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Which techniques to study ? 
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 PathImpact (PI)                            
[Law & Rothermel ICSE’03] 

 CoverageImpact (CI)                     
[Orso & Apiwattanapong & Harrold FSE’03] 

 Execute-After-Sequences (EAS)  
[Apiwattanapong & Orso & Harrold ICSE’05] 

 InfluenceDynamic (InfDyn)            
[Breech & Tegtmeyer & Pollock ICSM’06] 
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How PI/EAS works 
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Subject programs and statistics 
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Subject Description Lines of Code Methods Tests 

Schedule1 Priority Scheduler 290 24 2,650 

NanoXML XML parser 3,521 282 214 

Ant Java project build tool 18,830 1,863 112 

XML-Security Encryption library 22,361 1,928 92 

JMeter Performance monitor 35,547 3,054 79 

ArgoUML UML Modeling tool 102,400 8,856 211 



Metrics 
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 Impact sets (predicted and real) 
 Number of false positives (FP) & false negatives (FN) 
 Accuracy (F1)  

 Precision  
 Recall  
 F1 = 2x(precision x recall)/(precision + recall) 

 Result classification 
 All: both S and N 
Shortening (base execution is over 50% shorter) 

Normal (otherwise) 
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 Enhance the experimentation framework to support 
extended study for 
 More subjects 
 Other dynamic impact analyses 

 Develop more precise technique for dynamic impact 
prediction 
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Contributions 
29 

 
 

 A methodology for estimating the accuracy of dynamic  
impact analyses 

 The first empirical study of the predictive accuracy of 
dynamic impact analysis  

 Insights to the effectiveness of predictive dynamic 
impact analysis 
 Current dynamic  impact analysis can be surprisingly 

imprecise 
 Precision 52% for random changes,  47% for SIR changes 

 Moreover, existing dynamic impact analysis can be also 
quite unsafe  
 Recall 56% for random changes,  87% for SIR changes 
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Thanks Mr. (session chair). Good morning. 

Today I will talk about studying the accuracy of dynamic change impact analysis. 



Constant changes greatly affect software reliability and security. While dynamic change impact analysis as a technique can predict the impacts of potential changes, it is important to know how accurate this analysis is. 



In this talk, I will present our methodology for studying such accuracy and report the findings of our study.
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Changes are necessary to evolve software.

However, without analyzing the impacts of those changes, the evolution may fail and thus affect the quality, reliability and security of the software.
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Change impacts need be analyzed
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Therefore, it is critical to analyze the impacts of software changes.

Change-impact analysis (or CIA in short) is such a technique that computes those impacts.

Among the two classes of CIA techniques, static and dynamic ones,  dynamic technique produces smaller and more precise results than static analyses. 

Further, the CIA can be applied either after or before the change is made. When applied before the change, the analysis actually predicts the impact of potential changes.  In this work, we focus on the predictive dynamic CIA technique. 

4





Program P





P’





……





Change 2





P’’





Change 3





……





……





Change 1

































Change impacts need be analyzed

5

Change-impact Analysis (CIA)

Dynamic



Predictive

CIA

Beforechange











Therefore, it is critical to analyze the impacts of software changes.

Change-impact analysis (or CIA in short) is such a technique that computes those impacts.

Among the two classes of CIA techniques, static and dynamic ones,  dynamic technique produces smaller and more precise results than static analyses. 

Further, the CIA can be applied either after or before the change is made. When applied before the change, the analysis actually predicts the impact of potential changes.  In this work, we focus on the predictive dynamic CIA technique. 
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How accurate is it ?

6

Predictive Dynamic Change-impact Analysis (CIA)

Candidate 

Change Locations





Predicted Impacts

How Accurate        (relative to real impacts)

How Safe

How Precise

?

Programbase



E2 

E4

E1, E2, E3, E4, E5

E1, E2, E3, E5

All entities

Real impacts

E2











This is the typical usage scenario of the CIA: it inputs the program before change (noted as Program‘base’) and candidate change locations, and outputs potential impacts of those changes.  For example, suppose the program contains five entities: …..

