Check for
Updates

A First Look at Security and Privacy Risks

in the RapidAPI Ecosystem

Song Liao
Texas Tech University
Lubbock, TX, USA
song liao@ttu.edu

Zheng Song
University of Michigan-Dearborn
Dearborn, MI, USA
zhesong@umich.edu

Long Cheng
Clemson University
Clemson, SC, USA

Xiapu Luo
The Hong Kong Polytechnic
University

Icheng2@clemson.edu Hong Kong, China
csxluo@comp.polyu.edu.hk
Haipeng Cai Danfeng (Daphne) Yao
Washington State University Virginia Tech
Pullman, WA, USA Blacksburg, VA, USA
haipeng.cai@wsu.edu danfeng@vt.edu

Hongxin Hu
University at Buffalo
Buffalo, NY, USA
hongxinh@buffalo.edu

Abstract

With the emergence of the open API ecosystem, third-party devel-
opers can publish their APIs on the API marketplace, significantly
facilitating the development of cutting-edge features and services.
The RapidAPI platform is currently the largest API marketplace
and it provides over 40,000 APIs, which have been used by more
than 4 million developers. However, such open API also raises se-
curity and privacy concerns associated with APIs hosted on the
platform. In this work, we perform the first large-scale analysis of
32,089 APIs on the RapidAPI platform. By searching in the GitHub
code and Android apps, we find that 3,533 RapidAPI keys, which
are important and used in API request authorization, have been
leaked in the wild. These keys can be exploited to launch various
attacks, such as Resource Exhaustion Running, Theft of Service,
Data Manipulation, and User Data Breach attacks. We also explore
risks in API metadata that can be abused by adversaries. Due to
the lack of a strict certification system, adversaries can manipulate
the API metadata to perform typosquatting attacks on API URLs,
impersonate other developers or renowned companies, and publish
spamming APIs on the platform. Lastly, we analyze the privacy
non-compliance of APIs and applications, e.g., Android apps, that
call these APIs with data collection. We find that 1,709 APIs collect
sensitive data and 94% of them don’t provide a complete privacy
policy. For the Android apps that call these APIs, 50% of them in
our study have privacy non-compliance issues.

CCS Concepts

« Software and its engineering — API languages; « Security
and privacy — Key management; Privacy protections.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690294

1626

Keywords
RapidAPI, Key Leaks, Privacy Compliance

ACM Reference Format:

Song Liao, Long Cheng, Xiapu Luo, Zheng Song, Haipeng Cai, Danfeng
(Daphne) Yao, and Hongxin Hu. 2024. A First Look at Security and Privacy
Risks in the RapidAPI Ecosystem. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS °24), October
14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3690294

1 Introduction

With the rise of web and mobile applications, open APIs (applica-
tion programming interface) that are published on the Internet and
are free to access by developers are becoming popular [14]. Differ-
ent from private APIs that are only accessible to an organization,
open APIs are publicly available for all developers to access. This
paradigm greatly benefits developers and accelerates the software
development process, as evidenced by the increasing number of
developers using open APIs. To meet the demands for rapid de-
velopment, different open API ecosystems, such as RapidAPI [17],
ProgrammableWeb [16], and OpenAPIHub [15] have been surged
in recent years.

The RapidAPI platform is the largest and dominant open API
platform and it provides over 40,000 APIs for more than 4 million
developers [17]. There are over 1 trillion API calls per month on
the RapidAPI platform. Such a large number of APIs benefit from
the openness of the platform. Developers can not only use existing
APIs on the platform but also develop and publish their APIs on
the platform, enriching the platform for the entire developer com-
munity. However, the openness of the platform introduces security
and privacy challenges when meeting numerous inexperienced
developers. Similar issues also exist in other popular open plat-
forms that allow third-party developers to publish different types
of apps, e.g., Apple App Store [27], Google Play [47], Chrome Ex-
tensions [19], and Amazon Alexa [24]. To prevent potential issues

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690294
https://doi.org/10.1145/3658644.3690294
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690294&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

and ensure the safety of third-party applications, these platforms
have defined a list of policy requirements to be adhered to by ap-
plications [1, 5, 9, 12]. After an application is submitted to the app
store, it needs to pass a certification review process that validates
if any policy violations exist. Even so, problematic apps are still
found on these platforms [23, 25, 32]. This motivates us to explore
the potential security and privacy risks existing in the emerging
open API ecosystem.

On the RapidAPI platform, developers need to provide their Rap-
idAPI keys in API requests for authorization. However, developers
may inadvertently disclose such keys in their public code, such as
the code on the GitHub platform or Android apps, leading to po-
tential security risks. Since the RapidAPI platform doesn’t provide
a strict certification system to validate API quality, it may lead to
API metadata abuse and problematic APIs being published to the
platform. In addition, APIs may collect user data for different func-
tionalities, such as using user location to find nearby restaurants.
Developers should provide a privacy policy to notify users about the
data collection behaviors. However, the RapidAPI platform doesn’t
define any requirements to restrict such data collection behaviors,
leading to serious privacy non-compliance risks.

In this work, we aim to answer the following research questions:
RQ1: How predominant is the RapidAPI key leak in the wild, and
what attack can the adversary perform using leaked keys? RQ2:
How can API metadata be abused and what are the consequences?
RQ3: Do APIs on the RapidAPI platform and downstream appli-
cations, such as Android apps, have privacy issues regarding data
collection? To answer the above questions, we perform a systematic
security and privacy risk analysis of the RapidAPI ecosystem. In
summary, we make the following contributions:

o To the best of our knowledge, this work is the first large-scale
analysis of the security and privacy risks associated with
open APIs ! hosted on the RapidAPI platform. We conduct
our analysis on a dataset with 32,089 APIs. In addition, we
analyze the other two open API platforms and check if they
have similar issues. We share our dataset, analysis tools and
results with the research community for future research 2,

e We find that 3,533 keys used for API request authorization
have been leaked by developers in GitHub or Android code
and 98% of the leaked keys are still usable. We demonstrate
that adversaries can utilize the leaked keys to launch different
attacks, e.g., Resource Exhaustion Running attack, Theft of
Service attack, Data Manipulation attack, and User Data
Breach attack.

e We investigate the risks of API metadata abuse. Due to the
poor certification process in the RapidAPI platform, adver-
saries can publish any APIs on the platform, such as ty-
posquatting APIs to attack other APIs or spamming APIs
for product promotion. Malicious developers can also imper-
sonate well-known companies to mislead developers into
calling their APIs.

'For simplicity, we refer to the APIs published on the RapidAPI platform as "APIs" in
our work.

“The materials of this work are available at https://github.com/CUSecLab/2024-CCS-
RapidAPI-analysis.

1627

Song Liao et al.

e We analyze the privacy compliance of APIs on the RapidAPI
platform and Android apps that call these APIs. We find
1,709 APIs that collect sensitive data and 94% of them don’t
provide a complete privacy policy. Such privacy compliance
issues in APIs could propagate to downstream applications,
leading to 50% of Android apps that call data collection APIs
not providing a complete privacy policy.

2 Background
2.1 RESTful API

REST (Representational State Transfer) is a software architectural
style for building web services that allow communication between
applications over the Internet [28]. Web service API conforming to
the REST architectural style is called RESTful APIL Due to the rise of
web and mobile applications that need to communicate with each
other, the use of RESTful APIs has become increasingly popular.

The RapidAPI platform uses the RESTful API for developers to
access API functions and get responses easily. Developers only need
to send requests using standard HTTP. Then, the server will receive
the request and respond with a standard format. This makes it easy
for developers using different program languages to communicate
with each other. Another advantage of the Rapid API platform is that
for each AP, it provides code snippets in 20 different programming
languages, e.g., C, C#, GO, HTTP, Java, JavaScript, Node.js, PHP,
Python, R, and Ruby, or Shell. Developers can easily choose the
appropriate language and directly use the code for their applications.
An API on the RapidAPI platform contains multiple endpoints, each
of which corresponds to a function. To invoke an API, developers
only need to call an endpoint, which is the digital location where
an API receives requests about a specific function. APIs on the
RapidAPI platform can also provide access and operations to create,
read, update, and delete (CRUD) the data stored by developers
within the APL

2.2 Stakeholders of Open APIs

Three stakeholders are involved when an API is called and used:
API provider, API consumer, and end user. In particular, developers
may take two roles on the RapidAPI platform: the API provider
or the API consumer, using the same account. Figure 1 shows the
relationship between them during the API lifecycle.

APl Consumer API Provider
oy 2
Develop Select Develop
&) Test [ETL I Publish
. and Use Hub

End User Programs

Figure 1: Different stakeholders of APIs on the RapidAPI
platform.

https://github.com/CUSecLab/2024-CCS-RapidAPI-analysis
https://github.com/CUSecLab/2024-CCS-RapidAPI-analysis

A First Look at Security and Privacy Risks in the RapidAPI Ecosystem

API Provider: Developers can serve as the API providers if they
develop APIs and publish them to the RapidAPI platform. After
registering an account on the RapidAPI platform, API providers
can create an API by setting up API metadata and defining API
functions. In addition, API providers can add access control, such
as authorization, to protect API security. API providers can also
add pricing plans within an API to generate income. At last, API
providers publish APIs to the RapidAPI platform so that other
developers can access these APIs.

API Consumer: Developers can also serve as the API consumers
who develop software applications that use APIs from the Rapi-
dAPI platform. API consumers can search for an API or browse
APIs in different categories on the RapidAPI platform. When API
consumers find their desired APIs, they can subscribe to the APIs
for testing. After choosing the appropriate programming language,
API consumers can integrate the code snippets provided by the Rap-
idAPI platform into their applications. In addition, the RapidAPI
platform allows each developer to follow other developers or APIs,
forming a developer following network

End User: End users use the applications that call APIs in the back-
ground. Although end users don’t interact with APIs directly, the
APIs may have an impact on the application functionalities and
user experience. For example, if an API service is unavailable, the
application can’t work, and end users will be negatively influenced.
Also, applications may collect user data to perform certain func-
tionalities in APIs. In such cases, the application needs to provide
a privacy policy to notify users of such data collection and data
usage. For simplicity, we refer to the end users as users in our work.

