
SENSA:  
Sensitivity Analysis for Quantitative 
Change-impact Prediction 

Haipeng Cai Siyuan Jiang  Raul Santelices  
Ying-jie Zhang* Yiji Zhang  

 University of Notre Dame, USA 

* Tsinghua University, China 

Supported by ONR Award N000141410037 SCAM 2014 



2 

Predictive Dynamic Change-impact Analysis (CIA) 

Candidate Change Locations 

Predicted Impacts 
 Challenge 1: Coarse granularity                    

(missing details) 
 Challenge 2: Large size    

(incurring prohibitive costs) 
 

Programbase 

M1, M2, M3, M4, M5 

M1, M2, M3, M5 

M2 

What we do 



3 

Predictive Dynamic Change-impact Analysis (CIA) 

Candidate Change Locations 

Predicted Impacts 
 Challenge 1: Coarse granularity                    

(missing details) 
 Challenge 2: Large size    

(incurring prohibitive costs) 
 

Programbase 

M1, M2, M3, M4, M5 

M1, M2, M3, M5 

M2 

What we do 

Solution: statement-level analysis 

Solution: prioritize change impacts 



Technique: overview 
4 

Program 
P 

Test Suite 

SENSA 

Instrumented 
P 

Execution 
Histories 

Quantified 
Impacts 

Candidate  
Change  
Location 

Sensitivity Analysis 

Execution Differencing 



Technique: sensitivity analysis 
5 

Program 

Candidate Change Location 

Modified 
Execution1 

…… 

Runtime 

Instrumented 
Program 

Static 

Modified 
Execution2 

Modified 
ExecutionN 

Original 
Execution 

SENSA 
Instrumenter 



Technique: execution differencing 
6 

Results 
(statements): 

6 
7 
17 

Statement Value 

20 False 

6 True 

11 -3 

12 -3 

7 

17 False 

4 -3 

Statement Value 

20 False 

6 False 

11 -3 

12 -3 

- 

- 

4 -3 

Original Execution Modified Execution 

Execution 
History 

//  change 

Impact set  
(for statement 6) 



How SENSA works 
7 

Original Execution Multiple Modified Executions 

//change 

 
Execution Differencing 

  
Impact Quantification  

 

Statement Impact 
Frequency 

6    1 

7 1 

17 1 

2 0 

…
 0 

21 0 

Quantified  
Impact Set 

Only one modified 
execution for this 

example  



Subject programs and statistics 
8 

Subject Description Lines of Code Tests Changes 

Schedule1 Priority Scheduler 290 2,650 7 

NanoXML XML parser 3,521 214 7 

XML-Security Encryption library 22,361 92 7 

Ant Java project build tool 44,862 205 7 
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Experimental methodology 

 Metrics 
 Effectiveness: inspection effort 
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 Cost: computation time 
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 use the actual impact set as the prediction result  
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Results: computation time 
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Schedule1 6 sec 4,757 sec 1,054 sec 
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 Runtime cost dominates the total cost 

 Come from multiple modified executions 
 Can be greatly reduced by executing all modifications in 

parallel 
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 Test suite augmentation is irrelevant to alleviating the 
limitation of dynamic analysis that the execute set 
used does not fully represent the program behavior. 
 

 Quantitative dependence analysis is more effective 
than traditional non-quantified dependence analysis. 
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Thanks Mr. (session chair) for the introduction.



Software keeps changing, and the impacts of changes have to be analyzed.

While dynamic impact analysis is an important technique analyzing those impacts, the results produced by existing techniques 

are either too coarse or too large, making them difficult to adopt. 



In this talk, I will present our solution to these issues and empirical results of our new technique.

===============================
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Applying dynamic change-impact analysis, or in short Dynamic CIA before changes are designed allows developers to assess effects of 

potential changes so that they can decide if applying those changes or not.



We call the analysis applied before changes are made the predictive dynamic impact analysis, which is what we focus on in this work.