In this context, our question is how safe is the result, which concerns about whether it included all real impacts (namely the impacts after the change is made)? 

Also, another question is how precise is the result, which concerns about whether the entities in the result are those really impacted.

In short, how accurate is the impact analysis?
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Why study CIA accuracy ?
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The reason studying the this accuracy is important is because:

If the result is not safe, the quality of next version will be threatened by missing impacts; 

And, if not precise, developers will waste time examining false impacts (also say why developer should examine them)

In short, if not accurate, the result will cause serious problems.

Also, if the current techniques turned out to be inaccurate, the study will motivate the development of better techniques.
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Which techniques to study ?
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PathImpact (PI)                            [Law & Rothermel ICSE’03]

CoverageImpact (CI)                     [Orso & Apiwattanapong & Harrold FSE’03]

Execute-After-Sequences (EAS)  [Apiwattanapong & Orso & Harrold ICSE’05]

InfluenceDynamic (InfDyn)            [Breech & Tegtmeyer & Pollock ICSM’06]



PI/EAS

Predictive Dynamic Change-impact Analysis (CIA)

Our target

Method level

The most cost-effective



Little more precise 

much more expensive
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There are a handful of CIA techniques in the current literature. In this paper we target the method level analysis because this type of analyses are more commonly used --- it has a reasonable balance between efficiency and effectiveness since it is more scalable than fine-grained such as statement-level CIAs but more precise than coarser levels of analysis such as those on class or even package level.

The most well-know such CIAs include PathImpact, CoverageImpact, ….

Among these techniques, We chose PI and, an efficiency-wise optimization of it EAS, which we called PI/EAS together, as the representative cost-effective technique for our study. 

Another technique, InfluenceDynamic, has only marginally better (insignificant, 3-5%) precision than PI/EAS but incurs considerably greater cost (several seconds versus a few minutes).
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For the rest of this talk, I will first introduce the background on PI/EAS, and then present our experimental methodology, followed by the empirical results. Finally I summarize the contributions of this work.
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How PI/EAS works
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After M2 returned

Methods called after M2 returns











To see how PI/EAS works, consider this call stack at runtime, where the symbols M0 to M5 are methods executed in the order from bottom to the top.

Now suppose the candidate change location is in M2, PI/EAS will report M3, M4 and M5 as potentially impacted because these methods are executed after M2; It will also report M0 and M1 as potentially impacted because these two methods will return after M2 returns. In addition, after M2 returned, methods called afterwards, M6 to M8 here, will also be identified as potentially impacted.

In sum, PI/EAS computes potential impacts simply based on the execution-after relations between methods.
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How PI/EAS works
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Example code













Example execution



Suppose changes will be in method M2

M5, M3 potentially impacted: entered after M2 entered
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Impact set = {M0,M1,M2,M3,M5}
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Here is an example usage scenario of PI/EAS: ….



[a precursor on PI/EAS’s possible imprecision]
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Next, we present our methodology of the accuracy study, focusing on the two key component techniques, sensitivity analysis and execution differencing.
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13

Predictive Dynamic Change-impact Analysis (CIA)

Candidate

changes



Programbase













Given this typical usage of dynamic CIA, we can see that to study the accuracy of dynamic CIA, we need first use a large number of candidate changes to compute the accuracy, to make our accuracy results representative. 



Ideally we may want to cover potential change locations at everywhere of the software; In practice, we aim to study as many changes as possible
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Bug fix is a common type of change
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Predictive Dynamic Change-impact Analysis (CIA)
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Among others, bug fix is one common type of changes. In this paper, we study with this particular type of changes.

As we study bug fixes as changes, we input to the CIA the buggy program as the base program version



[go through the flow]

The fixed version now is the changed version, which is NOT available to the predictive CIA.

Compute the real impacts of what? ( the bug fix change)



Therefore there are two key components of our methodology: the first is the one that produces a large number of potential changes, that is a large number of buggy program versions to input to the CIA; the second is the one that computes actual impacts with respect to the bug fixes as changes. Next, we present each of these two components.
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Efficient Sensitivity Analysis
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First, to create the large number of buggy program versions, we use a technique called sensitivity analysis. 

