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Abstract We present Gryphon, a ‘little’ domain-specific programming language
(DSL) for visualizing diffusion magnetic resonance imaging (DMRI). A key con-
tribution is its compositional approach to customizing visualizations for evolving
analytical tasks. The language is designed for non-programmer, here brain scientists
for exploratory studies. The semantics of Gryphon includes a simple set of keywords
derived from brain scientists vocabulary while performing imaging tasks of mapping
data to graphic marks such as color, shape, value, and size. A pilot study with two
neuroscientists suggested that Gryphon was easy to learn, though some additional
functions and interface components are needed to empower brain scientists.
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1 Introduction

Brain researchers have long used diffusion magnetic resonance imaging (DMRI)
techniques to study connectivity of brain structures. DMRI is a MRI technique
that measures motion of water molecules in tissue [21]. Experimental evidence has
shown that water diffusion is anisotropic in organized tissues, such as white matter
and muscle, and that reconstructing the orientation and curvature of white matter
can provide detailed information about neural pathways. The curves (or fibers)
are portrayed graphically using streamline tracing algorithms or glyphs such as
hyperstreamlines initialized at seed points to reveal fiber tracts. Tracts following
similar directions form fiber bundles [22]. Numerous studies have shown that tract-
based analysis of the brain white matter can offer a deeper insight into brain
structures.

Understanding the structures of fiber tracts, however, has proven difficult for
several reasons that lead to the needs for effective visualization and interaction
techniques. First, the advances in image capturing and processing techniques permit
the display of human brain features at millimeter scales, generating highly dense
visualizations. A whole-brain tractography can have about 10,000 tubes within
the volume of a human head. Without effective visualizations, brain scientists are
left with occluded images that impede their view of the data. Second, grouping,
trimming, and labeling of the numerically computed fibers are needed for the
tractography to provide information about the connections between brain regions.
Fiber tracking reliability can further vary with imaging resolution, noise, and patient
orientation as well as decreased anisotropy that occur with disease. Therefore,
interaction techniques are also crucial for performing some operations to reach
certain regions of interest (ROI) in the brain for the tasks at hand [1].

One approach to addressing the sheer data complexity in DMRI is to provide a
large number of geometric processing, registration, segmentation, and clustering
algorithms to improve data analysis [6]. Further coupling these algorithms with
graphical user interfaces (GUIs) made possible more efficient data queries and
analysis workflow [32]. This paper takes a complementary approach to focus on
a programming language where the brain scientists can customize visualization
that has good visual encodings to convey more precise information. In general,
relying the same visualization for all needed tasks is impossible. For example,
streamtubes are not always good visual representations to reduce clutter, though
they improve orientation perception [12]. Tensor shapes, sizes, and their spatial
locations also influence legibility of the visual displays. If visual encoding is not
carefully constructed and applied to data, the reader may become misled by the
visualization [28].

We describe Gryphon, a domain-specific programming language that lets brain
scientists quickly compose a visualization tailored to their brain DMRI data. We
report a prototypical implementation in this work exemplified in Fig. 1. A Gryphon
program has a sequence of steps, each of which carries out a single high-level
visualization operation, e.g., grouping, aggregation, and other modification on
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Fig. 1 Mixed color encoding of various fiber bundles

graphical elements such as color, size, value, shape, etc. Our language design
makes three contributions: (1) a compositional approach to understanding visual
encoding in scientific visualizations; (2) the design process to capture the domain-
specific semantics to design this (we hope) easy-to-use “little” language; and (3) the
language, Gryphon, itself to exemplify our design methods.

2 Background and Related Work

2.1 DMRI Visualization Toolkits

The first approach to addressing the sheer data complexity in DMRI is to design data
processing, registration, segmentation, and clustering algorithms to improve data
analysis. Some algorithms and toolkits are generic. SCIRun, MeVisLab, and Amira
are general-purpose tools that provide comprehensive workflows in which users
can directly manipulate the data [16, 17, 30]. Others are domain specific for DMRI
data analysis. OpenWalnut supports diverse data processing and analyses of DMRI,
computed tomography (CT), MRI, and functional MRI (fMRI), that on the one hand
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emphasizes speed and extensibility, similar to Amira and, on the other hand, handles
fluid data processing workflow, similar to MeVisLab and SCIRun [13]. Diderot is
perhaps the first language tool that provides a rather complete set of algorithms
for tensor field processing. It also introduces parallel algorithm for more efficient
computing [6].

