for common distributed software, which constructs the statement-level

interprocedural control flow graph (ICFG) of the distributed system under analysis [82] to guide the instrumentation

needed for its dynamic analysis. Note that some studies [72, 148, 156, 235] use control flow analysis by default as an

underlying step, although the papers may not always explicitly describe CFG construction.

CG. A number of prior studies [41, 90, 91, 96, 147, 154, 179, 200, 219, 237] used CGs as the main program representation,

at application level or whole-program level. An application-level CG only includes calling relationships in the application

code, ignoring those in the libraries or between application code and library code. Modern distributed programs

often involve extensive library calls (e.g., to the Java SDK APIs), for which application-level CGs are incomplete. A

whole-program CG includes calling relationships in both application and library code [8]. For example, Wang et al.

[219] developed ANTaint, a static taint analysis tool that builds the CG only for the application code, expands the CG

to cover other code selectively, and then propagates application-level taints through the CG. Instead, Garbervetsky et

al. [90] proposed a whole-program CG analysis framework that can scale reasonably well with the input code size. In

CFTaint [239], the CG of a given micro-service is constructed to enable static interprocedural taint flow analysis.

PDG/SDG. PDGs are used in [83, 84, 130, 135, 136, 159] while SDGs are utilized in [19, 159, 195, 206, 207], as the

representations of the analyzed distributed programs. For example, Li et al. [130] proposed a tool, PCatch, that could

automatically analyze system executions to predict performance cascading bugs, using WALA to build the PDG. And

Sirjan et al. [195] introduced a new state distribution policy based on the call dependency graph (CDG), which may be

considered a special variant of SDG. Fu [78] developed a series of hybrid dynamic analysis of distributed software using

PDG/SDG as the base program representation on which the application-specific analysis facts are derived.
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IFG. A few distributed-program analyses are based on IFGs. For instance, in [188], an asymmetric bandwidth allocation

strategy was derived based on the IFG of the given distributed system. Maturana and Rashmi [155] modeled a code

conversion problem, also using IFGs. As another example, in [45], the IFG (i.e., IFD) was used to resolve node repair

problems in distributed storage systems.

Note that there are a few studies that do not directly utilize any of the above program representations, but instead

looking at abstract representations (e.g., formal model such as a state transition system). This is common in techniques

based on model checking [92, 113, 134, 204, 216] or other formal verification methods [3, 64, 149, 201].

6.3.4 Algorithmic Parameter. Distributed-program analysis algorithms are typically designed with parameters regarding

Analysis Sensitivity and Data Granularity, which immediately affect analysis behavior and cost-effectiveness.

Analysis Sensitivity. Some of the studies [22, 41, 83, 84, 90, 96, 200] presented context-sensitive analyses for distributed

software. In particular, two studies [83, 84] proposed scalable and cost-effective analysis techniques whose respective

configuration parameter can be enabled to perform context-sensitive analysis (1-CFA) or be disabled for context-

insensitive analysis (i.e., 0-CFA).

The analyses in some of the surveyed works [76, 79–84] are flow-sensitive or flow-insensitive. For example, Fu et

al. [83, 84] presented cost-effective dynamic dependence analysis framework, Seads and Dads, both supporting flow-

sensitive analyses when the configuration parameter "flow sensitivity" is enabled, while the analyses are flow-insensitive

when that configuration parameter is turned off.

Regarding field sensitivity, Gu et al. [96] developed a static analysis engine, BigSpa, which performs field-sensitive

pointer/alias analysis and dataflow analysis. Garbervetsky et al. [90] presented a framework whose intra-procedural

analysis is field-sensitive also. In contrast, the static analyses in [79, 82–84] are all field-insensitive.

Wang et al. [219] proposed a static taint analysis tool, ANTaint, using a 1-object sensitive analysis to only record the

types of variables being accessible along taint paths. Several other studies [82–84] use object-insensitive static analysis

to compute static dependencies in order to achieve better scalability overall.

Data Granularity. In several studies [13, 70, 83, 84, 104, 164, 211, 213, 215, 220, 229], the distributed-program analysis

worked at method instance level, i.e., using all of the execution instances of the exercised methods. Other studies

[30, 38, 39, 76, 79–84, 185] worked at method level, with only the first entry (i.e., program control entering a method)

and last returned-into (i.e., program control returning from a callee back into the caller) events of each executed method

being recorded and used. Depending on adjustable analysis configurations, two studies [83, 84] took both method

instance level and method level data. In addition, [30, 76, 79, 80, 82] utilized both dynamic data atmethod level and that at

statement level (i.e., mixed data granularity). In [20], the authors extended a real-time tracing framework to support the

analysis and visualization of the flow of messages; thus, the data is at the message level, even coarser than method level.

6.3.5 Analysis Data. There are three types of analysis data utilized by the surveyed program analysis techniques/tools

for distributed software, including Run-time Event, System Log, and (code or non-code) Artifact.

Run-time Event.Many studies (dynamic analyses) [12, 20, 24, 30, 38, 39, 41, 44, 70, 76, 77, 79–84, 111, 112, 125, 130, 135–

137, 143, 145, 146, 150, 151, 159, 164, 165, 172, 178, 179, 193, 195, 199, 202, 211, 212, 227, 229, 237] used message-passing

events (e.g., the event of receiving/sending a message from one process to another) as a major form of run-time events

in distributed system executions. Other studies [12, 24, 30, 38, 39, 41, 50, 76, 77, 79–84, 86, 104, 114, 125, 127, 130, 135–

137, 145, 146, 150, 151, 164, 172, 174, 178, 185, 188, 195, 199, 202, 211–213, 229, 231, 237] utilizedmethod-execution events

(e.g., the event of entering or exiting a method). Meanwhile, some other studies [50, 50, 114, 114, 188, 188, 236, 236]

exploited system events for (dynamically) analyzing distributed programs.
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For example, Cai and Thain [39] proposed DistIa, a dynamic analysis for distributed systems that exploits the

semantics of message-passing and the happens-before relationships between method-execution events, to compute the

change impacts of one method on others of a given distributed system. Instead, Kelbert and Pretschner [114] modeled

and implemented data-flow tracking across distributed systems via 1) monitoring system events, 2) tracking the flow

of data, 3) deciding whether data usage related system events should be allowed, delayed, inhibited, or modified, or

whether compensating actions need to be taken, and 4) enforcing the decisions.

System Log. In real-world distributed system executions, it is common that system-generated logs were produced—i.e.,

the logs are generated by the original system without post-deployment modifications (e.g., instrumentation), as opposed

to run-time events that result from instrumenting the code to capture relevant actions or occurrences during the

executions. Such logs were used in many prior studies [15, 16, 24, 70, 125, 143, 147, 151, 162, 163, 188, 208, 231, 236, 237].

For instance, Luo [147] presents approf, a non-intrusive dynamic-analysis tool that can reconstruct an approximate

run-time method-call hierarchy from the system-generated logs. In [109], the system logs are collected with adaptive

logging levels to enable anomaly detection. Cotroneo et al. [54] also provides the ability to utilize failure logs generated

by systems themselves to assist with run-time verification and failure detection, targeting cloud systems.

In contrast, some of the other studies [16, 24, 125, 150, 151, 193, 194, 208, 211] utilized instrumentation-based probing

logs—the logs produced by the probes inserted into the system via instrumentation. For example, Beschastnikh et al. [24]

introduced an approach to visualizing distributed system executions, which consists of (1) XVector that instruments a

distributed system to capture partial ordering information from the happens-before relations among system events and

(2) ShiViz that processes the resulting instrumentation-based logs and constructs time-space diagrams.

