SENSA: Sensitivity Analysis for Quantitative Change-impact Prediction

Haipeng Cai[•] Siyuan Jiang [•] Raul Santelices [•] Ying-jie Zhang^{*} Yiji Zhang [•]

University of Notre Dame, USA

* Tsinghua University, China

SCAM 2014

Supported by ONR Award N000141410037

What we do

What we do

Technique: overview

Technique: sensitivity analysis

Technique: execution differencing

How SENSA works

Subject programs and statistics

Subject	Description	Lines of Code	Tests	Changes
Schedule1	Priority Scheduler	290	2,650	7
NanoXML	XML parser	3,521	214	7
XML-Security	Encryption library	22,361	92	7
Ant	Java project build tool	44,862	205	7

Experimental methodology

Experimental methodology

Experimental methodology

- 11
- Metrics
 - Effectiveness: inspection effort
 - Percentage of worse-case inspection cost
 - Cost: computation time
- □ Two variants: SENSA-RAND, SENSA-INC
- Compare to: static slicing, dynamic slicing, ideal case
 - Ideal case: best prediction possible
 - use the actual impact set as the prediction result

Results: inspect effort

Results: computation time

1	

Subject	Static analysis	Instrumented run	Post-processing
Schedule1	6 sec	4,757 sec	1,054 sec
NanoXML	17 sec	773 sec	10 sec
XML-Security	179 sec	343 sec	21 sec
Ant	943 sec	439 sec	7 sec

- Static analysis and post-processing cost little time
- Runtime cost dominates the total cost
 - Come from multiple modified executions
 - Can be greatly reduced by executing all modifications in parallel

Results: computation time

1			
	14		
		-	

Subject	Static analysis	Instrumented run	Post-processing
Schedule1	6 sec	4,757 sec	1,054 sec
NanoXML	17 sec	773 sec	10 sec
XML-Security	179 sec	343 sec	21 sec
Ant	943 sec	439 sec	7 sec

- Static analysis and post-prossing cost little time
- Runtime cost dominates the t
 - Come from multiple moc
 - Can be greatly reduced parallel

Highly Parallelizable

Conclusion

Contributions

- A novel approach to quantifying dependencies and, based on that, a quantitative dynamic impact prediction technique
- An empirical study of the new approach showing the significantly better effectiveness of the new approach than slicing, at reasonable costs
- Future Work
 - To expand the study by including more subjects and more types of changes
 - To apply the dependence-quantification approach to tasks other than impact analysis

Conclusion

- Contributions
 - A novel approach to quantifying dependencies and, based on that, a quantitative dynamic impact prediction technique
 - An empirical study of the new approach showing the significantly better effectiveness of the new approach than slicing, at reasonable costs
- Future Work
 - To expand the study by including more subjects and more types of changes
 - To apply the dependence-quantification approach to tasks other than impact analysis

Controversial statements

- Test suite augmentation is irrelevant to alleviating the limitation of dynamic analysis that the execute set used does not fully represent the program behavior.
- Quantitative dependence analysis is more effective than traditional non-quantified dependence analysis.