Given the original program (i.e. the Program_fixed here), …. (go through the steps of the diagram: explain what instrumenter does is to insert extra code into the program for analysis purpose).



Limitation: so far, the changes are made to values of primitive or string types only, due to the limited capability of our current sensitivity analysis *implementation* (rather than of the technique)



Clarify that base versions apply to CIA, and ‘changed version’ apply for computing real impacts.



Explain Static as the code analysis before executions.

Also explicit about  we do not create these base versions statically, so it is efficient
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Results (statements):
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Given a program, this one for instance, and two version of it, v1.0.0 is the base version and v1.0.2 is the changed one.



First show how execution differencing works at the statement level.



Now for method level CIA study, we adapted it to work on the method level: we obtained the set of impacted statements and then simply identify as impacted each method that contains at least one statement in that set. We call this technique … or mDEA in short.
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Now for method level CIA study, we adapted it to work on the method level: we obtained the set of impacted statements and then simply identify as impacted each method that contains at least one statement in that set. We call this technique … or mDEA in short.
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Accuracy estimation
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(e.g., m>0  m<0 at statement 6 of M2)

Tool available: SensA











Using the two components of our technique, we can perform the accuracy estimation for a given CIA.

For each base version, with the changed version which is the original program, we run the CIA on base version and mDEA on both versions. (again note that the changes are unknown for the CIA and known for the mDEA), 

Also, the Dynamic CIA inputs the method queried as potential change location, while mDEA inputs the actually changed methods between the two versions. 

Then, running the same test suite, the CIA outputs impact set and mDEA gives the actual impact.

By comparing the CIA impact set and true impacts, we can compute accuracy measures for these two versions.



We have implemented both key components, sensitivity analysis and execution differencing, in a tool SensA, which is publicly available online.
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Next we present the empirical results of our study
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Subject programs and statistics

20

		Subject		Description		Lines of Code		Methods		Tests

		Schedule1		Priority Scheduler		290		24		2,650

		NanoXML		XML parser		3,521		282		214

		Ant		Java project build tool		18,830		1,863		112

		XML-Security		Encryption library		22,361		1,928		92

		JMeter		Performance monitor		35,547		3,054		79

		ArgoUML		UML Modeling tool		102,400		8,856		211













We studied six Java software, covering various program types and source code sizes up to 100 thousand of lines of code.



Ant, XML-security and ArgoUML exhibited some non-determinism due to their uses of system clock and random number generators, so these subjects were determined (by using same sequence of values before and after change) manually to ensure that mDEA computes the actual impacts based on the difference caused by the change rather than the non-determinism in the subject
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Metrics
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Impact sets (predicted and real)

Number of false positives (FP) & false negatives (FN)

Accuracy (F1) 

Precision 

Recall 

F1 = 2x(precision x recall)/(precision + recall)

Result classification

All: both S and N

Shortening (base execution is over 50% shorter)

Normal (otherwise)













We use the F1 measure calculated in this formula from the information retrieval field.

….

For an in-depth analysis of the effect of execution trace length on the accuracy result, we classified the random changes into two categories.

For some changes, the method execution trace length reduced by more than 50% from the changed version to the base version of the program (that is, the changes we made leading to shortened trace), we call such changes shortening changes or S changes in short. Other changes are called normal or N changes. 

Accordingly, we have the results for All changes together and for N and S changes separately 



We calculated the 95% non-parametric confidence intervals for the means of precision, recall and accuracy per subject and for all subjects. These confidence intervals were computed based on the Vysochanskij-Petunin inequality [Vysochanskij ’80], which makes no assumptions on the normality of the underlying data points’ distribution
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Precision

22

average precision 52%















The x-axis indicates the results of individual subject and over all subjects, and the y-axis indicates the means of precision. 

For each subject on the x-axis, the three bars show the precision, for all changes and the two sub-categories, N and S changes.



For example, Schedule1 has an average precision of over 70% for all changes and only 30% for normal changes yet over 85% for shortening changes.