Artifact. Commonly, program analysis utilizes the code as the main form of artifact as the analysis data, regardless

of its being source code, binary code, or intermediate representations. Non-code artifacts have also been utilized by

some of the surveyed works. For instance, Chaturvedi et al. [47] proposed a service change classifier algorithm that

mines change information from two versions of an evolving distributed software system. In addition to the code that

implements the Web service itself, the analysis technique also utilized a specification that describes the Web service in

a non-programming language. Revelio [68] utilizes historical bug reports and debugging logs to train a deep neural

network to answer developers’ queries when debugging distributed systems. Likewise, COLA [122] takes a large set of

cloud system failure alerts as input to aggregate them hence helping developers sift out root causes using LLMs.

6.3.6 Analysis Scope. Some of our examined studies [91, 107, 179, 193, 212, 215] presented analysis techniques and tools

for distributed event-based systems (DEBS), which use events to organize the communications among their components

that typically run on different nodes [56]. For example, Popescu et al. [179] proposed Helios, an impact analysis

technique for DEBS, which combines component-level control flow analysis, system-level state-based dependency

analysis, and structural analysis that generates complete message dependence graphs. Since extracting information

relies on the specialized messaging interface in DEBS, the analysis only works with such a particular kind of systems.

In studies [11, 21, 95, 116, 175, 177, 200, 231, 233], the presented analyses are aimed at cloud systems, which are

generally considered an application variant of distributed systems [218]. For instance, Suminto et al. [200] presented

the cascading outage bug elimination (COBE) project to detect/eliminate cascading outage bugs to improve cloud

system availability. Likewise, a few studies [42, 71, 171, 190, 238, 239] are particularly focused on micro-services as

a special kind of distributed systems. In [184], the authors target distributed systems of a specific component-based

reconfiguration model, while the deadlock detection algorithm developed in [105] addresses MPI programs in particular.

A specialized study [20] targets distributed robot systems when developing a run-time tracing method.
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Some of the studies [6, 41, 116, 154, 206, 207, 228] presented analysis techniques/tools for Internet of Things (IoT)

systems, which typically use embedded technologies to define environments where various physical objects interact

and cooperate with other ones [69]. For example, Alashjaee et al. [6] presented IoT-Taint, an IoT malware detection

framework based on dynamic taint analysis. Yavuz and Brant [228] proposed IFLOW, a static taint analysis for IoT

frameworks, to detect bugs and localize relevant components in those frameworks.

The analysis approaches proposed in all of the other surveyed studies generally work with common distributed

systems (§A.2), rather than only with specialized systems like DEBS [91, 107]. Meanwhile, distributed systems can be

categorized in other ways [203], with each category presenting unique characteristics and program analysis challenges—

and accordingly various analysis methods are potentially favorable. For instance, data-intensive systems process

and manage large volumes of data across distributed nodes, emphasizing scalability and parallel processing, while

microservices structure an application as a collection of small, independently deployable services each focusing on

specific business functionalities [43], thereby enhancing modularity and scalability. These characteristics introduce

unique challenges not typically encountered in traditional single-machine systems [30, 39, 84]. For example, due to

the emphasis on concurrency and synchronization, the need for managing simultaneous operations across distributed

nodes introduces complexities such as race conditions and deadlocks, necessitating specialized analysis techniques.

Also, unlike centralized systems, distributed systems must handle scenarios where individual components may fail

independently, requiring robust fault tolerance mechanisms. In response, specific program analysis methods are

particularly effective [96]. As an example, for data-intensive systems, dataflow analysis can optimize data processing

pipelines and ensure efficient data movement across nodes. For another example, dynamic analysis that monitors

inter-service communications and detects issues such as improper API usage or latency problems are desirable for

systems of microservice architectures.

6.4 Survey Result: Application

In the context of distributed systems, program analysis has enabled a range of concrete applications, including

Functional Testing, Fault Localization, Security Support, Performance Diagnosis, and Maintenance/Evolution Support.

6.4.1 Functional Testing. In several works [95, 104, 111, 127, 178, 213, 216, 232], the proposed techniques were aimed

to support system testing of distributed software. For instance, Lee and Levchenko [127] introduced a framework for

system testing, following black-box testing strategies; the framework provides a pattern-recognition-based deterministic

approach to replaying sequences of system events that may have caused defects and managing network messages by

proxying all connections through orchestrators. As another example, Pereira [178] presented Spider, an automated

approach that detects potential data races in distributed systems via SMT solving. Spider first performs a trace analysis

to eliminate useless events and then builds a causality model by encoding the happens-before relationships from the

rest of events. Spider utilizes an SMT solver to compute conflicting event pairs, so as to identify data races.

In addition, for unit testing of distributed software, Newsham et al. [165] proposed a tool chain that enables users to

develop assertions on interaction history written in regular expressions incorporating inter-process and inter-thread

dynamics in distributed systems.

6.4.2 Fault Localization. Some studies [77, 83, 84, 163, 213] were used to locate method-level faults. For example, Fu et

al. [84] presented Seads, a dynamic dependence analysis framework that works as an online dynamic analysis to solve

the fault localization problem (via dynamic slicing) against unbounded execution traces. Seads features with the ability

to automatically adjust itself to better cost-effectiveness tradeoffs (than otherwise) with user-specified time budgets.
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This ability is realized by changing varied analysis parameters according to analysis time costs and precision. As a

result, the framework continuously provides method-level dependencies [35] to immediately empower fault localization.

In contrast, other studies [19, 30, 76, 79, 81, 82, 112, 219] work at a finer-grained level, reporting statement-level faults.

For instance, Wang et al. [219] proposed ANTaint, a static taint analysis tool for industrial service-oriented architecture

(SOA) applications. It improves the tool scalability by building a sound CG and provides a precise taint model by pruning

unrealizable paths, hence pinpointing statement-level faults with the correctness for 95% of production-benchmark

cases (the corresponding precision and recall was 95% and 98%, respectively).

Note that we only have a comparative qualification of fault localization regarding its granularity. In general, fine-

grained fault localization refers to identifying the precise elements within a system responsible for a fault, where the

localization granularity can vary depending on the system architecture and the methodologies employed. For example,

for fault localization focusing on the software’s codebase, statement-level localization is considered finer-grained than

method-level localization. In contrast, microservice architectures consist of numerous loosely coupled services, each

with its own set of quality metrics. In such systems, causal inference-based approaches have been developed to achieve

fine-grained root cause analysis at the quality-metric level (e.g., CPU usage, memory consumption, or response time).

6.4.3 Security Support. Program analysis has been a fundamental methodology for offering security support, which

we found is also the case with distributed-program analysis—in fact, it has served all of the different security objectives.

The analyses proposed in [2, 11, 13, 93, 114, 171, 177, 195, 220, 233] focused on distributed software confidentiality.

For example, Zavou et al. [233] presented Cloudopsy, a framework that remediates cloud users’ security concerns

through visualization and automated analysis based on the graphs produced by a visualization tool for data safety.

In a number of prior studies [2, 11, 13, 63, 116, 175, 177, 220], the program analysis techniques primarily concerned the

integrity of distributed systems. For instance, Acay et al. [2] proposed Viaduct, a tool that allows developers to annotate

a distributed system with information flow labels for specifying security policies regarding system integrity. Pilla et

al. [63] proposed a technique for system auditing to manage the complexity of distributed systems (blockchains) hence

defending the integrity of the systems. Kucab et al. [123] utilizes hardware capabilities to develop a new attestation

process for defending both static and runtime integrity of cloud deployments.

