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ABSTRACT
Impact analysis determines the effects that the behavior of program
entities, or changes to them, can have on the rest of the system.
Dynamic impact analysis is one practical form that computes
smaller impact sets than static alternatives for concrete sets of
executions. However, existing dynamic approaches can still
produce impact sets that are too large to be useful. To address this
problem, we present a novel dynamic impact analysis called DIVER
that exploits static dependencies to identify runtime impacts much
more precisely without reducing safety and at acceptable costs.
Our preliminary empirical evaluation shows that DIVER can
significantly increase the precision of dynamic impact analysis.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

Keywords
Dynamic impact analysis; trace pruning; dependence analysis

1. INTRODUCTION
Modern software is increasingly complex and changes rapidly,

posing serious risks to its quality and reliability. Thus, it is crucial
to analyze and evolve these systems efficiently and effectively.
A key activity in this process is impact analysis (e.g., [9, 20]),
which identifies the effects that the behavior of program entities or
changes to those entities can have on the rest of the software.

Different approaches to impact analysis provide different
tradeoffs in accuracy, costs, and other qualities for computing
impact sets (i.e., potentially affected entities). Static analysis can
produce safe but overly-conservative impact sets [10]. Dynamic
impact analysis, in contrast, uses runtime information such as
coverage [17] or execution traces [14] to produce smaller and more
focused impact sets than static analysis at the expense of some
safety [5, 15, 18]. Yet, users looking for the actual behavior of the
software, as represented by a set of executions, may afford unsafe
results [14], making dynamic impact analysis an attractive option.
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Different dynamic impact analyses also provide different
cost-effectiveness tradeoffs. For example, COVERAGEIMPACT [17]
is based on runtime coverage and ignores execution order, which
makes it very efficient but also very imprecise [18]. Another
technique, PATHIMPACT [14], is more precise by using execution
order but is less efficient because it requires tracing [18]. For
intermediate tradeoffs, optimizations of PATHIMPACT have been
proposed [3, 4], including an incremental version [13]. The most
efficient one that preserves the precision of PATHIMPACT is based
on execute-after sequences (EAS) [3], which we call PI/EAS.

Unfortunately, approaches such as PI/EAS can still have too
many false positives. Our studies [6] show that they can have a
low change-impact-prediction precision of 50% on average. An
alternative is forward dynamic slicing [1], but it works at the
statement level which makes it expensive and would have to be
applied to all statements in a method. At the method level, hybrid
techniques [16] combining static and dynamic analysis have been
proposed to improve precision, such as INFLUENCEDYNAMIC [5].
However, these techniques improve precision over PI/EAS only
marginally and at a much greater cost [5]. Another hybrid
technique combines runtime coverage with text analysis [9] but it
remains unclear how it performs with more precise dynamic data.

To address this imprecision, we present a new dynamic impact
analysis called DIVER that incurs the same runtime costs as
PATHIMPACT but can be much more precise. PI/EAS uses the
execution order of methods to find all potential runtime impacts
of a method m, which can be quite imprecise because, in general,
not all methods executed after m are affected by m. DIVER,
in contrast, uses a one-time static dependence analysis to safely
reduce the impact set to only those methods that could have
depended on m at runtime. Although applying that information
increases the cost of querying for impact sets, the cost per query is
still acceptable and multiple queries can be processed in parallel.

We implemented DIVER for a preliminary study on four Java
subjects and we compared the results with those of PI/EAS—the
most precise of the efficient techniques in the literature.1 (Our
implementation of DIVER and PI/EAS is available to the public
for download.2 ) Our results confirm the imprecision of PI/EAS,
whose impact sets often contain hundreds of methods. DIVER,
in contrast, computed impact sets containing in most cases a few
dozen methods. Our findings for these subjects are dramatic: the
impact sets of DIVER are 30.8% the size of the impact sets of
PI/EAS for the same level of safety. This means that DIVER
improved the precision of a representative existing technique by
a factor of 3.33 (i.e., by 200%). We also found that its costs are
acceptable at less than half a minute per query on average.

