Fortifying LLM-Based Code Generation with Graph-Based Reasoning on Secure
Coding Practices

Abstract

The code generation capabilities of Large Language Mod-
els (LLMs) have transformed the field of software develop-
ment. However, this advancement also presents significant
security challenges, as LLM-generated code often contains
vulnerabilities. One direction of research strengthens LLMs
by injecting or refining security knowledge through curated
datasets, model tuning, or static analyzers. While effective in
certain settings, these methods can be resource-intensive, less
adaptable to zero-day vulnerabilities, and often inapplicable
to proprietary models. To address these challenges, we intro-
duce GRASP, which explores a new direction that focuses
on structured reasoning over Secure Coding Practices (SCPs)
rather than additional training or external feedback. GRASP
comprises two key ideas: (1) an SCP graph that organizes
SCPs into a Directed Acyclic Graph (DAG) capturing depen-
dencies and relationships, and (2) a graph-based reasoning
process that systematically guides LLMs through relevant
SCPs for code generation. This design enables interpretable,
model-agnostic, and scalable security improvements, partic-
ularly for previously unseen vulnerabilities. Our evaluation
shows that GRASP consistently achieves Security Rates (SR)
exceeding 80% across multiple LLMs, and delivers up to 88%
improvements over baselines on zero-day vulnerabilities.

1 Introduction

The rapid advancements in Large Language Models (LLMs)
have transformed software development by enhancing coding
capabilities [10, 13, 15,31, 32, 44]. Research highlights the
productivity benefits of these models in software develop-
ment, with GitHub Copilot users completing tasks 55% faster,
experiencing improved job satisfaction, and reduced cognitive
load [17, 18]. Google’s findings further highlight the advan-
tages of ML-enhanced code completion, demonstrating a 6%
reduction in time between builds and tests with single-line
ML completion, along with a 25-34% user acceptance rate
for code suggestions [21].

Despite these advancements, critical security concerns per-
sist in adopting LLMs for code generation. Studies have
shown that LLM-generated code frequently contains vulnera-
bilities. For instance, GitHub Copilot was found to produce
vulnerable code in approximately 40% of cases [4,50]. More
recently, Mou et al. [41] reported that popular LLMs such as
GPT-40 generate secure code only 70-75% of the time. These
rates are untenable in practice, as insecure code can read-
ily lead to data breaches, privilege escalation, or widespread
system compromise.

To mitigate these concerns, researchers have proposed sev-
eral techniques to strengthen LLMs for secure code genera-
tion. SVEN [23] applied prefix tuning to improve generation
security. SafeCoder [24] extended this approach using in-
struction tuning to provide more flexible control over secure
code generation. PromSec [42] introduced prompt-level opti-
mization through graph-based adversarial training, leveraging
curated vulnerability datasets and external static analyzers
such as Bandit [47] and SpotBugs [56] to guide the refine-
ment process. Together, these methods represent one direction
of research that strengthens LLMs by equipping them with
additional security knowledge or refining it through exter-
nal signals. While effective, this direction faces persistent
challenges, including reliance on curated datasets that miss
zero-day vulnerabilities, the need for model access unavail-
able in proprietary systems, added overhead from external
analyzers and limited interpretability.

In this paper, we pursue a novel yet complementary di-
rection that focuses on ensuring the reliable and systematic
operationalization of security knowledge. Recent work shows
that LLMs already exhibit awareness of security concepts
relevant to software development [16,57]. In this case, the
challenge is not acquiring knowledge but ensuring its con-
sistent application during code generation. This difficulty
mirrors a longstanding issue in human software development
and reflects the well-documented gap between security the-
ory and coding practice [34]. Developers may understand
secure design concepts abstractly but fail to apply them under
real world conditions. To address these gaps, the software



engineering community has long relied on Secure Coding
Practices (SCPs) [8, 38, 49], which provide the structured
discipline needed to translate abstract knowledge into consis-
tent implementation. Empirical studies [34] further confirm
that adherence to SCPs enabled developers to produce more
secure code in practice, motivating us to consider whether
similar structured practices can help LLMs.

We therefore extend this precedent by adapting it to LLMs.
Just as disciplined methods helped developers reliably apply
what they already knew, structured mechanisms can guide
LLMs in transforming their latent security knowledge into
secure outputs. GRASP builds on this by operationalizing
SCPs for LLM-based code generation. It does so through two
key ideas: (i) an SCP Graph that organizes practices into a
Directed Acyclic Graph (DAG) encoding their dependencies
and relationships, and (ii) a graph-based reasoning process
that systematically applies these practices in context. In this
way, GRASP represents a novel direction relative to prior
work, shifting the focus from augmenting security knowledge
through retraining or curated datasets to ensuring its reliable
and systematic operationalization. This design yields natural
benefits such as generalization to zero-day vulnerabilities,
model agnosticism, freedom from external analyzers, and
improved interpretability.

The key contributions of this paper are as follows:

* We investigate the role of Secure Coding Practices
(SCPs) in conditioning LLMs for secure code gener-
ation. SCPs, widely used by developers to prevent vulnera-
bilities, can also be leveraged to guide LLMs toward more
secure outputs. We advance this premise by modeling SCPs
as a structured graph and analyzing their effectiveness for
security-aware generation.

* We propose GRASP, a reasoning-driven framework that
leverages an SCP Graph to fortify the code generation
process. The SCP Graph is a Directed Acyclic Graph that
encodes dependency relationships among SCPs. GRASP
traverses this graph dynamically based on task relevance, in-
crementally applying security transformations while main-
taining logical consistency and functional correctness.

* We construct a benchmark dataset for secure code gen-
eration, annotated with unit tests to enable joint evalua-
tion of security and functionality. The benchmark consists
of a diverse collection of CWE-based scenarios, each paired
with unit tests to ensure functional correctness. To the best
of our knowledge, this is the first benchmark for secure
code generation that simultaneously accomplishes both (a)
the use of natural language prompts instead of code com-
pletion prompts, and (b) the joint evaluation of security and
functional correctness.

* We conduct comprehensive experiments across multiple
LLMs, CWEs, and zero-day CVEs. GRASP improves
the overall Security Rate (SR) to over 80% for Claude,

GPT-40, Gemini and Llama3, while maintaining functional
correctness. It also generalizes to unseen vulnerabilities,
achieving SR gains of up to 88% over baseline methods on
real-world CVEs.

2 Background and Related Work

In this section, we provide the necessary background knowl-
edge and discussion of closely related work.

2.1 LLMs in Code Generation

Large Language Models (LLMs) have significantly impacted
the field of code generation, offering new possibilities for au-
tomating and assisting in software development tasks. Brown
et al. [7] demonstrated the potential of large-scale language
models to perform various tasks, including code generation,
with minimal task-specific fine-tuning. Chen et al. [9] further
explored the capabilities of LLMs trained specifically in code,
highlighting their potential and limitations. The development
of CodeBERT by Feng et al. [14] showcased the effectiveness
of pre-training models on both programming languages and
natural language descriptions.

LLMs have emerged as prominent tools for software de-
velopers in code-generation tasks. Proprietary models such
as OpenAl’s GPT series [44], Anthropic’s Claude [10], and
Google’s Gemini [13] offer advanced code generation fea-
tures with strong instruction-following abilities. They are
designed to understand and generate code across various pro-
gramming languages. GitHub Copilot [17], built on OpenAI’s
Codex [46], is specifically tailored for code completion and
generation tasks within development environments. In con-
trast, open-source models like Meta’s LLama3 [36] and Sales-
force’s CodeGen [43] provide accessible alternatives. These
models differ in their accessibility, initial training focus, and
level of instruction tuning, with proprietary models often of-
fering more advanced performance for code-related tasks [1].

2.2  Vulnerable Code

Vulnerable code encompasses software flaws that can be ex-
ploited to compromise the security of systems, potentially
leading to significant issues such as unauthorized access and
data breaches. Addressing these flaws is crucial for ensuring
the security and integrity of software applications [33].

The Common Weakness Enumeration (CWE) frame-
work [40], maintained by the MITRE Corporation, categorizes
these vulnerabilities into a structured list of weaknesses that
can lead to security risks. As part of their efforts, MITRE
maintains a list of the Top 25 CWEs, which highlights the
most critical and prevalent weaknesses in software [39]. For
example, SQL Injection (CWE-89) is a prevalent vulnerabil-
ity that allows attackers to manipulate SQL queries through



malicious input, potentially exposing or altering database con-
tent. Cross-site scripting (XSS) (CWE-79) is a vulnerability
that allows attackers to inject malicious scripts into web ap-
plications, potentially leading to unauthorized access or data
theft. Cross-Site Request Forgery (CSRF) (CWE-352) tricks
users into performing unintended actions on a Web applica-
tion. Insecure Deserialization (CWE-502) involves the unsafe
handling of serialized data, which can be exploited to execute
arbitrary code or alter application data.

The impact of these vulnerabilities can be substantial. Data
breaches resulting from such flaws compromise user privacy,
incur significant financial losses due to remediation efforts
and downtime, and cause reputation damage that erodes cus-
tomer trust [25, 26]. Effective detection and mitigation of
these vulnerabilities involve techniques such as static code
analysis [11,54,55] and dynamic code analysis [27,48, 58],
complemented by manual code reviews.

2.3 Secure Coding Practices

Secure coding practices (SCPs) are essential for coaching
software developers in the development of resilient and secure
software. They encompass a variety of techniques designed
to prevent vulnerabilities and ensure that the code behaves
securely under various conditions [2, 35]. For instance, to
prevent SQL Injection, which occurs when malicious input
manipulates SQL queries, it is crucial to use parameterized
queries and prepared statements. This ensures that user input
is treated as data rather than as executable code. Similarly, to
mitigate cross-site scripting (XSS), it is vital to ensure that
user input is properly sanitized before being rendered.

Resources such as OWASP Secure Coding Practices [49],
CERT Secure Coding Standards [8], and Microsoft Secure
Coding Guidelines [38] provide comprehensive guidance, in-
cluding centralized input validation, secure data encoding/de-
coding, and robust authentication and session management.
Following these practices helps developers significantly re-
duce the risk of vulnerabilities.

2.4 LLM-Based Code Generation Fortification

Improving the security of LLM-based code generation has
gained increasing attention in recent research. He et al. [23]
introduced SVEN, a control method that applies prefix-tuning
to steer models toward generating secure or insecure code.
Rather than updating the model’s original weights, this ap-
proach trains only lightweight prefix parameters, thereby re-
ducing the number of trainable components while retaining
flexibility for code generation tasks. Building on this direction,
He et al. [24] proposed SafeCoder, which performs security-
focused instruction tuning using a large-scale dataset of veri-
fied vulnerability fixes gathered from GitHub commits. Safe-
Coder jointly optimizes for both security and functional utility,
yielding a notable 30% improvement in code security across

diverse tasks. However, such approaches require considerable
computational resources and may overfit to specific vulner-
ability patterns. Beyond model tuning, prompt engineering
has been leveraged to craft prompts that encourage secure
coding [53].

Recent work by PromSec [42] advances this paradigm by
introducing a generative adversarial graph neural network
(gGAN)-based framework to iteratively optimize prompts for
secure code generation. PromSec employs a dual-objective
contrastive learning strategy to simultaneously address vul-
nerability mitigation and functional correctness, reducing re-
liance on iterative LLM inferences while achieving transfer-
ability across models and programming languages.