Some studies [99, 175, 177, 193] addressed the non-repudiation objective of distributed system security. For example,

Pappas et al. [175] proposed CloudFence, a framework aimed at preventing extensive security breaches so as to achieve

non-repudiation of cloud environments. CloudFence allows users to independently audit their data treatment through

third-party services, enables service providers to confine the use of sensitive information in well-defined domains, and

offers additional protection against inadvertent data leakage and unauthorized access.

The accountability objective of distributed software security also has been addressed as a main application goal [21, 99,

174, 193]. For instance, Hauser et al. [99] proposed an intrusion detection framework for validating the accountability of

distributed systems. Based on taint marking and implemented in the Linux kernel as a security module, the framework

uses tokens as security labels on network packets to carry taint information between multiple hosts.

Quite a few other studies [6, 30, 41, 76, 77, 79–82, 84, 86, 116, 154, 200, 206, 207, 219, 220] were aimed to address

authenticity problems with distributed systems and/or their executions. For example, Secure-CamFlow [116] focused

on securing the entire process of the data migration from devices to a cloud system, where the system data flow is

monitored through user-specified information flow control policies. It achieves user authenticity between the cloud

service provider (CSP) and users, via storing relevant security keys in a CSP directory with the signatures of a key

distribution center.
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6.4.4 Performance Diagnosis. Most of the earlier works using distributed-program analysis to diagnose system per-

formance [16, 20, 24, 62, 87, 104, 108, 145, 147, 162, 189, 194, 208, 211, 234, 237] concerned the time cost of distributed

systems, including performance anomaly identification in cloud/IoT systems [16, 104, 211]. For example, Huang et al.

[104] presented an analysis tool named tprof, a performance profiler that aggregates the traces of a distributed system

to help diagnose time-wise performance inefficiencies (e.g., to identify the relatively slow regions of the system).

Neves et al. [164] proposed a black-box monitoring approach that gathers the detailed information about the processes

in a distributed system for helping the user diagnose performance problems but focusing on thememory that is available

to interim data and original cache. Performal [235] aims to verify whether the time latency property of a distributed

system is observed, proving rigorous upper bounds for the latency, using formal verification techniques.

Several other studies [45, 97, 151, 155, 164, 183, 208] considered network throughput as the focus of performance

issues. For instance, Rakotondravony et al. [183] presented an interactive and cost-aware visualization architecture for

monitoring data (e.g., network traffic) of distributed systems, benefiting developers to verify the system conformance to

network throughput requirements.

6.4.5 Maintenance/Evolution Support. Earlier works that provide this support often present analysis techniques that may

serve various maintenance/evolution (e.g., change-management) tasks. In particular, the analyses in [30, 38, 39, 47, 79, 81–

84, 91, 135–137, 179, 212, 238] can support change impact analysis [29] of distributed programs. For example, Chaturvedi

et al. [47] proposed an intelligent tool, AWSCM (short for Automatic Web Service Change Management), based on an

interface slicing algorithm that analyzes the change impact between two versions of an evolving distributed program. It

works by comparing the old and new versions through three classification labels "inserted", "deleted", and "modified".

Along with a service evolution analytic model, AWSCM supports change mining of evolving distributed systems.

Other studies [19, 21, 42, 80, 107, 112, 119] targeted the program comprehension task hence supported the mainte-

nance and evolution of distributed software systems. For instance, Fu et al. [80, 86] presented multiple interprocess

communications (IPC) metrics for common distributed programs computed via dynamic dependence analysis, which

help understand various quality factors/aspects of the programs. Cerny et al. [42] developed a static-analysis-based

approach to micro-service-specific architecture reconstruction to support system understanding via visualizations,

similar to the work in [26] achieving the same using static code analysis of the microservice mesh. The micro-service

coupling metric proposed by Zhong et al. [238] can also support the understanding of the system itself and its quality.

6.5 Survey Result: Evaluation

We examined two attributes in the evaluations of program analysis for distributed programs: Dataset and Metric.

6.5.1 Dataset. The dataset used in the evaluation of a distributed-program analysis at least includes the subject

distributed systems, and optionally (as required by dynamic analysis) their run-time inputs. Regarding the subjects

alone, existing analyses have been evaluated against Benchmark Suites and Real-world Systems.

Benchmark Suite. A large number of prior studies [24, 104, 108, 114, 129, 135–137, 162, 163, 172, 177–179, 206, 207,

211, 215, 219] utilized open/standard benchmark suites (usually created by others) in their evaluations. For example,

Beschastnikh et al. [24] used the Yahoo! Cloud Serving Benchmark (YCSB-B) [51] to evaluate their tool that creates

visualizations of distributed system executions. Liu [135] took benchmarks from the TaxDC suite [128], all triggered

by the communications across nodes of a distributed system, for evaluating DCatch—a technique to model and detect

message timing bugs in the system. Jia et al. [108] evaluated the training performance of deep neural network (DNN)

models by using image classification benchmarks from the CIFAR-10 [144] open dataset which contains 60k images.
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Other studies [2, 16, 90, 107, 127, 146, 165, 188, 193, 199] used benchmark suites that were self-curated (by the authors

themselves). For instance, to evaluate the software model checker FlyMC for testing distributed systems, Lukman et

al. [146] used self-curated bug benchmarks that included the numbers of bug-triggering events (measured as the bug

"depths"). Also, Newsham et al. [165] evaluated a framework that they proposed for developing assertions on threads’

interaction history in a distributed program using two self-curated benchmarks: (1) a message-passing benchmark

designed to measure overheads and (2) a verification benchmark designed to verify the time scalability according to the

historical sizes of threads. Nunez [170] only considered a simulated environment (using a simulator to model different

distributed systems architectures) in their evaluation. In [118], the API extension to a graph-based distributed-memory

runtime system (to track dependencies on opaque node-local objects and transfer runtime-managed data) was only

evaluated on synthetic benchmarks created by the authors.

Real-world System.Most of the surveyed papers utilized large-scale real-world distributed systems as their evaluation

subjects [12, 15, 22, 30, 38, 39, 41, 47, 62, 70, 76, 79–84, 87, 89, 91, 96–99, 111, 116, 125, 127, 129, 130, 135–137, 143, 145,

147, 150, 151, 154, 162, 164, 172, 175, 179, 185, 194, 195, 199, 200, 202, 207, 208, 211–213, 215, 227, 229, 231, 232, 234, 236].

For example, Stuardo et al. [199] used stable versions of four large real-world distributed systems (i.e., Cassandra,

HDFS, Riak, and Voldemort) to evaluate ScaleCheck—an approach for finding scalability bugs in large-scale distributed

systems. Li et al. [129] evaluated DFix, a timing-bug-fixing tool for distributed programs, against 22 harmful bugs from

four widely used real-world distributed systems: Cassandra, Hadoop, HBase, and ZooKeeper. Yuan et al. [232] studied a

sophisticated error [110] in the transaction protocol of a real-world distributed system Cassandra [40] by modeling

the error in Erlang and using Concuerror [49], a systematic testing tool for Erlang, to check against such errors using

randomized and systematic strategies, each of which performed 100,000 trials in the evaluation.

There were also some studies [19, 50, 159, 183, 189] using small-scale distributed systems as study subjects in their

evaluations. For instance, Mohapatra et al. [159] evaluated their slicing tool DSDJ, using seven small-scale distributed

Java programs. The largest of those subject programs only had 894 lines of code.