Such analysis inputs the base program, the version of a program before change is made, and candidate change locations, and outputs the 

Impacts predicted for those locations. 



Go through the example….



As illustrated by this example, there are two challenges to existing dynamic CIAs ….



===============================

[general rule: explain, in one way or another, why you show the stuff before you really started showing; 

Never apologize for your work ]



[also try to explain, briefly, why should developers do the analysis before changes are designed: doing that before allows them to decide if to apply or not]





This is the typical usage scenario of the CIA: it inputs the program before change (noted as Program‘base’) and candidate change locations, and outputs potential impacts of those changes.  For example, suppose the program contains five entities: …..

In this context, too main challenges have arise.



First, the results are too coarse, according to some of the recent industrial studies

Second, the impact sets reported are usually too large, often most of the program



To overcome the insufficiency of reporting coarse results, we aim at statement-level analysis to provide fine-grained results

Note that this would aggravate the large-size issues, though.



To address the second challenge, researchers have tried various approaches trying to reduce the large impact sets. 

Unfortunately, very large impact sets are still produced --- most of the program; hundreds of thousands of lines of code reported as potentially impacted.

We believe that all impacted entities are equally important or have equal priorities for inspection. Thus, we propose a different/complementary approach to impact reduction --- we prioritize the potentially impacted entities by quantifying dependencies of them on the change location.
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Our technique and tool, called SensA, inputs a program P and a candidate change location, and produces the instrumented program for P.

It then runs the input test suite repeatedly, each time modifying the value computed at that location, and collects the execution history of each run.

Finally, it takes the execution histories back into processing (comparing it against the original execution) and computes quantified impacts, which 

Is a set of impacted statements each attached with a score indicating the frequency of being impacted.



To achieve this process, SensA uses its two key components, sensitivity analysis and execution differencing, on which we give more details next.

===============================



[Change location -> candidate change location]

[repeatedly modify the location]

[speak ‘sensitivity’ clearly – slower at the last part]

[Sensa – emphasize the last syllable ]





This diagram gives an overview about how SensA works, highlighting its inputs, internal processing and outputs.



Next, we describe more details about two key components of SensA, separately: sensitivity analysis and execution differencing.
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This is how sensitivity analysis works. It inputs a program, instruments at the input location and generates the instrumented program, ….

(Go through this simple diagram and emphasize again that SensA repeatedly modifies the original execution to produce these N executions. )

…

To find impacted statements, SensA also executes the original program to obtain the original execution. The next step is to compare that original execution with each of the modified executions, using a technique called execution differencing. 

===============================



[don’t need spent much time explaining the strategies here --- do that later only in the experiment]



[Static and Runtime are in too large fonts.]



[Runtime should appear at the same time as the box]





The first core component is sensitivity analysis. This is how it works (go through the diagram step by step quickly)



To quantify semantic dependencies, SensA creates multiple modified program executions to compare with the original program execution.

We empirically determine the default number of modifications to be 20 as continuing to increase executions does not gain in the effectiveness of SensA (for our experiment subjects at least). But user still has the flexibility to customize this setting.



Limitation: so far, the changes are made to values of primitive or string types only, due to the limited capability of our current sensitivity analysis *implementation* (rather than of the technique)



Explain Static as the code analysis before executions.
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To show how execution differencing works, consider this simple program which has three classes each having several member functions, the details are not important here and we just use it for illustration purposes.



Suppose this is the original program, SensA will get the original execution by executing it; then, suppose statement 6 is the candidate change location, SensA will modify the predicate there and then get the modified execution by running the changed program.



Now SensA tracks a sequence of statement-value pairs for each execution and finds statements whose value has changed. Such statements, 

6, 7 and 17 in this example, form the impact set for the change location, statement 6 in this case.

=============================== 



[avoid saying ‘dummy’, use ‘simple’ ‘details are not important’]

[ ‘ whose value has / values have’]



The second key component is called Differential Execution Analysis (or DEA for short).