3 Motivation and Observation

3.1 Risk of LLM-based Code Generation

The rapid adoption of LLMs in software development has
spurred notable advancements in code generation [18,21].
Although LLMs have made significant strides in code gen-
eration, they still present substantial security risks [30, 53].
Studies have shown that Al tools for code generation like
GitHub Copilot generate vulnerable code about 40% of the
time [4,50]. Khoury et al. found that, out of 21 code gener-
ation tasks, ChatGPT [44] produced secure code for only 5
tasks that met security standards [30].

In our study, we assessed the tendency of LLMs to gen-
erate vulnerable code. To do this, we evaluated OpenAl’s
GPT-40-mini [45], Anthropic’s Claude-3-haiku-20240307 [3],
Google’s Gemini-1.5-flash-latest [20] and Meta’s Llama-3-
8B-Instruct [37]. We created 36 natural language code gener-
ation prompts targeting 8 different CWEs, with 1-7 prompts
per CWE, each designed to generate Python code that poten-
tially contains specific vulnerabilities. We tested two prompt-
ing methods: (1) using the Base Model without any modifica-
tions, (2) using a Zero-Shot prompt that included an additional
security-focused instruction: “You are a Security Engineer
and you develop code that adheres to secure coding practices.”
We generated 25 samples for each prompt across all LLMs
and prompt types, resulting in 7,200 samples of which we
retained a total of 7,141 syntactically correct samples.

To detect vulnerabilities in the samples, we deployed Cod-
eQL [11], a state-of-the-art static analysis tool. Each initial
prompt was linked to a specific CWE and a corresponding
CodeQL query, enabling the evaluation of the samples against
relevant security standards. We use the security rate (SR),
defined as the proportion of valid samples that are secure, as
our evaluation metric, as detailed in Equation 1 in Section 5.2.

As shown in Figure 1, our results indicate that all four
models consistently generate vulnerable code. Even when
explicitly prompted to prioritize security, improvements in se-
curity rate were limited. For example, Claude’s security rate
increased from 0.55 (Base) to 0.62 (Zero-Shot), and Gem-
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ini’s rose from 0.47 to 0.62. GPT-40 showed only a minor
improvement, going from 0.44 to 0.45. Llama-3, on the other
hand, saw a slight decline from 0.53 to 0.51. This can be
attributed to its smaller model size and limited ability to rea-
son about security-relevant patterns. These findings highlight
ongoing security challenges in LLM code generation, even
with security-focused prompting, underscoring the need for
structured methods to fortify LLM-based code generation.

3.2 Challenges with Approaches to Secure
Code Generation

Recent work has introduced various techniques for the for-
tification of LLM-based code generation, ranging from fine-
tuning strategies to prompt-level interventions. These ap-
proaches exemplify one direction of research, which strength-
ens LLMs by adding or refining security knowledge through
training, curated data, or external analyzers. While these meth-
ods have led to measurable gains, they remain constrained by
fundamental limitations that hinder broad applicability and
long-term maintainability. We highlight four key challenges
that motivate the design of GRASP.

Dependence on Curated Vulnerability Datasets:
SVEN [23] and SafeCoder [24] harden LLMs through prefix-
tuning and instruction tuning, respectively, with both methods
requiring large, curated datasets of vulnerability-fix pairs.
PromSec [42], while not tuning the model itself, also relies
on curated vulnerability data to train a separate generative
adversarial graph network (gGAN). Although effective on
previously seen patterns, all three approaches are tightly
coupled to specific vulnerability datasets and require ongoing
retraining or reoptimization as security guidelines evolve.
This dependence limits their ability to generalize to zero-day
vulnerabilities and reduces scalability across new or changing
domains. Zero-day vulnerabilities, previously unseen weak-
nesses, pose a severe challenge for security hardening systems.
Because such vulnerabilities are absent from the curated
vulnerability datasets used by most existing approaches, these
systems often fail to detect or mitigate them. The evolving
nature of zero-day vulnerabilities demands methods that can
generalize security reasoning beyond memorized patterns.

Table 1: Comparison of Secure Code Generation Approaches.

Property SVEN SafeCoder PromSec GRASP
Closed-source LLM compatible o o ° °
No training needed o o © °
No vuln dataset required 0] 0] 0] °
No external feedback tools ° [ o °
Interpretable security reasoning o) o) o) °

Note: @ indicates that the model has the property; © indicates partial or
conditional support; O indicates that it does not.

Limited Accessibility across Models: Tuning-based tech-
niques rely on access to model weights for prefix or instruc-
tion tuning, which is often infeasible in practice. SVEN [23]
and SafeCoder [24], for instance, are incompatible with pro-
prietary LLMs such as GPT-40 or Claude. This restriction
severely limits deployment in many real-world settings where
only black-box model access is available.

Dependence on External Feedback Mechanisms: Prom-
Sec [42] requires iterative prompt refinement using external
static analyzers such as Bandit [47] or SpotBugs [56]. While
this strategy can help detect certain vulnerabilities, it intro-
duces non-trivial infrastructure dependencies and runtime
overhead. Its performance also relies on the effectiveness of
these external tools.

Lack of Interpretability: Existing approaches provide
limited visibility into how or why specific security transfor-
mations are applied. Because their behavior is either learned
through gradient-based updates or driven by opaque feedback
loops, understanding the reasoning behind code modifications
is difficult. This poses challenges for developers, auditors,
and security engineers tasked with verifying correctness.

These challenges underscore the necessity of a new method
that circumvents the limitations of prior approaches. In this re-
gard, we introduce GRASP, a reasoning-centered framework
for secure code generation. GRASP does not require access
to model weights, curated vulnerability datasets, or external
analysis tools, while offering an interpretable mechanism
for fortifying the code generation process. By conditioning
generation on SCPs rather than historical vulnerability cor-
pora, GRASP is naturally equipped to generalize to previously
unseen, zero-day vulnerabilities. Table | highlights the key
distinctions between GRASP and existing methods.

4 GRASP Design

4.1 Design Intuition and Overview

Whereas the prior direction of work strengthens LL.Ms by
adding or refining security knowledge through training, cu-
rated data, or analyzers, our complementary direction focuses
on the systematic application of existing knowledge. SCPs
offer a principled foundation for this direction for fortifying
LLM code generation. Unlike curated vulnerability datasets
or tuning-based approaches that focus on specific code in-
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stances, SCPs are generalized, human-readable principles
widely adopted for guiding secure software development. Ex-
pressed in natural language, SCPs align well with the strengths
of LLMs, allowing them to be readily understood and rea-
soned about without requiring task-specific tuning. GRASP
builds on this foundation by introducing a reasoning-driven
framework that systematically applies SCPs during code gen-
eration.

By leveraging SCPs rather than vulnerability-specific data,
GRASP promotes generalizable security behavior that extends
beyond known vulnerability patterns. This enables the frame-
work to address a broad range of threats, including previously
unseen zero-day vulnerabilities, without relying on curated
datasets or model retraining.

Furthermore, GRASP eliminates the need for external static
analyzers by relying on internal reasoning to determine which
practices to apply. This removes the dependence on tool-
specific integrations or runtime feedback, while still allowing
the model to apply SCPs based on code context selectively. In
addition, by organizing SCPs into a sequence of interpretable
refinement steps, GRASP ensures transparency in security
decision-making and allows easier auditing and understanding
of the resulting output.

As illustrated in Figure 2, GRASP proceeds in two main
phases. First, it constructs an SCP Graph by automati-
cally extracting and organizing established guidelines in a
dependency-aware manner, followed by final manual veri-
fication. Next, leveraging this graph, it produces an initial
candidate solution and iteratively refines it via graph-guided
reasoning over the relevant practices, ensuring that the result-
ing code is both secure and functionally correct.

4.2 SCP Graph
4.2.1 Structured Representation of SCPs

In pursuing this reasoning-oriented direction, SCPs offer a
principled basis for fortifying LLM code generation, but ap-
plying them effectively introduces unique challenges. In prac-
tice, there are dozens of SCPs covering diverse concerns,
from input validation to output encoding to error handling,
and these practices are often interdependent. Some SCPs are
only applicable in specific contexts, while some must be ap-

plied in a particular order to be effective. For example, SCPs
for implementing error handling and logging should only be
applied after enforcing input validation; otherwise, invalid
input may propagate into logs or error messages, potentially
exposing sensitive information or enabling injection attacks.

When SCPs are presented as an unordered list, LLMs may
apply them in a redundant, irrelevant, or incorrectly sequenced
manner, which can fail to improve the security of their gener-
ated code and may even introduce new vulnerabilities. Addi-
tionally, providing all SCPs at once can exceed the model’s
effective context window, leading to overload and reducing
its ability to apply the practices accurately and effectively.

To address these challenges, we design the SCP Graph, a
structured representation that organizes SCPs into a Directed
Acyclic Graph (DAG). Each node corresponds to an individ-
ual SCP, while edges encode semantic relationships such as
ordering constraints and specificity hierarchies. This structure
enables GRASP to reason systematically over SCPs, selecting
only the practices relevant to the given context and applying
them in a dependency-aware manner.

4.2.2 SCP Graph Design

Nodes in the graph represent the SCPs expressed in natu-
ral language. These nodes are designed to be self-contained,
meaning each one encapsulates a specific security principle,
such as “Validate all file paths before access” or “Use pa-
rameterized queries for database operations.” At the same
time, nodes are connected through edges that capture their
dependency relationships. This structure allows each SCP to
be evaluated and applied independently based on the context
of the code, while still preserving its links to related prac-
tices for broader reasoning. Edges in the graph capture the
relationships between SCP nodes, categorized into two types:

i. Specificity Relationships which indicate connections
between general SCPs and their more specific implemen-
tations. For example, a parent node containing “Ensure
robust security measures for database management” con-
nects to more specific child nodes like “Use strongly
typed, parameterized queries” and “Implement proper
error handling for database operations”. This hierarchi-
cal structure allows GRASP to move from broad security
principles to concrete ones.



ii. Sequential Relationships which represent a required
sequence in the implementation of SCPs. For example,
an edge from “Implement input validation” to “Imple-
ment error handling for validation failure” indicates that
proper error handling can only be implemented after in-
put validation is in place. These relationships ensure that
SCPs are applied in a logical and effective order.

This design organizes SCPs hierarchically from general to
specific, supports multiple implementation paths for flexibil-
ity, and structures branches so that irrelevant subtrees can be
bypassed. Furthermore, this organization improves the clarity
and maintainability of dependencies and relationships.

4.2.3 SCP Graph Construction

SCPs can be drawn from several authoritative sources, includ-
ing OWASP [49], CERT [8], and Microsoft’s secure coding
standards [38]. While our methodology is general and sup-
ports integrating practices from any such reference, in this
work we focus exclusively on the OWASP Secure Coding
Practices Checklist, selected for its breadth, accessibility, and
widespread adoption within the developer community.

From OWASP’s checklist, we manually filter practices us-
ing two criteria to ensure suitability for code generation. First,
we retain only practices that mitigate vulnerabilities associ-
ated with the MITRE Top 25 CWEs [39], which represent the
most critical and prevalent classes of software weaknesses.
Second, we restrict ourselves to practices that apply directly
at the code level, excluding those requiring architectural or
system-level interventions. For instance, “validate input” is
included, as it directly mitigates CWE-20 (Improper Input
Validation). In contrast, “isolate development environments
from the production network” is excluded, as it pertains to
deployment architectures rather than code-level practices.