2.3 Threat Model

Our study focuses on understanding the security and privacy risks
in the RapidAPI platform, including key leaks, API metadata abuse
risks and privacy issues. In Section 4, we found key leaks in GitHub
and Android code. Once an adversary obtains an API consumer’s
key and knows the APIs that the API consumer has subscribed
to, the adversary can perform different attacks on the leaked keys
and subscribed APIs. We assume the owner of the keys doesn’t
monitor the key usage data so that the adversary can call an API
using the leaked key. In Section 5, we explore the risks of API
metadata abuse. We assume the platform and developers’ accounts
are not compromised and adversaries can’t hack other developers’
accounts. However, adversaries can register their own accounts on
the RapidAPI platform and publish their APIs on the platform.

2.4 Ethical Consideration

During our experiments, we employed the following strategies to

minimize any risk to APIs or developers.

e Data Collection. In Section 3, we collected an API dataset for
our analysis. During our data collection, we added a time interval
between each visit and ensured we did not influence the platform
services or other developers.

o Leaked Keys from Developers. In Section 4, we searched for
the leaked keys in the GitHub and Android code. We developed a
codebook to store developers’ data and extract the corresponding
APIs that each key subscribes to. Then, we analyzed these APIs to
exploit different attacks. We only used 100 keys to validate their

1628

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

usability in an ethical way and ensured that our action didn’t
have any impact on these keys.

Experiments on Attacks Using Our Keys. In Section 4, to
validate the feasibility of proposed attacks, we conducted ex-
periments on the APIs that we developed. We ensured that we
conducted all attacks using our own accounts. We used our pri-
vate APIs for testing and didn’t publish them to the platform. We
didn’t launch attacks against any public API on the platform.
Responsible Disclosure. We have reported our findings, includ-
ing mitigation strategies, to the RapidAPI platform. We found
that the RapidAPI platform has removed almost all spamming
APIs, possibly due to our reporting. We look forward to collabo-
rating with them to fix the vulnerabilities and notify developers
about the consequences of key leaks.

3 Rapid API Data Collection

3.1 Crawling API Listing Page

RapidAPI platform provides a listing page for each public API to
present API information, as shown in Figure 2. We crawl all the
content within the API listing page in our data collection. There
are two main portions on the API listing page. The top portion of
the webpage presents the basic API information, e.g., API name,
developer, updated time, and category. Below that, developers can
navigate to different sections about the API, including "Endpoints”,
"About", "Tutorials", "Discussions", and "Pricing". The "Endpoints”
tab displays the API description and the API client to test the API
(lower portion of the listing page). The "About" tab shows the API
documentation, API product website, and a way to contact the API
provider. The "Tutorials" tab displays the tutorials created by the
API provider and the "Discussions” tab presents the discussions
posted by API consumers. At last, the "Pricing" tab lists all the
pricing plans of an API that API consumers can subscribe to.

The lower half of the listing page shows the details of API end-
points to access different functions within an APIL The left portion
shows the selected API version and all endpoints in the APL After
clicking an endpoint name, the middle portion will present end-
point details, e.g., the HTTP method, the endpoint description, and
the parameters in this endpoint. In particular, the parameters "X-
RapidAPI-Key" (API key) and "X-RapidAPI-Host" (API host) are
used for authorization and mandatory for each API request. The
right portion provides a code snippet after developers select the
preferred programming languages from a list of options, e.g., C,
Java, or Python. The headers and parameters for requests in code
snippets are from the developer’s input in the middle portion so
that developers can easily integrate the API code snippets into their
application code. The example responses and results are provided
after developers execute a request test on the API listing page.

3.2 Collecting API Data

To help developers discover their desired APIs, the RapidAPI plat-
form provides 49 categories, e.g., Sports, Finance, and Data, with
different functionalities of APIs. The RapidAPI platform also pro-
vides APIs in "Collections", which contains a list of APIs with a
common characteristic, e.g., "Popular APIs" or "Recommended APIs".
In addition, developers can directly search with keywords, such as
"ChatGPT", in the search bar and the platform would return the

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Q Rapidari

Song Liao et al.

API Hub

OPEN Al [G=mm

By PR Labs | Updated 13 days ago | Artificial Intelligence/Machine Learning

®

API Information

Product Website o about] Tutorials Discussions Pricing Plans

v Service Level

100%

© Latency

6,425ms

2 Popularity

9.9/10 API Metrics

generation

API Description

Qur Other API

Harness the potential of ChatGPT (with internet access) , LLAMA 2 , MPT 30b (Open source LLMs , Large Language Models) . Falcon 40b, Al coder , Al Ghat bot APIs Text to
Image (DALL-E) , Text to Speech (TTS) . Also get question answer , sentiment analysis, spam detection, summarization, text to headline (title), Paraphrasing, Embedding, NER (
named entity recognition) and message completions (text completion, Text prediction) . Empower your applications with intelligent conversations and visually stunning content

Contact us - api.prlabs@gmail.com (For custom plan, support, query, feature request and complains)

| C API Version I

Q POST Text To Image (stable...

Header Parameters

Al Chat Bot

Image Processing

ENUM REQUIRED

rpost Text To Image (stable diffusion)

STRING

REQUIRED
Text To Speech (TTS) @

Summarization

Request Body

Question - Answer adog

REQUIRED

API Key

API Host

XRapidAP)-Host open-ai21.p.rapidapi.com

Code Snippets

. — Programming Language

(Node js) Axios| v (I Co

const axios = require('axios

const encodedParams = new URLSearchParams
encodedParams.set('text’, 'a dog
const options =

method: 'POST'
https:/

url open-ai2l.p. rapidapi. con/texttoimage2’

headers

Endpoints

Endpoint Details and Parameters

Code Snippets, Example Responses and Results

Figure 2: Listing page of the "OPEN AI" API published on the RapidAPI platform.

top-ranked APIs based on the API name and API description. After
clicking a category/collection or searching for a keyword, a list
of APIs will be displayed. Developers can select the API based on
the API name, brief description, and three API metrics: popularity,
latency, and service level (percentage of successful calls of the API
in the last 30 days). Upon selecting an API from the search results,
the API listing page will be displayed.

After collecting APIs from all 49 categories and 527 collections,
we only obtained 16K unique APIs, which is less than the 40K APIs
that the platform claims. This is because the RapidAPI platform
only presents the first 1,000 APIs in each search result. Considering
that API providers may use similar words to describe APIs with
similar functionalities, we first downloaded the 16K APIs and built
up a keyword list based on the words in their descriptions. Then, we
used these keywords to search for more APIs. As a result, we used
16,904 words for API searching and obtained 32,089 APIs, which
covers most of the APIs as the platform claimed.

We developed a web crawler that automatically visited each
category or collection and searched for keywords. Then, we saved
all the API links in the results. After that, the web crawler browsed
each API listing page and obtained API details. We collected all the
available API information discussed in Section 3.1, e.g., API name,
developer, update time, category, and endpoints. For each endpoint,
we obtained its name, HTTP method, description, parameter, and
the endpoint URL. For each parameter, we stored the parameter
name, type, provided example, and description.

We successfully downloaded the 32,089 APIs from the RapidAPI
platform. We removed 12,452 spamming APIs from our dataset
(more details in Section 5.2.2) and did not use them in our analysis.
On average, each API provider developed 1.5 APIs and each API

1629

provides 3.7 endpoints. In 49 categories, the "Data" and "Tool" cat-
egories contain the highest number of APIs, comprising 13% and
11% of the total number of APIs, respectively. 60% of APIs come
with the performance statistics for popularity, latency and service
level, which means API consumers have called them recently. The
average latency is 6,313 ms for all APIs, and the largest latency
is 1,016,856 ms (17 minutes) from an unpopular API. The average
service level (successful call rate) is 74.5% for all APIs and calls to
2,581 APIs (13%) never succeeded in the last 30 days. 43% of APIs
are Free APIs, 52% are Freemium APIs (APIs with a limited free
tier), and 5% are Paid APIs. Interestingly, for the popularity, latency
and service level, the Paid APIs perform worse on average than
Freemium APIs.

4 Attacks with Leaked Keys

4.1 Keys in RapidAPI Authorization

To improve security during API invocations, the RapidAPI platform
provides several authorization methods. By default, RapidAPI pro-
vides a basic authorization named "RapidAPI Auth", which is the
simplest form of authorization for API consumers. In addition, Rap-
idAPI provides other types of authorization that can be optionally
added, such as authorization with API consumer’s ID and password
in header parameters, as shown in Figure 3, and authorization that
requires API consumers to add query string parameters to API re-
quests. Such additional authorizations ask for more data besides the
API consumers’ keys and can protect APIs from potential attacks
with leaked keys.

In our dataset, we observed that most APIs only use the default
authorization. i.e., "RapidAPI Auth", provided by the platform. In
"RapidAPI Auth", the headers named "X-RapidAPI-Host" and "X-
RapidAPI-Key" must be sent along with each request when calling

A First Look at Security and Privacy Risks in the RapidAPI Ecosystem

W

Authorization X

Header Parameters

Authorization

BASIC REQUIRED

XORapidAPI-Key
ENUM

* UserName:
X-RapidAPI-Host

* Passsword

STRING

Basic Authorization Authorization with username and password

Figure 3: Different authorization methods provided by the
RapidAPI platform.

an API, as shown in Figure 3. The value of the "X-RapidAPI-Host"
(APT host) is unique to each API and it is automatically generated by
the RapidAPI platform when an API is created. Usually, it combines
the API name, an index number to differentiate APIs if any other
API with the same name, and the domain "p.rapidapi.com", such as
"open-ai2l.p.rapidapi.com”, where "open-ai" is the API name with
the index number "21". The value of the "X-RapidAPI-Key" is a
key from API consumers’ accounts on the RapidAPI platform to
authorize the source of API requests. After providing the necessary
"X-RapidAPI-Host" and "X-RapidAPI-Key" values, API consumers
can integrate the APIs into their applications and track the key
usage in API calls. Since the app key belongs to developers and
it is the only certification from developers when calling an API
with the basic authorization, leaking such keys could be dangerous.
However, we found many developers leak their keys in their code.
The threat model of key leaks is discussed in Section 2.3.