Overall average precision for all changes is only 52%, which is quite low.  This can be explained by the fact that 

PI/EAS predicts impact sets of a given changed method purely based on execution orders of methods. However, not all methods executed after the change location are necessarily impacted.

  

Note that the precision for Shortening changes are much higher, approaching to 80%. This is most likely to be the result of the fact that the shorter execution trace gives the dynamic CIA less dynamic information and thus the impact set tends to be smaller. 

The precision of All changes is larger than the Normal changes is also because of the effect of the data points of the Shortening changes.





The overall precision is with 0.95 confidence interval of [0.50,0.53]

For any individual subject, the deviation from the mean in the same type of interval is 3~6 percentage points 
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All	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.73	0.46130606860158146	0.67198558352402749	0.7	0.41726921473245193	0.39	0.52	N	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.32539166666666702	0.2388546961325968	0.65241338582677177	0.56000000000000005	0.37842240128928256	0.34	0.43	S	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.86935588235294137	0.73219946808510572	0.80514642857142871	0.91	0.66074848484848459	0.62	0.79	





Recall

23

average recall 56%















Why the recall for Schedule1 is much higher than other subjects: there is not much control decisions in this software which is very small. So the program can execute as long as PI/EAS collects all potential impacts.



The means of recall, also classified by change types.



Overall average recall for all changes is only 56%, which although a bit higher than precision, is still poor. 

This is possibly because that control flows were changed in the buggy version such that many actually impacted methods executed in the fixed version but were not executed in the buggy version.



The recall for Shortening changes is even lower. This is again because of the less dynamic information for the Shortening changes than Normal changes.



Overall recall within 0.95 confidence interval of [0.55,0.58]

For any individual subject, the deviation from the mean in the same type of interval is 2~9 percentage points 
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All	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.9	0.73482110817942004	0.5309988558352402	0.42	0.58135399583043801	0.65	0.56000000000000005	N	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.9871833333333333	0.94699005524861901	0.59283490813648299	0.38	0.60435149073327943	0.68	0.59	S	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.86798235294117654	0.3085106382978724	0.11029285714285723	0.47	0.43721313131313139	0.49	0.44	





Recall

24

average recall 56%





average accuracy (F1) 39%











Why the recall for Schedule1 is much higher than other subjects: there is not much control decisions in this software which is very small. So the program can execute as long as PI/EAS collects all potential impacts.



The means of recall, also classified by change types.



Overall average recall for all changes is only 56%, which although a bit higher than precision, is still poor. 

This is possibly because that control flows were changed in the buggy version such that many actually impacted methods executed in the fixed version but were not executed in the buggy version.



The recall for Shortening changes is even lower. This is again because of the less dynamic information for the Shortening changes than Normal changes.



Overall recall within 0.95 confidence interval of [0.55,0.58]

For any individual subject, the deviation from the mean in the same type of interval is 2~9 percentage points 
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All	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.9	0.73482110817942004	0.5309988558352402	0.42	0.58135399583043801	0.65	0.56000000000000005	N	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.9871833333333333	0.94699005524861901	0.59283490813648299	0.38	0.60435149073327943	0.68	0.59	S	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	Overall	0.86798235294117654	0.3085106382978724	0.11029285714285723	0.47	0.43721313131313139	0.49	0.44	





Results for SIR changes (bug fixes) 
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In addition to the main study with massive random changes, we did a second study using changes made by other researchers in the SIR, a software-artifact infrastructure repository from UNL. The changes are bug fixes.

This is the result of the four subjects we studied.

For most of the subjects, the average precision is close to, and actually a bit lower for SIR changes than for random changes.



Recall is much higher on average though, implying that the recall of PI/EAS might be better in practice than was estimated in the previous study (with random changes). This may be ascribed to the fact mostly the SIR changes do not change control flows.