MedINRIA and DTIStudio also include data-processing pipelines for DMRI
visualization for tract generation, processing of tracking data, and visualizations
[15, 32]. A set of tools on the neuroimaging tools and resources (NITRC) website
are uploaded regularly to help problem solving in specific neurological diseases
(http://www.nitrc.org). TractVis, 3D Slicer, and ExplorDMRI have distinct function-
ality for measuring uncertainty [18,25,33]. vIST/e (http://bmia.bmt.tue.nl/software/
viste/) is useful for high-angular-resolution diffusion imaging analysis (HARDI)
for glyphs, tube visualizations and seeding controls and fusing DMRI/HARDI
visualizations. Users can interactively explore and observe both local tensor field
information and global details about brain structures.

Our goal for Gryphon is to focus on visualization design driven by human visual
perceptions, to provide a DMRI visualization tool similar to ColorBrewer for color
design [14]. We wish to either make use of known good design practice or run a
set of experiments to collect design principles that will guide our visualization tool
design for brain scientists detecting information from imaging. The data processing
methods can be preprocessing steps before data are visualized.

2.2 Visualization Languages

There are two ways to study visualization language: using language as a framework
to map data to visual features to perception [3], and using language as a program-
ming tool for computers to draw visualizations on the screen [19].

These two language aspects were formally linked since APT, which is the first
automated graphic presentation tool to characterize graphic presentations, provide a
set of criteria for deciding the role of each visible sign or symbol placed in a graphic
by studying effectiveness and efficacy, and finally implement the programming
language to ‘recommend’ good visualizations [19]. Wilkinson also describes a set
of grammatical rules for defining graphics that mainly focus on the data analysis
process [34], similar to Bertins semiology for graphics mark drawings [3].

Many graphics presentation tools have used APTs style of analysis for formal
graphical languages. For example, SAGE expanded APT’s data-centric visualization
to a task-centric presentation system that responds to user queries for information
and generates explanations of the changes occurring in quantitative molding systems
such as project modeling and financial spreadsheets [29]. The aim of Processing,
D3, and ProtoVis is information visualization to design multivariate data visualiza-
tions or information graphs [4, 5, 26].

Our Gryphon programming language is similar to APT [19], D3 [5], or
Processing [26] in being built from the semiotic perspective: color, shape, value,

http://www.nitrc.org
http://bmia.bmt.tue.nl/software/viste/
http://bmia.bmt.tue.nl/software/viste/
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texture work as sign vehicles for users to represent some parameter measurements.
We expand the concept to scientific uses in DMRI visualizations to display
spatial, physically-based, and spatial data versus their abstract and chosen
representations [31]. Additionally, depth and occlusions in 3D that make it difficult
to see all the data necessitate certain graphical tricks [35]. Another difficulty with
adding 3D is that orientation becomes an issues: it makes easy to get lost providing
the ability to move around in space. Thus, validating, measuring, and constructing
effective 3D visualizations in general are still unsolved problems for dense dataset
visualizations.

From the language design perspective, our Gryphon is also a ‘little’ language [2]
that is simple for brain scientists to build, document, learn, and use. All instructions
are captured following a human-centered computing design process to capture
domain semantics. All programming instructions operate on small chunks of data
of DMRI geometries.

Recently, Metoyer et al. report from an exploratory study a set of design impli-
cations for creating visualization languages and toolkits [20]. Their findings inform
visualization language design through the way participants describe visualizations
and their inclination to use ambiguous and relative, instead of definite and absolute,
terms that can be refined later via a feedback loop. We have obtained similar
findings and have designed Gryphon to reflect high-level semantics and spatial data
expression.

3 Gryphon: A DMRI Visualization Language

3.1 Language Design

3.1.1 Linguistic Analysis

The first contribution of Gryphon lies in its simple syntax and semantics, carefully
selected by two methods: experts’s reviews while performing some tasks and
experts’ comments on the use of shapes, color, size, value, and texture. These
methods assume that the brain scientists programming effort would be reduced if
the computer language enables them to express semantics in natural expressions
explicitly similar to the way they think about them, and share some design goals
with the natural programming environment [23].