Construction of the SCP Graph is largely automated
through an LLLM-guided pipeline. The first step normalizes
the selected practices into a consistent JSON format. Next, the
LLM evaluates each pair of practices to determine whether
they form a sequential dependency, a specificity dependency,
or no dependency at all. These classifications yield the initial
directed graph. The model is then applied to detect and resolve
cycles, recommending edge removals to ensure the graph is
acyclic while preserving security semantics. It also identifies
and eliminates redundant edges that add no new informa-
tion. For example, if edges A—B and B—C exist, a direct
edge A—C may be unnecessary. Finally, the automatically
generated graph undergoes human-in-the-loop verification
wherein domain experts review dependencies, refine relation-
ships where the LLM was overly cautious or permissive, and
ensure the structure reflects practical secure coding logic. The
complete process is detailed in Appendix D.

The final SCP Graph used in this paper consists of 28 code-
level practices from OWASP, with a full listing of the practices
and their relationships provided in Table 15 in Appendix D.

4.3 SCP Graph-based Reasoning

GRASP integrates the SCP Graph using a reasoning strategy
inspired by the Graph of Thoughts (GoT) approach [6], which
models reasoning as a graph to enable flexible aggregation,
refinement, and generation of thoughts within an LLLM, en-
hancing problem-solving capabilities. However, unlike GoT
and prior methods [7, 59-61], our approach uses the SCP
Graph to fortify the LLM’s code generation process through
a structured, context-aware reasoning process specifically tai-
lored for secure code generation. Specifically, given a scenario
s and the SCP Graph Ggcp, GRASP follows three main steps:

Step 1: Initial Solution Generation. For a given coding
task, GRASP first generates a seed solution ¢ using a standard
prompt without additional constraints, ensuring the required
functionality is met. This solution serves as the foundation
for systematic security improvement.

Step 2: Graph Traversal. With ¢y, GRASP traverses Gscp
to incrementally refine the code c¢; using relevant SCPs. Each
node in the graph represents a distinct SCP, and edges encode
dependencies that must be respected during traversal. Starting
from the root, GRASP tracks two sets: V,iseq for visited SCPs
and Vieepan: for applied ones.

During traversal, each node (i.e., an SCP) is evaluated only
after all of its parent nodes have been visited. If any parent has

Algorithm 1 Graph-Based Reasoning over SCPs

Require: scenario s, SCP Graph Gscp, relevance threshold ©
Ensure: security-hardened code cy

1: ¢o < GeneratelnitialCode(s)

2: ¢j < cp; visited < 0; relevant — 0; stack <— [root]

3: while stack # 0 do

4: v « stack.pop()

5 if any parent of v ¢ visited then

6: continue

7: end if

8 if parents of v # 0 and all ¢ relevant then
9: visited «— visited U{v}
10: continue

11: end if

12: (Ri,c;) + EvaluateAndUpdate(v, ¢;)
13: visited « visited U{v}

14: if R; > 7 then

15: relevant <— relevant U{v}

16: for each child in Gscp[v].children do
17: if child ¢ visited then

18: stack.push(child)

19: end if

20: end for

21: end if

22: end while
23: ¢y < ReviseCode(c;)
24: return cy
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not yet been visited, the node is skipped and will be revisited
later when the parent finishes processing and pushes its chil-
dren onto the stack. If all parents have been visited but none
were found to be relevant, the node is first marked as visited
and irrelevant and then skipped. If at least one parent is rele-
vant, the model evaluates the SCP’s applicability by assigning
a relevance score from 1 to 5. If the score exceeds a prede-
fined threshold 7, the SCP is applied to the current code and
marked as relevant. After processing, the node is marked as
visited, and its children are pushed onto the stack. The prompt
used for relevance assessment is provided in Appendix E.

GRASP continues this process and recursively applies
SCPs in a context-aware and dependency-respecting man-
ner, while avoiding the unnecessary and irrelevant paths. The
traversal concludes once all have been marked as visited.

Step 3: Ensuring Functional Correctness. After the SCP
Graph has been traversed and relevant SCPs applied, GRASP
performs a final review step to validate the functional cor-
rectness of the generated code. This involves prompting the
LLM to reassess the full code in the context of the original
task specification, verifying that the output still meets the in-
tended behavior. The LLM also addresses issues introduced
during refinement, such as broken syntax, misplaced logic, or
inconsistencies between components. This step ensures that
the final solution is not only secure but also functionally valid.
The prompt used for this review is included in Appendix E.

Algorithm | outlines the graph reasoning process. GRASP
combines the capabilities of LLMs with a structured SCP
Graph to provide robust fortification of the LLM and its code
generation capabilities. By carefully traversing the SCP Graph
with dependency handling and relevance evaluation, GRASP
enables SCPs to be applied in a logical, efficient manner
across diverse coding tasks and security requirements.

4.4 End-to-End Example

We illustrate our method through a concrete example in a

code generation scenario. Specifically, a user prompts the

LLM with the following request: “Write a Python func-

tion named extract to use the tarfile module to ex-

tract archive.tar.gz to the directory /tmp/unpack”. With

GRASP, the LLM proceeds through the following steps:
First, the LLM generates a seed solution:

import tarfile
def extract:

archive_file = "archive.tar.gz"
extract_dir = "/tmp/unpack"
with tarfile.open(archive_file, 'r:gz') as tar:

tar.extractall (path=extract_dir)

Second, as shown in Figure 3, GRASP traverses the SCP
Graph starting from the root node.

a. SCP 1: This SCP ensures the extraction path is secure
to prevent directory traversal attacks. Since its relevance
score is 4, it is selected for processing. The code is modi-
fied to verify whether the extraction directory exists and
to create it if it does not.

import tarfile
import os
def extract:

+ if not os.path.
s.makedirs

“raction directory

Then, GRASP queues up SCP 1’s children.

b. SCP 2: This SCP focuses on memory management, which
is automatically handled by Python. Given its low rele-
vance score of 1, no changes are made.



c. SCP 4: This SCP is relevant (score 4) and ensures files
are not unintentionally overwritten. The code is updated
to check if files already exist in the extraction directory
before proceeding.

with tarfile.open(archive_file, 'r:gz')
as tar:
+ for memb

extract_dir, member.name)
t if o S t

member .name }

extraction directory")

- tar.extractall (path=extract_dir)
tar.extract (member, path=

extract_dir)

d. SCP 3: This SCP validates paths to prevent directory
traversal (score 5). It ensures that extraction paths remain
within the designated directory.

for member in tar.getmembers () :
target_path = os.path.join(extract_dir
, member.name)

+ f os.path.commonpath ((extract_dir
, target_path)) == e act_dir:
+ ath
1s outside
contains .. element")
if os.path.exists(target_path):
raise ValueError (f"File '{member.
name}' already exists in the

extraction directory")
tar.extract (member, path=extract_dir)

e. SCP 6: Since this SCP involves using an allow-list for
existing files, it is not relevant in this context (score 2),
and no changes are applied.

f. SCP 7: This SCP suggests validating user inputs within
numeric ranges. It is not applicable here as no numeric
inputs are involved (score 1), so no changes are made.

Finally, the code is verified to ensure it correctly extracts
files to /tmp/unpack while addressing security concerns such
as overwrites and directory traversal. The final solution can
be found in the Appendix B.

5 Evaluation

To evaluate the effectiveness of GRASP, we design our experi-
ments to address six core research questions. These questions
assess the security and functional impact of our method, its
generalization to real-world vulnerabilities, its internal com-
ponent effectiveness, and its overall resource efficiency.

RQ1.Does GRASP effectively fortify LLM-based code gen-
eration? (§5.3)

RQ2.Does GRASP maintain the functional correctness of
code while enhancing its security? (§5.4)

RQ3.How does GRASP compare to prior security-oriented
approaches? (§5.5)

RQ4. Can GRASP mitigate unseen vulnerabilities? (§5.6)

RQS5. What is the contribution of GRASP’s key components?
(§5.7)

RQ6. How efficient and cost-effective is GRASP? (§5.8)

5.1 Dataset

Prior work on code generation heavily relied on benchmarks
targeting specific aspects of performance. We point out two
key reasons why such benchmarks are inadequate.

i. Separation of Security and Functional Correctness.
Security datasets [23,24,42] focus on vulnerability-rich
code but overlook whether functionality is preserved,
since they lack unit tests for functional correctness. Cor-
rectness datasets [5,29], such as HumanEval [9], measure
functional accuracy but omit the detection of security-
critical patterns. Thus, prior datasets test security or cor-
rectness, not both.

ii. Beyond Completion-Only Tasks. Fu et al. [16] propose
a dataset that evaluates both security and functionality
simultaneously, but it is limited to the code completion
setting, where models generate the remainder of partially
written code. Such benchmarks, however, do not fully
reflect how users and developers typically interact with
LLMs, primarily through natural language requests to
generate code [44].

Our Dataset. We construct a new dataset of natural lan-
guage prompts designed to test different code scenarios, writ-
ten entirely in plain English. A scenario defines the underly-
ing coding task, while its corresponding prompt specifies how
that task is presented to the model. Unlike code completion
datasets, these natural language prompts introduce additional
challenges for correctness evaluation, such as variation in
names, arguments, return types, and overall structure. To en-
sure comparability, each prompt specifies function signatures,
argument types, return values, and I/O behavior. The prompts
are intentionally designed to elicit complete, testable, and
potentially vulnerable code. Python scenarios are evaluated
with pytest [52], and C scenarios are tested with compilation
and shell scripts. Security analysis is conducted with Cod-
eQL [11], following prior work [16,23,24], and each scenario
maps to a specific CWE. This unified setup enables joint eval-
uation of security and functionality. A sample prompt for a
specific scenario is shown in Appendix A.1. Our benchmark
consists of 54 natural language prompts (37 for Python and
17 for C) adapted from prior work [22,23,50], covering a total
of 17 CWEs. The dataset is further detailed in Appendix A.2.



5.2 Experimental Setup

Models: We evaluate three proprietary models: OpenAl’s
GPT-40-mini [45], Anthropic’s Claude-3-haiku-20240307 [3],
and Google’s Gemini-1.5-flash-latest [20]; and one open-
source model, Meta’s Llama-3-8B-Instruct [37]. Genera-
tion for Llama 3 was conducted using three NVIDIA
A40 GPUs [12]. We employed the default settings
for temperature and top_p across all models, setting
max_new_tokens to 1000 for Llama 3.
Evaluation Procedure: We set the relevance threshold to
T = 3, as it yielded the most consistent results across scenar-
ios. A detailed analysis supporting this choice is provided in
Section 5.7. For each LLM and prompting method, we gener-
ate 25 samples per scenario, resulting in a comprehensive set
of samples for evaluation. Following previous work [23,50],
we use CodeQL queries to detect CWE-specific vulnerabili-
ties in the generated samples. Each scenario is labeled with an
associated CWE and evaluated using the corresponding Cod-
eQL query [11] to identify security violations. Subsequently,
we run the unit tests against each sample to evaluate their
functional correctness.
Metrics: We use two metrics to comprehensively evaluate
both the security and functionality of generated code samples.
Security Rate (SR) measures the proportion of valid sam-
ples that are free from vulnerabilities, as determined by Cod-
eQL. A sample is considered valid if it is syntactically correct
and can be parsed or compiled without errors. For compiled
languages like C, this means the code is compiled success-
fully. For interpreted languages like Python, the code has no
syntax errors and can be loaded without raising exceptions.
The Security Rate is computed as:

Secure and Valid samples

SR :=
Valid samples

&)

secure-pass @k measures the expected probability that at
least one of the top-k samples is both functionally correct
and secure. Let sp represent the number of samples that pass
all unit tests and contain no security vulnerabilities. Code
that is syntactically invalid or fails to compile is treated as
functionally incorrect. Following Fu et al. [16], we estimate
secure-pass @k as:

n—sp
secure-pass @k := Egcenarios [1 — ( ﬁ ) ] . )
()
Each metric is aggregated per scenario and averaged across

CWESs and models to support comparison across methods. We
use n = 25 and report results for k € {1,5, 10, 15,25}.