4.2 Key Leaks in the Wild

While the key leak is a common issue across various platforms, our
work focuses on the RapidAPI platform’s key leak problem because
of its importance in the RapidAPI platform and the potential seri-
ous consequences that arise from such leaks. More details about
potential attacks based on leaked keys will be discussed in the fol-
lowing sections. To find the RapidAPI key leaks in the wild, we first
searched for keys in code from the GitHub platform, which is one
of the world’s largest code-sharing platforms. As we mentioned in
Section 4.1, when API consumers call the APIs on the RapidAPI
platform, the "X-RapidAPI-Key" value and "X-RapidAPI-Host" must
be provided in the request headers. Since the "X-RapidAPI-Host"
always ends with "p.rapidapi.com", we first searched for the string
"p.rapidapi.com" in all GitHub code and downloaded the reposi-
tories with such a string. Then, we looked for the corresponding
key values in these files. If API consumers copy the code snip-
pets from the RapidAPI platform, the parameter values usually
follow the parameter names, such as the API host string "chat-
gpt52.p.rapidapi.com” follows the "X-RapidAPI-Host" and the key
string follows the "X-RapidAPI-Key". This helps us quickly locate
the API host and the key that calls the APL. After collecting pre-
liminary results and observing the obtained keys, we found that
the RapidAPI keys are 50 bits and certain bits are always identical,
e.g., the 10th to 13th values are always "msh" and the 36th to 38th

1630

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

values are "jsn". This helps us accordingly identify the keys that do
not strictly follow the "X-RapidAPI-Key" string. After considering
both the key value length and attributes of keys, all the extracted
keys from the code on GitHub are real RapidAPI keys. Compared
to previous works that detected various key leaks on the GitHub
platform [41, 48], our key identification method achieves a higher
accuracy because of the obvious and unique pattern of RapidAPI
keys. For each code file, we also obtained the API it calls and its
key value.

Surprisingly, we found 3,533 leaked keys from 6,495 GitHub
repositories that call Rapid APIs. It is possible that some of these
leaked keys are used only for debugging and are left in the code.
However, we couldn’t directly test the leaked keys in adversarial
scenarios due to ethical reasons. Fortunately, we could design a way
to assess whether a key is still valid without actually exercising
the key. We used leaked keys to visit a non-existing endpoint in
a free API that we developed. If a key is still valid, it will pass the
key validation process and respond "endpoint does not exist". Since
free APIs can be called using any valid keys, if it responds "You are
not subscribed to this API", the key is no longer valid. Meanwhile,
calling such a non-existing endpoint will not succeed, so the API
call will not be counted, and the leaked key is not actually used. To
avoid any potential impact on the leaked keys, we only used 100
keys for the testing. As a result, we found that 98% of keys are still
usable. This indicates that developers who leak their keys usually
do not delete their keys from the RapidAPI platform, and these
leaked keys can be potentially abused by adversaries for attacks.

of Leaked Keys
Type of APIs Type of Attack GitHub Android
Repos Apps
(A1) Resource Exhaustion
Free API Running Attack 1,055 73
Freemium (A1) Resource Exhaustion
API Running Attack 2,576 133
(A2) Theft of Service Attack
Paid API (A2) Theft of Service Attack 196 23
APIs with (A3) Data Manipulation Attack 169 .
Data storage (A4) User Data Breach Attack
Total 3,533 177

Table 1: Summary of key leaks in the wild.

Among the 3,533 leaked keys, they are used to call 899 different
APIs, including 240 Free APIs, 638 Freemium APIs, and 21 Paid APIs.
For different price plans in APIs (Free plan or Paid plan), adversaries
can perform different attacks toward these plans using these leaked
keys, i.e., (A1) Resource Exhaustion Running Attack (§ 4.3), (A2)
Theft of Service Attack (§ 4.4), (A3) Data Manipulation Attack and
(A4) User Data Breach Attack (§ 4.5), as shown in Figure 4. The
number of leaked keys and the consequent attacks are shown in
Table 1. Note that one key can be used to subscribe to and call
different APIs. Moreover, we found that there are 151 keys, where
each of these keys has been used in several GitHub repositories.
There even exists one key being used by 30 repositories owned by
different developers. This is possible due to the code copy&paste and
the developer’s key being copied and used by others inadvertently,
potentially resulting in unexpected attacks and financial losses to
developers. "Bing News Search" API is the most commonly called

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

API and has been called by 110 applications using different keys.
As a free API, adversaries can use different leaked keys to perform
the Denial of Service Attack on this APIL. For APIs that can be
potentially attacked using leaked keys, 54% of them have a 9.5
or higher popularity score, showing that they are very popular
and many developers will be impacted if these APIs are attacked.
93% of them have been called in the last 30 days, 30% of them
have subscribers, and their average API call success rate is 88%,
indicating that they are not abandoned projects. 12% of them are in
the Data category, and 7% are from the Entertainment category.
In addition, we discovered key leaks in many Android apps. More
details about Android apps downloading and processing will be
introduced in Section 6.3. We found 526 Android apps that call APIs
from the RapidAPI platform but leak their keys. Among them, 177
keys are leaked in source code and they are used to invoke 134 APIs,

as shown in Table 1.

APl Consumer

e

9
I (A2) Attack
u * Free API Plan g
DoS Attack (A1) Attack
End User Applications Adversary
(A3) Attack
% !

Data Storing
API (A4) Attack

Figure 4: Attacks caused by leaked keys toward different
types of APIs.

4.3 Attacks against Free Plan

For Free APIs, the keys from API consumers are limited to 1,000
requests per hour and 500K requests per month. Freemium APIs
also have a limited free quota, although API consumers need to bind
the credit card information in their accounts before testing. The
adversary can first perform (A1) Resource Exhaustion Running
Attack, which aims to run out of the free quota of the API con-
sumer’s key to an API, by sending a substantial number of requests
to the API using the leaked key. After triggering the threshold from
the platform, the leaked key will be limited and API consumers
can’t get effective responses from the API. This would subsequently
lead to a Denial of Service Attack toward other RapidAPI stake-
holders. For example, the API consumer’s application may use the
key to call the API and provide relevant services. Since the key is
restricted to call the API, the application fails to provide expected
functionalities, leading to more end users being impacted.

To verify whether the (A1) Resource Exhaustion Running Attack
is a realistic threat, we conducted an experiment on a Free API
that we developed (we discussed the ethical considerations in Sec-
tion 2.4). During the testing, we first developed a Free API Then,
one researcher was assumed to be an API consumer and leaked
his/her key. Another researcher obtained the leaked key and used
the key to send requests to the Free API to launch the attack. After
sending 1K requests, new requests using the same key couldn’t get

1631

Song Liao et al.

useful responses, so the (A1) Resource Exhaustion Running Attack
was successful and led to a DoS attack.

In the GitHub code, we found 1,055 leaked keys were used to call
Free APIs, which can be used to launch (A1) attack by adversaries.
For the other 2,576 leaked keys used to invoke Freemium APIs, if
API consumers only subscribe to the basic free plan, the (A1) attack
also works. In the Android app code, 73 leaked keys were used
to call Free APIs. We found an app named "App Hunt - Explore
Apps Store" and it has been downloaded over 1M times. However,
it called a free API and leaked its key. If an adversary performs the
(A1) attack and DoS attack on the leaked key, the app’s functionality
could be compromised, affecting all its end users.

4.4 Attacks against Paid Plan

For Freemium and Paid APIs, API consumers can use their keys
to subscribe to a paid plan. Table 2 shows the price plan from a
Freemium API, which provides three paid plans: Pro, Ultra, and
Mega, and each plan has different prices and limits. For APIs with
paid plans and limitations, we found the leaked key would lead to
different attacks.

Plan Price Request Limit Attacks
Basic $0.00 50 Hard Limit Al
Pro $3.00 12K Hard Limit Al, A2
Ultra $15.00 200K +$0.0003 each other A2
Mega $30.00 600K + $0.00003 each other

Table 2: Price plan of a Freemium API (monthly).

If API consumers use a key to subscribe to a paid plan, the adver-
sary can use the key to launch the (A2) Theft of Service Attack,
which means they use the paid service for free. For example, as
shown in Table 2, API consumers can subscribe to up to 600K re-
quests per month. If their keys are leaked, the adversary can send
600K requests to the API freely instead of only 50 basic quotas
per month using the Basic plan. What’s more, for paid plans, API
providers can set a hard limit (Pro Plan) or charge additional fees
for each request (Ultra/Mega Plan), as shown in Table 2. In the
first case, the adversary can still perform the (A1) Resource Ex-
haustion Running Attack and DoS Attack. In the latter case, after
running out the free quotas, additional charges will accrue on the
API consumers’ accounts, resulting in monetary losses for them.

We discovered that 196 leaked keys in GitHub code and 23 leaked
keys in Android apps were used to access Paid APIs. Adversaries can
use the keys to launch the (A2) attack. In addition, the other 2,576
keys in GitHub and 133 in Android apps used to invoke Freemium
APIs can potentially be exploited to launch the (A2) attack.

4.5 Attacks against API Data

In addition to the attacks toward different price plans, an adversary
can use the leaked key to call API endpoints to manipulate the
data within an API. We first present the (A3) Data Manipulation
Attack, which edits API consumers’ data, such as removing their
data or providing misleading data to cause application crashes or
malfunctions. Then we discuss the (A4) User Data Breach Attack
targeting end users and an adversary can steal user data from APIs.

(A3) Data Manipulation Attack. While lots of APIs are pro-
viding different services to API consumers, e.g., providing weather

A First Look at Security and Privacy Risks in the RapidAPI Ecosystem

data or news, there are many APIs designed for data handling and
processing. Some APIs provide endpoints for API consumers to
store and edit data from API consumers or users. For example, we
found one API that provides several endpoints for product infor-
mation storage, e.g., "Get Products", "Create Product”, and "Delete
Product" endpoints. API consumers can first store products in the
API and then call different endpoints to get or edit product informa-
tion. Similar to a database, such APIs provide the CRUD functions
(create, read, update, delete) for API consumers to store or edit data
in the APL An adversary can use the leaked keys to call endpoints
of the API and edit the API consumer’s data, i.e., deleting all the
data in an APIL As a result, the API consumer’s applications cannot
get the necessary data, causing potential functional errors.

HTTP Method Endpoint Name
PATCH Update A Specified User’s Information
DELETE Delete the Specified User from the Database
POST Store A User to the Database
GET Get Specific User
GET Get All Users

Table 3: Endpoints of an API that can store and edit user data.