We recorded about 5 h of audio with four brain scientists who were asked to
query brain DMRI tractography visualizations. Think-aloud protocol was enforced
when they spoke about their intent. Their speech semantics were coded, tagged, and
ranked using a speech tagger and a statistical parser. The output of this process was
a parser tree that represent the structure of the sentence. Note that since the parser
was statistical, it attempted to resolve ambiguities, such as prepositional phrase
attachments. The parse tree was then converted into a representation that was simply
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Table 1 Gryphon language symbols and keywords: these keywords are not
case-sensitive

Verbs load, selection locate, update, calculate
Prepositions in, out
Conjunctives by, with
Selection rules Œ�, <, <D, >, >D, DD, D, C, �
Build-in routines AvgFA, AvgLA, NumFiber
Constants shape, color, size, depth, FA, LA, sagittal, axial, coronal

CC, CST, CG, IFO, ILF, DEFAULT, RESET

a split of the words in the sentence, showing the words that they depended on and
the words that were dependent on them. For example, say that we wish to select
the structure corpus callosum (CC) which was inferior to the cortical spinal tracts.
A neurologist would say, “Select the inferior structure of CC next to the CST”.
Such spatial reference was frequently used when the brain scientists talked about
embedded structures.

The next phase of the analysis involved converting the dependency structure into
a semantic representation. The semantic representation was a description of the
top-ranked verbs and nouns, and relative spatial relationships that converged to a
relatively small semantic space. We further queried the neuroscientists subjective
preferences for colors, shape, and texture values for them to understand DMRI
streamtube visualizations, keeping in mind the visual analysis of how structure
affected human understanding.

As an example, we asked them about spatial relationships when using multiple
visual mappings of depth values to size (the further away, the smaller) and color
(the deeper, the redder in a blue-to-red color scale). Their comments included “it
is misleading to have the different sizes while colors are present to discern depth”,
and “I would rather have it (the size) stay the same as I spin it (the model) around”,
“Visual mapping of depth to color is preferable since I like it (the model) with colors.
That is what I need to look at, and I think that color is a good idea but prefer color
by orientation (of the fiber segments)”.

We also hoped that each sentence in the language could record a segment of
meaningful actions in the neuroscientists’ workflow notation, that neuroscientists
could revisit and reuse for new analyses. From our interview, brain scientists felt
that current measurement matrices were sufficient, such as those reported in Correia
et al. [7], yet the interaction and visualization were somewhat limited for allowing
them to query effectively.

The analyses above produce the core content of Gryphon, the simple set of
language symbols and keywords shown in Table 1. Five key verbs describe key
actions brain scientists would like for DMRI visualizations. Prepositions are used
to define the scope of the actions and conjunctives to connect statement terms.
Selection rules in Gryphon are exactly the same as those in elementary math.
Specifically, “Œ �” is the range operator to give numerical bounds in conditional
expressions, and “C” and “�” are relative increment and decrement for brain
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scientists to shift their previous operations spatially rather than giving absolute
coordinates, e.g., moving a cutting plane by 5 mm. Some built-in routines or
keywords are chosen following the tensor field measurement matrix in Correia
et al. [7], e.g., AvgGA and AvgLA calculate the average FA (fractional anisotropy)
and average LA (linear anisotropy) of fibers accordingly and NumFiber counts the
number of fibers in a fiber bundle. Gryphon also recognizes some clustered fiber
bundles, such as corpus callosum (CC), corticospinal tracts (CST), cingulum (CG),
inferior longitudinal fasciculus (ILF), and inferior frontal occipital fasciculus (IFO).

3.1.2 Data Model and Input

Gryphon focuses on visual transformations in 3D visualizations. In our current
implementation, fibers are clustered in terms of brain anatomy; each fiber is
manually tagged with an anatomical cluster identity as either one of the five major
bundles of CC, CST, CG, IFO, or ILF or not. In practice, Gryphons ability to
recognize the constants for the major anatomical bundles depends on these cluster
tags in the structure of the data model input. However, our language design is not
restricted to visualizing clustered data: Gryphon can be expanded to be adaptable to
an unclustered data model.

In a Gryphon program, the first step is to indicate the source of data model by
giving the name of a data file. As an example, a Gryphon data input statement is
written as:

normalBrain = LOAD "/home/lucy/normalS1.dat",

where the LOAD command parses the input file and creates data structures that
fully describe the data model, including identifying the clustering tags. This input
specification statement can also update the current data model at the beginning of
the visualization pipeline if it is not the first step in a Gryphon script. The evaluation
is optional and, when provided, saves the result to a variable, here normalBrain, for
later reference.