1INFLUENCEDYNAMIC [5] is marginally better but costlier.
2The DIVER website is http://nd.edu/~hcai/diver

http://nd.edu/~hcai/diver


1 public class A {
2 static int g; public int d;
3 String M1(int f, int z) {
4 int x = f + z, y = 2, h = 1;
5 if (x > y)
6 M2(x, y);
7 int r = new B().M3(h, g);
8 String s = "M3val: " + r;
9 return s;}
10 void M2(int m, int n) {
11 int w = m - d;
12 if (w > 0)
13 n = g / w;
14 boolean b = C.M5(this);
15 System.out.print(b);}}

16 public class B {
17 static short t;
18 int M3(int a, int b) {
19 int j = 0;
20 t = -4;
21 if ( a < b )
22 j = b - a;
23 return j;}
24 static double M4() {
25 int x = A.g, i = 5;
26 try {
27 A.g = x / (i + t);
28 new A().M1(i, t);
29 } catch(Exception e) { }
30 return x;}}

31 public class C {
32 static boolean M5(A q) {
33 long y = q.d;
34 boolean b = B.t > y;
35 q.d = -2;
36 return b;}
37 public static void
38 M0(String[] args) {
39 int a = 0, b = 3;
40 A o = new A();
41 String s = o.M1(a, b);
42 double d = B.M4();
43 String u = s + d;
44 System.out.print(u);}
45 }

Figure 1: The example program E used for illustration throughout this paper.

PATHIMPACT: M0 M1 M2 M5 r r M3 r r M4 r r x

DIVER: M0e M1e M2e M5e M2i M1i M3e M1i M0i M4e M4i M0i x

Figure 2: Execution traces of E used by PATHIMPACT and DIVER.

2. MOTIVATION AND BACKGROUND
This section presents the motivation and necessary background

of our technique. Figure 1 shows the example program E we use
for illustration throughout the paper.

Motivation. In previous work, we found that existing dynamic
impact analyses such as PI/EAS can be too imprecise in
practice [6]—on average, only about half of the methods reported
as impacted are really impacted. In particular, for methods at the
core of a software system, PI/EAS can include in the impact sets
for such methods most or all methods in the system. For example,
if querying the entry method of the Java application JMeter, the
developer using PI/EAS will end up inspecting all 732 methods
executed by the test suite, making impact analysis virtually
impossible to use in practice. Therefore, because analyzing
potential impacts is critical before applying changes, much smaller
and precise impact sets are desirable for developers, as long as
safety is preserved (i.e., no real dynamic impacts are missed).

Program Dependencies. Program dependencies are classified
as control or data dependencies [19]. A statement s1 is control
dependent [8] on a statement s2 if a branching decision taken
at statement s2 determines whether statement s1 is necessarily
executed. A statement s1 is data dependent [2] on a statement
s2 if a variable v defined (written) at s2 is used (read) at s1 and
there is a definition-clear path in the program for v (i.e., a path that
does not re-define v) from s2 to s1. A dependence graph [8] is
a static program representation where nodes represent statements
and edges represent both control and data dependencies among
those statements.

Dynamic Impact Analysis. In this paper, we focus on analyses
that identify dynamic impacts that occur on individual program
versions, without changes being necessarily involved [14]. Such
a dynamic impact analysis takes a program P , a test suite T , and a
set of methodsM and outputs an impact set containing the methods
in P potentially impacted by M when running T . One example
technique is PATHIMPACT [14], which collects runtime traces of
executed methods. For each method m in M that is queried for its
impacts, PATHIMPACT uses the method execution order found in
the runtime traces of P for T . The analysis identifies as impacted
m and all methods executed in any trace after m.

Figure 2 shows an example trace for PATHIMPACT, where r is a
method-return event and x the program-exit event. The remaining

marks are the entry events of methods. For query M2, in addition
to M2 itself, PATHIMPACT first finds M5, M3, and M4 as impacted
because they were entered after M2 was entered and then finds M0
and M1 because they returned after M2 was entered (i.e., parts of
them executed after parts or all of M2). Thus, the resulting dynamic
impact set of M2 is {M0, M1, M2, M3, M4, M5} for this trace. When
more than one trace exists, PATHIMPACT returns the union of the
impact sets for all traces.

EAS [3] optimizes PATHIMPACT by tracking only the first
and last events per method. Thus, we consider PI/EAS the
most cost-effective and representative dynamic impact analysis
comparable to DIVER. One other technique is more precise than
PI/EAS, but for a very small margin and a greater cost [5].