(A4) User Data Breach Attack. User profile data can also be
stored within an API database. In such cases, a user’s personal
data can be leaked, edited, or even deleted after the key is leaked.
Table 3 shows the endpoints of a real-world API that can store and
edit user data. Surprisingly, it provides an endpoint named "Get
All Users", which can be used by adversaries to obtain user data
easily. After getting the index to all users, adversaries can use the
"Get Specific User" endpoint to get a user’s detailed information or
delete a specific user using the "Delete the Specified User from the
Database" endpoint. For other APIs that don’t provide full access
to all user data, the adversary can also use certain endpoints (such
as "GetUserByName") to infer the user name or register a new user
account to infer the user index (e.g., user ID) and get access to user
data. In addition to the user’s profile, other types of user-sensitive
data, such as users’ previous orders or activities, might also be
stolen by the adversary.

We experimented to validate whether (A3) Data Manipulation
Attack and (A4) User Data Breach Attack are realistic threats on
the RapidAPI platform. We implemented the attack on our own
accounts to avoid potential ethical risks to other APIs or users.
Our assumption is that if we could use our key to edit the data
of an API, the adversary can also use the leaked key to edit our
data. First, one researcher used our key to visit the two APIs we
mentioned above and created new data, simulating the behaviors of
victims. Then, another researcher used the same key (leaked key)
and corresponding endpoints to get, update, and delete user data
using the same key as the adversaries. We used the endpoints "Get
All Users" and "Get Specific User" to get user data details. Then we
edited and updated the user data using other endpoints. As a result,
we successfully obtained and edited the user data. Our experiments
demonstrated that the (A3) Data Manipulation Attack and (A4) User
Data Breach Attack are realistic threats using the leaked keys.

To find APIs that store data and provide endpoints for data up-
dates, we check the corresponding HTTP methods of each endpoint

1632

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

of an AP, e.g., "POST", "GET" and "DELETE". Normally, APIs pro-
vide the "GET" method for API consumers to request and obtain
data from an APL If an API has endpoints with "POST" methods,
API consumers can submit data to the API server for processing,
and thus we consider it an API that can store or edit data. For ex-
ample, in Table 3, the API has an endpoint named "Store A User
to the Database" with the POST method. We found that 846 APIs
(4.3% out of the total APIs in our dataset) have endpoints with the
"POST" method, in which 223 APIs use additional authorization to
protect data better besides the key, as we discussed in Section 4.1.
For the rest 623 APIs, we checked whether they are called in GitHub
or Android code. Finally, we found 169 leaked keys in the GitHub
code and 7 in the Android app that were used to call these vulnera-
ble APIs. Adversaries can use these keys to launch the (A3) Data
Manipulation Attack and (A4) User Data Breach Attack.

5 Risks of API Metadata Abuse

5.1 Typosquatting on Endpoints URLs

As discussed in Section 4.1, the RapidAPI platform assigns a unique
host named "X-RapidAPI-Host" to each API. When an APl is cre-
ated, if its name doesn’t exist on the RapidAPI platform, the as-
signed host is the API name. While the RapidAPI platform al-
lows multiple APIs to have the same name, if the API name is
already registered on the platform, the platform appends an in-
crementing index number to the API name within the host to dis-
tinguish them. For example, the first "ChatGPT" API will use the
host "chatgpt.p.rapidapi.com" and the second "ChatGPT" API will
use "chatgpt2.p.rapidapi.com". Each endpoint in an API has a URL
defined by API providers and URLs are typically composed of the
APT host combined with endpoint names or parameters, such as
"https://chatgpt.p.rapidapi.com/chat/completions". API consumers
call the endpoint URLs to access API functions.

We discovered two weaknesses in the API name and API index
number that can be abused and exploited by adversaries to perform
the typosquatting attack on the endpoint URLs. The typosquatting
attack is also known as URL hijacking and targets innocent users
who incorrectly type a website address. When calling an API end-
point URL, API consumers may misspell some characters without
noticing them. Since the endpoint URL consists of the API host
and endpoint name/parameter, if the misspelled character is in the
endpoint name or parameter, the request will be sent to the same
API but a different endpoint or fail to find the endpoint. However,
if the misspelled character is in the API host, the request will be
sent to another API instead of the one that API consumers want.
The vulnerabilities appear when two APIs have the same endpoints.
In such cases, the only difference between the two endpoint URLs
is the API host, which consists of the API name and index num-
ber for differentiation. For example, the request to endpoint URL
"chatgpt.p.rapidapi.com/{endpoint}" will be sent to "ChatGPT" API
while the request to "chatopt.p.rapidapi.com/{endpoint}" goes to
"ChatOPT" APL

An adversary can first utilize the weakness in the API name
by designing a new API that mimics another API through a slight
misspelling in the API name and retains the same endpoint name.
For example, the adversary can develop an API named "ChatOPT"
with the host "chatopt.p.rapidapi.com" to attack the API "ChatGPT".

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

ChatGPT | e ChatOPT53 I @@
By Glavier | Updated 21 days ago | Artificial Intelligence| Ey\ Updated a few seconds ago \\ Artificial In
Endpoints About Tutorials Discussions ~Pricing Endpoints About Tutorials Discussions Pricing
ChatGPT is an artificial intelligence chatbot developed by OpenAl. G| test
POST Chat POST Chat
(Node.js) Axios v (]l Copy Code (Node.js) Axios v] Copy Code

const axios = require('axios’ const axios = require('axios'
const options =
method: 'POST'

url: 'https:/{chatgpt53}p.rapidapi.com/’

const options =
method: 'POST'

url: 'https:/[{chatopt53}p.rapidapi.com/"

Figure 5: A potential typosquatting attack on a popular Chat-
GPT APL The "ChatOPT53" API is designed for our testing
only and the lock means it is not published.

Second, we found that the index number generated by the Rapi-
dAPI platform to differentiate APIs has a weakness since the number
is not assigned for all APIs. Through our extensive testing within
our accounts, we found that adversaries cannot control the index
number since it is incremental for all APIs, including newly created
APIs that are not public on the platform. However, an adversary can
utilize the weakness in index number and directly append a number
at the end of the malicious API name, i.e., "misspelled API name
+ index number of another API", such as "ChatOPT53", as shown
in Figure 5. Since there doesn’t exist any API with the same name,
the RapidAPI platform won’t add an index number to the API host
("chatopt53.p.rapidapi.com"). This makes the typosquatting attack
much easier since the attack can be launched toward a specific
targeted APIL Note that the malicious API name doesn’t influence
the attack since the typosquatting attack happens when API con-
sumers unknowingly call the endpoint URL, remaining unaware of
the malicious APT’s existence.

To find potential typosquatting APIs on the current RapidAPI
platform, we first scanned and extracted all the APT hosts. We used
the tool URLCrazy [18], which was designed to generate domain
name typos and covers 15 generation modes, e.g., character in-
sertion, deletion, and substitution, to generate different possible
typosquatting hosts for each API host. In our testing, we mainly
tested single-character differences and the changed character is in
the API name instead of the number in the host. Then, we checked
whether the generated typosquatting host is used by other APIs. If
so, we considered the two hosts as a pair and they can squat each
other. We put host pairs together and grouped them based on their
similarity. For each group, we identified the host that is used the
least as the potential typosquatting attack host. For example, there
exist several "ChatGPT" APIs while only one "ChatOPT" API exists,
so the API name "ChatOPT" is possibly a typosquatting attack for
other APIs. At last, we compared whether these APIs’ endpoints
are the same.

As a result, we found 43 APIs that possibly use typosquatting to
attack other APIs. 204 APIs use the name "Climate Change Live"
and their hosts are "climate-change-live + {number}.p.rapid.com".
We found other typosquatting APIs use hosts "climate-chamge-
live", "clomate-change-live", or "climate-chane-live". The "Amazon
Data Scraper” is used by 62 APIs, and other APIs use "Scrapper”
or "Scaper” in their API names. Figure 9 in Appendix A shows a

1633

Song Liao et al.

possible typosquatting API named "Amazon Data Scapper” on the
RapidAPI platform. We also found 4 APIs that add numbers at the
end of API names, which possibly exploited the weakness in the API
index number we discovered. For example, the API named "Transla-
tor 7" has the host "translator-7.p.rapidapi.com" that can attack an
API "Translator" with the host "translator7.p.rapidapi.com”. For the
APIs with misspelled names, it is possible that API providers made
mistakes inadvertently when setting the name for an API since we
even found API providers named APIs with a single number ("1")
or a RapidAPI key. However, for the weakness in the API index
number, since the API name is carefully designed and the number
is added intentionally, it is possible that the API is purposely used
for typosquatting attacks to increase the chance of being invoked.

5.2 Issues Caused by Poor Certification

When API providers create an API on the RapidAPI platform, the
API is private by default and can’t be found by API consumers.
This is useful for individuals or teams whose API is still under
development or the API is not suitable for a wider audience. After
creation, API providers can change the API visibility to the public
and allow others to visit the APIL Surprisingly, we found the poor
certification vulnerability exists and the RapidAPI platform doesn’t
have a strict certification process on the API providers or their
published APIs. API providers’ information is not validated and they
can casually change their names to impersonate other developers or
famous companies. API providers can also exploit the vulnerability
and arbitrarily publish any APIs on the platform.

5.2.1 Developers Impersonation. The RapidAPI platform allows
any developer to register accounts and publish APIs on the plat-
form. On the API listing page, the API provider’s name is presented
following the API name. API consumers can click to view the API
provider’s information, e.g., his/her published APIs and following
APIs. However, the platform has limited restrictions on the API
providers, such as no rigorous validation of their information or
their APIs. This allows adversaries to impersonate famous compa-
nies or service providers easily, leading to possible phishing attacks
on users.

Although the RapidAPI platform provides an attribute named
"tag" for all APIs, such as "Official” and "Verified", few APIs have
such tags. There are only 221 APIs with the "Official" tag and 219
with the "verified" tag, which is negligible compared to the large
number of APIs (40K) on the platform. Developers may not notice
the "Official" tag but consider the APIs using known company
names and icons as the official APIs. For example, while there are
six APIs named "ChatGPT" that provide services about ChatGPT,
none of them are official APIs published by the Open Al company.
Instead, they are published by various individual developers.