In a preliminary study on detecting technical debt based on anti-patterns [71], the authors use both an open-source

project as a benchmark and a real-world (train ticketing) system for evaluation. This is similar to the evaluation setup

in CFTaint [239], MirrorTaint [171], and DisTA [217]. Yet, overall it is not common that both benchmark suites and

real-world subjects are considered in the evaluation among our survey works. On other hand, there are more-theoretical

works (e.g., [210]) that do not have any empirical evaluations and used neither benchmark suites nor real-world systems.

6.5.2 Metric. Existing evaluations of distributed-program analyses typically seek to measure the effectiveness and/or

efficiency of the analysis technique/tool [53].

Effectiveness.Many studies [15, 38, 39, 79, 81–84, 91, 150, 211, 229, 237] used precision as a key metric in evaluating the

effectiveness of the proposed analysis. For example, Astekin et al. [15] gauged the analysis precision when evaluating

their technique for anomaly detection based on large distributed system logs.

Some of the surveyed studies [15, 38, 39, 79, 81–84, 91, 229] utilized recall as an effectiveness metric, typically in

addition to precision. For instance, Garcia et al. [91] proposed a static analysis technique, Eos, whose analysis results

were compared with the "ground truth" to compute the technique’s recall.

False positive rates (FPRs) were reported in some studies [91, 219, 229, 232], while False negative rates (FNRs) were

presented in others [91, 130, 135–137, 232], also as part of the effectiveness metrics. In two studies [91, 200], True positive

rates (TPRs) were also measured in their evaluations. For example, the evaluation of Eos [91] considered spurious

(false-positive, FP), missing (False negative (FN)), and matching (true positive (TP)) results (i.e., message types and
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intra-flow dependencies) as indicators of effectiveness. Suminto et al. [91, 200] also evaluated their cascading outage

bug elimination (COBE) technique in terms of the number of true positive (TP) cases.

In the evaluation of their analysis, Astekin et al. [15] reported the F1 score as a common accuracy metric, according

to the precision/recall of the evaluation results—i.e., F1 = 2 * (precision * recall) / (precision + recall).

Efficiency. As the most frequently used efficiency metric, time (e.g., analysis time cost in absolute terms, run-time

overhead as a ratio) has been widely used in the prior studies we surveyed [2, 12, 15, 19, 22, 24, 30, 38, 39, 62, 70, 79, 82–

84, 87, 90, 91, 96, 98, 104, 107, 108, 114, 116, 125, 127, 129, 130, 135–137, 143, 145–147, 150, 151, 154, 159, 162–165, 175,

177, 178, 183, 188, 189, 193, 194, 199, 200, 202, 206, 208, 211–213, 215, 219, 227, 231, 232, 234, 236, 237]. For example,

Pereira et al. [178] assessed the efficiency of Spider, a tool for identifying data races from distributed system traces,

by measuring its time and space overhead. Another example is Halfmoon [182], which optimizes log placement in

serverless-computing runtime system in order to reduce latency and run-time overhead caused by logging.

Several studies [22, 127, 147, 190] also measured the memory usage of their analysis techniques/tools for distributed

systems in the evaluations. For instance, Benavides et al. [22] showed the memory usage of capturing system events

using DProf, a dynamic analysis tool used to construct distributed performance profiles.

The analyses in [96, 147, 193, 208] used CPU usage data as efficiency metrics. As a specific example, Thereska et al.

[208] measured the CPU time consumed in the client and storage-nodes and found that the CPU utilization had a direct

relationship with the data encoding scheme selected in the client.

Some studies [107, 114, 147, 151, 208] measured network usage when the corresponding analysis techniques/tools

were evaluated. For instance, Kelbert et al. [114] measured the impact of their data usage control infrastructure in terms

of network throughput in their evaluation.

In addition, a number of our surveyed studies [2, 24, 79, 81–84, 90, 96, 146, 147, 151, 162–164, 188, 189, 199, 211, 212,

215] took into account the scalability of their analysis techniques/tools for distributed systems when evaluating the

efficiency. For example, Lukman et al. [146] evaluated the efficiency of their testing approach for distributed systems in

terms of the scalability of the tool named FlyMC.

Some of the studies [43, 71, 210] do not consider any of the above metrics as they are preliminary and/or exploratory

in nature. Thus, they did not come with official evaluation experiments/results. For instance, Cerny and Taibi [43]

discuss how static analysis may help support the development/management of micro-services as emerging ideas.

7 Analysis and Discussion of Survey Results

In this section, we systematize the state of knowledge about program analysis for distributed software, discussing

the limitations of existing works and challenges facing them. Based upon these discussions, we shed light on several

future research directions for overcoming/mitigating those limitations and challenges.

7.1 Limitations and Challenges of Existing Works

By examining the surveyed analyses of distributed software, we observed a number of common limitations suffered

by existing relevant works, signifying challenges concerning their technical approaches, applications, and evaluation.

7.1.1 Scalability and Cost-effectiveness. Program analysis for distributed software often faces scalability challenges.

The reason is that when the analysis works at a fine granularity—for desirably precise results, the typically large sizes

and great complexity of distributed systems imply high analysis costs [82], which makes it difficult for the analysis to

scale to large-scale, complex systems.
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Achieving highly cost-effective program analysis for distributed software is also challenging because the two factors

here (cost and effectiveness) often counteract and compete for a given analysis. Specifically, an efficient and scalable

analysis is usually coarse and imprecise, while a precise analysis is typically expensive and unscalable. For example,

DistIa [39], a lightweight dynamic (impact) analysis for distributed programs, monitors method events and their

timestamps during the program execution hence approximating dynamic dependencies among relevant methods.

DistIa is highly efficient and scalable, but its results (dependency sets) are very coarse (imprecise), leading to overall

low cost-effectiveness. For instance, Cai and Fu [30] developed D
2
Abs, a dynamic dependence analysis approach for

distributed programs. Its most-precise version, referred to as Doda, when applied to Voldemort [14]—an industry-scale

distributed key-value storage system, could not even finish the analysis in over 12 hours on a high-performance server

(i.e., Ubuntu 16.04.3 LTS workstation with four 2.67 GHz processors and 512 GB DRAM). Apparently, with this level of

efficiency, Doda is neither practically scalable nor cost-effective for industry-scale distributed systems [84].

Moreover, what aggravates the cost-effectiveness balancing challenge is that different systems, as well as the different

executions of the same system, often exhibit varying characteristics that necessitate various trade-offs between the cost

and effectiveness of the same analysis. Thus, one tradeoff rarely fits all scenarios universally, and different tradeoffs are

needed [30, 82]. D
2
Abs [30] attempts to address this need by mixing the use of various kinds of program information

hence offering various cost-effectiveness tradeoff options. Yet the technique only offers a few options, and the particular

option must be manually set up specifically for each system and execution. Seads [84] made a further advance in this

regard by automatically tuning the cost-effectiveness of a dynamic dependence analysis for distributed systems through

reinforcement learning. Nevertheless, Seads still faces the challenge of meeting the diverse cost-effectiveness balancing

needs of different systems with varying characteristics.