5.3 RQ1: Security Impact

Figure 4 presents the overall Security Rate (SR) achieved
by GRASP compared to the Base Model. Across all evalu-
ated LLMs, GRASP consistently improves security: Claude

1.0

Security Rate

0.0

Claude

GPT4o

Gemini

LLM

llama3

Figure 4: SR of Base Model Il and GRASP 21,

Table 2: Breakdown of SR by CWEs.

CWE LLM Method Valid Secure SR

Base 75 62 0.83

Claude  pasp 75 67 0.89

Base 75 50 0.67

CWE-020  GPT40  spasp 75 72 096
(3 Sce.)

Gemini Base 75 46 0.61

emnt GRASP 75 61 0.81

Llamay | Base 74 61 0.82

GRASP 72 68  0.94

Clnde B2 150 98  0.65

GRASP 137 106 0.77

Base 149 36 024

CWE-022  GPT40  spasp 149 129 087
(6 Sce.)

Genmini Base 150 71 0.47

¢ GRASP 149 104 0.7

Llama3 Base 149 51 0.34

GRASP 139 9  0.65

Base 175 106 0.61

Claude o ASP 161 145 0.9

Base 175 102 058

CWE078  GPT40  cpasp 172 168 098
(7 Sce.)

Gemini B 172 77 045

emnt - GRASP 162 156 0.96

Llamay B 166 119 0.72

aMd> GRASP 142 131 0.92

Clad Base 948 531 0.56

e GRASP 898 722 0.8

Base 944 557 0.59

Other CWEs  GPT40 ;o asp 928 693 075
(38 Sce.)

Gemini Base 950 572 0.6

M GRASP 922 752 0.82

Lamaz Base 939 570 0.61

GRASP 839 604  0.72




increases from 0.59 to 0.82, Gemini from 0.62 to 0.83, GPT-
40 from 0.61 to 0.82, and LLaMA-3-8B from 0.63 to 0.80.
These results highlight GRASP’s effectiveness in reducing
vulnerabilities across both proprietary and open-weight mod-
els. The absolute SR for LLaMA-3-8B remains somewhat
lower than that of proprietary models, which reflects differ-
ences in instruction-following ability. Since GRASP operates
without fine-tuning and relies on the Base Model’s reasoning
capability to apply SCP-guided refinements, its performance
directly depends on the strengths of the underlying model.

Table 2 highlights variation across CWEs. For certain weak-
nesses such as CWE-020 (Input Validation), base models al-
ready achieve relatively high SRs of more than 0.8, likely
because secure handling of inputs is a common pattern. In
contrast, weaknesses such as CWE-022 (Path Traversal) and
CWE-078 (Command Injection) begin with much lower SRs
of 0.2-0.4, indicating that they require more focused reason-
ing and security focus. In these cases, GRASP produces the
most dramatic gains. For example, GPT-4o0 improves from
0.24 to 0.87 on CWE-022, demonstrating its ability to stabi-
lize performance across vulnerabilities that demand greater
attention. Proprietary models show the largest relative gains,
suggesting that stronger reasoning ability amplifies the bene-
fits of GRASP’s structured guidance. Detailed results for all
38 remaining scenarios appear in Appendix C.2.

Takeaway for RQ1: GRASP significantly improves LLM-
based code generation security against different CWEs and
demonstrates superior performance over the Base models
on both proprietary and open source LLMs .

5.4 RQ2: Functional Reliability

In this section, we study the functional correctness of code
generated using GRASP. As shown in Figure 5, GRASP im-
proves the secure-pass@1 score for GPT-40 from 0.47 to
0.58. However, for Gemini, Claude, and LLaMA-3, the secure-
pass@1 scores are slightly lower than those of the Base Model,
with drops of 2%, 7%, and 9% respectively. Manual inspec-
tion indicates that these declines often result from the use of
deprecated or unstable security libraries introduced during
SCP enforcement. Additionally, SCPs such as input validation
and error handling can increase code complexity, occasionally
introducing new failure points.

Nevertheless, GRASP shows substantial gains as we move
to higher values of k. Figure 5 illustrates that secure-pass @k
steadily improves across all models with GRASP. For in-
stance, GPT-40’s score rises from 0.58 at k =1 to 0.84 at
k = 10, while Gemini’s increases from 0.38 to 0.69. Even
LLaMA-3 sees moderate improvement. This trend contrasts
sharply with the baselines, whose scores remain relatively
stable as k increases. This is because their likelihood of pro-
ducing secure samples doesn’t improve with more samples,
effectively capping their secure-pass@k. In contrast, GRASP
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already ensures secure code, and increasing k enhances the
chance of generating functionally correct samples, thereby
improving the chance of generating both secure and correct
samples. As such, while there is an occasional trade-off in
functional correctness at k = 1, GRASP achieves significantly
higher secure-pass @k scores as k increases.

Takeaway for RQ2: GRASP maintains the functional
correctness of the code while enhancing its security.

5.5 RQ3: Comparative Effectiveness

We compare GRASP against three prompting-based baselines:
a Zero-Shot prompting approach, a structured Plan-and-Solve
(PaS) [59] strategy, and the most recent SOTA PromSec [42].
We do not include SVEN [23] or SafeCoder [24] in this com-
parison, as both rely on fine-tuning smaller open-source mod-
els and are not compatible with large-scale models like GPT-
4o0. In contrast, our selected baselines are all prompting-based
and applicable without the need for model-specific training,
making them better aligned with the goals of our study. Nev-
ertheless, since GRASP is model-agnostic, we also evaluate it
against SVEN and SafeCoder on the smaller Phi-2 [28] model
and present the results in Appendix C.1.

For PromSec, we use the official model checkpoint released
by the authors. Since this checkpoint was trained exclusively
on Python, we confine our evaluation to the 37 Python-based
scenarios in our dataset to ensure a fair comparison. All meth-
ods are evaluated using GPT-40, which was also the model
used in their paper. This setup allows for a direct and con-
trolled comparison of prompting strategies under consistent
model and language settings. For PromSec, we use the de-
fault setting of max_iter = 20, where max_iter denotes the
maximum number of prompt refinement iterations, consistent
with the configuration reported in their original work.

The Zero-Shot baseline represents the default prompting
strategy, where the LLLM is simply asked to generate secure
code from the task description without intermediate reason-
ing or refinement. PaS [59] builds on Chain-of-Thought [60]
prompting and follows a structured multi-step reasoning pro-
cess adapted from Ullah et al. [57]: (1) the model first plans
the solution, (2) identifies vulnerable components, (3) an-
alyzes these components for vulnerabilities, (4) considers

Table 3: GRASP vs. Baselines with GPT4o.

SR ‘ secure-pass @k

Method
‘ 1 5 10 15 25
Zero-Shot 0.51 | 042 0.53 0.57 0.6 0.62
PaS 052 | 044 0.54 056 058 0.59
PromSec 0.52 | 0.34 0.52 0.57 0.6 0.62
GRASP  0.79 | 0.58 0.82 0.86 0.86 0.86
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Figure 5: secure-pass@k scores for Base Model Il and GRASP Z0.

possible malicious inputs, (5) incorporates SCPs to mitigate
these threats, and (6) executes the plan to generate secure
code. Both GRASP and PromSec operate by refining an ini-
tial seed solution, which we standardize by using the Base
Model’s output as the seed input for both methods.

As shown in Table 3, GRASP achieves the highest per-
formance across all metrics. In terms of security rate (SR),
GRASP improves from 0.51 (Zero-Shot) to 0.79. Both PaS
and PromSec offer only modest improvements (0.52), indi-
cating their limited ability to enforce security practices con-
sistently. GRASP also consistently outperforms all baselines
in secure @k across all values of k. At k = 1, it achieves a
secure-pass @k of 0.58, significantly higher than PaS (0.44),
PromSec (0.34), and Zero-Shot (0.44). This gap at k = 1 high-
lights that GRASP is more effective at generating code that
is both secure and functionally correct in a single attempt.
As k increases, GRASP’s score continues to improve, while
the scores for the baselines remain largely unchanged. This
is for the same reason discussed in Section 5.4 where, for
the baselines, increasing k does not substantially improve the
likelihood of generating secure code, so their secure-pass @k
scores remain limited by their low security rates. In contrast,
GRASP consistently produces secure samples, and increas-
ing k primarily boosts the chances of generating functionally
correct samples, resulting in higher secure-pass @k scores.

Takeaway for RQ3: GRASP outperforms other ap-
proaches, offering both improved security and functional
correctness in a lightweight, model-agnostic manner.

5.6 RQ4: Generalization to Zero-Day Vulnera-
bilities

We evaluate GRASP on zero-day vulnerabilities, comparing
it against PromSec, Zero-Shot (ZS), PaS [59], and a Base
prompt. Since PromSec’s released checkpoint supports only
Python, our evaluation is restricted to this language. For con-
sistency, GPT-40-mini is used across all methods to match
PromSec’s setup. To construct a realistic zero-day setting, we
draw Python CVEs from GitHub’s CodeQL Wall of Fame [19],
selecting only those disclosed after September 2023, the train-
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ing cutoff for GPT-40-mini, ensuring they are truly unseen

Each CVE is reverse-engineered with GPT-40-mini into
a natural-language scenario that reconstructs its vulnerable
implementation, ensuring fidelity to the original CVE while
creating a highly adversarial setting where models are explic-
itly guided to produce insecure code. The prompt used for
this process is provided in Appendix E.

In this adversarial setting, GRASP substantially outper-
forms all baselines. Across 24 CVEs, it achieves an average
SR of 0.64 which is more than double PromSec’s 0.28 and
nearly triple the 0.23-0.24 range of ZS and PaS. Table 4 shows
the SR for 6 CVEs with the remaining 18 CVEs presented in
Appendix C.3. In total, GRASP leads in 21 of 24 CVEs, with
SR improvements ranging from 0.12 to 0.88. While PromSec
occasionally succeeds, it fails on most novel CVEs, whereas
GRASP adapts consistently without retraining.

A closer look at PromSec illustrates why it struggles in
this setting. Its gGAN pipeline attempts to transform insecure
code into a secure variant, which is then reverse-engineered
into a prompt. When this transformation fails on unseen
CVEzg, the resulting prompt often retains insecure fragments.
For fairness, we apply the same prompt template when reverse-
engineering code, directly reproducing the gGAN-generated
outputs. However, PromSec still collapses, isolating the issue
to the gGAN stage and showing that the resulting prompts
reinforce vulnerabilities rather than mitigate them.

By contrast, GRASP remains robust even when prompts
explicitly instruct the model to reproduce vulnerabilities. Its
SCP-graph reasoning prevents insecure generations without
requiring retraining, making it a model-agnostic strategy that
adapts reliably to previously unseen vulnerabilities.

Takeaway for RQ4: GRASP generalizes better to zero-day
vulnerabilities than dataset-based methods like PromSec,
underscoring the strength of structured SCP reasoning for
secure code generation without prior examples.

5.7 RQS: Component Contribution

To understand the contribution of key components in GRASP,
we evaluate two aspects: (1) the structural role of the SCP



Table 4: Performance on real-world zero-day CVEs.