3.1.3 Encoding Composition

According to Bertin’s semiotic theory [3], graphically encoding data with key
retinal elements of color, size, orientation, texture, value, and shape is critical in the
legibility of two-dimensional (2D) graphical representations. In 3D visualizations,
occlusion, an important factor in depth perception, has a detrimental impact on
overall legibility, and depth cues are an ordinal dimension in the design space of
3D occlusion management for visualization. Numerous good visualization design
adopted certain occlusion management [10] mechanisms, such as halo effects [11].

We have contributed to symbolic mapping of color, size, and shape for 2D
graphical legibility enhancement and depth encoding, also via common visual
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Fig. 2 Another example showing the mixed encoding by using the separation principles to depict
fiber bundles

elements such as color, size, value (amount of ink), and transparency, as depth
cues for occlusion reduction in the 3D environment. As already shown in the
previous example scripts, Gryphon allows brain scientistis to freely customize
DMRI visualizations using either a single data-encoding scheme alone or compound
encoding scheme by flexibly combining multiple encoding methods.

In composing or exploratory process with DMRI visualizations, brain scientists
often attempt to compare a ROI across datasets captured at a different time or from
another patient and would like to differentiate them from each other, thus a depth-
enhanced visualization could help generate legible displays for the multiple ROIs.
In addition, on other occasions users have difficulty in perceiving information along
the depth direction.

Gryphon’s data-encoding flexibility is also driven by the perceptual principle of
shape choices, which states that it is easy for human eyes to perceive categorical data
in different shapes. Figure 2 demonstrated some encoding approaches supported by
the language, though the picture itself might not represent a good visualization.
Suppose a brain scientist has composed the streamtube visualization of a brain
DMRI data set with default data encoding (uniform size, color, and shape without
depth cues) and now wants the overall encoding scheme to differ across fiber
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Table 2 Combinational rules
of constants in the UPDATE
statement

var1 var2 var3
shape line, tube, ribbon –
color FA, LA –
size FA, LA minimal, scale
depth size, color, value,

transparency
lower, upper

DEFAULT – –
RESET – –

bundles. In order to achieve this effect, an example Gryphon snippet can be written
as follows:

In the resulting visualization in Fig. 2, each of the five major bundles will differ
visually from others since all these bundles are encoded differently (these mixed
encoding approach is subject to experimental verification). Often times, once a ROI
is filtered out, it is also necessary to examine the selected fibers more carefully.
For this purpose, Gryphon allows brain scientists to impose various data-encoding
schemes upon data of interests. Such visualization customization is performed by
the UPDATE command, which works in an immediate mode and updates the view
after execution. The general UPDATE syntax pattern is:

UPDATE var1 BY var2 WITH para1,...,paraN IN|OUT target,

where var1 is an attribute, such as shape, color, size, depth, of the current
visualization to be modified, and var2 gives how the actual updating operation
is to be performed relative to var1. The parameter list, para1. . . N statement
allows specific UPDATE to a particular data encoding operation. Like the target
specification (optional with all commands as stated before), the BY clause and
WITH clause are both optional. Table 2 lists all possible combinations of var1,
var2 and associated parameter list developed currently. In the table, lower, upper
gives the bound of depth mapping and minimal, scale indicates the minimum and
the scale of variation in size encoding. DEFAULT and RESET, when accompanying
the verb UPDATE, act as a command to revoke all data-filtering and data-encoding
operations respectively. The following script shows how to inspect the change in FA
along fibers in a ROI by mapping FA value to tube size; this yields an alternative
representation of the FA variation in that ROI, compared to some conventional
coloring approach [9].

UPDATE RESET
partialILF = LOCATE "FA in [0.5,0.55]" OUT "ILF"
UPDATE size BY FA IN "partialILF"
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3.1.4 Considering Interactivity

The third design contribution lies in the support of some typical interaction tasks:
(1) checking integrity of neural structures of a brain as a whole; (2) examining fiber
orientation in a ROI or fiber connectivity across ROIs; (3) comparing fiber bundle
sizes between brain regions; (4) tracing the variation of DMRI quantities such as FA
along a group of fibers; and (5) picking particular fibers according to a quantitative
threshold.