7.1.2 Test Availability andQuality. Recall that among all the surveyed program analyses for distributed software, the vast

majority are dynamic analysis (Figure 5), which is commonly known to rely on the test inputs that trigger the program

executions underlying the analysis. Accordingly, most of the surveyed analyses are limited by the availability and

quality of those run-time tests. For example, Fu and Cai [82] proposed FlowDist, a multi-staged dynamic information

flow analysis approach for distributed software systems, which aims to identify vulnerabilities exercised at runtime

during the system executions. Yet FlowDist’s actual potential and capabilities for vulnerability discovery depend on the

underlying test inputs’ coverage (of any vulnerabilities). If some vulnerabilities are not covered during the executions

being analyzed, those vulnerabilities would not be found. As another example, Yuan and Yang [232] presented Morpheus,

an effective concurrency testing technique for real-world distributed systems in Erlang, which relies on given test cases

to drive the tested systems hence high-level invariants to check against fail-stop errors and infinite loops. Any such

defects not covered by those test cases would be missed by the technique.

Intuitively, high-quality test inputs are essential for dynamic analysis of distributed software to be practically useful.

However, in practice such test inputs are not always available. In fact, many software packages for distributed systems

come with quite limited test cases [82, 83], which is a major challenge facing dynamic analysis for distributed systems.

7.1.3 Applicability and Accommodations of Various Architectures/Platforms. Program analysis techniques/tools for

distributed systems are overall different from those targeting single-process programs. The former are generally

much fewer than the latter in terms of the overall presence in the current literature, while the latter are mostly not

immediately/effectively applicable to distributed systems. This forms a sharp contrast with, and a standing gap between,

the increasing dominance of distributed systems among any software application domains and total availability of
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techniques/tools for those systems. Thus, a critical challenge here lies in how to adapt existing program analysis

techniques/tools to distributed systems—as one way of mitigating the gap.

Another applicability issue is that even among the relatively few techniques/tools that do work for distributed systems,

some only fit specific system architectures, hence suffering from limited applicability scopes. For instance, several static

analyses [91, 107, 179, 212] of distributed programs were designed for and only work with event-based distributed

systems [56, 160], neither immediately working with nor readily adaptable for common distributed systems. Achieving

this adaptation or developing techniques that work well with a good variety of distributed-system architectures remains

a standing challenge.

The third type of applicability issues has to do with the platform on which the distributed systems are supposed

to run. For example, Sapountzis et al. [189] implemented a dynamic information flow tracking (DIFT) framework,

MITOS, on top of FAROS, which is an existing open-source DIFT system running on Windows 7; this apparently limits

the operating system choice of users who want to use MITOS. As another example, Yuan and Yang [232] presented a

concurrency testing tool, Morpheus, with limits ways to support interacting with non-Erlang code. And Chaturvedi et

al. [47] proposed an interface slicing algorithm that only works with distributed programs written in the web services

description language (WSDL). Essentially, the platform (language runtime here) restrictions lead to applicability barriers.

Finally, it is not uncommon that the applicability of an analysis is limited by how it is designed or its inner workings.

One prevalent evidence is that a great portion of the surveyed dynamic analyses for distributed programs rely on static

instrumentation, hence requiring modifications of (i.e., inserting probes into) the original distributed systems. For

instance, most of the state-of-the-art tools implementing such analyses (e.g., [30, 32, 37–39, 77, 81–84]) must statically

probe for relevant run-time information to enable their analysis. These restrictions make them inapplicable to real-world

scenarios where the subject (e.g., production) systems cannot be modified. Getting over such applicability limitations is

certainly not trivial—the analyses would need to be largely redesigned.

7.1.4 Evaluations. A major challenge to distributed-program analysis among the surveyed papers lies in the weak-

nesses/limitations with their evaluations. Among others, only a very few subject systems were considered and/or

the scale of the subjects evaluated against was often too small; and in many cases, the evaluation subjects were not

real-world distributed systems. For example, Barpanda and Mohapatra [19] presented a dynamic slicing algorithm

for distributed object-oriented systems where they defined various kinds of dependencies induced by interprocess

communications. However, the algorithm was not evaluated against enterprise-scale distributed systems in the real

world. And its largest evaluation subject had only 918 source code lines. Likewise, Mohapatra et al. [159] proposed a

dynamic slicing technique, DSDJ, which was not evaluated against any large real-world systems as evaluation subjects.

The challenge was that, without being evaluated against a diverse set of real-world systems, the analysis techniques/tools

have not been concinvingly assessed against their practical effectiveness and scalability.

In addition, some studies did not present reasonably sufficient evaluation results. For example, in the evaluation of

[154], Mandal et al. only reported information flow descriptions and cross-program taint analysis time on the edge

software and mobile applications, but there was not any result on accuracy, such as precision, recall, or F1, being

reported in the paper. Another example is [47], where only the reduction ratios of test cases were provided, but no

accuracy and/or performance metrics such as analysis time costs, overheads, etc., are reported. These limitations

increase threats to the validity of results reported in respective studies that cannot be easily justified/mitigated.

Notably, as recently found in the area of software vulnerability analysis [169], open science is not well practiced in

the field of program analysis for distributed systems according to our survey. The vast majority of the surveyed papers
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did not provide accessible artifacts such as code and datasets developed/used in their evaluation. This significantly

hinders the advancement of the field with respect to the critical merits of reproducible and replicable research.

7.1.5 Practical Effectiveness. Among those surveyed prior works that were relatively more sufficiently evaluated, we

also identified, from the evaluation results, a lack of efficiency and/or effectiveness for wider practical adoptions as a

common limitation/challenge.

First, some of the existing analyses exhibited lower effectiveness in certain use scenarios than in others when

compared to peer approaches. In [193], Sigelman et al. introduced Dapper, Google’s tracing infrastructure for distributed

systems, targeting on-line systems rather than off-line data-intensive workloads, such as those that MapReduce fits [59].

Dapper is effective in determining system parts experiencing slowdowns but insufficient for finding the root causes. In

[87], Fukuda et al. developed an agent-based data-discovery approach, MASS (short for multi-agent spatial simulation),

for distributed data analysis. While meritorious, MASS cannot handle non-numeric data as effectively as MapReduce

and Apache Spark [173] do. Thereska et al. [208] proposed an infrastructure, Stardust, for collecting and tracking

traces in distributed systems. Yet Stardust does not help more than known software profiling tools for finding/fixing

algorithmic problems—e.g., a poor networking layer implementation may mean that requests handling spends most of

the time using network resources. Stardust identifies the network as the source of latency but does not have better

suggestions for fixing the problems compared to gprof under Linux [73, 94].

Second, some of the current analyses are not fully automated, requiring human intervention during the analysis

or much additional (e.g., post-analysis) effort. Toslali et al. [211] developed a variance-driven automated instrumen-

tation framework, VAIF, for distributed applications. The framework aims at automatically searching for possible

instrumentation space choices for diagnosing performance problems. However, VAIF requires additional assistance

for asynchronous design patterns if any latency is not reflected in the response time of critical paths. Moreover, VAIF

cannot identify whether observed variances are caused by the application code itself or low-level code (e.g., kernel

code); nor can it identify transient/infrequent problems that disappear before VAIF is used.

