Prioritized Analysis of Inter-App Communication Risks’

Fang Liu', Haipeng Cai2, Gang Wang', Danfeng (Daphne) Yao',
Karim O. Elish®, and Barbara G. Ryder'

"Department of Computer Science, Virginia Tech

23chool of Electrical Engineering and Computer Science, Washington State University

3 Department of Computer Science, Florida Polytechnic University

fbeyond@cs.vt.edu, hcai@eecs.wsu.edu, {gangwang,danfeng}@cs.vt.edu, kelish@flpoly.org, ryder@cs.vt.edu

ABSTRACT

Inter-Component Communication (ICC) enables useful in-
teractions between mobile apps. However, misuse of ICC ex-
poses users to serious threats such as intent hijacking/spoof-
ing and app collusions, allowing malicious apps to access
privileged user data via another app. Unfortunately, exist-
ing ICC analyses are largely incompetent in both accuracy
and scale. This poster points out the need and technical
challenges of prioritized analysis of inter-app ICC risks. We
propose MR-Droid, a MapReduce-based computing frame-
work for accurate and scalable inter-app ICC analysis in An-
droid. MR-Droid extracts data-flow features between mul-
tiple communicating apps and the target apps to build a
large-scale ICC graph. Our approach is to leverage the ICC
graph to provide contexts for inter-app communications to
produce precise alerts and prioritize risk assessments. This
process requires large app-pair data, which is enabled by
our MapReduce-based program analysis. Our initial exten-
sive experiments on 11,996 apps from 24 app categories (13
million pairs) demonstrate the scalability of our approach.

1. Introduction

Inter-Component Communication (ICC) is an important
mechanism for app-to-app communications on Android. It
links the components of different apps via messaging objects
(or Intents). While ICC contributes greatly to the develop-
ment of rich third-party applications, this communication
model has become a predominant security attack surface for
Intent hijacking, Intent spoofing and app colusions. Accord-
ing to a recent report from McAfee Labs [1], app collusions
are increasingly prevalent on mobile platforms.

To assess ICC vulnerabilities, various analytics methods
have been proposed. However, most of them perform analy-
sis for one individual app at a time, ignoring its feasible com-
munication context with other apps. As the consequence,

*This work has been supported in part by DARPA APAC
FA8750-15-2-0076 and ARO YIP W911NF-14-1-0535.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODASPY’17 March 22-24, 2017, Scottsdale, AZ, USA
(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4523-1/17/03.

DOL: http://dx.doi.org/10.1145/3029806.3029843

159

they provide conservative risk estimations, producing a high
number of (false) alarms [2, 3]. A more effective approach
is inter-app analysis that consider ICCs across two or more
apps. This allows researchers to gain empirical contexts on
the actual communications between apps and produce more
relevant alerts. However, existing solutions are largely lim-
ited in scale due to the high complexity of pair-wise compo-
nents analyses. They were either applied to a much smaller
set of apps (a few hundred only, versus a few thousand in
single-app analyses), or a small set of inter-app links.

A recent study PRIMO reported ICC analyses of a large
pool of apps [6]. Its goal is to approximate the likelihoods
of ICC communications between app pairs through learn-
ing from training data. However, PRIMO is not designed
for ICC risk analysis, thus it does not provide classification
mechanisms for security. Moreover, PRIMO runs on a sin-
gle workstation. Our evaluation shows that running PRIMO
with 10K apps requires over 40GB memory even with highly
compressed metadata. Using a single machine is not a prac-
tical solution to analyze market-wide apps with the space
complexity being O(N?).

In this paper, we point out the need and technical chal-
lenges of prioritized analysis of inter-app ICC risks. We pro-
pose MR-Droid, a MapReduce-based parallel analytics sys-
tem for accurate and scalable ICC risk detection. Our goal
is to evaluate ICC risks based on an app’s inter-connections
with other real-world apps and efficiently identify high-risk
pairs. Our intuition is that an ICC pair is of high-risk,
not only because one of the apps is vulnerable, but more
importantly it potentially communicates with other apps.
To achieve this goal, we construct a large-scale ICC graph,
where each node is an app component and the edge rep-
resents the corresponding inter-app ICCs!. To gauge the
risk level of the ICC pairs (edge weight), our approach is to
extract various features based on app flow analyses that in-
dicate vulnerabilities. For instance, we can examine whether
the ICC pair is used to pass sensitive data, or escalate per-
missions for another app. With the ICC graph, we can fur-
ther rank the risk level of a given app by aggregating all its
ICC edges with other apps.

To scale up the system, we implement MR-Droid with a
set of new MapReduce algorithms atop the Hadoop frame-
work for constructing the ICC graph. MapReduce has been
used in various areas (e.g., data leak detection [5]). We inde-
pendently exact ICC sources and sinks from each app, and

"We use ICC graph to represent inter-app communications
throughout the paper.