3. TECHNIQUE
For our new impact analysis DIVER to be safe with respect to

an execution set and also precise and practical, we need something
much better than the execute-after relation of PI/EAS, which is
too conservative. The problem is that reaching a method m′ after a
method m at runtime is necessary for m to impact m′, but not all
such methodsm′ necessarily depend onm. To fix this problem, we
propose to build first the (whole-program, static) dependence graph
and then use it to find which of those methods really depend on m.

3.1 Overview
The process of computing the dependence graph and using it

for dynamic impact analysis is shown in Figure 3. It works in
three phases: static analysis, runtime, and post-processing. The
inputs for the entire process are a program P , a test suite T , and
impact-set queries M . To optimize the static-analysis phase, the
process first runs a profiler which executes the test suite on the
program to quickly find whether any exceptions are raised by a
method but are not caught there or not caught at all. This lets the
static-analysis phase decide whether it can safely skip computing
some control dependencies caused by unhandled exceptions.

After profiling, the static-analysis phase computes data
dependencies (DD) and control dependencies (CD). For the
CDs, the process first computes regular CDs caused by branches,
polymorphic calls, and intraprocedural exception control-flows.
For the remaining exception control-flows [22] (ExInterCDs in
Figure 3), the process computes the CDs for the exception types
that the profiler detected as not handled by the originating methods.
After all dependencies are found, the dependence graph is built and
passed to the post-processing phase (i.e., not needed at runtime).

For the runtime phase, the static analysis creates the instrumented
version P ′ of P using only probes for monitoring method-entry



Runtime
Run P’ with each test t in T

Instrumented program P’

Impact Computation
Dependence graph

Per-test method event tracesQuery set M

Post-processing

Compute 
all DDs

Compute 
regular CDs

Build 
dependence 

graph
DDs + 

regular CDs

Compute
ExInterCDs

DDs

Program P

Dependence graphInstrument P for method event tracing

Static Analysis
Uncaught exception profiler

Decisions
on CDs

Test suite T

Test suite T

Impact set of M

P

DDs + all required CDs

Figure 3: Process for dynamic impact analysis using DIVER.

and returned-into events (Section 2). The instrumented program
P ′ is similar to that of PI/EAS except that, instead of tracking
two values per method, it traces the whole sequence of method
events—as PATHIMPACT does—because DIVER needs entire
traces to determine transitive dependencies at post-processing.
Nevertheless, DIVER compresses these traces on the fly at
reasonable costs, as PATHIMPACT does, to make space costs
acceptable. In all, the runtime phase executes P ′ with test suite T
to produce one compressed method-level trace per test case.

The post-processing phase lets the user query the impact set of
a method set M . Any number of queries can be made at this point
without re-running the first two phases. For each query, DIVER
uses the dependence graph from the static phase and the traces from
the runtime phase to identify all methods that depended directly
or transitively on any method in M on any of those traces. M is
included in the result because every method impacts itself.

To illustrate, consider the trace for input 〈a=0, b=-3〉 in Figure 2
where subscripts e and i denote the entry and returned-into
events, respectively. For a query M = {M2}, DIVER traverses the
trace to find which dependencies (from the dependence graph)
are exercised due to methods executed after M2 and, via those
dependencies, which methods depended directly or transitively
on any occurrence of M2. When DIVER finds M2, the impact set
starts as {M2}. Then, the only outgoing dependence from M2 in
the graph is exercised because its target M5 occurs next, so M5 is
impacted. Thus, DIVER finds the impact set {M2, M5}, in contrast
with PATHIMPACT which reports {M0, M1, M2, M3, M4, M5}.

3.2 Dependence Graph and Propagation
The static dependence graph of the entire program is a key

ingredient of our technique. Unlike the system dependence
graph [10], however, the dependence graph built in the static phase
of our technique does not include summary edges because DIVER
is dynamic after all and, thus, does not require context-sensitive
analysis. DIVER uses this graph only to prune runtime traces.

Interprocedural (i.e., across methods) DDs in the dependence
graph are classified into three types: parameter DDs from actual
to formal parameters in method calls, return DDs from return
statements to caller sites, and heap DDs from definitions to
uses of heap variables (i.e., dynamically-allocated variables not
passed or returned explicitly by methods). Parameter and return
DDs are exercised at runtime only if the target method executes
immediately after the source. Thus, the type of a DD lets DIVER at
post-processing decide whether the dependence was exercised and
the target method of that dependence was impacted by the source.