Third, some of the extant analysis approaches, especially those based on purely static analysis, face practicality

challenges due to great imprecision or low recall. Wang et al. [219] proposed ANTaint, a static taint analysis approach

for Java applications. An effectiveness challenge with this approach is that it suffers from great imprecision when

analyzing taint flow paths that involve multiple systems (because its scanner cannot recognize all possible data types in

the given application that includes such paths). Similarly, Mandal et al. [154] presented a cross-program taint analysis

approach for Internet of Things (IoT) systems, only considering communication channels as follows: a method is

conservatively assumed to be tainted if it reads data from a channel and any tainted data also reached the channel. The

approach suffers excessive imprecision against large industrial IoT systems using one channel for multiple different

communications, because the taint analysis is overly conservative for those systems. Concerning recall, Lu et al. [143]

developed an automatic tool, CloudRaid, to find distributed concurrency bugs by automatically analyzing the message

orderings that may expose errors. However, it cannot guarantee that the pruned message ordering will not trigger any

error. Also, it cannot detect bugs triggered when instrumenting delays in the middle of bug-message handlers.

7.2 Future Research Directions

Following the limitations and challenges with existing distributed-program analysis techniques/tools surveyed, we

now discuss important future research problems accordingly, while offering insights into the directions that may be

fruitful in addressing those problems.
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7.2.1 Balancing Cost-Effectiveness and Achieving Scalability. As we revealed as discussed above, balancing cost and

effectiveness while achieving practical scalability is a fundamental challenge facing distributed-program analysis. From

some preliminary effort being invested towards dealing with this challenge, we identified several promising directions

in developing future scalable, cost-effective program analysis for distributed systems.

Variable cost-effectiveness. To address the challenge of balancing the analysis effectiveness and cost, several earlier

approaches for single-process software (e.g., DiaPro [33, 37], Diver [28, 32]) offer variable cost-effectiveness tradeoffs

to provide flexible choices and hence satisfy varying user requirements and budgets to some extent. Following a similar

path but targeting distributed systems, D
2
Abs[30] provides four versions of a dynamic dependence analysis each

offering a different level of cost-effectiveness tradeoff. While its current four options in total may still not meet all the

varying cost-effectiveness needs for the diverse world of distributed systems, D
2
Abs did point to a rewarding avenue

toward future research for addressing the challenge here—future distributed-program analysis may provide a number

of (potentially more than four) variants (e.g., via algorithmic configuration variations) that each works at a unique level

of cost-effectiveness. In this way, the analysis tool will fit more needs and use scenarios.

Self-adaptive design. While valuable as a mitigating solution, providing multiple cost-effectiveness tradeoff options

tends to be a short-term strategy—the options need to be manually predefined and are difficult to be predefined in

advance such that they meet the various needs of users; it is also hard to predict how many options are sufficient.

A longer-term solution, as recently debuted in Seads [84], is to adaptively and automatically set cost-effectiveness

tradeoffs for the varying given distributed system executions. To achieve practical scalability and cost-effectiveness,

Seads automatically adjusts its analysis configurations during the program execution, using a type of reinforcement

learning (i.e., Q-learning) strategy. Seads was found to lie in between DistIa and D
2
Abs; that is to say, Seads is more

precise than DistIa and more scalable than D
2
Abs.

Although showcasing a promising methodology at a very-high level, Seads suffers from low precision due to delays

in tuning its configuration, making the current query unable to benefit from the higher-precision configuration (the

tuning only benefits future queries). Seads cannot adapt to different subject executions to push the precision by

maximally utilizing the budget due to its using generic reinforcement learning in a black-box manner, applying the

same algorithmic setting (e.g., reward initialization) for any given subject and execution. Also, it does not adapt to

different subjects at all—it uses a constant reward function and initializes it the same way regardless of what subject

system is fed to the analysis. In this sense, Seads is not a truly self-adaptive analysis.

Looking forward, we believe a more promising future direction is to develop truly self-adaptive analysis, which should

automatically monitor relevant changes in dynamic/uncertain environments and then adapt itself to continuously meet

cost and effectiveness requirements for ensuring optimal adaptations. Importantly, such analyses should adapt to both

varying subjects and variations (in run-time behaviors) during a particular subject execution. As a specific example in

this future direction, one may realize the true self-adaptation by considering and controlling algorithmic configurations

in a much more fine-grained manner than what Seads currently does. For example, in reference to the configuration

design in Seads [84], instead of considering only binary values for each configuration parameter, we may consider more

options (e.g., the various depth values for the calling context for context-sensitivity rather than just context-sensitive

versus context-insensitive; similarly, the degree of object sensitivity can be considered as well). The finer granularity

here will lead to finer tuning of cost-effectiveness tradeoff hence more likely attaining optimal self-adaptation.

Leveraging machine learning and deep learning.Machine learning (ML), especially deep learning (DL), has been

applied to and achieved significant successes in advancing program analysis (e.g., source code analysis) [225], including
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that for distributed systems. One immediate example is the ML-based cost-effectiveness balancing in Seads [84] as we

already discussed extensively. The nature of ML also makes it suitable for predicting the dynamics of distributed software

hence further assisting with understanding the systems. For example, studies [15, 67, 83, 85] utilize ML algorithms,

including reinforcement learning, supervised learning, unsupervised learning, and neural network based techniques, to

analyze distributed systems of different kinds (e.g., common distributed systems and cloud systems).

Furthermore, deep learning (DL) has gained growing momentum in recent years because of its significant promise

for automatically adapting agents to varying environments. In the context of reinforcement learning, deep learning

approaches typically exploit deep neural networks to model their decision-making capabilities by learning policy

functions; one main benefit of using DL is to encode high-dimensional (complex) environments. More broadly, to

capture the (static and/or dynamic) characteristics of distributed software and then analyze the software, DL may be a

good design choice. For instance, studies [108, 236] have explored relevant DL techniques for enhancing respective

distributed program analysis. In fact, according to our survey results (Figure 5), ML/DL currently has only seen little

use in distributed-program analysis; we believe much potential has yet to be tapped and should be in the future.

7.2.2 Accommodating Emerging System Architectures. The landscape of real-world distributed systems continues to

expand quickly, spawning a growing diversity of such systems in terms of system architectures. For example, many

Internet of Things (IoT) systems/platforms (e.g., AWS IoT, FIWARE, IBM Watson IoT Platform, Microsoft Azure IoT

Hub, OpenMTC, SiteWhere) have been developed and deployed in recent years, which has drawn much attention from

the relevant research (e.g., systems and security) communities. Developing program analysis and its applications for IoT

systems is a timely future research theme. For another example, edge computing has emerged lately as a new system

architecture in the general domain of distributed computing, which features several advantages over the traditional

(cloud-based) computing paradigm, such as improved response time and reduced energy consumption [192]. Thus, the

growing need for program analysis techniques/tools targeting edge-computing systems is also on the horizon.

Similar needs are also emerging for block-chain systems and distributed machine learning (e.g., federated learning)

systems. Currently, program analyses working with these systems are rare. Yet given the historical evidence of how

program analysis has enabled the wide range of useful and powerful applications, we believe that future research on

distributed-program analysis should attend these new/emerging computing architectures of distributed systems.

7.2.3 Testing Techniques. Asmentioned earlier, dynamic analysis has demonstrated tremendous successes in supporting

the development and quality assurance of distributed systems in the past—again, the majority of the surveyed distributed-

program analyses are dynamic. Yet as we discussed earlier (§7.1), the actual capabilities and benefits of those dynamic

analysis techniques/tools are bounded by the availability and quality of run-time test inputs that trigger the system

executions underlying the analysis. And the current status is that the availability and quality are critically lacking.