This implies that methods executed closer to the change location tend to more possibly be impacted by the change.
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Precision	Schedule1	NanoXML	XML-security	JMeter	Overall	0.56349206349206327	0.39071988235720634	0.52768571428571431	0.3985848802873026	0.47	Recall	Schedule1	NanoXML	XML-security	JMeter	Overall	1	0.99	0.64	0.84	0.87	Accuracy	Schedule1	NanoXML	XML-security	JMeter	Overall	0.71008991008990985	0.48287747042110685	0.39698571428571433	0.4338563093487891	0.51	





New Results for real changes 
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Recently we continued studying the accuracy of PI/EAS with real changes found in three SVN repositories, for Ant, XML-security and PDFBox for a total of over 100 revisions that contain source-code changes.



Surprisingly, as this result shows, PI/EAS can perform even worse on real changes than on random and SIR changes.
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Precision	Ant	XML-security	PDFBox	Overall	0.24	0.6	0.38	0.38	Recall	Ant	XML-security	PDFBox	Overall	0.56000000000000005	0.56999999999999995	0.38	0.5	Accuracy	Ant	XML-security	PDFBox	Overall	0.22	0.48	0.35	0.34	





Future work
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Enhance the experimentation framework to support extended study for

More subjects

Other dynamic impact analyses

Develop more precise technique for dynamic impact prediction
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Outline

Background: PI/EAS

Methodology

Sensitivity Analysis 

Execution Differencing

Results

Contributions



28













To sum up the contributions of this work
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Contributions
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A methodology for estimating the accuracy of dynamic  impact analyses

The first empirical study of the predictive accuracy of dynamic impact analysis 

Insights to the effectiveness of predictive dynamic impact analysis

Current dynamic  impact analysis can be surprisingly imprecise

Precision 52% for random changes,  47% for SIR changes

Moreover, existing dynamic impact analysis can be also quite unsafe 

Recall 56% for random changes,  87% for SIR changes

















Our methodology can be easily implemented and applied to study other dynamic CIA techniques.



Our result implies that the current predictive dynamic CIAs, represented by PI/EAS, may not be effective enough for practical use and the inaccuracy can seriously affect the quality, reliability and security of software what applies such analyses.



Now I am open for Questions.



Thank you.
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Contributions
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Questions











Our methodology can be easily implemented and applied to study other dynamic CIA techniques.



Our result implies that the current predictive dynamic CIAs, represented by PI/EAS, may not be effective enough for practical use and the inaccuracy can seriously affect the quality, reliability and security of software what applies such analyses.



Now I am open for Questions.



Thank you.
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[Backup slides]
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How PI/EAS works
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PI (PathImpact)

Monitor all method-entry and method-return events

Example: M1 M2 M5 r r x

Derive execute-after relations from the trace by matching returns event with entry events

EAS (Execute-After Sequences)

Monitor for each method the first entry event and last returned-into event, using a global counter

Derive execute-after relations by comparing the ‘last’ to the ‘first counter value 

Example: M1[0,8] M2[1,7] M5[3,3]

Both are equivalent in deriving the execute-after relations

Same precision

EAS has better performance













More concretely, PI captures all entry and return events of each methods and produces a trace such as this one. Then, it derives the execute-after relation from this trace and thus computes the potential impact set.

Equivalently, EAS computes the same execute-after relations. However, instead of tracing the full sequence of events, it uses a global counter and records the counter value at the first entry and last returned-into event for each methods. Namely it uses just two integers per method to derive the same information for impact analysis. For example, in this example sequence, M1[0,8] indicates that M1 first entered at counter 0 and last was returned into at counter 8.



As can be seen, both techniques are equivalent in computing the impact sets thus have the same precision.