When using DMRI visualizations, neurologists look at not only the whole data
model, but also some regional details, for example the location of pathological
conditions. To reach ROIs in brain DMRI visualizations, brain scientists often
narrow down the view scope to a relatively large anatomical area in the first place
and then dive into a specific ROI. In visualizations in which neural pathways are
depicted as streamtubes, the ROIs are usually clusters of fiber bundles.

For instance, at the beginning of a visualization exploration, one of our brain
scientist collaborators wants to look into frontal lobe fibers within the intersection
of two fiber bundles, CST and CC, and will ignore all other regions of the model.
Further, suspicious of fibers with average FA under 0.5 for a cerebral disease with
which the brain is probably afflicted, the brain scientist continues examining the
suspect fibers. Later on, the scientist focuses on the small fiber region to see how it
differs from typical ones, for instance in terms of orientation and DMRI parameter
measures in the evaluation metrics. Gryphon supports this process through high-
level primitives, such as SELECT and common arithmetical conditional operators,
including the range operator. Gryphon mainly contains facilities for step-by-step
data filtering with these primitives. For example, supposed the user above wants to
explore the fibers of interest, the Gryphon program will look like:

SELECT "FA < 0.5" IN "CST"
SELECT "FA < 0.4" IN "CC"

As a result, fibers in both specific bundles with average FA under 0.5 will
be highlighted to help brain scientists focus on the local data being explored. In
addition to this, the user can customize the visualization of the filtered fibers through
various visual encoding methods using the UPDATE syntax. This is particularly
useful when the brain scientist wants to keep the data already found in focus
before moving to explore other relevant local data so as to add more fibers into the
focus region, or when the scientist simply seeks a more legible visualization of the
data. The instance below, following the same example, illustrates how better depth
perception achieved by a type of depth encoding, together with a differentiating
shape encoding, are added up to the two selected fiber bundles:

SELECT "FA < 0.5" IN "CST"
SELECT "FA < 0.4" IN "CC"
UPDATE depth BY color IN "CST"
UPDATE shape BY ribbon IN "CC"
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This brief sequence of commands can help the brain scientists locate desirable
fiber tracts with high accuracy while allowing flexible customization upon current
visualizations, similar to some slider dragging selection in interfaces [15]. In this
case, tracts of interest (TOIs) are first focused and then further differentiated for
more effective exploration. In general, Gryphons design emphasizes this task-driven
process of visualization exploration, which fits the thinking process of end users
of the present visualizations. Our neurologist collaborators frequently filter data in
order to reach an ROI in their DMRI visualizations.. Gryphon offers two commands
for data filtering: SELECT and LOCATE. The data-filtering syntax pattern in
Gryphon is as follows:

SELECT condition|spatialOperation IN|OUT target
result = LOCATE condition IN|OUT target

These two commands have similar functionality but different semantics: SELECT
executes filtering in an immediate mode by highlighting target fibers, while
LOCATE performs an offline filtering operation, retrieving target fibers and sending
the result to a variable without causing any change in the present visualization. Also,
SELECT provides relative spatial operations through moving anatomical cutting
planes. In fact, it combines these two commands into one while differentiating
the two semantics (by recognizing the presence of variable evaluation and taking
spatial operations as an alternative to the condition term). However, we have kept
these two commands separate based on brain scientists’ input asking for a more
straightforward understanding of the semantics and more easily learned language
usage, for example.

SELECT "LA <= 0.72" IN "ALL"
partialILF = LOCATE "FA in [0.5,0.55]" OUT "ILF"

The SELECT statement filters fibers in the entire DMRI model with average
anisotropy greater than 0.72 (by putting them in the contextual background) and
highlights all other fibers. In comparison, the LOCATE statement does not update
the visualization but picks up fibers outside the ILF bundle having average FA value
in the specified range. Note that when no specific data encoding is applied, different
colors are assigned to ROI fibers in different major bundles in Gryphon so that
one ROI can be distinguished from another when more than one is highlighted.
Also, filtered fibers are still semitransparent as the contextual background rather
than being removed from the visualization.

3.1.5 Spatial References

The fourth design choice of Gryphon is that it is a language in which brain
scientists are able to operate with relative spatial terms. Brain scientists frequently
use spatial terms such as parasagittal, in, out, mid-axial and near coronal, etc. in
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their descriptions of DMRI visualizations in the 3D space. They also use a set of
relative positioning terms, such as above, under, on top of, across, and between, etc.,
and more domain-specific ones such as frontal, posterior, dorsal, etc. At present,
Gryphon contains a subset of these spatial terms.

