
TRACERJD: GENERIC TRACE-BASED
DYNAMIC DEPENDENCE ANALYSIS
WITH FINE-GRAINED LOGGING

Supported by ONR Award N000141410037 SANER 2015

Haipeng Cai and Raul Santelices
Department of Computer Science and Engineering
University of Notre Dame

Context

Program-dependence Analysis

Testing/
Debugging

Reverse
Engineering

Performance
optimization

Evolution ……

Program

2

Context

Dynamic Dependence Analysis

Testing/
Debugging

Reverse
Engineering

Performance
optimization

Evolution ……

Program Inputs

3

Status-quo
Some tools monitor high-level system states (e.g., network
traffic, resource usage, …)

Some reports coarse-level runtime conditions (function
invocations, exception trace, …)

DTrace Valgrind

JTracer JavaTracer

……

……

Others are applicable to specific tasks only
(dynamic slicing, execution reduction, …)

JavaSlicer Code-
Investigator

……

4

Problem
Only few techniques available capture fine-grained
source-level dynamic dependence information that supports
a variety of dependence-based applications

tool supports

?
5

Approach

Offers generic/common fine-grained dynamic
dependence information to support various applications

6

TracerJD

Many specific tools
can be built upon it

TracerJD
7

Structured logging of execution events

 Method
calls/returns

Statement
occurrence

Variable
definitions/uses

Dynamic dependence querying subroutines

Hierarchical trace indexing

Tr
ac

e

Method
events

Statement
events

Variable
events

…
…

…

Application tools
Dynamic slicer Performance profiler ……

Performance
 Instrumentation time

8

6.7 15.1

143.3

324.9

0

50

100

150

200

250

300

350

Schedule1 NanoXML XML-security JMeter

st
at

ic
 a

na
ly

si
s

tim
e

(s
ec

s)

Performance
 Runtime slowdown

9

12 13

10

2
1x

3x

5x

7x

9x

11x

13x

15x

Schedule1 NanoXML XML-security JMeter

Fa
ct

or
 o

f
ru

nt
im

e
sl

ow
do

w
n

Performance
 Storage costs

10

125.3

36.1 44.6 13.6
0

50

100

150

Schedule1 NanoXML XML-security JMeter

To
ta

l t
ra

ce

si
ze

 (
M

B)

2.0 2.1

3.2
2.7

1x
2x
2x
3x
3x
4x

Schedule1 NanoXML XML-security JMeter

Fa
ct

or
 o

f
co

de

si
ze

 g
ro

w
th

Use scenarios
 Scenario 1: dynamic slicing

11

TracerJD - dynamic dependence querying subroutines

Last definition Last predicate

Transitively traverse
backward dependencies

criterion slice

Use scenarios
 Scenario 2: performance profiling

12

TracerJD - dynamic dependence querying subroutines

Statement instances

Compute time elapses
between instances

Set of
statements

Execution-
time report

Timing flag

13
Conclusions

 A framework that provides generic dynamic
dependence information to support various
applications

 An effective trace indexing scheme that
enables efficient dynamic-dependence
querying

 Two example client analyses that offer readily
utilities and demonstrate the flexibility of
building diverse applications

Acknowledgements
14

Office of Naval Research for funding

All of you for time and attention

Q&A

PLEASE ASK
QUESTIONS

15

	TRACERJD: Generic Trace-Based Dynamic Dependence Analysis with Fine-Grained Logging
	Context
	Context
	Status-quo
	Problem
	Approach
	TracerJD
	Performance
	Performance
	Performance
	Use scenarios
	Use scenarios
	Conclusions
	Acknowledgements
	Q&A

TRACERJD: Generic Trace-Based Dynamic Dependence Analysis with Fine-Grained Logging

Supported by ONR Award N000141410037

SANER 2015

Haipeng Cai and Raul Santelices

Department of Computer Science and Engineering

University of Notre Dame

Hello everyone.

What I am going to demonstrate is TracerJD, a generic dynamic dependence analysis toolkit based on tracing program states at runtime.

In this talk, I am going to present to you the main features of TracerJD that tells it apart from existing peer tools.

1

Context

Program-dependence Analysis

Testing/ Debugging

Reverse Engineering

Performance optimization

Evolution

……

Program

2

Dependence analysis is fundamental to various software-engineering tasks, testing, performance tuning, debugging, maintenance, evolution, so on and so forth.

2

Context

Dynamic Dependence Analysis

Testing/ Debugging

Reverse Engineering

Performance optimization

Evolution

……

Program

Inputs

3

Particularly, dynamic dependence analysis is crucial for capturing dependencies among program entities at runtime with respect to concrete operational profiles of programs, required by tasks like debugging, performance testing, and the like.

3

Status-quo

Some tools monitor high-level system states (e.g., network traffic, resource usage, …)

Some reports coarse-level runtime conditions (function invocations, exception trace, …)

DTrace

Valgrind

JTracer

JavaTracer

……

……

Others are applicable to specific tasks only (dynamic slicing, execution reduction, …)

JavaSlicer

Code-Investigator

……

4

Problem

Only few techniques available capture fine-grained source-level dynamic dependence information that supports a variety of dependence-based applications

tool supports

?

5

Approach

Offers generic/common fine-grained dynamic dependence information to support various applications

6

TracerJD

Many specific tools can be built upon it

TracerJD

7

Structured logging of execution events

Method calls/returns

Statement occurrence

Variable definitions/uses

Dynamic dependence querying subroutines

Hierarchical trace indexing

Application tools

Dynamic slicer

Performance profiler

……

Trace

Method events

Statement events

Variable events

…

…

…

Performance

Instrumentation time

8

Schedule1	NanoXML	XML-security	JMeter	6.7	15.1	143.30000000000001	324.89999999999998	

static analysis time (secs)

Performance

Runtime slowdown

9

Schedule1	NanoXML	XML-security	JMeter	12	13	10	2	

Factor of runtime slowdown

Performance

Storage costs

10

Schedule1	NanoXML	XML-security	JMeter	125.3	36.1	44.6	13.6	

Total trace size (MB)

Schedule1	NanoXML	XML-security	JMeter	2	2.1333333333333333	3.2230769230769232	2.6753731343283582	

Factor of code size growth

Use scenarios

Scenario 1: dynamic slicing

11

TracerJD - dynamic dependence querying subroutines

Last definition

Last predicate

Transitively traverse backward dependencies

criterion

slice

Use scenarios

Scenario 2: performance profiling

12

TracerJD - dynamic dependence querying subroutines

Statement instances

Compute time elapses between instances

Set of statements

Execution-time report

Timing flag

13

Conclusions

A framework that provides generic dynamic dependence information to support various applications

An effective trace indexing scheme that enables efficient dynamic-dependence querying

Two example client analyses that offer readily utilities and demonstrate the flexibility of building diverse applications

To conclude, we presented a framework …

13

Acknowledgements

14

Office of Naval Research for funding

All of you for time and attention

Q&A

PLEASE ASK QUESTIONS

15

15

image3.png

UNI1WV 11T Y OF
@ NOTRE DAME
~ College of Engineering

image4.png

image5.wmf

image6.wmf

image7.wmf

image8.jpeg

image9.jpeg

image10.gif

X6