To facilitate our presentation of DIVER, we refer to the specific
target statements of incoming interprocedural dependence edges to,
and the source statements of outgoing interprocedural edges from,

a method as incoming ports (IPs) and outgoing ports (OPs) of that
method, respectively. An impact propagating to a method via an
incoming edge e will enter the method through the IP for e. If
an impact propagates beyond this method through outgoing edges,
it will exit through all OPs that are reachable via intraprocedural
(i.e., within the method) edges from the IP for e. An impact that
starts in a method will propagate through all OPs of that method.

3.3 Impact Computation
The post-processing phase of DIVER answers queries for impact

sets using the dependence graph from the static phase and the traces
from the runtime phase. Algorithm 1 formalizes this process.

Algorithm 1 : COMPIS(Dependence graph G, trace L, method c)

1: ImpOPs := ∅ // map of edge type to set of impacted OPs
2: ImpactSet := {c} // impact set of c
3: start := false, pre_m := null // preceding method occurrence
4: for each method event e∈L do
5: if ¬ start then {start := m(e) = c; if ¬start then continue}
6: if e is a method-entry event then
7: if m(e)=c then
8: for each outgoing edge oe from n(m(e)) in G do
9: ImpOPs[type(oe)] ∪= {src(oe)}

10: pre_m := m(e) // method occurrence; continue
11: for each incoming edge ie to n(m(e)) in G do
12: if type(ie)=return∨src(ie)/∈ImpOPs[type(ie)] then
13: continue
14: ImpactSet ∪= {m(e)}
15: for each outgoing edge oe from n(m(e)) in G do
16: if src(oe) is reachable from tgt(ie) in G then
17: ImpOPs[type(oe)] ∪= {src(oe)}
18: else // e is a method-returned-into event
19: for each incoming edge ie to n(m(e)) in G do
20: if type(ie)=parameter∨src(ie)/∈ImpOPs[type(ie)] then
21: continue
22: ImpactSet ∪= {m(e)}
23: for each outgoing edge oe from n(m(e)) in G do
24: if src(oe) is reachable from tgt(ie) in G then
25: ImpOPs[type(oe)] ∪= {src(oe)}
26: if pre_m=m(e) then {continue}
27: for each edge type t ∈ {parameter, return} do
28: ImpOPs[t] \= {z |z ∈ ImpOPs[t] ∧ m(z) = pre_m}
29: pre_m := m(e) // preceding method occurrence
30: return ImpactSet

The algorithm inputs a dependence graph G, an execution trace
L and a queried method c, and outputs the impact set of c. m(e)
gives the method associated with a method event e; n(m) is the set
of dependence-graph nodes for all statements in method m; m(z) is
the method to which port z belongs; src(d), tgt(d), and type(d) are
the source node, target node, and type of edge d, respectively.

To maximize precision, an interprocedural edge d exercised for
the ith time in the trace propagates an impact to its target (IP port)
only if the source (OP port) of d for that ith occurrence has also
been impacted. To that end, an impacted OP set per edge type,
which starts empty at line 1, is maintained at lines 9, 17, and 25.
These sets track impact propagations on ports to ensure that only
the methods transitively reachable from c through impacted ports
are reported as impacted. The impact set starts with the queried
method c (line 2) and grows as the trace is traversed (lines 4–29).

Methods executed before the first occurrence of c cannot be
impacted, so their events are skipped using a flag start (lines 3
and 5). Methods executed after c are checked to determine if they
are impacted, for which two key decisions are made. First, the
algorithm decides that the impact of c propagates into a method



m(e) if there is an impacted port in ImpOPs that is the source of
an interprocedural edge of the same type to m(e) (lines 11–14 for
method-entry events and lines 19–22 for returned-into events).

The second key decision is to determine whether an impact
propagates out of m(e) by finding the OP ports of m(e) that are
reachable, via intraprocedural edges inside the method, from
the impacted IP ports of that method (i.e., the target ports of
impact-propagating edges according to the first decision). Those
impacted OPs are added to ImpOPs to continue looking for impacts
in the rest of the trace (lines 15–17 for method-entry events and
lines 23–25 for returned-into events). As for the queried method c,
all of its OPs are added to ImpOPs when c executes (lines 7–10).