However, because EAS does not trace the full sequence of events, it is more efficient.
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Subject programs and statistics

Total of over 180,000 lines of code
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		Subjects		Description		Lines of Code		Methods		Tests

		Schedule1		Priority Scheduler		290		24		2,650

		NanoXML-v1		XML parser		3,521		282		214

		Ant-v0		Java project build tool		18,830		1,863		112

		XML-Security-v1		Encryption library		22,361		1,928		92

		JMeter-v2		Performance monitor		35,547		3,054		79

		ArgoUML-r3121		UML Modeling tool		102,400		8,856		211







From the SIR repository

From SVN











We studied six Java software, five of which were obtained from the SIR repository  



The last one, ArgoUML was downloaded from its SVN repository



These subjects 
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Scope of random changes
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Change scope = number of statements in methods that are changed to the number of statements of entire subject



This quantity reflects how large scope our random changes covered at the method level in the entire software
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 Overall change scope = 73%

 Change Scope	Schedule1	NanoXML	Ant	XML-security	Jmeter	ArgoUML	0.82	0.85099999999999998	0.77100000000000002	0.80200000000000005	0.78300000000000003	0.7	

Study for SIR-changes 
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Four SIR subjects

Schedule1, NanoXML, XML-security and JMeter

7 changes for each

Changes are the fixes of SIR faults

Reuse the previous accuracy estimation method

Faulty version as the base version 

Fixed version as the changed version

Same metrics as for random changes

No classification of N/S subsets of changes 













The SIR changes are faults that other researchers produced for simulating program errors that developers would make



Compared to the random changes, SIR changes are also but different type of artificial changes



We chose 7 changes because except for Schedule1 the subjects have exactly 7 usable changes in the SIR



We did not classify results for N and S changes separately because of the lack of enough data points (number of changes)
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Distribution for all changes 
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Distribution of precision, recall and accuracy for all changes
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Distribution for N changes 
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Distribution of precision, recall and accuracy for normal (non-shortening) changes
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Distribution for S changes 
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Distribution of precision, recall and accuracy for shortening changes
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Confidence Intervals for Random Changes 
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		Change Type		Precision 				Recall				Accuracy (F1)		

				mean		conf. interval		mean		conf. interval		mean		conf. interval

		All		0.52  		[0.50,0.53]		0.56		[0.55,0.58]		0.39		[0.38,0.40]

		N		0.43		[0.41,0.45]		0.59		[0.58,0.61]		0.35		[0.34,0.37]

		S		0.79		[0.77,0.81]		0.44		[0.41,0.47]		0.47		[0.45,0.50]













Distribution of precision, recall and accuracy for shortening changes
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Confidence Intervals for SIR Changes 
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		Change Type		Precision 				Recall				Accuracy (F1)		

				mean		conf. interval		mean		conf. interval		mean		conf. interval

		All		0.47		[0.30,0.64]		0.87		[0.72,1.0]		0.51		[0.36,0.66]













Distribution of precision, recall and accuracy for shortening changes
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Confidence Intervals for Real Changes 
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		Change Type		Precision 				Recall				Accuracy (F1)		

				mean		conf. interval		mean		conf. interval		mean		conf. interval

		All		0.38		[0.30,0.46]		0.50		[0.42,0.58]		0.34		[0.27,0.40]













Distribution of precision, recall and accuracy for shortening changes
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Choose random-change locations 

42

For each method m, use two limits L and Lmax

Am = the set of all applicable statements in m

Cm = target set of change locations

If |Am|<=L, 

Cm = Am  

Else

|Cm| = min(|Am|, Lmax)

Split m into |Cm| segments of as equal length as possible

Randomly pick one statement in each segment and add it to Cm

















Defaults : L=5, Lmax = 10
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Fix PI/EAS for unhandled exceptions

43

PI/EAS can miss functions executed after the change when its assumption fails (which happens a lot) 

Exception caught by the throwing method, or, if not, caught in the caller of the throwing method

When this assumption fails, following methods will be missed from its impact set

The throwing method itself

All methods on the stack that do not catch the exception 
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Fix PI/EAS for unhandled exceptions

44

Example code













Example traces



Example case

Exception thrown in M3, not handled 

Last events for M1 and M0 not updated

M1 and M0 are missed from the impact set of M3





















For the EAS first-last events, the numbers in the square brackets are the timestamp for the first entry event and last returned-into event of the method



EAS uses these two numbers per method to derive the execute-after relations between methods
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Fix PI/EAS for unhandled exceptions

45

Our solution

Wrap each method with a try-catch block, put its entire body in the try block

In the extraneous catch block, capture the returned-into event and rethrow the exception
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