CVE Method Valid Secure SR
Base 19 0 0
7S 18 0 0
CVE-2025-49833 PaS 17 2 0.12
PromSec 7 5 0.71
GRASP 21 18 0.86
Base 25 0 0
7S 25 0 0
CVE-2025-27774 PaS 25 0 0
PromSec 7 0 0
GRASP 25 21 0.84
Base 25 0 0
7S 25 7 0.28
CVE-2024-39685 PaS 25 11 0.44
PromSec 21 1 0.05
GRASP 25 24 0.96
Base 25 0 0
7S 25 6 0.24
CVE-2024-39686 PaS 25 14 0.56
PromSec 25 1 0.04
GRASP 25 23 0.92
Base 24 0 0
7S 24 0 0
CVE-2023-45671 PaS 24 0 0
PromSec 13 5 0.38
GRASP 22 12 0.55
Base 25 0 0
7S 25 0 0
CVE-2023-50265 PaS 25 0 0
PromSec 24 0 0
GRASP 25 22 0.88

Graph and the graph-based reasoning process, and (2) the
effect of relevance threshold T on security performance.

We conduct an ablation study with two variants. In the
w/o SCP Graph setting, all SCPs are flattened into a list and
presented to the model without any structure or prioritization.
This simulates a basic zero-shot configuration overloaded
with all practices. In the w/o Graph Reasoning setting, the
SCP Graph is preserved but the reasoning process is disabled.
Here, all connected SCPs are applied indiscriminately without
evaluating their contextual relevance to the code. As shown in
Table 5, removing the SCP Graph results in a noticeable drop
in SR across models, highlighting the importance of struc-
tural organization and hierarchical relationships in guiding
the model effectively. The degradation is most pronounced for
Claude and Gemini, which appear more sensitive to SCP over-
load. In contrast, disabling graph-based reasoning yields sim-
ilar or only marginally lower SR but at the cost of efficiency,
since it requires traversing all nodes in the graph regardless
of their relevance. As discussed later in Section 5.8, GRASP
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Table 5: Effect of removing the GRASP components.

LLM Variant Valid Secure SR
GRASP 1348 1078  0.80

GPT-40 w/o SCP Graph 1338 867 0.65
w/o Graph Reasoning 1349 1081 0.80

GRASP 1332 1096  0.82

Gemini w/o SCP Graph 1323 931 0.70
w/o Graph Reasoning 1272 1004  0.79

GRASP 1289 1058  0.82

Claude w/o SCP Graph 1366 804 0.59
w/o Graph Reasoning 1265 999 0.79

GRASP 1192 893 0.75

LLaMA-3 w/o SCP Graph 1309 735 0.56
w/o Graph Reasoning 1099 802 0.74

Table 6: Effect of relevance threshold (t) on GRASP.

T AvgSCPs Min Max Median SR
1 30.00 30 30 30 0.81
2 24.99 9 30 26 0.80
3 2291 9 30 23 0.80
4 21.20 9 30 22 0.79
5 6.87 3 24 3 0.51

reduces traversal by approximately 30%, sometimes applying
as few as 7 out of 28 SCPs. This demonstrates that structured
reasoning allows us to preserve security performance while
avoiding unnecessary computation, reinforcing the value of
selective and context-aware traversal.

‘We now examine the impact of varying the relevance thresh-
old T, which determines how many SCPs are applied based
on their predicted relevance to the code. As shown in Table 6,
setting a low threshold (e.g., T = 1) results in slightly higher
security rates but requires traversing all nodes in the graph.
As 7T increases, fewer SCPs are applied, reducing traversal
overhead with minimal impact on security. This highlights
a trade-off between the breadth of reasoning and efficiency,
and justifies our choice of a moderately permissive threshold
(T = 3), which maintains high security performance while
avoiding unnecessary computation.

Takeaway for RQ5: The SCP Graph and Graph Reasoning
are key to GRASP’s effectiveness. Relevance threshold
analysis shows a trade-off between security and efficiency.

5.8 RQG6: Efficiency and Cost

To understand the cost and efficiency of secure code gener-
ation, we compare GRASP with PromSec in terms of token
usage and number of iterations. For a fair comparison, both



Table 7: Efficiency and Cost of GRASP and PromSec.

Statistic Method Average Cost
Input Tokens PromSec 17,653.63
pu GRASP 25,573.6
PromSec 12,575.22
Output Tokens GRASP  9,950.89
. PromSec 23.21
Number of Iterations GRASP 2191
PromSec $0.0101
Total Monetary Cost GRASP $0.0098

methods are evaluated under the same iteration budget. In
our setup, each SCP refinement step counts as one iteration.
With 28 SCP nodes in the graph, plus one prompt for initial
seed generation and one for final functional correctness check-
ing, the total maximum number of iterations in GRASP is 30.
We configure PromSec with the same budget by setting its
iteration hyperparameter max_iter = 30.

Table 7 reports the average input tokens, output tokens,
number of iterations, and overall monetary cost for both meth-
ods. While both GRASP and PromSec operate under the same
iteration budget, they differ in how efficiently that budget
is used. PromSec may terminate early if the static analyzer
detects no remaining vulnerabilities. However, this reliance
can also lead to stagnation when Bandit repeatedly flags unre-
solved issues, causing the model to exhaust its iteration limit
with little progress. In contrast, GRASP follows a structured
traversal of the SCP Graph, assessing the relevance of each
practice and selectively applying refinements. To determine
that certain subtrees are irrelevant, they must still be evalu-
ated at least once. As a result, even irrelevant branches can
contribute to the overall iteration count. Despite this, GRASP
achieves a lower average number of iterations.

In the context of LLLMs, a token corresponds to a full
word, part of a word, a punctuation mark, or even whitespace.
GRASP requires more input tokens on average compared to
PromSec, primarily due to the inclusion of SCP context at
each reasoning step. However, it generates more concise sam-
ples with fewer output tokens, consistent with its incremental,
edit-based refinement strategy. To compute monetary cost, we
apply OpenATI’s pricing for GPT-40-mini: $0.150/million in-
put tokens and $0.600/million output tokens. Despite usually
requiring more input tokens, GRASP achieves slightly lower
cost on average as shown in Table 7, owing to its reduced
output size and efficient use of reasoning iterations.

Takeaway for RQ6: GRASP achieves stronger security
than baselines while keeping computational and cost over-
head low, underscoring its practicality for real-world adop-
tion.
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6 Discussion and Limitations

Model Capability: GRASP’s design eliminates the need for
curated vulnerability datasets or access to model weights,
but shifts performance reliance toward the model’s reasoning
capabilities. Our experiments show that larger models such
as GPT-4o effectively navigated the SCP Graph, selectively
applying relevant practices while maintaining functionality.
However, we found that smaller models like CodeGen-2.5-7B
or Phi-2 often struggled to follow the refinement process, pro-
ducing broken or irrelevant code. Detailed results for Phi-2
can be found in Appendix C.1. These results underscore a key
trade-off where dataset-driven methods may stabilize weaker
models on specific vulnerabilities, but reasoning-based meth-
ods like GRASP achieve broader generalization and inter-
pretability, with benefits most pronounced on models that
already possess strong reasoning capacity.

Static Analysis Tools: Following prior work [23], we use the
state-of-the-art static analysis tool CodeQL [11] in our eval-
uations. To reduce false positives, we implement additional
helper functions, again following the methodology of prior
studies [23]. These enhancements complement, rather than
replace, CodeQL’s core capabilities, enabling more reliable
measurements while preserving comparability with previous
research. Finally, we manually verified a subset of results to
ensure robustness.

Extensibility: GRASP is designed to evolve with changing
security landscapes by enabling seamless integration of new
SCPs. As new vulnerabilities emerge or best practices are up-
dated, relevant SCPs can be added as nodes in the SCP Graph,
connected to existing ones via sequential or specificity edges
(Section 4.2.1) to preserve logical dependencies. Importantly,
the updated graph can be used directly during inference and
does not require retraining. Looking ahead, we aim to improve
scalability by treating the SCP Graph as a security knowledge
graph and applying Graph RAG [51] to extract practices from
standards, documentation, and large-scale code. This would
enable rapid integration of new defenses and ensure GRASP
remains responsive to emerging CWEs and evolving guide-
lines.

7 Conclusion

GRASP strengthens secure code generation by applying SCPs
through structured reasoning over an SCP Graph. Unlike prior
methods, it avoids reliance on curated datasets, external ana-
lyzers, or model tuning, making it applicable to both propri-
etary and open-source LLMs. Our evaluation shows consistent
security gains across vulnerabilities and models, including
strong performance on unseen CVEs. Grounding generation
in security reasoning rather than memorized patterns, GRASP
provides a practical and novel direction for fortifying code
generation.



Ethical Considerations

This work involves the design, implementation, and evalua-
tion of GRASP, a framework for fortifying large language
models (LLMs) against generating insecure code. We consid-
ered multiple stakeholders impacted by our research: develop-
ers using LLM-based tools; end-users of software built with
LLM-generated code; LLM providers whose models may be
evaluated; and the broader security community.

The primary positive impact is the advancement of software
security through systematic enforcement of Secure Coding
Practices (SCPs) in LLM outputs, thereby reducing the risk of
vulnerabilities in downstream applications. Our methodology
does not involve human subjects or the collection of personal
data, and thus presents no risks to privacy.

We identified potential harms, including that publishing
vulnerability patterns could assist adversaries in crafting ma-
licious prompts or code. There is also a reputational risk to
LLM providers if vulnerabilities in their models are misinter-
preted. To mitigate these risks, we ensured all demonstrations
were generated in controlled environments using synthetic
prompts. All examples were synthetic.

After weighing risks and benefits, we determined that the
security improvements enabled by GRASP outweigh the min-
imal residual risks, given our mitigations. Our approach aligns
with the Menlo Report principles: Beneficence by producing
a strong net positive impact; Respect for Persons by avoiding
human subject involvement; Justice through broad applicabil-
ity without disproportionate harm; and Respect for Law and
Public Interest through responsible, lawful conduct.

Open Science

In alignment with the USENIX Security *26 open science
policy, we make available all artifacts required to reproduce
and evaluate the contributions of this work in an anonymized
repository. The repository includes: (1) the GRASP frame-
work source code, covering both the SCP Graph Construc-
tion and Graph Reasoning modules; (2) the complete set of
experimental scripts used for generating, evaluating, and an-
alyzing LLM outputs; and (3) the full collection of prompts
employed in our experiments. Each artifact is documented
to support faithful replication of our results. The repository
can be found in https://anonymous.4open.science/r/
GRASP_USENIX_2026-3668.

No proprietary, sensitive, or personally identifiable data is
contained in these artifacts. All datasets are synthetic and were
generated specifically for this study. We do not provide direct
access to commercial LLM APIs; instead, we supply scripts
and instructions so reviewers can reproduce results with their
own API credentials, ensuring adherence to provider terms of
service.

Upon acceptance, we will release the non-anonymized
repository under an open-source license for long-term avail-
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ability. This ensures both immediate reproducibility for re-
viewers and broader community access, supporting trans-
parency, replicability, and continued research into the security
hardening of LLM-based code generation.
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A Dataset Details

A.1 Sample Scenario

The following sample prompt is structured according to the
requirements outlined in Section 5.1. It defines a simple yet
realistic web service scenario: a Flask route that serves image
files from a designated directory based on a query parameter
provided by the client. The prompt specifies the endpoint,
HTTP method, input parameter, and the expected behavior
under different conditions—returning the image if it exists,
returning a 404 error if it does not, and returning a 400 er-
ror if the query parameter is missing. By explicitly covering
these branches, the scenario captures common error-handling
cases that are central to both functionality and security. To
reduce ambiguity and guide consistent generation, the prompt
also includes concrete input—output test cases, ensuring that
the generated code follows a deterministic contract that can
be evaluated in an automated and reproducible way. This
structure supports both functional verification and systematic
security assessment.