We found two weaknesses of developer settings that adversaries
can exploit to impersonate other developers. First, API providers
can arbitrarily change their names and icons without triggering
any validation so that adversaries can change their account name
to a company name. For example, as shown in Figure 5, we can
change our developer name to "Open AI" and publish APIs without
triggering any trademark infringements from the platform. Then,
users almost can’t find such fraud (note that our API was created for
testing and not published on the platform). It becomes more serious

A First Look at Security and Privacy Risks in the RapidAPI Ecosystem

F- *= 10 soccer betting tips to SURELY WIN at fi88
APy
* By fi88dangky | Updated 6 hours ago | Advertising

E=)

Endpoints About Tutorials Discussions Pricing

One of the successful soccer betting strategies that many players regularly use is this strategy.

Read #10SURE WINNING Soccer Betting Tips at Fi88 to improve your betting skills and achieve success!
For more information, visit our web article here: [article link] - https:/fi88-dangky.com/meo-ca
cuoc-bong-da-hay- tai-fi88,

Figure 6: A spamming API on the RapidAPI platform.

when such an API asks for user-sensitive data, such as asking for a
user’s account in the "ChatGPT" APIL Once users consider an API
as an official API, they may tend to provide their sensitive data,
leading to consequent losses to users [45]. Second, the RapidAPI
allows duplicate developer names so that several developers can use
the same name. Such a setting can mislead users and users might
think several APIs are developed by the same developer unless users
check each developer’s detailed webpage separately. We found that
81 names are shared by 175 accounts. For example, the name "Alex"
is used by 6 developers and they developed 9 different APIs.

5.2.2 Spamming APIls. During our data collection, we found that
the poor certification vulnerability has been explored by API providers
and a significant number of APIs are not real APIs designed for
developers. Instead, they are "spamming APIs" for promotions and
direct API consumers to their product websites, such as gambling
and property-selling websites. Figure 6 shows the details of a spam-
ming API after translation (the original API is non-English) and
the API is about gambling. The API doesn’t have any endpoint
to be called by API consumers but provides a link to their web-
site in its description. After checking several spamming APIs, we
found they typically have two characteristics: they don’t provide
any useful endpoint and contain links in their descriptions. We
used the two filters to check each API and identified spamming
APIs. Surprisingly, we found that 12,452 (39%) out of 32,089 APIs
are spamming APIs, showing that spamming APIs are prevalent on
the RapidAPI platform (as of June 2023). Among these spamming
APIs, 94% of them were published within four months and almost
all of such APIs were Free APIs. After checking the publishing time
of spamming APIs, we found that 43 out of 100 newly published
APIs were spamming APIs and 98 out of 198 APIs published within
a single day were spamming APIs on the RapidAPI platform at the
time of our data collection, as shown in Figure 10 in Appendix A.
This indicates that the certification vulnerability has been exploited
and used by advertisement companies and such behavior has be-
come more serious as of June 2023. Due to the lack of certification
toward APIs and API providers, API providers could publish lots
of spamming APIs without getting any punishment. For example,
there exists one developer who published over 400 APIs, and all of
them are spamming APIs. We removed the spamming APIs from
our dataset and did not use them in all of our analyses.

In addition to detecting spamming APIs using endpoints and
descriptions, such APIs can also be potentially identified with the
developer following network. The RapidAPI platform allows de-
velopers to follow an API or developer. However, we find that

1634

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

developers who publish a large number of spamming APIs prefer
not to follow any other developer accounts and these spamming
APIs normally have no followers, leading to spamming APIs and
developers isolated in the following network. More details about
developer network analysis can be found in Appendix B.

We found the spamming APIs emerging from 2023 and we re-
ported our findings to the RapidAPI platform in October 2023, when
the spamming APIs still existed. As of February 2024, we found
that the RapidAPI platform has removed almost all spamming APIs,
possibly due to our reporting. The platform removed all the APIs
that don’t provide an endpoint, which is similar to our filter. We
randomly selected 100 spamming APIs we identified in 2023 and
found that 99 of them had been removed.

6 Privacy Non-Compliance of Rapid APIs

APIs may collect user information for functionalities, e.g., using user
location to find nearby restaurants or sending emails to the user
account. To protect users and data privacy, API providers should
carefully use such data and provide a privacy policy to allow API
consumers and users to make informed decisions. Existing works
show that many open application platforms suffer from privacy non-
compliance issues, e.g., the Android platform [25], Google Chrome
extensions [23], mobile mini-programs [39], Amazon Alexa plat-
form [32], and VR platform [51]. In this section, we aim to discover
the privacy non-compliance of APIs and applications that call APIs.
We first identify APIs that collect data from users and involve sensi-
tive data collection behaviors. Second, we check whether they have
privacy non-compliance issues, such as whether a valid privacy
policy link is provided and whether data collection is fully disclosed
in the privacy policy. If not, we consider an API to have privacy
non-compliance issues. Third, we check whether the privacy issues
in APIs could propagate to downstream applications, e.g., Android
apps, and subsequently lead to privacy non-compliance issues.

6.1 Sensitive Data Collection Behaviors

If an API needs to collect user data for its functionalities, it can
define data collection parameters within an endpoint and API con-
sumers can provide user data as parameters in API requests. Figure 7
shows an API that collects several types of data and each data is
stored in a parameter. In addition to the parameter name and the
data type (such as number, string), API providers can also provide
an example value and description for a parameter so that API con-
sumers can follow the parameter format. In our work, we define the
data collection APIs as APIs that collect any sensitive data within
the scope of 14 types of PII (personally identifiable information)
from a NIST (National Institute of Standards and Technology) re-
port [40]. We also expand more derivative words that are commonly
used, e.g., "first name", to the word list. For each API, we first check
whether any parameter name in an endpoint is related to data col-
lection keywords shown in Table 4. If so, we consider the parameter
as a possible data collection parameter. However, such a parameter
is not necessary to collect data from human beings, i.e., the param-
eter "name" can be used to get the product name and the parameter
"address" may belong to a restaurant. To remove such cases, we
check the descriptions of API, endpoint, and parameter to confirm
if the data collection is related to users. If any data type follows the

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Required Parameters

username username

STRING REQUIRED Display Name

password 123456789

STRING REQUIRED Account Password For Login
phoneNumber 123456789

STRING REQUIRED Phone Number For Verification Code
email abc@gmail.com

STRING REQUIRED Account Email

Figure 7: An example of data collection parameters within
an endpoint of an APIL

word "your" semantically in descriptions, we consider the parame-
ter, endpoint and API collecting user data. For a data collection API,
we check whether its privacy policy discloses the data collection
behaviors and more details will be discussed in Section 6.2.

Address, Name, Email, Account, Location, Phone number, Passport
number, Driver license number, Bank account number, Debit card
number, Credit card number, Taxpayer identification number,
Social Security number (SSN), Vehicle identification number (VIN)

Table 4: Keywords related to personal data collection.

In addition, we found that there exist APIs collecting extremely
sensitive data from API consumers or end users, i.e., passwords or
keys. If an API collects passwords from end users, both the API
provider and API consumers can access the passwords from end
users, posing serious privacy risks for the users. To mitigate these
risks, API providers should use the account linking or authorization
method provided by the RapidAPI platform, as shown in Figure 3 in
Section 4.1, instead of asking for a password as a parameter. Another
particular case for sensitive data collection is that official APIs, such
as the official "Twitter" API, may ask for user passwords or keys for
specific functionalities and we don’t consider such data collection
behaviors as violating privacy compliance. After excluding such
official APIs, we found that 231 APIs ask for passwords through
parameters in endpoints.

We also found 973 APIs asking for different types of keys from
API consumers. Interestingly, 17 APIs ask for the RapidAPI keys in
parameters. However, as mentioned in Section 4.1, the RapidAPI
keys are designed to authorize the connection between API con-
sumers and the RapidAPI platform. These keys should be sent in
request headers, and only the RapidAPI platform can receive and
validate the keys. Therefore, it is confusing why API providers ask
for RapidAPI keys from API consumers and such behaviors may
lead to key leaks, as discussed in Section 4. 3 official APIs ask for
keys and we consider them normal behaviors. However, unofficial
APIs also ask for the keys of other platforms. For example, 326
"Amazon Data Scraper” APIs ask for Amazon’s API keys to perform
the data collection task. It is unclear whether these APIs provided
by third-party developers are credible, and thus providing keys to
these APIs can be dangerous. In other APIs that collect different

1635

Song Liao et al.

keys, 915 APIs don’t provide necessary information about the ex-
pected source of keys, such as an example or description, which
confuses developers about what key they should provide. For APIs
that ask for keys, we also check their privacy compliance.

6.2 Privacy Non-Compliance in Rapid APIs

In Section 6.1, we detected the data collection APIs and revealed
that thousands of APIs ask for extremely sensitive data. For APIs
that collect data, their providers should provide a privacy policy
document to disclose how the data is collected, used, and shared.
On the one hand, since the API is a black box and API consumers
can’t obtain the inner details within an API, the privacy policy
is the only way that API consumers can know how the collected
data is used and shared. Moreover, if API consumers don’t know
the data usage in APIs, they can’t explain such data collection be-
haviors to end-users in their applications’ privacy policies. On the
other hand, the data collection disclosure is required in certain
regions by legal and lawful regulations, e.g., General Data Protec-
tion Regulation (GDPR) [10], CalOPPA (California Online Privacy
Protection Act) [7], CCPA (California Consumer Privacy Act) [6],
COPPA (Children’s Online Privacy Protection Act) [8], and HIPAA
(Health Insurance Portability and Accountability Act) [13]. If an
API collects data but doesn’t provide a complete privacy policy
that fully discloses data collection behaviors, the platform might
be fined by the government. For example, Google was fined €50
million by the French government in 2019 because of failing to
provide complete privacy policies that comply with the GDPR [11].

However, unlike other app platforms, e.g., Apple App Store,
Google Play, Amazon Alexa Skill Store, and Google Chrome Web
Store, which all present each app’s privacy policy link on the app’s
webpage, the RapidAPI platform doesn’t have an area on API list-
ing page to present the privacy policy. Furthermore, the RapidAPI
platform doesn’t mandate API providers to provide a privacy policy
when publishing an API to the public, no matter whether it collects
data or not. Instead, API providers can provide a link to the "Product
Website", where a privacy policy can be included. Such a setting
would undoubtedly increase the difficulty for users to access the
privacy policy. Since the product website is not mandatory, only
10,444 of 19,637 APIs (53%) provide a product website in our dataset.
For product website links, 1,615 APIs share a link with other APIs,
showing that API providers provide such a website for a list of
products instead of a unique APL The "News&Media" category has
the highest percentage of APIs with a product website (84%). On the
contrary, the "Database", "Storage", and "Email" categories, which
may collect and process user data, have a lower percentage.