Identify ICC Nodes

Identify ICC Edges

Group ICCs Per App Pair Risk Analysis

(Permission Checking & Data Test)

— > i eesme, 1 APP Pairs &
‘Manifest: Sink " "Pairwise {Permissiony :
; lest s .k Pt Comm. Patterns
____________ Parsing | Extractlon \”Llnkage ? 1% Checklrlg, ; (cc qraph)

(Action Test & Category Test)
N

™ Retarget }
to Java i

\Program Slicing_{*_Source | i'p
.—» i—> Pairs Emission
' String Analysis . \Extraction | ', for Source i |

Reduceq

Map2 Reduce2

Figure 1: Our workflow for analyzing Android app pairs with MapReduce. The dashed vertical lines indicate redistribution
processes in MapReduce. E, I, S represent explicit edge, implicit edge, and sharedUserld edge respectively.

jointly analyze those with matched source-sink pairs with
MapReduce. The high-level parallelization from MapReduce
allows us to analyze millions of app pairs within hours using
commodity servers.

We evaluate ICC graph construction on a large set of
11,996 Android apps collected from 24 major Google Play
categories (13 million ICC pairs). Our system is highly scal-
able. With 15 commodity servers, the entire process took
less than 25 hours for an average of only 0.0012 seconds per
app pair. More importantly, our runtime experiment shows
the computation time grows near-linearly with respect to
the number of apps.

2. Models and Methodology

In this section, we describe the threat model and compu-
tational goal of our work. Then we give an overview of our
approach.

2.1 Threat Model

Our work focuses on security risks caused by inter-app
communications realized through ICCs, covering three most
important classes of inter-app ICC security risks.

e Intent hijacking. An Intent sent by an app via
an implicit ICC may be intercepted (hijacked) by an
unauthorized app. This threat scenario, referred to
as Intent hijacking, can be categorized into three sub-
classes according to the type of the sending compo-
nent: broadcast theft, activity hijacking, and service
hijacking, as introduced in [2].

e Intent spoofing. By sending Intents to exported
components of a vulnerable app, an attacker can spoof
the vulnerable (receiving) app to perform malicious ac-
tions. Intent spoofing can be classified into three sub-
classes by the type of the receiving component: ma-
licious broadcast injection, malicious activity launch,
and malicious service launch [2].

e Malware collusion. Through inter-app ICCs, two
or more apps may collude to perform malicious actions
that none of the participating apps alone would be able
to. Malware collusion can result in disguised data leak
and system abuse.

2.2 Computational Goal

Our computational goal is two-fold.

1. Build a complete inter-app ICC graph and identify all
communication app pairs for a set of apps to provide
the communication context (i.e., the neighbor set) for
each one.

2. Further perform neighbor-aware inter-app security anal-
ysis on top of the ICC graph and rank the apps and
app pairs with respect to their risk levels.

160

The framework for building the ICC graph has to be able
to process very large-scale real world apps efficiently. There
is a potentially higher risk of missing true risk warnings if
limited size of communication context are considered (e.g.,
a highly vulnerable app may be declared safe when only a
few external apps are analyzed).

To rank the apps and app pairs with respect to their risk
levels, one has to carefully represent the apps’ communica-
tion context given the ICC graph. Different threat models
may require different communication context for ranking.

2.3 Overview

As shown in Figure 1, our workflow involves two major
phases: distributed ICC mapping for building ICC graph in
large-scale and neighbor-based risk analysis to rank the apps
according to their risk levels.

Distributed ICC mapping is implemented with MapRe-
duce on top of Hadoop for scalability. It has three steps:
step 1. IDENTIFY ICC NODES, 2. IDENTIFY ICC EDGES,
and 3. GrRouP ICCs PEr ApPP PAIR.

1. In IDENTIFY ICC NODES, we extract the attributes of
sources and sinks from apps. Sources are extracted
from the attributes in outbound Intents. Sinks are ex-
tracted from the exported components in the manifest
or from dynamic receivers created in the code.

2. IDENTIFY ICC EDGES is the first MapReduce job which
identifies edges between communicating sources and
sinks. The MapReduce job transforms the source and
sinks into (key, value) pairs, which enable parallel edge
finding.

3. Groupr ICCs PErR APP PAIR is the second MapRe-
duce job which performs the data test and permission
checking, and identifies and groups edges belonging to
the same pair.

In addition, we balance the workload among all the nodes
in the MapReduce cluster for the best performance. Unbal-
anced workload highly impacts the performances because
most of the nodes are idle while waiting for the nodes with
the heavy workload. We address this problem by adding a
tag before each key emitted by the Map function. The tag
helps to divide the large amount of key-value pairs, which
should be sent to one reducer, into m parts feeding m re-
ducers.

Neighbor-based risk analysis is to utilize the ICC mapping
results (ICC graph) from the previous phase to compute key
ICC link features, and then uses the features to rank security
risks for each app (for hijacking and spoofing attacks) and
app pair (for collusion attacks). Different features may be
used for different attack models.

e HIJACKING We assess the possibility of an intent to
be hijacked be using the features with outbound links

(e.g., Number of outbound edges with data).

e SPOOFING We assess the possibility of component to
be spoofed using the features with inbound links (e.g.,
Number of outbound edges with data).

e COLLUSION All communicating pairs are analyzed to-
gether to assess their collusion possibility. Both in-
bound and outbound features are involved for the as-
sessment.