Thus, an urgent and promising research direction is to focus on improving the quality of distributed system run-

time input data, including providing them where they are not readily available. One viable approach is to manually

collect/curate such inputs, but a more promising avenue is to automatically generate them. In particular, fuzzing as a

random-testing (i.e., test-generation) technique has greatly evolved and is becoming increasingly popular for various

software application domains. Yet, practical fuzzers for distributed systems are not as available as they should be—even

the most recently developed fuzzer [133] which works with multi-language systems still do not work sufficiently with

distributed systems. Thus, future research should arise to fill this critical gap.
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7.2.4 Evaluations. According to our survey results and our analysis of them, an urgent need observed is that of

evaluation subjects that represent real-world distributed systems and their execution scenarios. In a few prior works [2,

16, 90, 107, 127, 146, 165, 188, 193, 199], some benchmark suites were developed for evaluating corresponding program

analysis techniques/tools for distributed software. As a specific example, Newsham et al. [165] developed two benchmarks

designed to measure overheads and verify the time scalability with history size, respectively. However, these benchmarks

are mostly not representative of real-world systems. Thus, development/curation of realistic benchmarks should be part

of future research on distributed-program analysis. Some recent works, although not addressing distributed systems,

demonstrated a fruitful direction in this regard—automatically generating such benchmarks [167, 168] or curating a

standard benchmark manually [131, 132]. Similar efforts in future research would be highly valuable for advancing the

field of distributed-program analysis as well.

Besides filling the gap regarding benchmarks, another impending need for addressing limitations with evaluating

existing distributed-program analysis techniques/tools is to develop widely recognized/accepted evaluation metrics and

even empirical standards. The lack of such commonly adopted metrics/standards has impeded the progress of program

analysis for distributed software, as the use of inconsistent and widely-ranging metrics/procedures make the existing

evaluations hard to validate and existing techniques/tools hard to compare. In [80], Fu and Cai defined a novel set of

metrics for common distributed systems aimed to measure/characterize their interprocess communications (IPC), a

critical aspect of their run-time behaviors. While those metrics have not been shown to be immediately useful for

evaluating distributed-program analysis, effort of similar spirit should be promoted in future research.

8 Threats to Validity

In the previous sections, we have presented a series of findings from our article selection, attribution framework

formulation, and the attribution of surveyed papers. Given the manual nature of this entire workflow and the scale of

our survey, we do not claim that we can rule out our potential biases—other researchers conducting the same survey

might end up with with different findings and conclusions. Thus, our survey results are subject to various validity

threats, pertaining to each of the major steps/phases of our survey workflow (as shown in Figure 3), as elaborated below.

Literature search. In the process of collecting relevant articles, we selected papers through keyword searches. One

threat is related to our search engine (i.e., Google Scholar) not being designed for supporting literature reviews [25, 198]

hence possibly having produced errors in our literature search. We mitigated this threat by utilizing multiple keywords

mentioned earlier (§4.1). Furthermore, we have attempted to increase the representativeness of papers selected by the

forward and backward snowballing process that identified additional relevant articles cited by or citing original papers

(§4.2). Also, selection (inclusion and exclusion) criteria have been exploited to reduce this threat (§4.3).

Survey taxonomy derivation. A potential threat to the validity of our survey taxonomy derivation is that this process

is subjective and also depends on the search keywords used in the Phase 1 of our literature search (Figure 4). However,

the resulting derivation can be validated through its usefulness as reflected in our taxonomy/characterization results. In

addition, we have carefully checked corresponding attributes and items in each aspect within the taxonomy, as listed in

Table 1, demonstrating the applicability of our survey taxonomy derivation process.

Paper attribution. Like our survey taxonomy derivation, the paper attribution process is also subjective and may

be difficult to reproduce. A threat to validity in this respect is the duplication in the process and the resulting paper-

attribution statistics. If one and the same paper (content) was published multiple times (e.g., via extension/revision) in
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different conference proceeding(s), journal(s), and other digital libraries, it should be taken into account only once in

the statistics. We have addressed this threat by ensuring uniqueness in the paper selection and attribution.

The bias of the original researchers concerning certain concepts and choices may also be a potential threat to the

validity of our survey results. As a remedy, we have examined the relations among attributes and items in Table 4,

Table 5, and Table 6, to avoid confounding overlaps. For example, the definitions of a common distributed system and a

specialized distributed system are mutually exclusive (§A.2). In other words, a distributed system cannot be both a

common distributed system and a specialized distributed system at the same time.

Survey result analysis. During our analysis of (i.e., discussion on) the survey results, we might have missed certain

limitations/challenges of existing work and hence ignored corresponding future research directions. This implies a

potential threat. To mitigate the threat, after carefully reviewing the selected articles, we recorded/listed all relevant

limitations and challenges in the field of program analysis for distributed software, and then thought over across the

aspects and attributes in our taxonomy when identifying future research directions according to how to overcome

those limitations/challenges.

9 Conclusion

In this paper, we presented the first systematic literature survey on program analysis for distributed software systems.

We selected 153 articles spanning from 1995 to 2024, derived a novel taxonomy, and characterized those articles on the

basis of the taxonomy including three main aspects (i.e., approach, application, and evaluation). Then, we mapped the

current relevant literature to each attribute under every aspect and, if applicable, each item (sub-attribute) under every

attribute, while summarizing major findings accordingly. Next, we went above the immediate observations and discussed

our insights into the key limitations and challenges with existing techniques/tools in the field of distributed-program

analysis. Finally, in accordance with the discussion and following the insights, we shed light on future research directions

in this field towards addressing open problems corresponding to those limitations/challenges, concerning the technical

development, empirical evaluation, and wider applications of program analysis for distributed software systems.
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A More Background on Program Analysis and Distributed Systems
In this appendix section, we provide additional background regarding our survey topic, concerning concepts and

algorithms in program analysis and charactristics of distributed software systems that are relevant to the analysis of

distributed programs.

A.1 Fundamental Analysis Concepts and Algorithms

Among the large variety of program analyses, there are a relatively few ones that serve in supporting/enabling roles,

referred to as fundamental analyses. Accordingly, the supported/enabled analyses are client/application analyses. Below

we exemplify such analyses with two instances: pointer/alias analysis and dependence analysis.

A.1.1 Pointer Analysis and Alias Analysis. Pointer analysis (i.e., points-to or reference analysis) is a type of static

program analysis that resolves which memory locations (objects) a pointer/reference variable (i.e., pointers) can point

to. It approximately computes the set of such objects and their relationships to determine the possible run-time

values of pointers [101]. Then, the resulting information can be used to determine the aliasing relationships in the

program [196] (i.e., alias analysis). If two variables point to the same memory location, they are considered aliases to

each other. Changing the value pointed to by one of these two pointer variables would indirectly change the value

pointed to by the other. For example, as shown in Figure 1, in the NioEcho client (class NioClient), the statement at

Line 7 leads to an alias: in particular, the List variable queue becomes an alias of the List object returned by the call

this.pendingData.get(socket) through the assignment. Both pointer and alias analyses are fundamental analysis.

A.1.2 Dependence Analysis. Developers often analyze dependencies among program entities of a software system to

help them better understand the behaviors and structure of the system, for various purposes like implementation, testing,

debugging, and other maintenance/evolution tasks [58, 176]. Dependence analysis is an analysis that aims to compute

these (data and control) dependencies [27, 28]. For a complex program such as a common distributed program, which

runs in multiple threads/processes, the users (e.g., developers) need to understand (thus the dependence analysis should

computer) both explicit (induced by explicit object reference or function invocation, typically within an individual

thread/process) [37] and implicit (induced by implicit reference/invocation, e.g., via message passing, typically across

different threads/processes) [38] dependencies. Data/control dependence analysis is a fundamental form of control/data

flow analysis, respectively. Meanwhile, it is also considered an application/client analysis of points-to/alias analysis.