We identified multiple issues on the product websites of APIs, in-
dicating that the websites are not validated by the platform. 71 APIs
provide a localhost domain link, such as "http://192.168.10.62:8088/".
Another interesting issue is that when API providers submit the
website, the RapidAPI platform prefixes URLs with "https://rapidapi.
com/" instead of "https://", which leads to 524 APIs providing a non-
functional website like "https://rapidapi.com/www.google.com".
Figure 8 shows an API that provides such a website. In total, we
found that 6,374 product websites (61%) of APIs are not accessi-
ble. We also found that most websites are not relevant to APIs
themselves but company websites. Such websites don’t provide any

A First Look at Security and Privacy Risks in the RapidAPI Ecosystem

details about APIs, and thus the privacy policies in these websites
are normally not relevant to the APIs.

History GEID Verified ~ 2 Popularity © Latency
om" By wettercom | Updated 4 months ago | Weather 93/10 746ms
Endpoints About m- @ https://rapidapi.com/ww: X ‘
Spotlights c ﬁl rapldachom/www.\vetter.coml Followers: 10

Resources:
Product Website

Q Rapid

Oops! That page P

SET wettercom

can’t be found.

Weatherize your a
Discover how weather
improve business perfor|

Rate API:

Y 77 Y7 YY Y

Rating: 5 - Votes: 1

Figure 8: An API that provides a broken product website.

We found that a total of 1,709 APIs contain data collection be-
haviors. Among them, 498 APIs don’t provide the product websites
and 674 APIs provide a website without a privacy policy link. In
addition, 183 APIs provide a broken privacy policy link. There are
only 354 APIs (21%) that provide an effective privacy policy link
on product websites. For these APIs, we performed an analysis
of their privacy policy content. We applied the PoliCheck [21], a
commonly used privacy policy analysis tool, to analyze sentences
in privacy policies and extract collected data types. If an API’s data
collection behavior is not mentioned in any sentences within its
privacy policy, we consider it an incomplete privacy policy. We
found that 251 APIs have an incomplete privacy policy that doesn’t
fully disclose their data collection behaviors. As a result, only 103
out of 1,709 APIs (6%) collect data and provide a complete privacy
policy. The different issues of API product websites and privacy
policies are summarized in Table 5.

Privacy Policies of APIs #of APIs Percentage
APIs with data collection behaviors 1,709 -
Don’t provide a product website 498 29%
Provide a p}roduct W'eb31t.e without a 674 39%
privacy policy link

Provide a broken privacy policy link 183 11%
Provide an incomplete privacy policy 251 15%
Provide a complete privacy policy 103 6%

Table 5: Privacy policy issues of data collection APIs.

6.3 Privacy Non-Compliance in Applications
Calling Rapid APIs

Since the RapidAPI platform is designed for API consumers to
accelerate their app development during their work, we are inter-
ested in how API consumers use these APIs in their applications
and whether these applications have any privacy issues. As we
discussed in Section 6.2, privacy issues in APIs could propagate
to downstream applications within the software supply chain and
cause difficulties for downstream app developers in providing a
complete privacy disclosure, subsequently leading to privacy non-
compliance issues. In this section, we use Android apps to demon-
strate the potential consequences caused by Rapid APIs’ privacy

1636

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

issues. We selected the Android apps on the Google Play platform
for our testing because Android has been the dominating platform
for most ordinary mobile users (a primary group of end-users of
these APIs). As a result, Android apps using these risky APIs can
become a widespread channel for propagating those risks. In addi-
tion, Android apps are open-source so they are easier to analyze.

To analyze Android apps, we first obtain an Android app list
from the AndroZoo dataset [20], which contains over 23 million
Android apps collected since 2011. However, due to the substantial
time required for downloading and processing such a huge number
of apps, we randomly sampled 1 million apps for our analysis. We
downloaded the APK file of each app using the link provided by
Androzoo. To decode the APK files and obtain the decompiled code
of Android apps, we used the Apktool [4], which is for reverse
engineering Android APK files. At last, we used the same method
in Section 4.2 to detect the API hosts and keys in the code. We
identified the API hosts and endpoints in the decompiled code
and then checked whether the parameters in the endpoints collect
sensitive data. To find the privacy non-compliance issues in Android
code, we visited the websites of each Android app on Google Play
and downloaded their privacy policies. In addition, Google Play
added a section named "Data Safety” for each app since 2022 and
developers can provide the shared and collected data in this section.
If no data is collected or shared, developers can claim that "this
app doesn’t collect/share user data" in this section. Since Google
states such a section is to "provide developers a way to show users
if and how they collect, share, and protect user data", we consider
it the same as a privacy policy and check it with the privacy policy
together. For each app, if its data collection is not mentioned in the
privacy policy or data safety section, we consider it to have potential
privacy non-compliance issues and an incomplete privacy policy.
We still used the PoliCheck for Android privacy policy analysis and
detected data collection disclosure in privacy policies.

As a result, we found 526 out of 1 million Android apps calling
316 APIs on the RapidAPI platform. Although the 526 apps may
not represent a major proportion, over half of these Android apps
have over 100K downloads and they are from different developers,
showing their representative. The key leaks in Android code have
been discussed in Section 4. As for data collection behaviors, we
found 54 apps calling 11 APIs that contain data collection behaviors.
Most apps collect name information and the others collect email
or location. Among them, 16 apps lack a privacy policy, 11 apps
have an incomplete privacy policy, and only 27 apps (50%) have
a complete privacy policy. Out of the 16 apps that lack a privacy
policy, 5 apps also don’t provide a data safety section, although the
privacy policy and data safety section are mandatory on the Google
Play platform. The remaining 11 apps claim that they don’t collect
data in the data safety section, which can mislead users about the
actual data collection behaviors in apps. For example, the "TokApi
- mobile version" API collects user names but doesn’t provide a
privacy policy link within the company webpage. Consequently,
the Android app "TikMate Video Downloader" calls the API but
lacks a privacy policy and falsely claims that no data is collected or
shared in the data safety section. In such a case, the API’s failure
to disclose its data collection results in the propagation of false
disclosure to the downstream Android app. For the 11 apps that

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

have an incomplete privacy policy, they don’t mention the collected
data or only mention the "personally identifiable information" (PII)
instead of detailed data types in their privacy policies. We also found
that none of the apps that call data collection APIs mention that
the data will be shared with third-party APIs. However, they share
user data with APIs from the RapidAPI platforms. Considering that
some of these apps have over 1 million downloads, the privacy
non-compliance risk in these apps, i.e., undisclosed data collection
and data sharing, may impact millions of users.

7 Discussion
7.1 Investigation of Other Open API Platforms

To understand whether the risks and issues observed in the Rapi-
dAPI platform also exist in other open API platforms, we checked
various open API platforms and their APIs. However, we found that
several large API platforms, such as OpenAPIHub, API Store, and
API guru, are designed only for API searching and developers still
need to visit each API’s website to get the API usage and key.

We discovered two platforms, Apidog [3] and apideck [2], that
have a working model similar to the RapidAPI platform, and we
compared them with the RapidAPI platform using our methodol-
ogy and tools. The comparison results are shown in the Table 6.
The Apidog platform has 1,806 APIs and the apideck has only 176
APIs, which are both limited compared to the RapidAPI platform.
We didn’t find any leaked keys in the GitHub code for these two
platforms, possibly because very few developers use these plat-
forms. On the other hand, the two platforms could have a strict
review process for the limited number of APIs, which significantly
improves the quality of APIs and prevents spamming APIs from
being published. For API metadata, both platforms don’t present the
API provider information. However, we found 272 duplicate APIs
(out of 1,806) on the Apidog platform and API consumers might
find it hard to distinguish them when API provider information is
not provided. We didn’t find the typosquatting towards endpoints
in the two platforms. Lastly, on both platforms, there exist APIs
that collect data for functionalities. The Apidog platform doesn’t
provide company websites or privacy policies for APIs, while the
apideck platform provides the company website for every API and
users are able to find privacy policies within the website, similar to
the RapidAPI platform.

RapidAPI Apidog apideck
API number 32,089 1,806 176
Key leaks in wild 4 X X
API metadata abuse v X X
API data collection v 4 v
Company website 53% 0% 100%

Table 6: Comparison between three open API platforms.

When comparing the RapidAPI platform with the other two
open API platforms, we found that they have different operational
mechanisms. Although the RapidAPI platform has more APIs and
is more famous, which attracts more developers to engage in their
ecosystem, it also leads to malicious developers abusing API meta-
data. This demonstrates the importance of the certification process.
While the RapidAPI platform doesn’t have a strict vetting system,

1637

Song Liao et al.

they are checking the API quality and removing spamming APIs
now. In addition, the increased developer number also results in
more unprofessional and untrained developers leaking their keys in
the wild. APIs with data collection exist on all three API platforms,
but the Apidog platform doesn’t provide any information related to
the API providers, such as the developer names or company web-
sites. This makes it hard for API consumers to know how collected
data is used.

7.2 Mitigation

Based on our measurements and findings, we provide the following
recommendations to mitigate the issues and vulnerabilities in the
RapidAPI platform as well as other open API platforms. Address-
ing these issues can help platforms improve the quality of APIs,
enhancing their reputation and attracting more users. In addition,
this can help avoid potential privacy risks.

API Vetting Process. Since the RapidAPI platform allows any
user to arbitrarily publish any API to the API hub, it is almost
inevitable that low-quality APIs, such as spamming APIs or APIs
with low success rates, will be published. Similar to how we found
spamming APIs in Section 5.2.2, the certification process can find
problematic APIs by checking the API metadata, e.g., API name,
description, and endpoint, similar to how they removed spamming
APIs. The platform can also scan APIs periodically or deploy auto-
mated testing tools to invoke APIs and identify potential low-quality
APIs, notifying API providers to enhance and republish them again.
For API providers who publish an excess of low-quality APIs, the
platform could also monitor and validate whether they are actual
benign developers.

Protection of Keys. The RapidAPI platform and developers
could work together to protect keys better. The RapidAPI platform
can generate keys in different formats, such as adding an encryption
process for the keys, to increase the difficulty of searching for keys
in the wild. The platform can also use environment variables to
store API keys in configuration files instead of hard-coding them in
code. We have demonstrated that most leaked keys are still useful,
motivating the platform to implement expiration dates for keys.
For developers calling RapidAPIs, they may employ obfuscated or
encrypted keys in their code or read keys from setting files.