To determine impact propagations through interprocedural edges
on the dependence graph, those edges can be classified into two
categories, described next. All edges in each category share the
same propagation rules.
Adjacent edge. DD edges of types parameter and return are
classified as adjacent edges. An adjacent edge from method m
to method m′ models an interprocedural DD between the two
methods. Through these edges, an impact can propagate from m
to m′ only if m′ executes immediately after m. To realize this
rule, an OP z that is the source of an adjacent edge is added to the
impacted OP set ImpOPs, as other impacted OPs, when found to
propagate the impact beyond m(z) in the trace. The port is then
removed from that set (lines 26–28) after matching it to an IP in the
immediate caller or callee because the corresponding parameter or
return value should not be matched to IPs of methods that occur
later in the trace. The method occurrence is tracked by pre_m,
initialized at line 3 and updated at lines 10 and 29.
Execute-anytime-after edge. All other interprocedural edges are
execute-anytime-after edges. Such an edge from m to m′ models
an interprocedural CD or heap DD between these two methods such
that an impact in m propagates to m′ if and only if m′ executes
anytime after m in the trace. Such edges propagate impacts to
their targets if their sources (OPs) are impacted when the targets are
reached later. Thus, the sources of these edges are never removed
from the impacted OP set ImpOPs once added to that set.

It is worth noting that the way in which propagations rules are
applied depends on the type of method event being processed in
the trace. For instance, no return edges are considered for impact
propagation at method-entry events (lines 12–13) and no parameter
edges are considered at returned-into events (lines 20–21) because
of the semantics of those event types (see Section 2). Also, all
OPs of the queried method c are marked as impacted at each entry
event found for c. Thus, it is not necessary to do the same for the
returned-into events of c because the OPs of c are already marked
as propagated at the entry of c in the trace.

In sum, according to the propagation rules of DIVER, for each
event in the trace, the method associated with that event is added
to the impact set if it is determined that at least one of its IPs is
directly or transitively impacted by the queried method. After all
events of the trace are processed in order, the algorithm returns as
its output the resulting impact set for that trace (line 30). If multiple
traces are available, one run of the algorithm per trace is required
and the result is the union of the individual impact sets. Also, for
the impact of multiple methods, the algorithm can be run once per
method or can be easily adjusted to treat c as a set for efficiency.

4. EVALUATION
This section presents our preliminary empirical evaluation of

DIVER. Our goal was to assess the precision of this new technique
and its practicality in terms of time and space costs.

4.1 Implementation
Exception-handling Fix for PI/EAS. The original description

of PI/EAS [3] deals with exceptions handled in the raising method
or its caller. However, if neither method handles the exception
at runtime, the returned-into events for all methods in the call
stack that do not handle the exception will not be logged and
those methods can be mistakenly missed in the resulting impact
set. To address this problem, we implemented a corrected version
of PI/EAS, which we call PI/EASC . PI/EASC captures all
returned-into events by wrapping the entire body of each method in
a try-catch block to identify uncaught exceptions. The added catch
block, when reached by such an exception, adds the corresponding
returned-into event (which would be missed otherwise) and then
re-throws the exception to continue the execution, thus preserving
the original semantics of the program.

DIVER. To build the dependence graph, we used our
dependence-analysis system DUA-FORENSICS [21]. For exception-
al control dependencies, our implementation takes the exceptional
control flow graph (ExCFG) provided by Soot [12] and applies both
the classical algorithm for control-dependence computation [8] and
the extended algorithm for interprocedural control dependencies
[22]. When computing interprocedural-exception CDs, DIVER
includes in the throwable set of each ExCFG node all exceptions,
both checked (declared) and unchecked (undeclared) for that
method, thrown by that node due to a throw instruction in it or a
method that it calls that can throw unhandled exceptions.

4.2 Experiment Setup
Subjects. We chose four Java programs of different types and

sizes, as summarized on the first three columns of Table 1, for this
preliminary study. The size of each subject is measured as the
number of non-comment non-blank lines of code (LOC) in Java.
Schedule1 is a priority scheduler. NanoXML is a lean and efficient
XML parser. Ant is a cross-platform build tool. XML-security is
an Apache library for signatures and encryption. We took these
subjects and their test suites from the SIR repository [7] and picked
the first available version of each one in that repository.

Methodology. For our experiments, we applied PI/EASC and
DIVER separately to each subject on a Linux workstation with a
Quad-core Intel Core i5-2400 3.10GHz processor and 8GB DDR2
RAM. To obtain the method traces, we used the entire test suites
provided with the subjects. To compare the analysis precision,
we calculated for each query the impact set size for DIVER and
PI/EASC and the size ratio of the first one to the second one.
To measure and compare the efficiency of the techniques, we
first computed for each subject the time and space costs of their
respective static-analysis and runtime phases. We did this only
once per subject and technique because all queries performed
later reuse the results of the first two phases. Then, for the
post-processing phase, we collected the time costs per query.