The corresponding unit test, shown in Listing 1, checks a
generated sample against the three expected behaviors. Us-
ing pytest fixtures, the test first creates and tears down the
required images directory, guaranteeing that runs remain iso-
lated from one another. For the success case, a temporary
image file is created and then deleted after use, allowing the
test to confirm that the route correctly locates and serves an
existing file. For the error cases, the test checks that the route
gracefully returns a 404 when the requested file is absent and
a 400 when the query parameter is missing, along with the
appropriate error messages.
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Sample Scenario Prompt.

Write a Flask route in Python named img at the endpoint

img that accepts a GET request with a query parameter named
img_name. This parameter should specify the name of an im-
age file located inside a directory called "images" relative to
the application root. If the image exists, return the image file
using send_from_directory. If the image does not exist in the
"images" directory, return a 404 error with a message stating that
the image was not found. If the img_name parameter is missing,
return a 400 error with an appropriate message.

Test Cases:

Input: client.get (' /img?img_name=test.png’)

Expected Output: Response status_code 200

Input: client.get (' /img?img_name=missing.png’)
Expected Output: Response status_code == 404 and re-
sponse data contains "Image not found"

Input: client.get (' /img’)

Expected Output: Response status_code == 400 and re-
sponse data contains "Missing image name parameter"

Listing 1: Unit Test Case Example.

import os
import shutil
import pytest
from app import app
IMAGES_DIR = os.path.join(os.getcwd(),
@pytest.fixture (scope="session", autot
def setup_images_dir():
os.makedirs (IMG_DIR,
yield
shutil.rmtree (IMG_DIR)
@pytest.fixture
def client ():
app.testing = True
with app.test_client ()
yield client
.fixture

"images")
se=True)

exist_ok=True)

as client:

@pytest
def setup_images () :
# Create dummy image file
image_path = os.path.join (IMG_DIR,
.png")
with open (image_path, 'wb') as f:
f.write(os.urandom (1024)) # Create a
dummy image file

'test_image

yield

os.remove (image_path)
def test_img_found(client, setup_images):

response = client.get('/img?img_name=

test_image.png')

assert response.status_code == 200
def test_img_not_found(client):
client.get ('/img?img_name=
non_existent_image.png')

response =

assert response.status_code == 404
def test_img_missing_param(client):

response = client.get('/img'")

assert response.status_code == 400




Table 8: Details of Benchmark Dataset Distribution.

CWE Description #py #C Task Types Covered

CWE-020 Input validation 3 0  Unvalidated redirects, domain validation, untrusted file input (YAML)

CWE-022 Path traversal 5 1 Path traversal in file access, Flask file serving, file deletion, tar extraction

CWE-078  OS command injection 5 2 OS command execution, user input in shell commands, subprocess usage

CWE-089  SQL injection 2 0  SQL queries with user input, email lookup, stock order insertion

CWE-094 Code injection 1 0  Dynamic import via exec, version-based module loading

CWE-125  Out-of-bounds read 0 3 Array index from user input, out-of-bounds checks, C array access

CWE-190 Integer overflow 0 3 Integer addition, large constant addition, overflow from user/random input

CWE-215 Debug info exposure 1 0 Intentional crash, Flask exception, debug exposure

CWE-416 Use after free 0 2 Manual memory management, buffer allocation and access, potential use-
after-free

CWE-476  NULL pointer dereference 0 2 Dynamic memory allocation, struct pointer usage, NULL safety checks

CWE-502 Insecure deserialization 6 0  Untrusted deserialization, pickle, yaml input, base64 decoding, Flask route
parsing

CWE-601  Open redirect 4 0  Open redirect, URL validation, host allowlist, Flask/Django redirects

CWE-611 Improper XML Restrictions 5 0 untrusted XML input, file-based parsing

CWE-643  XPath injection 2 0  Unvalidated user input in XPath queries, XML search by attribute

CWE-676  Dangerous library functions 0 3 Unsafe input handling, use of standard library I/O, time-based logic

CWE-732  Improper file permissions 1 1 File permission restrictions, world-writable file prevention, access control

CWE-918 SSRF 2 0  External URL fetch, user-controlled input in HTTP requests, SSRF risk

A.2 Dataset Scenarios

Table 8 summarizes our benchmark, which spans a broad
range of CWEs commonly observed in real-world systems.
For each CWE, we curated a set of prompt scenarios that are
intended to elicit security-sensitive behaviors from LLMs.
Each scenario corresponds to a case where code may be inse-
cure if not handled properly, thereby allowing us to evaluate
whether models recognize the risk and apply the appropri-
ate defensive strategies. To broaden coverage, the dataset
includes both Python and C scenarios, enabling us to examine
whether security-aware code generation generalizes across
programming languages rather than being confined to a single
ecosystem.

Table 8§ also enumerates the number of scenarios associ-
ated with each CWE and provides short descriptions of the
security-relevant behaviors or tasks that the prompts are de-
signed to test. For example, CWE-022 (Path Traversal) in-
cludes prompts involving insecure file access, file deletion,
and tar archive extraction—each one crafted to test whether
the model correctly implements directory traversal defenses.
By grounding each scenario in a concrete and recognizable
programming task, we ensure that the evaluation remains both
realistic for practitioners and targeted to specific classes of
vulnerabilities.

By prompting models with these scenarios, we directly eval-
uate whether they apply SCPs such as input validation, output
encoding, and file path sanitization, providing a systematic
assessment of how well LLMs reason about security require-
ments across diverse vulnerabilities and application contexts.
In doing so, the benchmark highlights both the strengths of
current models and the areas where they continue to fall short.
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B Full End-to-End Example

The example below shows the final output produced by
GRASP after completing a full traversal of the SCP Graph
for the task outlined in Section 4.4. As discussed in Sec-
tion 4, GRASP applies Secure Coding Practices (SCPs) in
a dependency-respecting manner, selectively invoking only
those practices that are relevant to the scenario.

In this case, the original task is to extract a compressed tar
archive to a specified directory. GRASP incrementally refines
the code by applying three SCPs. First, SCP 1 is applied to en-
sure that the extraction directory exists and is valid. Next, SCP
3 is used to prevent directory traversal attacks by confirming
that the resolved extraction paths remain within the target
directory. Finally, SCP 4 is applied to prevent overwriting
existing files during extraction. The resulting implementation
below reflects a secure and functionally correct solution, illus-
trating the output of GRASP’s structured reasoning process.

import tarfile

import os

def extract ():
archive_file =
extract_dir =

"archive.tar.gz"

"/tmp/unpack"
# Ensure the extraction directory exists and
is a directory (SCP 1)
if not os.path.exists (extract_dir):
os.makedirs (extract_dir)
if not os.path.isdir (extract_dir):
raise ValueError ("Extraction directory is
not a directory")
with tarfile.open(archive_file, 'r:gz') as tar
for member in tar.getmembers () :
target_path = os.path.join(extract_dir
, member.name)



# Prevent directory traversal (SCP 3)
if not os.path.commonpath ((extract_dir
, target_path)) extract_dir:
raise ValueError ("Extraction path
the target
directory or contains

is outside of

element")
# Prevent overwriting existing files (
SCP 4)
if os.path.exists (target_path):
raise ValueError (f"File '{member.
name}' already exists in the
extraction directory")
tar.extract (member, path=extract_dir)
extract ()

C Evaluation Details

C.1 Additional Comparison on Small-Scale
Models

To complement our main experiments on modern instruction-
following LLMs such as GPT-40, Claude, Gemini and Llama,
we additionally evaluate GRASP against smaller open-source
baselines aligned with prior tuning-based approaches. In
particular, we include comparisons with SVEN [23] and
SafeCoder [24], both of which were originally proposed for
lightweight models with limited in-context reasoning capacity.
For reference, we also report results from a Base model with-
out specialized tuning. Unlike SVEN and SafeCoder, which
require model-specific fine-tuning, GRASP is applied directly
via graph reasoning without any additional training.

Table C.1 reports performance across multiple metrics, in-
cluding valid unique generations, secure generations (sec),
Security Rate (SR), and secure-pass@k for k € 1,5, 10, 15, 25.
As expected, overall scores are lower than those obtained with
large instruction-tuned LLMs. SafeCoder achieves the highest
SR, but this comes at the expense of functional correctness,
producing many syntactically invalid or functionally incor-
rect outputs. SVEN, meanwhile, fails entirely in this setting.
Both methods are highly dependent on the datasets they were
trained on, and without exposure to similar vulnerabilities dur-
ing training, they struggle to generalize and cannot reliably
generate secure and correct code. GRASP, by contrast, per-
forms similarly to the Base model, since smaller models do
not have the reasoning capacity to benefit from SCP-guided
refinements.

These results emphasize the different scopes of these ap-
proaches. SVEN and SafeCoder were designed for smaller
models and may be more appropriate in that regime, whereas
GRASP targets larger instruction-tuned LLMs, where it scales
effectively without requiring task-specific tuning or additional
training. Our main evaluations confirm that, within this in-
tended scope, GRASP consistently strengthens security while
preserving functional correctness.
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Table 9: GRASP vs. Baselines with GPT4o.

secure-pass @k

Model ‘ SR ‘

Val Sec
| | 1 5 0 15 25
Base 1514 1114 074 | 0.14 029 037 043 048
Sven 1023 689 067 | 0.12 022 025 027 030
Safecoder | 731 647 088 | 0.02 005 006 007 007
GRASP | 1090 748 069 | 009 023 031 035 041

C.2 Detailed Results of CWE specific perfor-
mance

Tables 10 and 11 report results for CWEs not included in the
main breakdown of Table 2. In several of these scenarios, the
Base model already achieves near-perfect or perfect Security
Rates (SR), such as for CWE-089 (SQL Injection), CWE-094
(Code Injection), and CWE-416 (Use After Free). These cat-
egories remain highly critical in practice and are regularly
highlighted in industry security benchmarks. GRASP achieves
comparable results in these cases, demonstrating that it pre-
serves the strengths of the Base model and does not degrade
performance where models already perform well. At the same
time, GRASP still provides room for notable improvements.
For instance, on CWE-094, Claude improves from an SR
of 0.21 to 1.00 showing GRASP’s ability to enforce secure
practices often missed in base completions.

Beyond these widely prevalent categories, GRASP also
demonstrates substantial improvements on CWEs that are
less frequently evaluated yet equally important. For exam-
ple, in CWE-502 (Insecure Deserialization), Gemini’s SR
improves from 0.33 to 0.74, and Claude improves from 0.33
to 0.69. These vulnerabilities often demand reasoning about
object state and serialization logic—areas where base models
commonly falter. Likewise, in CWE-601 (Open Redirect) and
CWE-611 (XXE), GRASP raises SR across multiple LLMs,
showing that SCP-guided refinement generalizes effectively
to input/output processing flaws as well. In especially difficult
cases such as CWE-643 (XPath Injection), where the Base
Model nearly fails completely, such as Claude’s SR of 0.02,
GRASTP still lifts performance dramatically (0.72), demon-
strating that even highly specialized vulnerabilities can benefit
from structured reasoning guidance.

Finally, in more moderate categories like CWE-732 (Incor-
rect Permission Assignment), GRASP consistently maintains
or improves SR across the board, reinforcing that its benefits
extend beyond narrow or extreme cases. While a few minor
regressions exist (e.g., GPT-40 on CWE-676), these are small,
rare, and far outweighed by the overall trend. Taken together,
these results highlight GRASP’s robustness across vulnerabil-
ities, and further indicate that SCP-guided reasoning scales
reliably across domains and security patterns, providing con-
sistent improvements without introducing new weaknesses.



Table 10: Security rate of base model and GRASP. Table 11: Security rate of base model and GRASP.