To illustrate how DEA works, consider this example program (it is just a dummy simple snippet, you don’t have to understand it)



For each pair of modified and original executions, SensA differentiates the corresponding execution histories  



First show how execution differencing works at the statement level.
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		Statement		Impact Frequency
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		7		1

		17		1
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		…		0
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Quantified 
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Only one modified execution for this example 











Now, with the two components just presented, what SensA does is to repeatedly modify the given location, thus obtain multiple modified executions, and then by using the execution differencing module it computes an impact set from each modified execution, and then quantifies the final impact set by computing an impact frequency for each statement in the impact set. At the end, SensA outputs a quantified impact set. 



For this example, this table shows the quantified impact set for the change location at statement 6. 

Since the predicate can be evaluated to either true or false, there is only one modified execution. 

Because 6,7 and 17 are found impacted from that single modified execution, their impact frequencies are all 1. 

Other statements all receive a 0 frequency because they are not impacted according to the execution differencing. 



As such, in general, the impact frequency can be any number between 0 and 1, depending on how many times a statement appears in the impact sets from the execution differencing for all modified executions.

 

===============================

[need more elegant clearer way to explain this example: write the full script]



Using the two components of our technique, SensA can now find and quantify the impacts of potential changes at the input location.



To illustrate, consider the same example we used previously.



After instrumentation, what SensA does at runtime is to repeatedly modify the executions N times, each time giving a unique value to the target statement.



The frequency = the number of occurrence of each statement in the impact set from each pair of modified vs original executions. 



Our tool implementation of SensA is publicly available online.



7



Subject programs and statistics

8

		Subject		Description		Lines of Code		Tests		Changes

		Schedule1		Priority Scheduler		290		2,650		7

		NanoXML		XML parser		3,521		214		7

		XML-Security		Encryption library		22,361		92		7

		Ant		Java project build tool		44,862		205		7













To evaluate SensA, we studied four Java software of various sizes and functionalities but consistently using 7 changes for each.



===============================

To evaluate SensA, we studied four Java software, covering various program types and source code sizes up to 70K lines of code.



We chose seven changes per subjects because all these subjects are from the Software-artifact Infrastructure Repository (SIR), where seven is the maximal number of usable changes for the technique.



Ant, XML-security exhibited some non-determinism due to their uses of system clock and random number generators, so these subjects were determined (by using same sequence of values before and after change) manually to ensure that DEA computes the actual impacts based on the difference caused by the change rather than the non-determinism in the subjects.
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This diagram illustrates our experimental methodology.

To evaluate SensA’s impact prediction results, we need a module to compute the actual impacts for each change. 

As shown before, SensA inputs a program, its test suite and a statement S as the candidate change location. 

In addition to these three inputs, the actual-impact computation module also inputs the actual change at the location S. 



Then, SensA produces the quantified impacts for S, and actual-impact computation module gives the actual impacts that we use as the ground truth

for S. 



Next, both impact sets are compared and experimental metrics are computed. 



Note that the right-hand parts highlighted are only evaluation, they are not parts of SensA technique itself: SensA does not assume any knowledge 

about the actual changes. 

===============================

[‘quantitative’ -> quantified]

[‘ no need to bold the initials ]

[ use smaller fonts in the diagram and larger in the bulleted text]



This diagram illustrates our experimental methodology.

(quickly go through…)

To enable the comparison, all the rankings are normalized by adding statements in the static slice not found by the ranking to the bottom of that ranking, assign zero score to those statements and then calculate the ranks for the entire static slice. 
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This diagram illustrates our experimental methodology.

To evaluate SensA’s impact prediction results, we need a module to compute the actual impacts for each change. 

As shown before, SensA inputs a program, its test suite and a statement S as the candidate change location. 

In addition to these three inputs, the actual-impact computation module also inputs the actual change at the location S. 