Given an app or app pair, our analysis first computes its
risk with respect to individual features, and then aggregates
them to obtain an overall risk value. The risk for an individ-
ual feature is ranked based on the feature value distribution
of all apps/app pairs. An app’s individual feature risk is
higher, if the corresponding value is larger than other apps.

3. Evaluation

We implemented our system with native Hadoop MapRe-
duce framework. The input is the ICC sources and sinks
extracted from individual apps using IC3 [7]. We modi-
fied IC3 to accommodate the MapReduce paradigm. The
Hadoop system is deployed on a 15-node cluster. Each node
has two quad-core 2.8GHz Xeon processors and 8GB RAM.2
Datasets

For our evaluation, we apply our system to 11,996 most
popular free apps from Google Play. We select the top 500
apps from each of the 24 major app categories (4 apps were
unavailable due to bugs in program analysis). We down-
loaded the apps in December 2014 with an Android 4.2
client.

Risk Assessment
We apply our system to the collected app dataset. The re-

sulting ICC graph contains 38,134,207 source nodes, 26,227,430

sink nodes and 75,123,502 edges. On the per-app level, there
are in total 12,986,254 app pairs that have at least one ICC
link. Each app averagely connects with 1185 external apps
(9.9% of all apps). For non-connected app pairs, we can
safely exclude them during the security analysis.

Our security analysis is focused on all potential security
risks related to Intent hijacking, Intent spoofing and app col-
lusion. We quantify and rank security risks into as categor-
ical risk levels. In total, our system identified 150 high-risk
apps, 1,021 medium and 10,825 low risk apps. We report
the runtime performance of MR-~Droid next. Our complete
evaluation result will be reported in a full version soon.
Runtime of MR-Droid

We analyze the runtime performance of MR-Droid. Fig-
ure 2 depicts the time cost of our MapReduce pipeline (y
axis) as the number of apps increases (z axis). Overall, the
result shows that our approach is readily scalable for large-
scale inter-app analysis. The running time of ICC node iden-
tification appears to dominate the total analysis cost, yet
its growth is linear with the number of apps. In addition,
given the sparse nature of the ICC graph (rarely does an
app communicate to all apps), we manage to achieve near-
linear complexity for edge identification and grouping ICCs.
In total, it takes 25 hours to perform the complete analysis
on 13 million ICC pairs for 12K apps. Currently, our cluster
has 15 nodes. We anticipate that increasing the cluster size
would further speed up the inter-app ICC analysis.

2The algorithms can also be implemented with Spark with

faster in-memory processing. It will require much larger
RAMs.

161

As a baseline comparison, we evaluated the performance of
IccTA [4], a non-distributed inter-app ICC analysis system.
IccTA needs to first combine two or more apps into one
app and then perform ICC analytics. We evaluate IccTA
with 57 randomly selected real world apps on a workstation
(80GB RAM). It took IccTA over 200 hours to analyze all
the apps. We estimate that processing 200 apps with IccTA
would take about 18,000 hours, making it impractical for
analyzing market-scale apps.

@ Identify ICC Nodes >
V¥ Identify ICC Edges
B8 Group ICCs Per App Pair /

o
/./

N

—
Ut

Time (hour)

g

“() 2 4 6 8 10 12

Number of Apps (in thousands)

ot

Figure 2: Analysis time of the three phases in our approach.

4. Conclusion and Future Work

In this paper, we pointed out the need and technical chal-
leges of prioritized analysis of inter-app ICC risks. We pre-
sented the design and implementation of MR-Droid, a MapRe-
duce pipeline for large-scale inter-app ICC risk analyses. By
constructing ICC graphs with efficient parallelization, our
system enables highly scalable inter-app security analysis
for accurate risk prioritization.

Because of the lack of ground truth on the empirical data,
we will further devote substantial future efforts to manually
inspecting the apps for validation.

5. References

[1] Mcafee labs threats report.
http://www.mcafee.com/us/resources/reports/
rp-quarterly-threats-may-2016.pdf, 2016.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in Android.
In MobiSys, 2011.

K. O. Elish, D. D. Yao, and B. G. Ryder. On the need
of precise Inter-App ICC classification for detecting
Android malware collusions. In MoST, IEEE S&P,
2015.

L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon,
S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and

P. Mcdaniel. IccTA: Detecting inter-component privacy
leaks in Android apps. In ICSE, 2015.

F. Liu, X. Shu, D. Yao, and A. R. Butt.
Privacy-preserving scanning of big content for sensitive
data exposure with mapreduce. In CODASPY, 2015.
D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel,
L. Li, J. Klein, and Y. Le Traon. Combining static
analysis with probabilistic models to enable
market-scale Android inter-component analysis. In
POPL, 2016.

D. Octeau, D. Luchaup, M. Dering, S. Jha, and

P. McDaniel. Composite constant propagation:
Application to Android inter-component
communication analysis. In ICSE, 2015.

2]

3]

4]

5]

(6]

(7]