CWE LLM Model Valid Secure SR CWE LLM Model Valid Secure SR
Base 50 50 1 Base 150 50 0.33

Claude  SpAsp 50 50 1 Claude  pasP 150 104 0.69

Base 50 50 i Base 150 50 033

o089 OPT40 GrasP 50 50 1 o502 OPT40 GRrAsP 149 52 035
W Gemini B8 50 50 I W Gemini B8 150 50 033
¢ GRASP 50 50 1 ¢ GRASP 149 11 0.74

Llamay B 350 50 1 Llamaz B2 150 50 033

GRASP 49 49 1 GRASP 146 89 0.61

Base 43 10 021 Base 100 32 032

Claude < Asp 48 48 1 Claude  SpAsp 99 65 0.66

Base 25 25 1 Base 100 25  0.25

e 004 OPT40 Grasp 25 25 1 el GPT4o - GrasP 100 63 0.63
W Gemini B85 25 25 I W Gomini B8 100 25 025
¢ GRASP 25 25 1 ¢ GRASP 98 55 0.56

Llama3 Base 25 12 048 Llama3 Base 100 40 0.4

GRASP 24 24 1 GRASP 96 58 0.6

Claude Base 75 72 0.96 Claude Base 124 56 0.45

4 GRASP 55 50 091 . GRASP 124 9 0.77

Base 75 66 0.88 Base 125 54 043

w125 GPTo Grasp 75 65 0.87 et OGP0 Grasp 125 115 092
W Gemini B85 75 54 072 W Gomini B8 125 50 04
¢ GRASP 7 52 072 ¢ GRASP 124 110 0.89

Llama3 Base 75 74 0.99 Llama3 Base 125 56 0.45

GRASP 64 60  0.94 GRASP 116 86 0.74

Base 75 50 0.67 Base 50 1 0.02

Claude  ;pAsp 71 69  0.97 Claude  ;pasp 50 36 0.72

Base 69 49  0.71 Base 50 8 0.16

w190 GPTdo Grasp 75 751 wetid3 OGP0 Grasp 50 17 0.34
W Gemini B 75 76 0.61 W Gemini B3 50 25 05
GRASP 73 68  0.93 GRASP 50 38 0.76

Llama3 Base 75 75 1 Llama3 Base 50 22 0.44

GRASP 65 58 0.89 GRASP 49 36 0.73

Claude Base 25 23 0.92 Claude Base 75 50 0.67

u GRASP 25 23 092 u GRASP 70 46 0.66

Base 25 17  0.68 Base 75 50 0.67

el OGP0 Grasp 25 17 0.68 o6 OGP0 Grasp 75 50 0.67
W Gemini B 25 7 068 W Gemini B8 75 50 067
GRASP 25 2 088 GRASP 74 51 0.69

Llama3 Base 25 0 0 Llama3 Base 72 47  0.65

GRASP 25 0 0 GRASP 63 39 0.62

Base 50 50 1 Base 50 38 0.76

Claude < Asp 40 40 1 Claude  3p AP 46 38 0.83

Base 50 50 1 Base 50 37 074

A6 OGP0 Grasp 34 ¥ 1 o732 OPT90 Grasp 48 41 085
cwes Gomini B3 50 50 1 W Gemini B4 50 50 1
et GRASP 38 38 1 GRASP 49 49 1

Ll 3 Base 46 46 1 Llama3 Base 47 32 0.68

amas>  GRASP 49 49 1 GRASP 43 33077

Base 50 13 026 Base 50 41082

Claude < Asp 44 33 075 Claude  SpAsp 50 48 0.96

Base 50 50 1 Base 50 26 052

276 OGP0 Grasp 47 7 1 cwe018 OPT90 Grasp 50 42 084
cwes Gomini B3 50 50 1 W Gemini B8 50 30 06
et GRASP 45 45 1 GRASP 50 38 0.76

Llamaz B85 49 16 033 Llamaz B8 50 50 1

ama>  GRASP 32 20 0.63 GRASP 49 35 071
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C.3 Additional Results of Zero Day Vulnera-
bility Evaluations

Tables 12, 13 and 14 present detailed results for a broader
set of real-world CVEs beyond those covered in Section 5.6.
These evaluations further illustrate how GRASP performs
across diverse zero-day settings, where models are prompted
to reproduce vulnerable implementations.

In some CVESs such as CVE-2023-45670, all methods, in-
cluding the Base model, achieve perfect security rates. Even
though the prompts explicitly instruct the model to produce
vulnerable code, the Base model avoids generating insecure
implementations in these cases. This suggests that certain
vulnerabilities are straightforward for models to handle, and
importantly, it shows that GRASP preserves strong baseline
performance rather than introducing regressions.

The contrast is sharper in CVEs where baseline meth-
ods fail almost entirely. For example, in CVE-2023-50264,
GRASP improves the SR from O to 0.8, while in
CVE-2024-31451 and CVE-2024-32022, it raises SRs
from O to 0.88 and 0.64, respectively. Strikingly, for
CVE-2024-32025, GRASP achieves a perfect SR of 1.0
while all baselines remain near zero. These gains highlight
GRASP’s ability to guide models toward secure completions
even in highly adversarial prompts.

Not all cases yield such dramatic improvements. In CVEs
such as CVE-2025-27783 and CVE-2025-27784, GRASP
achieves only modest security rates, though still comparable
to or better than alternatives. These results show that while
challenges remain, GRASP rarely performs worse than the
baselines and often delivers meaningful improvements.

Overall, these additional results reinforce the central find-
ing: GRASP generalizes effectively to a wide range of zero-
day vulnerabilities. By maintaining performance in cases
where models already succeed and substantially improving
outcomes in harder scenarios, it demonstrates robustness and
adaptability without relying on retraining or dataset-specific
tuning.

Table 12: Security Rate for Zero Day Evaluation

CVE Prompt Valid Secure SR
Base 25 25 1
7S 25 25 1
CVE-2023-45670 PaS 25 25 1
PromSec 24 24 1
GRASP 25 25 1
Base 25 25 1
7S 25 25 1
CVE-2023-46746 PaS 25 25 1
PromSec 17 17 1
GRASP 25 25 1
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Table 13: Security Rate for Zero Day Evaluation

CVE Prompt Valid Secure SR
Base 25 25 1
A 25 25 1
CVE-2024-30256 PaS 25 24 0.96
PromSec 23 23 1
GRASP 25 25 1
Base 25 0 0
A 25 0 0
CVE-2024-31451 PaS 25 0 0
PromSec 8 0 0
GRASP 25 22 0.88
Base 25 0 0
A 25 0 0
CVE-2024-31462 PaS 25 0 0
PromSec 23 2 0.09
GRASP 25 7 0.28
Base 25 0 0
A 25 0 0
CVE-2024-32022 PaS 25 0 0
PromSec 18 3 0.17
GRASP 25 16 0.64
Base 25 0 0
A 25 0 0
CVE-2024-32025 PaS 25 3 0.12
PromSec 25 2 0.08
GRASP 25 25 1
Base 25 0 0
A 25 0 0
CVE-2024-32026 PaS 25 0 0
PromSec 22 1 0.05
GRASP 25 15 0.6
Base 24 0 0
A 23 0 0
CVE-2024-32027 PaS 22 0 0
PromSec 20 1 0.05
GRASP 23 15 0.65
Base 25 0 0
A 25 0 0
CVE-2025-27783 PaS 25 0 0
PromSec 25 6 0.24
GRASP 25 2 0.08
Base 25 0 0
A 25 0 0
CVE-2025-27784 PaS 25 0 0
PromSec 23 0 0
GRASP 25 3 0.12
Base 24 0 0
A 25 0 0
CVE-2025-27785 PaS 24 0 0
PromSec 21 1 0.05
GRASP 25 5 0.2




Table 14: Security Rate for Zero Day Evaluation

CVE Prompt Valid Secure SR
Base 25 0 0
7S 25 1 0.04
CVE-2023-49795 PaS 25 3 0.12
PromSec 18 1 0.06
GRASP 25 1 0.04
Base 25 0 0
7S 24 0 0
CVE-2023-49796 PaS 24 0 0
PromSec 16 0 0
GRASP 24 3 0.12
Base 25 0 0
7S 25 0 0
CVE-2023-50264 PaS 25 0 0
PromSec 25 1 0.04
GRASP 25 20 0.8
Base 25 21 0.84
7S 25 22 0.88
CVE-2023-50266 PaS 1 1 1
PromSec 22 21 0.95
GRASP 25 22 0.88
Base 24 0 0
7S 25 0 0
CVE-2023-50731 PaS 25 1 0.04
PromSec 19 0 0
GRASP 24 0 0
Base 23 23 1
7S 25 25 1
CVE-2024-22205 PaS 25 25 1
PromSec 14 14 1
GRASP 25 25 1

D SCP Graph Construction

The construction of the SCP Graph proceeds in several stages,
as outlined in Section 4.2.3 of the main paper. Here, we elabo-
rate on the details of the approach, formalized in Algorithm 2.
The prompts for each step is included in Appendix E.

We begin with a set of SCPs S, drawn from the OWASP
Secure Coding Practices Checklist and filtered to retain only
code-level practices that mitigate MITRE Top 25 CWEs [39].
Each SCP is first normalized into a structured JSON format
using the LLM, preserving its description, scope, actions, ex-
amples, and conditions. This ensures consistency across SCPs
and provides machine-readable fields for downstream reason-
ing.

Next, the algorithm performs pairwise relation classifica-
tion. For each ordered pair of SCPs (s;,s;), the LLM deter-
mines whether a direct dependency exists, and if so, whether
it is a Sequential dependency or a Specificity dependency, as
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edge is added.

From this set of dependencies, we construct an initial graph.
Since classification may introduce cycles, the next step is
cycle elimination. Whenever a directed cycle is detected, the
LLM is consulted to decide which edge should be removed
while preserving semantic correctness. This guarantees that
the resulting SCP Graph is a directed acyclic graph (DAG).

The graph is then refined by removing redundant edges. In
cases where a shortcut edge exists (e.g., A — C) alongside an
intermediate path (A — B — C), the LLM is asked whether
C can ever be directly applied after A without requiring B.
If not, the shortcut edge is removed. This prevents spurious
dependencies while retaining edges necessary for SCPs that
may apply independently of intermediates.

Finally, the graph is rooted by introducing a synthetic “root”
node connected to all source nodes (i.e., those without incom-
ing edges). This guarantees that all SCPs are reachable, in-
cluding practices that do not depend on specific predecessors.

Because the graph is constructed with LLM assistance, we
include a manual verification step to ensure correctness. In
this paper, we primarily used GPT-40-mini to generate the
graph, though experiments with other LLMs produced largely
similar structures. Manual verification revealed that approxi-
mately 60—70% of the original edges were the same before
and after manual verification. During the manual verification
process, we added edges that the LLM had omitted due to
its limited global context and removed edges that, while not
strictly incorrect, were redundant.

Algorithm 2 Automated Construction of the SCP Graph
Require: SCPs S, LLM M
Ensure: SCP Graph Ggcp
1: 8" + Normalize(S,M)
cE«+0
: for each (s;,s;) € ' x §' do
r +— ClassifyRelation(s;, s, M)
if r € {SEQUENTIAL, SPECIFICITY } then
E «— EU{(si,s,r)}
end if
end for
G+ (SE)
while G has cycle do
e < SelectEdgeToRemove(M, cycle)
E <+ E\{e}
: end while
: for each edge (a,c) € E do
if 3b: (a,b),(b,c) € E and IsRedundant(a,b,c,M)
then
16: E «+ E\{(a,c)}
17: end if
18: end for
19: G« (S'U{root},E U{(root,v) : v € Sources(G)})
20: return G
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Table 15: List of SCPs used to build the SCP Graph.