Then, SensA produces the quantified impacts for S, and actual-impact computation module gives the actual impacts that we use as the ground truth

for S. 



Next, both impact sets are compared and experimental metrics are computed. 



Note that the right-hand parts highlighted are only evaluation, they are not parts of SensA technique itself: SensA does not assume any knowledge 

about the actual changes. 

===============================

[‘quantitative’ -> quantified]

[‘ no need to bold the initials ]

[ use smaller fonts in the diagram and larger in the bulleted text]



This diagram illustrates our experimental methodology.

(quickly go through…)

To enable the comparison, all the rankings are normalized by adding statements in the static slice not found by the ranking to the bottom of that ranking, assign zero score to those statements and then calculate the ranks for the entire static slice. 
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Experimental methodology

Metrics
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Percentage of worse-case inspection cost

Cost: computation time

Two variants: SensA-Rand, SensA-Inc

Compare to: static slicing, dynamic slicing, ideal case

Ideal case: best prediction possible

use the actual impact set as the prediction result 

11











For our study, we considered two major metrics: effectiveness measured by the inspect effort of SensA quantified impact set, and cost incurred by SensA for getting the quantified impact set.



We evaluated two variants of SensA, corresponding to two modification strategies currently designed in SensA: random and incremental. 

SensA-Rand uses the random strategy, modifying the input location using random values; 

SensA-Inc uses the incremental strategy, modifying the input location using positive and negative steps. 



We compare SensA to three alternatives: static and dynamic forward slicing, and also the idea case for each change.

The ideal case indicates the best prediction result possible. 



===============================

The inspection cost = Average rank of impacted statements / size of static slice.



Dividing by the size of static slice implies that the inspect effort is measured with respect to the worse-case cost --- for each actually impacted statement, the developer needs to exhaust the entire ranking (static slice) before reaching that statement in the ranking.



We calculate the inspect costs as effectiveness measure for all the techniques compared: two variants of SensA and two forms of slicing. 

We also put the ideal-case inspect cost into the comparison to see how each technique performs with respect to the best possible prediction



It is worth noting that this right-hand-side parts are the components of the experimental process, rather than parts of the SensA technique itself. In particular, the actual changes are not an input to SensA. SensA is a predictive impact analysis, which is applied before the actual change is designed. 
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Results: inspect effort
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This chart shows the effectiveness results of SensA, the x-axis lists the techniques compared, group by experiment subjects plus the overall case;

The y-axis shows the inspect effort expressed by percentage, as computed by the method just presented.



For example, the ideal-case effort with XML-security is 5%, while with static and dynamic slicing, the efforts are about 31% and 45% respectively; using SensA however, the costs are only about 12% and 21% for the random and incremental strategy, respectively. 



Overall, we can see the similar advantage of SensA over the two slicing techniques. Regardless of the modification strategy used, SensA performs way better than the slicing alternatives. 



In addition,  we performed a non-parametric hypothesis testing for a 95% confidence level. Our test shows that SensA is significantly more effective

Than the slicing techniques. 

===============================



[‘using the methodology I just presented, rather than ‘previous methodology’; in general, avoid passive language]



Try to better distinguish Sensa results from the baseline ones.



Explain a full example (cover the example data points for the five)



Use contours / 

Use patterns to better differentiate between baseline bars (try to avoid using RED which usually indicates errors)

Use colors for SensA results



Also mention that the advantages are statistically significant.



If time allows, mention that we have extended this study with three larger subjects, and the findings (results confirmed ….



be prepared to answer questions on extended study; 





The x-axis indicates the results of individual subject and over all subjects, and the y-axis indicates the average inspect costs over all the seven changes of the subject.

For each subject on the x-axis, the five bars show the average inspect costs incurred by using the four techniques compared, plus the idea case.



For example, for XML-security the ideal case cost is 5%, compared to the cost of over 30% and 45% with static and dynamic slicing respectively.