In 3D data models such as those from DMRI, spatial relationships between data
components are one of the essential characteristics (as is typical of 3D scientific data
in genera). Accordingly, in composing a DMRI visualization one must be able to use
spatial operators with domain-conventional terms in order to describe the process
of visualization authoring. In response, Gryphon supports spatial operations by
combining two approaches. First, three visible cutting planes that provide guidance
in the three conventional anatomical views, the axial, coronal, and sagittal views, are
integrated in the visualization view. Then, flexible manipulating operations upon
the three planes are built into Gryphons spatial syntax definitions. This enables
brain scientists to navigate in the dense 3D data model with a highly precise
filtering fashion through numerical input. For instance, suppose the streamtube
representation of a DMRI model being programmed is derived using unit seeding
resolution from DMRI volumes of size 256 � 256 � 31 captured at voxel resolution
0.9375 � 0.9375 � 4.52 mm, and suppose both the axial and coronal planes are
located at their initial position so that nothing is cut along these two views. In
order to examine a suspect anomaly in the brain region of the occipital lobe, a brain
scientists can filter the data model so that approximately only this region is kept.
Relative movements can be imposed similarly on the sagittal plane as well using the
code below.

SELECT "coronal +159.25"
SELECT "axial -27.5"
SELECT "sagittal +183.2"

3.1.6 Flat Control Structure

Gryphon is designed to provide a declarative language environment for brain
scientists who may not have programming skills. Therefore, we purposely eliminate
the conditional and iterative structures from the language design of Gryphon and
keep only the most intuitive sequential structure. This gives Gryphon a flat control
structure. Meanwhile, Gryphon uses high-level semantics to overcome its weakness
in expressing user task requirements. First, the need for an iterative structure usually
stems from the need to operate on multiple targets. In Gryphon, the operation target
is a common term in all syntax patterns to indicate the scope of the data. These
scopes are defined as enumeration and default terms in Gryphon syntax patterns.
On the one hand, with enumeration, brain scientists simply list all targets in the
target term, thus avoiding iteration. For example, suppose a user intends to select
three bundles and then to change the size encoding for two of them; a Gryphon
script can include:
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Fig. 3 LOCATE function only stores the data without necessarily making a selection

SELECT "CST,CC,CG"
UPDATE size BY FA IN "CST,CG"

On the other hand, with term default, when a target term is lacking in a single
statement, ALL is taken as the default scope, meaning the entire data model will
be the regions to be manipulated. This rule is applicable to all types of Gryphon
statements, that target term is optional in all Gryphon syntax patterns.

Second, requirement for a conditional structure comes from brain scientists’
requests for a way to express conditional processing. For example, they often filter
fibers according to FA thresholds. In Gryphon, a conditional expression can be
flexibly embedded in a statement. We have shown in previous examples how to
embed conditional expressions in SELECT statements. For syntactic simplicity,
condition is expressed in UPDATE statements indirectly through variable reference,
as the following example snippet shows. Here LOCATE is an alternative to SELECT
but it results in storage of the fibers filtered into a variable for later reference instead
of highlighting those fibers immediately, as SELECT does (Fig. 3).
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3.1.7 Fully Declarative Language

We designed Gryphon for brain scientists using natural descriptions over a classical
programming language: elements close to those in a computer programming
language have been changed to be as declarative as possible. In Gryphon, all
types of statements are designed to follow a consistent pattern: begun by a verb,
followed by operations and, optionally, ended by data target specification, with
optional evaluation of statement result to a variable for later reference if provided.
This syntax consistency has been applied to the data measurement statement where
invocation of built-in numerical routines is involved. To measure the number of
fibers in a selected bundle, for instance, instead of writing

CALCULATE NumFibers("CST"),

write

CALCULATE NumFibers IN "CST"

As shown above, besides visually examining the graphical representations, brain
scientists often need to investigate the DMRI data in a quantitative manner, such
as average FA and number of fibers for assessing cerebral white-matter integrity.
Accordingly, Gryphon provides built-in numerical routines to calculate some of the
DMRI metrics in Correia et al. [7]. The following pattern shows the Gryphon data
analysis syntax:

val = CALCULATE ${metricRoutine}$ IN|OUT target

MetricRoutine can be one of AvgFA, AvgLA and NumFibers to represent fiber
integrity. In this syntax pattern, keeping the resulting value by evaluation is optional
and sometimes useful when referred to afterwards. For example, in order to sum
the fibers with average FA falling within a particular range and then figure out the
average LA of these target fibers, a brain scientist can write in Gryphon to show its
visualization in Fig. 4.