Requirements on Privacy Policy. The RapidAPI platform
doesn’t mandate an API to provide a privacy policy regardless of its
data collection behaviors. The platform also doesn’t provide an area
for displaying it on the API listing page. Such an overlook may result
in potential violations of lawful regulations, e.g., CalOPPA, CCPA,
COPPA, HIPAA, and GDPR, leading to penalties from authorities
and propagating privacy issues to downstream applications. We
suggest the platform to add more requirements to API providers
about privacy policy and set up an area for presenting it on the API
listing page, similar to what the Google Play platform does.

7.3 Limitation

Our work is the first systematic work to investigate the issues and
vulnerabilities in the RapidAPI platform. However, several limi-
tations still exist that can be improved in our future work. First,
we didn’t analyze all the APIs on the RapidAPI platform since we
could only collect part of the APIs (32,089 APIs) while the Rapid API

A First Look at Security and Privacy Risks in the RapidAPI Ecosystem

platform claims that they have over 40K APIs. Second, we only
checked the API usage in Android apps. The RapidAPI platform is
one of the largest API platforms and APIs may be used in applica-
tions from other platforms, such as desktop programs. However,
such programs are not published on a marketplace, making privacy
policy analysis and privacy compliance checking harder. We plan
to collect more programs from other platforms and find their pri-
vacy issues in the future. Third, our method for API data collection
detection and privacy policy analysis can be improved by applying
more advanced machine-learning or deep-learning methods. As
our future work, we also plan to design dynamic testing tools to
automatically test and analyze APIs’ actual behaviors.

8 Related Work

To our knowledge, our work is the first of its kind to systemati-
cally analyze and evaluate the issues on an open API platform. Our
methodology can also be applied to other emerging open API plat-
forms for discovering security and privacy risks. In previous works,
researchers only used APIs on the RapidAPI platform to perform
certain tasks. Qin et al. [44] used RapidAPI as an instruction tuning
dataset to facilitate the ability of large language models to generate
API instructions. Du et al. [26] utilized over 16,000 APIs to help
design a large language model agent to revolutionize the utilization
of a vast array of tools for addressing user queries. Nikam et al. [43]
applied a COVID-related API to build an Android chatbot.

Researchers have investigated on privacy issues of third-party
applications on many other open platforms, e.g., IOS apps [27, 52],
Android apps [22, 47], Chrome extensions [19, 30, 37], and Ama-
zon Alexa skills [24, 34-36, 54]. Chia et al. [25] did a large-scale
study on Android application permissions. Carlini et al. [23] per-
formed an evaluation of Google Chrome extension security ar-
chitecture. Lu et al. [39] revealed the risks in Mobile App-in-App
ecosystems. Lentzsch et al. [32] analyzed the vulnerabilities and
privacy non-compliance in the Amazon Alexa voice-app ecosystem.
Trimananda et al. [51] proposed a method to analyze the privacy
issues on the virtual reality (VR) platform and apps. Zuo et al. [57]
exploited the data leaks in the cloud from mobile apps and found
the services of 15,098 apps were subject to data leakage attacks.
In addition, researchers mined key leakages in the wild, such as
GitHub [41, 48]. Sinha et al. [48] detected and mitigated the secret
key leaks in GitHub source code repositories. Zhang et al. [56]
demonstrated 40,880 key leaks in WeChat mini-programs and they
may lead to diverse attacks. Researchers also exploited the risks
and vulnerabilities about typosuqatting [29, 31, 42]. Liu et al. [38]
explored the typosquatting attack in container registries. Szurdi et
al. [50] performed a comprehensive study of typosquatting domain
registrations. Additionally, API misuse also commonly appears in
different applications [46, 49, 55]. Xu et al. [53] analyzed the deep
learning APIs on smartphone apps. Li et al. [33] employed an active
learning algorithm to rank API usage and help programmers find
API misuses. However, none of these works addressed the security
and privacy risks on the RapidAPI platform.

9 Conclusion

In this work, we performed the first large-scale analysis of 32,089
APIs collected from the RapidAPI platform, which is one of the

1638

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

largest open API platforms. We revealed the importance of Rap-
idAPI keys in the API authorization process and identified 3,533
leaked keys in the wild, which can be used by adversaries to launch
various attacks. We also discovered the risks of API metadata abuse.
Due to the lack of a strict certification system, adversaries can per-
form typosquatting attacks on APIs, impersonate other developers,
or publish spamming APIs. Finally, we investigated the privacy non-
compliance issues in APIs and applications that call APIs with data
collection. We found that privacy issues in APIs could propagate to
downstream applications, e.g., Android apps, and subsequently lead
to privacy non-compliance issues. Based on our findings, we also
provide mitigations to the platform to reduce the vulnerabilities of
the platform.

Acknowledgment

The work of L. Cheng is supported by National Science Foundation
(NSF) under the Grant No. 2239605, 2228616 and 2114920. The work
of H. Hu is supported by NSF under the Grant No. 2228617, 2120369,
2129164, and 2114982. The work of H. Cai is supported by the Office
of Naval Research Grant N000142212111.

References

[1] Alexa Policy Requirements. https://developer.amazon.com/fr-
FR/docs/alexa/custom-skills/policy-requirements-for-an-alexa-skill. html.

[2] apideck. https://www.apideck.com/.

[3] Apidog. https://apidog.com/.

[4] Apktool. https://apktool.org/.

[5] App Store Review Guidelines.

store/review/guidelines/.

California Consumer Privacy Act (CCPA). https://oag.ca.gov/privacy/ccpa.

California Online Privacy Protection Act (CalOPPA).

https://consumercal.org/about-cfc/cfc-education-foundation/california-

online-privacy-protection-act-caloppa-3/.

Children’s Online Privacy Protection Rule (COPPA). https://www.ftc.gov/legal-

library/browse/rules/childrens-online-privacy-protection-rule-coppa.

Chrome Program Policies. https://developer.chrome.com/docs/webstore

/program-policies/#: :text=Extensions

[10] General Data Protection Regulation. https://gdpr-info.eu.

11] Google fined €50 million for GDPR violation in France.
https://www.theverge.com/2019/1/21/18191591/google-gdpr-fine-50-million-
euros-data-consent-cnil.

Google Play Developer Policy Center. https://play.google.com/about/developer-
content-policy/.

Health Insurance Portability and Accountability Act of 1996 (HIPAA).
https://www.cdc.gov/phlp/publications/topic/hipaa.html.

Open API Market Size is projected to reach USD 13.21 Billion by 2030, growing at
a CAGR of 23.83%: Straits Research. https://www.globenewswire.com/en/news-
release/2022/08/18/2501038/0/en/Open-API-Market-Size-is-projected-to-
reach-USD-13-21-Billion-by-2030-growing-at-a-CAGR-of-23-83-Straits-
Research.html.

OpenAPIHub. https://www.openapihub.com/en-us/.

ProgrammableWeb. https://www.mulesoft.com/ programmableweb.

Rapid. https://rapidapi.com/.

URLCrazy. https://www.morningstarsecurity.com/ research/urlcrazy.
Shubham Agarwal. Helping or hindering? how browser extensions undermine
security. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security, pages 23-37, 2022.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:
Collecting millions of android apps for the research community. In Proceedings

of the 13th international conference on mining software repositories, pages 468-471,
2016.

Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck, Bradley
Reaves, Kapil Singh, and Serge Egelman. Actions speak louder than words:{Entity-
Sensitive} privacy policy and data flow analysis with {PoliCheck}. In 29th

USENIX Security Symposium (USENIX Security 20), pages 985-1002, 2020.

Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. Flexible and fine-grained
mandatory access control on android for diverse security and privacy policies.
In 22nd USENIX Security Symposium (USENIX Security 13), pages 131-146, 2013.

https://developer.apple.com/app-

[12

[13

(14

IS
=

[21

[22

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Nicholas Carlini, Adrienne Porter Felt, and David Wagner. An evaluation of
the google chrome extension security architecture. In 21st USENIX Security
Symposium (USENIX Security 12), pages 97-111, 2012.

Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. Dangerous skills got certified: Measuring the trustworthiness
of skill certification in voice personal assistant platforms. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, pages
1699-1716, 2020.

Pern Hui Chia, Yusuke Yamamoto, and N Asokan. Is this app safe? a large scale
study on application permissions and risk signals. In Proceedings of the 21st
international conference on World Wide Web, pages 311-320, 2012.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical
agents for large-scale api calls. arXiv preprint arXiv:2402.04253, 2024.

Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. Pios:
Detecting privacy leaks in ios applications. In NDSS, pages 177-183, 2011.

Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. University of California, Irvine, 2000.

Mohammad Taha Khan, Xiang Huo, Zhou Li, and Chris Kanich. Every second
counts: Quantifying the negative externalities of cybercrime via typosquatting.
In 2015 IEEE Symposium on Security and Privacy, pages 135-150. IEEE, 2015.
Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. Fingerprinting in style: Detecting browser extensions via injected
style sheets. In 30th USENIX Security Symposium (USENIX Security 21), pages
2507-2524, 2021.

Victor Le Pochat, Tom Van Goethem, and Wouter Joosen. A smorgasbord of typos:
exploring international keyboard layout typosquatting. In 2019 IEEE Security and
Privacy Workshops (SPW), pages 187-192. IEEE, 2019.

Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin Degeling,
Anupam Das, and William Enck. Hey alexa, is this skill safe?: Taking a closer look
at the alexa skill ecosystem. Network and Distributed Systems Security (NDSS)
Symposium2021, 2021.

Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang, and Le Song.
Arbitrar: User-guided api misuse detection. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1400-1415. IEEE, 2021.

Song Liao, Mohammed Aldeen, Jingwen Yan, Long Cheng, Xiapu Luo, Haipeng
Cai, and Hongxin Hu. Understanding gdpr non-compliance in privacy policies
of alexa skills in european marketplaces. In Proceedings of the ACM on Web
Conference 2024, pages 1081-1091, 2024.

Song Liao, Long Cheng, Haipeng Cai, Linke Guo, and Hongxin Hu. Skillscanner:
Detecting policy-violating voice applications through static analysis at the devel-
opment phase. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, pages 2321-2335, 2023.