Using SensA, the cost is less only about 20%, with random strategy being even better. 



Overall, Sensa inspect cost is about 28% by average,  compared to over 35% with two slicing techniques.

Note that with larger subjects, the effectiveness gain of Sensa is even higher.

We also performed a wilcoxon signed-rank test to the data points for all the changes of these subjects and concluded that Sensa is significantly more effective than the two slicing alternatives. 



12



Ideal case	Schedule1	NanoXML	XML-security	Ant	Overall	0.47895662428571434	8.8368270257142861E-2	5.0020413328571434E-2	3.2139110457142864E-2	0.16	static slicing	Schedule1	NanoXML	XML-security	Ant	Overall	0.50141506285714288	0.22705597142857145	0.31938536857142857	0.39157704428571422	0.36	dynamic slicing	Schedule1	NanoXML	XML-security	Ant	Overall	0.4833578842857143	0.27090077771428572	0.45371250857142853	0.41545830571428566	0.41	SensA-Rand	Schedule1	NanoXML	XML-security	Ant	Overall	0.48013527285714286	0.20273559328571428	0.13154643842857144	0.29844145071428574	0.28000000000000003	SensA-Inc	Schedule1	NanoXML	XML-security	Ant	Overall	0.48013527285714286	0.22373745628571431	0.21485238999999998	0.23761321400000002	0.28999999999999998	
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Results: computation time

		Subject		Static analysis		Instrumented run		Post-processing

		Schedule1		6 sec		4,757 sec		1,054 sec

		NanoXML		17 sec		773 sec		10 sec

		XML-Security		179 sec		343 sec		21 sec

		Ant		943 sec		439 sec		7 sec



Static analysis and post-processing cost little time

Runtime cost dominates the total cost

Come from multiple modified executions

Can be greatly reduced by executing all modifications in parallel















The table lists the computation costs of SensA for the four subjects we studied.

We can see that the static analysis and post-processing parts only consume very little amount of time;

What dominates the total cost is the runtime phase. 



However, since this cost comes from repeated modifications, where each modification is independent of others, this phase is highly parallelizable. Therefore, the cost of this phase can be greatly reduced by executing all modifications in parallel.



===============================

[insert spaces between the value and ‘s’, and comma in the numbers for each three digits]

[remove N=20]

[try also briefly mentioning why the runtime phase can be parallelized]







The instrumented execution costs 6 to 79 minutes, but this phase can be significantly optimized by parallelization.
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Conclusion
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Contributions

A novel approach to quantifying dependencies and, based on that, a quantitative dynamic impact prediction technique

An empirical study of the new approach showing the significantly better effectiveness of the new approach than slicing, at reasonable costs

Future Work

To expand the study by including more subjects and more types of changes

To apply the dependence-quantification approach to tasks other than impact analysis



















To conclude, we presented a novel approach …..; and an empirical study that shows ….



For future work, we plan to expand ….,  we also plan to …



===============================

[remove ‘semantic’]



Target a total time of 11m30s – 11m50s



Should speak more slowly, and use bold tone (‘sensitivity’ is still not articulated enough).



Also, speak with stronger voice.



Look at the audience, but not one particular person (switch over different people).
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To conclude, we presented a novel approach …..; and an empirical study that shows ….



For future work, we plan to expand ….,  we also plan to …



===============================

[remove ‘semantic’]



Target a total time of 11m30s – 11m50s



Should speak more slowly, and use bold tone (‘sensitivity’ is still not articulated enough).



Also, speak with stronger voice.



Look at the audience, but not one particular person (switch over different people).
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17 minutes now; need to reduce greatly by simplifying explanations
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Controversial statements
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Test suite augmentation is irrelevant to alleviating the limitation of dynamic analysis that the execute set used does not fully represent the program behavior.



Quantitative dependence analysis is more effective than traditional non-quantified dependence analysis.
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