3.2 Language Implementation

Gryphon is declarative in general form, with support of some programming lan-
guage features, such as variable referencing and arithmetical and logical operations.
Current implementation does not support a fully featured interpreter or compiler
but by a string-parsing-based translator of descriptive text to visualization pipeline
components and manipulations. The core of Gryphon is implemented on top of
the Visualization Toolkit (VTK) using CCC. The rendering engine is driven
by the visualization pipeline and legacy VTK components ranging from various
geometry filters to data mappers. Moreover, the support of language features, such
as compositional data encoding, a group of new pipeline components like those for
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Fig. 4 Interface embedded to show query results

view-dependent per-vertex depth-value ordering has been added on top of related
VTK classes, and some legacy VTK components have been tailored for specific
needs of Gryphon visualizations.

In particular, the Gryphon script interpreter is implemented as data filters
using the VTK visualization pipeline. As such, interpreting a Gryphon script
involves translating the text, according to defined syntax and semantics, to data
transformations in the VTK pipeline. For data encoding flexibility, multiple VTK
data transformation pipelines have been employed.

Finally, the programming interface is implemented using Qt for CCC. In-
teractions like triggering the execution of a Gryphon program, serializing and
deserializing the text script, etc. are all developed with Qt widgets, although
interactions with the visualization itself are handled using legacy VTK facilities with
necessary extensions. Since our language targets non-programmer debugging skills
are not expected of users. Consequently, instead of building a full-blown debugging
environment as seen in almost all integrated development environments (IDEs), we
employee an output window to prompt users with all error messages caused by
invalid syntax or unrecognized language symbols. We have used GUI utilities of Qt
for CCC to dump, after running a script, to process the error messages.

4 Scenarios of Use

We describe several sample task scenarios that can be performed by brain scientists
on a brain DMRI model using the Gryphon language. The usage scenarios associ-
ated with the sample tasks are representative of typical real-world visualization tasks
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of brain scientists with expertise in DMRI. The usages range from visualization
customization and exploration to DMRI data analysis and cover the main language
features and functionalities of the current Gryphon implementation.

In the following scenarios, a vascular neurologist (and a Gryphon end user), has a
geometrical model derived from a brain DT-MRI data set and wants to com-pose and
explore visualizations of the data for diagnostic purposes. In each of the scenarios,
Lucy fulfills his task by programming a Gryphon script that describes his thinking
process for that task and then clicks the Run button to execute the script. Lucy
programs with Gryphon syntax references showing in a help window and corrects
any term that is typed incorrectly with the assistance of error messages displayed in
the output window. Once the script is interpreted correctly, either the visualization
is changed or numerical values appear in the output window as the results of script
execution. Scripts and running results are presented at the end of the description of
each usage scenario.

4.1 Scenario 1: Examining ROIs

One common task brain scientists perform is to examine particular regions of
interest (ROIs) rather than the whole brain. In this task, Lucy is interested only
in all fibers within the temporal lobe area that belong to the CG bundle and CST
fiber bundles in the parietal lobe area that have average LA value no greater than a
threshold to be determined. The SELECT command with relative spatial operations
using the anatomical planes enables Lucy to reach precisely the ROIs she desires.
She first aims to filter fiber tracts outside the temporal and parietal area by adjusting
the three cutting planes with relative movements and then starts trying to reach the
exact target fiber tracts using both fiber bundle filters and conditional expression
related to LA. Lucy begins with an estimate for the undecided LA threshold and
then keeps refining until she gets the accurate selection of target fibers. In the end,
she has a runnable script written in Gryphon (Fig. 5).