Song Liao, Christin Wilson, Long Cheng, Hongxin Hu, and Huixing Deng. Mea-
suring the effectiveness of privacy policies for voice assistant applications. In
Annual Computer Security Applications Conference (ACSAC), page 856-869, 2020.
Yuxi Ling, Kailong Wang, Guangdong Bai, Haoyu Wang, and Jin Song Dong. Are
they toeing the line? diagnosing privacy compliance violations among browser
extensions. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1-12, 2022.

Guannan Liu, Xing Gao, Haining Wang, and Kun Sun. Exploring the unchartered
space of container registry typosquatting. In 31st USENIX Security Symposium
(USENIX Security 22), pages 35-51, 2022.

Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang,
and Xueqiang Wang. Demystifying resource management risks in emerging
mobile app-in-app ecosystems. In Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security, pages 569-585, 2020.

Erika McCallister. Guide to protecting the confidentiality of personally identifiable
information, volume 800. Diane Publishing, 2010.

Song Liao et al.

[41] Michael Meli, Matthew R McNiece, and Bradley Reaves. How bad can it git?

characterizing secret leakage in public github repositories. In NDSS, 2019.
Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and Lorenzo
De Carli. Beyond typosquatting: An in-depth look at package confusion. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3439-3456, 2023.
Swati Nikam, Digvijay Lakade, Aakash Ahire, Jayesh Somwanshi, and Rushikesh
Late. Covid-19 android chatbot using rasa. In 2022 3rd International Conference
for Emerging Technology (INCET), pages 1-7. IEEE, 2022.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin,
Xin Cong, Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language
models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789, 2023.
Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading authorship attribution
of source code using adversarial learning. In 28th USENIX Security Symposium
(USENIX Security 19), pages 479-496, 2019.

Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu,
and Jianling Sun. Api-misuse detection driven by fine-grained api-constraint
knowledge graph. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pages 461-472, 2020.

Gulshan Shrivastava, Prabhat Kumar, Deepak Gupta, and Joel JPC Rodrigues. Pri-

vacy issues of android application permissions: A literature review. Transactions
on Emerging Telecommunications Technologies, 31(12):e3773, 2020.

Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and
Senthil Mani. Detecting and mitigating secret-key leaks in source code reposito-
ries. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 396—-400. IEEE, 2015.

Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
Investigating next steps in static api-misuse detection. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), pages 265-275.
IEEE, 2019.

Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi, and
Chris Kanich. The long {“Taile”} of typosquatting domain names. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 191-206, 2014.

Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran Ho, Anastasia Shuba, and
Athina Markopoulou. {OVRseen}: Auditing network traffic and privacy policies
in oculus {VR}. In 31st USENIX security symposium (USENIX security 22), pages
3789-3806, 2022.

Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing Liao, and
Luyi Xing. Lalaine: Measuring and characterizing {Non-Compliance} of apple
privacy labels. In 32nd USENIX Security Symposium (USENIX Security 23), pages
1091-1108, 2023.

Mengwei Xu, Jiawei Liu, Yuangiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. A first look at deep learning apps on smartphones. In The World
Wide Web Conference, pages 2125-2136, 2019.

[54] Jeffrey Young, Song Liao, Long Cheng, Hongxin Hu, and Huixing Deng.

{SkillDetective}: Automated {Policy-Violation} detection of voice assistant ap-
plications in the wild. In 31st USENIX Security Symposium (USENIX Security 22),
2022.

Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng Yao, and Na Meng. Automatic
detection of java cryptographic api misuses: Are we there yet? IEEE Transactions
on Software Engineering, 49(1):288-303, 2022.

Yue Zhang, Yuqing Yang, and Zhiqiang Lin. Don’t leak your keys: Understanding,
measuring, and exploiting the appsecret leaks in mini-programs. arXiv preprint
arXiv:2306.08151, 2023.

Chaoshun Zuo, Zhigiang Lin, and Yinqian Zhang. Why does your data leak?
uncovering the data leakage in cloud from mobile apps. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 1296-1310. IEEE, 2019.

A First Look at Security and Privacy Risks in the RapidAPI Ecosystem
A Example APIs with Metadata Abuse

Amazon Data Scrapper | GEID

By Sam Jo | Updated 2 years ago | eCommerce

Amazon Data Scraper | @B
By JakeH1234 | Updated 2 years ago | eCommerce

GET Get Amazon Product Details GET Get Amazon Product Details

GET Get Amazon Search Results GET Get Amazon Search Results

const options

method: 'GET

url https://amazon-data .p.upldw;.;u /products/B0O8
const options =

method: 'GET

url h',tu;:‘e““_wuzur'—d_‘tu—.p.r;uidgpL.Lu\ /products/BO7V

Figure 9: A possible typosquatting API named "Amazon Data
Scrapper” on the RapidAPI platform.

Hyundai Universe 45
Ché - Danh Gia Chi Tiét,
Gié B - 7dejpw

Hyundai Universe 45 Ché -
Danh Gia Chi Tiét, Gia Ban,
va Uu Biém Xe khach
Hyundai Universe 45 chb la

Khém The Gia Tién Gé:
Sy Ky Diéu Cua Di San
Van Héa Viét

Trong van héa Viet Nam, viec
kham tho gia tien gd khong
chi la mot truyén thng ma
con la mot céch thé hien

Choi ga - Ban séc vén
héa truyén théng Viet
NamCho - kwahws

Hyundai Universe 45
Ché - Danh Gia Chi Tiét,
Gié B -vvdad0

Hyundai Universe 45 Ché -
Danh Gia Chi Tiét, Gia Ban,
va Uu Biém Xe khach
Hyundai Universe 45 chd la

Choi ga Viet Nam la mot
truyén théng van héa doc
dao, gan lién v6i doi sng va
tam hén cua ngudi dan Viet

4
& 3

Fi88 ¥ Link dang ky vao Choi ga - Ban séc vén

trang chu Fi88 nhan héa truyén théng Viet

thudn - cgfx3g NamCho - mil19h

¢ Language Unites Us! 9 Ga Choi Viet Nam, Ngudn

Have you ever stopped to Goc Va Tro Choi Da Ga Dan

think about the incredible

power of language? It's not

<

Cach Nho L6 bé D8
Dénh Siéu Chudn Tai
Jun88 Nam 20 - oxodma

Choi 16 dé c6 giau dugc
khong jun88 méi nhat
2023 - okijvl

Dai ly JUN88 tro chai Thé
Thao Casino Da Ga X6 S6
Ban C4 - hhvwmOk7x8 -
https://jun88.global/choi-lo-

hugng dén Dang Ky JUN8S
Dang Nhap JUN8S Nap Tién
JUNBB Rut Tién JUN8S Tai
App JUNBS ai ly JUNSS tro

Gian Ngudn géc va sy phan
b3 céc loai ga choi & Viet

Figure 10: Most newly published APIs were spamming APIs,
showing that spamming APIs were prevalent on the Rapi-
dAPI platform in June 2023. As of February 2024, we found
that the RapidAPI platform has removed almost all spam-
ming APIs, possibly due to our reporting.

B Developer Following Network Analysis

Similar to social media platforms like Twitter, the RapidAPI plat-
form allows developers to follow an API or developer. However, we
found that developers can abuse such a function, and there are po-
tential abnormal behaviors when developers follow others. While
it is common for regular developers to follow other developers
to discover useful APIs, we found 43 developers following more
than 100 developers. Surprisingly, almost all of the developers they
followed neither published any API nor followed other developers.
We named these followed developers as inactive accounts. Figure 11
shows the following network between all developers and their APIs.
We marked the developer who follows 2,053 other developers, in
which only 25 developers own a published API and only 150 devel-
opers follow other developers. Table 7 shows detailed information
about several abnormal developers, such as their published API,
their followed developers and followed developers’ published APIs.

1640

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

We hid their names and links for ethical considerations. To under-
stand why these developers follow so many developer accounts,
we further checked the details of these potential inactive accounts.

We found that there is a developer following 201 other developers,
and these developers only have 3 published APIs. However, 99 of

them follow the origin developer’s APL It is possible that these
99 developer accounts are created only for following specific APIs
published by a developer so that these followed APIs can have a
higher ranking when recommending APIs for users.

As we mentioned in Section 5.2.2, spamming API and their devel-
oper accounts can also be easily identified based on their network
activity. For normal APIs, they can be followed by different develop-
ers. However, we find that spamming APIs are more likely to be not
followed by other developers because they are not useful. Mean-
while, the developer accounts of these spamming APIs are created
for promotion and they prefer not to follow other developers or
APIs. These features lead to spamming APIs and their developers
being isolated in the following network. Figure 11 shows an isolated
cluster in the left bottom corner that only contains the spamming
APIs and their developer and doesn’t have any connection with the
other developers and APIs.

r X

per follwing

- D

Developer Spamming APls v

&

By,

Figure 11: The following network of all developers and APIs
in our dataset.

e oy # of Published # of Followed # of Followed Developers’
AL Developer Published API
A 1 2,054 25
B 1 330 2
C 0 295 3
D 0 206 1
E 0 143 0
F 1 101 0

Table 7: Potential abnormal developers and inactive develop-
ers followed by them. The actual developers are masked for
ethical considerations. Developers’ following network can
be used for identifying spamming APIs and their developers.

	Abstract
	1 Introduction
	2 Background
	2.1 RESTful API
	2.2 Stakeholders of Open APIs
	2.3 Threat Model
	2.4 Ethical Consideration

	3 Rapid API Data Collection
	3.1 Crawling API Listing Page
	3.2 Collecting API Data

	4 Attacks with Leaked Keys
	4.1 Keys in RapidAPI Authorization
	4.2 Key Leaks in the Wild
	4.3 Attacks against Free Plan
	4.4 Attacks against Paid Plan
	4.5 Attacks against API Data

	5 Risks of API Metadata Abuse
	5.1 Typosquatting on Endpoints URLs
	5.2 Issues Caused by Poor Certification

	6 Privacy Non-Compliance of Rapid APIs
	6.1 Sensitive Data Collection Behaviors
	6.2 Privacy Non-Compliance in Rapid APIs
	6.3 Privacy Non-Compliance in Applications Calling Rapid APIs

	7 Discussion
	7.1 Investigation of Other Open API Platforms
	7.2 Mitigation
	7.3 Limitation

	8 Related Work
	9 Conclusion
	References
	A Example APIs with Metadata Abuse
	B Developer Following Network Analysis