A.2 Distributed Software Systems

Due to increasing requirements for computational scalability and performance, there are more and more real-world

software systems designed as distributed systems today [55]. Formally, software systems that perform general-purpose

distributed computations are broadly defined as distributed systems [55]—since this is the textbook definition, we

refer to them as common distributed systems. As opposed to these systems, there also exist specialized distributed

systems, such as RMI-based systems [191], distributed event-based (DEB) systems [160], cloud systems [218], and

Internet of Things (IoT) systems [152], etc. Important for the analysis of distributed programs, distributed systems

have some key features [55]: (1) the executions of components (i.e., processes) in a distributed system are concurrent;

(2) the components/processes interact/communicate but generally asynchronously in nature; and (3) hardware and

software resources can be shared across distributed components/processes. For example, the distributed system NioEcho

has a server and one or more clients that each simply sends messages to the server, as shown in Figure 1. NioEcho
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components/processes (e.g., the server and one client) communicate and coordinate their actions by socket-based

message passing through relevant statements (e.g., Lines 7 and 8 in the NioClient class).

A.2.1 Architectures. There are mainly three types of architectures of distributed software systems: peer-to-peer (P2P),

client-server (C/S), and N-tier. Peer-to-peer (P2P) is a popular type of distributed system architecture in which each

process/node has equivalent responsibilities and capabilities. P2P differs from C/S in which some processes/nodes are

dedicated to serving other processes/nodes [153]. For instance, OpenChord is a typical peer-to-peer distributed software,

providing network services through distributed hash tables [18].

Client-server (C/S) is a type of network architecture in which each process/node on the network is either a server or

a client—the popular browser/server (B/S) architecture can be considered a special instance of C/S (commonly for web

applications), where the client is a web browser. Servers are relatively more powerful for controlling and managing

relevant resources (e.g., disk drives, printers, network traffic), and clients rely on servers for those resources [153]. For

example, NioEcho is a typical client-server distributed program, which includes one or more clients and a server [197].

The n-tier architecture breaks up an application into tiers, providing flexibility and reusability for developers who

only need to modify or add a specific tier (layer), rather than to rewrite the whole application when they decide to

change the application. In the term n-tier, "n" can be any number (larger than 1) of distinct tiers used in a specific

architecture, such as 2-tier, 3-tier, or 4-tier, and so on [153]. For example, Microsoft Azure is a typical n-tier distributed

system that provides cloud computing services [52, 222].

Process 1

Process 2

Process 3

1 2

3 4

1 5

m1

m2

time

0

0

0

fe

a b

dc

Fig. 6. Lamport logical clocks in a distributed program running in
three processes: Process 1, Process 2, and Process 3.

A.2.2 Lamport Timestamps for Distributed Software.

There are many different approaches to managing the

timing in distributed systems. One of them maintains a

logical clock for all processes with a simple algorithm,

called Lamport Timestamps (LTS) [124]. In LTS, each

process maintains an integer value, initially zero, which

periodically increments, once after every atomic event.

The value is attached to the record of the execution of each event (e.g., a message passed from one process to another) as

its timestamp [75], centrally or separately. In brief, LTS works as follows: (1) A process increments its counter for each

event in it; (2) When sending a message, a process includes its counter value with the message; and (3) On receiving a

message, the counter of the recipient is updated (e.g., increased by one). In terms of the communication mechanism,

LTS may be implemented to work either asynchronously or synchronously.

To illustrate LTS, suppose there are three processes concurrently running during the execution of a distributed

program, as shown in Figure 6. Each process has its logical clock initialized to zero and the clock value (i.e., timestamp)

increments by 1 for each event—e.g., 1 for event a, 2 for event b, etc. When the message m1 was sent from Process 1

to Process 2, the timestamp 2 was piggybacked to m1. Next, the (message-receiving) event c (in Process 2) is given a

timestamp 3, which is the greater value between the piggybacked timestamp 2 and its local timestamp 0 (initial value)

incremented by 1—max(0,2)+1=3. Then, the timestamp of the event d is 4 (= 3 + 1). Next, the message m2 was sent

from Process 2 to Process 3 with the clock value 4 piggybacked. Finally, the event f (in Process 3) has its timestamp 5 (=

max(1,4) + 1), where 1 is the timestamp of the previous event e in the same process (i.e., Process 3) [75, 124].
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Table 3. Paper Attribution Results (Years of 2022-2024)
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[148]

2024

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[204] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[72] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[100] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[48] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[201] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[134] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[103] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[122] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[156]

2023

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[235] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[71] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[239] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[216] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[171] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[238] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[182] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[43] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[117] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[118] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[63] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[109] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[54] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[230] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[4] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[95] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[123] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[57] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[138] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[139] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[170]

2022

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[85] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[78] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[217] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[64] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[113] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[184] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[68] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[210] ✓ ✓ ✓ ✓ ✓ ✓

[141] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[3] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[105] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[149] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[26] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[190] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[142] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[228] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[92] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B Mapping of Surveyed Papers to Survey Taxonomy

In section, we provide the detailed paper attribution results, summarizing the mapping of the surveyed papers

according to the survey taxonomy we derived.
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Table 4. Paper Attribution Results (Years of 2020-2021)
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[236]

2021

✓ ✓ ✓ ✓ ✓ ✓ ✓

[97] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[229] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[185] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[2] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[45] ✓ ✓ ✓ ✓ ✓ ✓

[220] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[155] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[30] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[82] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[215] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[13] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[211] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[70] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[200] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[164] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[163] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[104] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[213]

2020

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[154] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[108] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[62] ✓ ✓ ✓ ✓ ✓ ✓

[219] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[96] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[234] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[87] ✓ ✓ ✓ ✓ ✓ ✓

[145] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[47] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[143] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[189] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[84] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[83] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[81] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[232] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[178] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[127] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 5. Paper Attribution Results (Years of 2015-2019)
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[206]

2019

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[79] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[16] ✓ ✓ ✓ ✓ ✓ ✓

[11] ✓ ✓ ✓ ✓

[129] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[146] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[93] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[6] ✓ ✓ ✓ ✓

[80] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[135] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[76] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[188] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[195] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[199] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[116] ✓ ✓ ✓ ✓ ✓ ✓

[125] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[77] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[172] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[202]

2018

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[89] ✓ ✓ ✓ ✓ ✓ ✓

[158] ✓ ✓ ✓ ✓

[147] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[114] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[162] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[137] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[50] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[130] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[41] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[150] ✓ ✓ ✓ ✓ ✓ ✓

[12]

2017

✓ ✓ ✓ ✓ ✓ ✓ ✓

[136] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[165] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[90] ✓ ✓ ✓ ✓ ✓ ✓

[183] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[229]

2016

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[38] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[39] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[151]

2015

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[207] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 6. Paper Attribution Results (Years of 1995-2014)
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[231]

2014

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[177] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[212] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[237] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[175]

2013

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[233] ✓ ✓ ✓ ✓

[91] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[99] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[111] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[174]

2012

✓ ✓ ✓ ✓

[179] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[21] ✓ ✓ ✓ ✓ ✓

[19]

2011

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[98] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[107] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[193]

2010

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[194] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[227] 2009 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[159]

2006

✓ ✓ ✓ ✓ ✓ ✓ ✓

[208] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[119] 2000 ✓ ✓ ✓ ✓

[44] 1996 ✓ ✓ ✓ ✓

[112] 1995 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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