4.2 Calculating Metrics

In addition to visual examinations, neurologists often request quantitative investiga-
tions of their DMRI models. In this scenario, Lucy attempts to check white-matter
integrity in a brain model to improve the limited reliability of DMRI tractography.
For a rough estimation of the integrity, she uses the CALCULATE command to
retrieve the size, in terms of the number of fibers, and average FA of both the whole
brain and representative bundles. With the average FA she has requested before,
Lucy goes further to use it to kick out CST fibers with average FA below the bundle-
wise average. Lucy writes the script in Fig. 6 to get the result.
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Fig. 5 Select regions of interest by relative unit specification

5 Discussion

5.1 Experimental Studies

The design was performed collaboratively with brain scientists. We performed a 2-h
study with brain scientists. Generally, they liked its flexibility and found it easy to
learn. They would like to encode more parameters calculated from their new studies.
They would also prefer to have a graphical interface where these parameters can be
put in directly.

5.2 Integrating Perceptual Principles

Current visualization methods in Gryphon are limited and are not guided fully
by perceptual principles. In the long term, the Gryphon language should follow
the rules that visualization should require minimal intervention on the part of the
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Fig. 6 Brain DMRI matrix calculation

designers, similar to that of APT. APT and its Tableau environment embodies a
genuinely prescriptive theory of designing graphical encoding based on results from
perceptual studies by analysis of data types. Similarly, ColorBrewer prescribes col-
ors by data types, while providing a flexible user interface to adjust the values [14].
Our current implementation has limited availability of integrated principles, yet
provides a language at a higher level so that brain scientists do not have to control
low-level encoding details.

Several improvements include better color design, for example using new
color-embedding methods to show fiber orientations [8]. The lighting needs to
be improved to improve spatial structure presentation. Some perceptual-related
rendering can be represented, e.g., ambient lighting to control dense line rendering
for showing spatial relationships [24] or volume visualizations where structures are
more pronounced [27]. It should be possible to generate ideas as such by visual
composition in our Gryphon language.
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5.3 Bidirectional Text (Programming Syntax)
and Visualization Environment

Gryphon can be extended to rely on the coexistence of text display and visualization
to form a bidirectional notation environment. By this we mean that the text and
the visualization can augment each other, with the text becoming what is called
“secondary notations” from software engineering and the visualization showing the
results. The text scripts can be used to exhibit workflows and steps in arriving at
the visualization that might otherwise be less accessible. On the other hand, the
programmable notation is also our programming language that can carry a simple
syntax based on brain scientists’ tasks.

6 Conclusion

We have presented Gryphon, a simple domain-specific programming language for
exploring 3D DMRI visualizations. We described the design process and results.
Empirical studies suggested that user interfaces and more intuitive interaction
techniques are desirable to have a more useful language.

Acknowledgements The authors thank the participants for their time and effort, Drs. Juebin
Huang, Stephen Correia, and Judy James for their help on task analyses. We also thank Katrina
Avery for her editorial support. This work was supported in part by NSF IIS-1018769, IIS-
1016623, IIS-1017921, OCI-0923393, EPS-0903234, DBI-1062057, and CCF-1785542, and NIH
(RO1-EB004155-01A1).

References

1. Akers, D.: CINCH: A cooperatively designed marking interface for 3d pathway selection. In:
Proceedings of the 19th annual ACM symposium on User interface software and technology,
pp. 33–42. ACM (2006)

2. Bentley, J.: Programming pearls: little languages. pp. 711–721. ACM (1986)
3. Bertin, J.: Semiology of graphics: diagrams, networks, maps (1983)
4. Bostock, M., Heer, J.: Protovis: A graphical toolkit for visualization. IEEE Transactions on

Visualization and Computer Graphics 15(6), 1121–1128 (2009)
5. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Transactions on

Visualization and Computer Graphics 17(12), 2301–2309 (2011)
6. Chiw, C., Kindlmann, G., Reppy, J., Samuels, L., Seltzer, N.: Diderot: a parallel dsl for

image analysis and visualization. In: Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 111–120. ACM (2012)

7. Correia, S., Lee, S., Voorn, T., Tate, D., Paul, R., Zhang, S., Salloway, S., Malloy, P.,
Laidlaw, D.: Quantitative tractography metrics of white matter integrity in diffusion-tensor
mri. Neuroimage 42(2), 568 (2008)



60 J. Chen et al.

8. Demiralp, C., Hughes, J.F., Laidlaw, D.H.: Coloring 3D line fields using Boy’s real projective
plane immersion. IEEE Trans. on Visualization and Computer Graphics (Proc. Visualization
’09) 15(6), 1457–1463 (2009)
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