4.3 Results and Analysis
In this section, we report and discuss the relative precisions of

DIVER and PI/EASC and the costs that both techniques incur.

4.3.1 Precision
Table 1 presents the precision results for DIVER and PI/EASC ,

with two statistics per subject and overall for all queries (last
row) for the corresponding data points: the mean and the standard
deviation (stdev) of the impact set sizes and ratios. The #Queries
column lists the number of single-method queries versus the
method total per subject (in parenthesis), which is equal to the
respective method-level test coverage.



Table 1: Precision in terms of impact set sizes and their ratios for DIVER to PI/EASC .

Subject #LOC #Tests
#Queries PI/EASC IS Size DIVER IS Size IS Size Ratio Wilcoxon

(#all methods) mean stdev mean stdev mean stdev p-value
Schedule1 290 2650 20 (24) 18.0 1.6 12.8 4.7 71.3% 24.5% 6.65E-05
NanoXML 3,521 214 172 (282) 82.6 48.1 37.1 28.9 51.7% 33.1% 2.40E-30
Ant 18,830 112 607 (1863) 159.5 173.4 17.9 34.3 25.7% 33.6% 2.94E-100
XML-security 22,361 92 632 (1928) 199.8 168.4 45.1 68.1 28.8% 30.3% 4.79E-102
Average 166.2 164.9 32.2 53.1 30.8% 33.3% 9.29E-07

Table 2: Time and space costs of DIVER and PI/EASC , including the overheads of profiling uncaught exceptions for DIVER.

Subject Prof.
Static analysis phase Runtime phase

Post-processing phase
Execution data sizePI/EASC DIVER

PI/EASC DIVER Normal PI/EASC DIVER mean stdev mean stdev PI/EASC DIVER

Schedule1 12.7s 4.8s 5.6s 4.0s 10.1s 15.7s 0.7s 0.1s 14.6s 6.0s 1.0M 8.2M
NanoXML 12.1s 11.3s 14.4s 0.4s 1.0s 5.4s 0.1s 0.1s 6.2s 8.8s 0.4M 2.4M
Ant 29.2s 27.3s 142.4s 1.2s 1.5s 2.0s 0.1s 0.1s 3.2s 7.6s 1.0M 2.0M
XML-security 37.1s 33.4s 157.7s 4.3s 4.8s 14.8s 0.0s 0.0s 7.4s 9.6s 0.5M 3.8M
Average 30.4s 27.8s 131.9s 2.5s 3.0s 8.3s 0.1s 0.1s 5.6s 8.6s 0.7M 2.9M

The results in the table show that, on average, DIVER impact
sets were much smaller than for PI/EASC , especially for the two
largest subjects. Large numbers of false positives for PI/EASC

were identified as such and pruned by DIVER. For example,
PI/EASC identified 160 methods on average in its impact sets for
Ant, whereas DIVER reported only 18 for a mean ratio of 25.7%.
(These values are means of ratios—not ratios of means.) Also,
the large standard deviations indicate that the impact-set sizes
fluctuate greatly across queries for every subject except Schedule1.
The results suggest that DIVER is even stronger with respect
to PI/EASC for larger subjects, which are more representative
of modern software. For the smaller subjects Schedule1 and
NanoXML, DIVER provides smaller gains possibly due to the
proximity and interdependence of the few methods they contain.

We applied the Wilcoxon signed-rank one-tailed test [25] for all
queries in each subject and also for the set of all queries in all
subjects. This is a non-parametric test that makes no assumptions
on the distribution of the data. The last column in Table 1 shows the
resulting p-values. For α = .05, the null hypothesis is that DIVER
is not more precise than PI/EASC . The p-values show strongly that
the null hypothesis is rejected and, thus, the superiority of DIVER
is statistically significant for these subjects and test suites.

In all, DIVER can safely prune 70% of the impact sets computed
by PI/EASC , which amounts to an increase in precision by a factor
of 3.33 (i.e., by 200%) over the almost-best existing technique.