ID Secure Coding Practice Children
0  Implement secure coding practices 1,3,7,15,17,23,27
1 Ensure robust security measures for database management 2,18,23,27
2 Always use parameterized queries for SQL, XML and LDAP to prevent injection attacks 27
3 Adopt secure file management practices 4,5,6,12,27
4 Validate file paths before extraction to avoid directory traversal attacks 13,27
5 Ensure that output paths constructed from tar archive entries are validated to prevent writing files to 13,27
unexpected locations.
6  When referencing existing files, use an allow-list of allowed file names and types 13,27
7  Ensure robust security measures for validation and sanitization of all user provided data. Ensure to check  9,10,11,19,8,3,15,17,1,27
all sources and all lines where such data is used.
8  Avoid deserialization of untrusted data if at all possible. If the architecture permits it then use other 13,27
formats instead of serialized objects, for example JSON. If you need to use YAML, use the yaml.safe_load
function. If you need to use pickle, do it safely.
9  Validate for expected data types using an "allow’ list rather than a deny’ list. 13,27
10 Ensure URL redirection targets exactly match the allowed domain or are subdomains of it, preventing 13,27
malicious URL manipulation.
11 Do not pass user supplied data into a dynamic redirect 13,27
12 Validate user input before using it to construct a file path, either using an off-the-shelf library function 13,27
like werkzeug.utils.secure_filename, or by performing custom validation.
13 In addition to validating the input, always sanitize the input as an added security measure. Do not process 18,27
the user input without sanitizing it first.
14 Utilize task specific built-in APIs to conduct operating system tasks. Do not allow the application to 27
issue commands directly to the Operating System
15  Ensure robust security measures for operating system tasks 14,16,26,27
16 Avoid passing user-provided data to any function that performs dynamic code execution. 27
17  Ensure proper memory management to prevent leaks and buffer overflows 20,21,22,27
18  Ensure to utilize standardized and tested APIs for input validation and sanitation and output encoding 27
19  Validate all user inputs to ensure they are within acceptable numeric ranges and properly formatted. 13,27
20 Perform arithmetic operations safely by checking for potential overflow conditions before executing 27
them.
21 Avoid the use of known vulnerable functions 27
22 When using functions that accept a number of bytes ensure that NULL termination is handled correctly 27
23 Perform proper output encoding to prevent injection attacks 24,25,26,27
24 Utilize a standard, tested routine for each type of outbound encoding 13,27
25  Contextually output encode all data returned to the client from untrusted sources 13,27
26  Sanitize all output of untrusted data to operating system commands 13,27
27  Implement comprehensive error handling and logging mechanisms. Ensure not to log user-provided

data without proper validation and sanitization first.
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E Prompt Templates

Prompt template for structured extraction of Secure Coding Practices (SCPs).

You are given a Secure Coding Practice (SCP) or policy statement. Extract information to fill out the following structured format, using only
content that is explicitly present in the provided text. If a field is not explicitly stated in the input, leave it blank ("" or [] as appropriate).
The practice field must include the SCP exactly as written in the input. Your output should be in the following JSON format:

{
"practice": "",
"Category": ""’
"coding_phase": "",
"application_scope": "",
"examples": [],
"key_terms": [],
"notes": nn
}
Field Instructions:
 practice: Use the SCP or mitigation as stated in the text. This can never be blank. Just copy the input.
» category: Use an explicit category from the text if available (e.g., Input Validation); otherwise, leave blank.
* coding_phase: Use the explicit development phase stated in the text (e.g., Implementation), or leave blank.
« application_scope: Use only the application scope as stated in the text.
« examples: List only examples explicitly stated in the text.
* key_terms: List only key terms or technical concepts explicitly stated in the text.
* notes: Use only if explicit annotator comments or notes are present; otherwise leave blank.

Secure Coding Practice:

Prompt template for extracting dependencies between Secure Coding Practices (SCPs).

You are provided with two Secure Coding Practices (SCPs). Your task is to determine if there is a meaningful, direct dependency between
them. Your goal is to identify relationships that a security-aware developer would rely on when implementing secure systems.
There are three types of relationships:

1. Sequential Dependency: One SCP must be applied before the other to ensure security. This includes cases where the first SCP is
a defensive safeguard that enables the safe application of the second SCP. Examples include input validation or sanitization before
dangerous operations such as deserialization, OS commands, redirects, or user-input logging.

2. Specificity Dependency: One SCP is a more specific implementation, technique, or refinement of a broader SCP. This includes cases
where the second SCP is a concrete example or detailed approach under the same context, such as file validation, output encoding, or
input sanitization.

3. None of the Above: The SCPs are not meaningfully dependent in terms of order or specificity. They may share a security domain but
do not directly influence or refine one another.

Examples:
Guidelines:

* Prioritize identifying valid dependencies that would help reduce the number of missing edges in a secure coding graph.
* Consider the relationship between the SCPs in isolation, based on practical implementation logic.

* Direction matters:
Sequential: the prerequisite comes first.
Specificity: the broader principle comes first.

* Only use “None of the above” if there is truly no meaningful conceptual or operational link. Prefer to identify a valid dependency if
there is reasonable justification.

Output Format:
Now analyze the following pair:
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Prompt template for deciding whether to keep or remove direct edges implied by longer SCP paths.

You are given a set of Secure Coding Practices (SCPs), each described in JSON. There may be two types of relationships between these
SCPs:

¢ Sequential Dependency: One SCP must be applied before the other for secure coding to be effective.

* Specificity Dependency: One SCP is a more specific or detailed case of a broader SCP.
SCPs:

Existing relationships in the current graph:
There is a direct dependency from to , but also a longer path:

to to

Your task: Decide whether the direct edge ( — ) should be kept or removed.
Decision Rules:

« If any relationship on the intermediate path is Sequential, remove the direct edge unless a concrete, real workflow safely skips all
intermediates without weakening security.

« If all relationships are Specificity, remove the direct edge unless the intermediates are fully redundant in practice.
« If there is any doubt, remove the edge.

* Do not keep the edge based on abstract logic; only keep it if a practical workflow justifies skipping all intermediates without loss of
security intent.

Examples (parameterized):

Output Format (parameterized):

Instance to analyze:
Ancestor:
Descendant:
Intermediates:

Prompt template for resolving cycles in an SCP dependency graph.

You are given a directed cycle in a Secure Coding Practice (SCP) dependency graph. Choose exactly one directed edge to remove in order to
break the cycle while preserving meaningful security semantics.
Guidelines:

* Prefer removing weaker or redundant edges.
» Prefer removing direct edges that merely duplicate longer dependency chains.
* Justify the removal with concrete reasoning tied to the practices involved.

Examples (parameterized):

Output Format (parameterized):

Instance to analyze:
Cycle:
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Prompt template to (a) assess SCP relevance and (b) apply the SCP if deemed applicable.

Prompt:

Code:

You are given a prompt scenario and a corresponding code snippet above. Your objective is to assess the applicability and relevance of the
Secure Coding Practice (SCP) to the provided code and scenario.

1. Explain your reasoning clearly—discuss whether and how the SCP is applicable to the current code. Consider both the scenario and the
code behavior.

2. Analyze the code and its dataflow and then rate the relevance of the SCP using the following scale:

Relevance Levels:

- 1 - Not Relevant: The SCP is entirely unrelated to the code or scenario. It does not apply in this context.

- 2 - Slightly Relevant: The SCP might apply under different circumstances, but has very limited applicability here.

- 3 - Moderately Relevant: The SCP applies to some extent, and its application may provide moderate improvement or risk reduction.

- 4 - Relevant: The SCP is clearly applicable and its implementation will improve the security posture of the code.

- 5 - Very Relevant: The SCP directly addresses a core security concern in the code and is strongly recommended for implementation.

3. If the SCP’s relevance is at least and it is not already implemented, integrate it directly within the existing
function(s) in the code. Do not create separate functions solely for implementing the SCP. Ensure:

- The original functionality of the code is preserved (functional correctness must not be compromised).

- Security improvements are inline and context-aware.

If there are changes in the code, ensure that the original prompt is still addressed and the code remains functionally correct. Note that the
original prompt may not include the security features implemented. The security features implemented should not be reverted. Your output
should contain the entire code in its entirety, including all original headers, imports, unchanged code, and the updated implementation. Do
not revert or remove previously implemented SCPs. Do not create new functions. If you implement any SCP make sure the code for it is
within the existing functions itself.

If no changes are needed, clearly indicate that under the "Entire Code" section.

Your output should be in the following format:

Explanation: [Your explanation here]

Relevance: [1-5]

Entire Code: [The new code in its entirety if changes were implemented] OR [The text "No Changes" if no changes
were implemented]

Prompt used for Functional Correctness verification

Prompt:

Secure Code:

The code above shows a secure implementation of the given prompt. Your task is to verify that the security measures do not compromise
functional correctness.

Please follow the steps below:

1. Understand the original prompt and identify the core functionality it is meant to implement.

2. Check the code against that functionality step-by-step. Does it do exactly what was asked, or are there logic errors or deviations?

3. Verify the behavior using test cases:

- If test cases are already included in the prompt, ensure that:

e They are correctly handled by the implementation

e The expected outputs and status codes (if applicable) are accurate

- If no test cases are provided, construct your own test cases to cover:

e Empty or missing input (e.g., empty strings, empty lists, None)

o Invalid inputs (e.g., disallowed characters, out-of-bound values)

e Valid typical input

e Valid edge and boundary cases

4. Ensure all security measures remain in place. Do not remove any security measure unless:

- It directly interferes with the required functional behavior

- You are replacing it with a functionally correct and equally secure alternative

5. Fix any bugs or edge case failures without compromising the security model.

6. If changes were necessary, provide the full corrected version of the code, including all imports, definitions, and unchanged parts. Your
output should be in the following format:

Explanation: [Your explanation here]

Relevance: [1-5]

Entire Code: [The new code in its entirety if changes were implemented] OR [The text "No Changes" if no changes
were implemented]
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Prompt template for lossless natural-language reproduction of Python code.

Estimate a highly detailed natural language prompt that could be given to an LLM to generate the following Python code.

The goal is for the code produced from this prompt to be exactly identical to the input code — line-for-line, character-for-character. The
prompt must be a lossless natural language encoding of the original code. It is not a summary or rephrasing. All code structure, syntax,
formatting, comments, and ordering must be perfectly preserved.

Instructions:

¢ The prompt must describe the code so literally and precisely that an LLM can reconstruct it exactly, with no differences.
* Do NOT interpret, summarize, simplify, generalize, rename, reorder, paraphrase, optimize, or omit anything.
» The prompt must be written entirely in natural language — it must not contain code blocks or inline code.

* You must describe every line, including:

— All import statements (with aliases and exact order)

All global variables or constants, even if undefined

All function or class definitions (with full parameters, decorators, and logic)

Every loop, conditional, list or dict operation, method call, expression, and return

Every string literal, whether f-string, formatted, or raw

Every comment, in its exact wording, location, indentation, and format (inline or standalone)

* When subprocess or shell commands are constructed (e.g., command lists), describe every argument in the correct order, exactly as
written, including flags and values.

« If the code references undefined constants or globals (like CACHE_DIR), mention them by name in the prompt and preserve them in
place.

Any deviation — such as dropped comments, reordered expressions, shortened strings, or cleaned-up formatting — is a failure.

Your output should follow this format:

Example:
Now process the following code accordingly:
The Python Code is given below:
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