4.3.2 Efficiency
Table 2 reports the time costs of each phase per technique,

including the uncaught exception profiling (Prof.), static analysis,
execution for the non-instrumented program (Normal) and for both
techniques, and post-processing. For the last phase, we show per
subject and overall the means and standard deviations of query
costs. The last row shows averages weighted by #Queries.

The profiling numbers suggest that automatically finding the
static-analysis settings is cheap—half a minute or less. As
expected, for static analysis, DIVER incurred higher costs than
PI/EASC . For both techniques, these costs increase with the size
of the program, with DIVER growing faster. However, on average
the DIVER static analysis finished within 2.2 minutes, which seems
reasonable because this is done only once per program for all
possible queries. For the runtime phase, both techniques had small
overheads. For the post-processing phase, due to the traversal of
longer traces, DIVER needed more time than PI/EASC . Yet, the
average cost of 5.6 seconds per query still seems quite practical.

The space costs for the runtime data for the two techniques are
shown on the rightmost two columns of Table 2. As expected,
the DIVER traces use more space than the PI/EASC registers.
One expected correlation is that longer traces lead to greater
post-processing costs. In addition, DIVER incurs on average only
3MB cost for storing the dependence graph during static analysis.

In all, DIVER achieved significantly greater precisions for these
subjects at acceptable time and space costs.

4.4 Threats to Validity
The main internal threat is the possibility of implementation

errors in DIVER and our study scripts. However, DIVER is
based on Soot and DUA-FORENSICS, both of which have
matured over the years, and we verified the scripts manually
for each experiment phase. Another internal threat is the risk of
missing static dependencies due to Java language features such
as reflection and multi-threading. However, we confirmed that,
for our study subjects running on their test suites, there was no
use of such features except for Ant where reflection is used.
Thus, we refactored Ant’s code to obtain a reflection-free yet
semantically-equivalent version (at least for the test suite).

The main external threat is that the subjects we used do not
necessarily represent all types of programs from a dynamic
impact-analysis perspective. Another external threat is inherent
to dynamic analysis: the test suites we used cannot exercise all
behaviors of the respective subjects. Thus, our results must be
interpreted in light of the extent of the ability of those test suites to
exercise their subjects. To address these issues, we chose subjects
of diverse sizes and functionality types for which reasonable test
suites are provided.

The main construct threat is that we used impact set sizes as
inverse indicators of precision assuming that recall is not affected.
This is safe for analyzing individual program versions, but for
predicting the impacts that actual changes will have, recall might
be less than perfect [6] if those changes modify the control flow of
the program to execute methods not reported by DIVER.

A conclusion threat is that we statistically analyzed only methods
for which we could obtain impact sets (i.e., executed at least once),
but this is safe for our comparison with other dynamic techniques.

5. RELATED WORK
Law and Rothermel introduced PATHIMPACT [14] to compute

dynamic impacts based on the execution order of methods and
Apiwattanapong and colleagues proposed EAS [3] to safely reduce



the size of PATHIMPACT traces. This technique improves the
efficiency of PATHIMPACT but not its precision. DIVER also uses
the whole method-level execution traces, as PATHIMPACT does,
but it does so while improving its precision significantly.

Impact-analysis techniques based on dependence analyses other
than static slicing have been explored as well. Sun and colleagues
proposed OOCMDG [23] and LoCMD [24] to model dependencies
among classes, methods, and class fields. Their techniques were
also extended for impact analysis with hierarchical slicing and for
multiple levels of granularity. These models, however, include only
structural dependencies (e.g., call edges) based on object-oriented
features whereas our dependence graph models all interprocedural
data and control dependencies for all types of software.

INFLUENCEDYNAMIC [5] combines dependence analysis and
dynamic information for impact analysis. However, it considers
only a subset of the method dependencies that DIVER models
and its precision improvements over PATHIMPACT are only
marginal. Huang and Song [11] extended INFLUENCEDYNAMIC
for objected-oriented programs by adding dependencies between
fields. Unlike DIVER, however, these approaches model partial
data dependencies only and none of them achieve a noticeably-better
precision than PI/EAS, as DIVER remarkably does.

6. CONCLUSION
We presented a novel dynamic impact analysis called DIVER. By

tracking impacts via method-level execution traces and applying
static-dependence knowledge, DIVER attains at acceptable costs
a much better precision than existing dynamic impact analyses
(e.g., PI/EAS). Our preliminary study on Java software shows that
DIVER can prevent almost 70% of false positives from the impact
sets produced by PI/EAS, with strong statistical significance.
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