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Conclusions 

 A framework that provides generic dynamic 
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 An effective trace indexing scheme that 
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 Two example client analyses that offer readily 
utilities and demonstrate the flexibility of 
building diverse applications 
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Hello everyone.

What I am going to demonstrate is TracerJD, a generic dynamic dependence analysis toolkit based on tracing program states at runtime.

In this talk, I am going to present to you the main features of TracerJD that tells it apart from existing peer tools.
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Dependence analysis is fundamental to various software-engineering tasks, testing, performance tuning, debugging, maintenance, evolution, so on and so forth.
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Particularly, dynamic dependence analysis is crucial for capturing dependencies among program entities at runtime with respect to concrete operational profiles of programs, required by tasks like debugging, performance testing, and the like.



3



Status-quo



Some tools monitor high-level system states (e.g., network traffic, resource usage, …)



Some reports coarse-level runtime conditions (function invocations, exception trace, …) 



DTrace



Valgrind



JTracer



JavaTracer



……

……

Others are applicable to specific tasks only (dynamic slicing, execution reduction, …)



JavaSlicer



Code-Investigator

……

4











Problem

Only few techniques available capture fine-grained source-level dynamic dependence information that supports a variety of dependence-based applications

tool supports

?

5













Approach

Offers generic/common fine-grained dynamic dependence information to support various applications

6





TracerJD

Many specific tools can be built upon it











TracerJD

7

Structured logging of execution events



Method calls/returns

Statement occurrence

Variable definitions/uses

Dynamic dependence querying subroutines 



Hierarchical trace indexing



Application tools

Dynamic slicer

Performance profiler

……













Trace





Method events





Statement events





Variable events





…





…





…













































Performance

Instrumentation time

8













Schedule1	NanoXML	XML-security	JMeter	6.7	15.1	143.30000000000001	324.89999999999998	

static analysis time (secs) 



Performance

Runtime slowdown

9













Schedule1	NanoXML	XML-security	JMeter	12	13	10	2	

Factor of runtime slowdown 



Performance

Storage costs

10













Schedule1	NanoXML	XML-security	JMeter	125.3	36.1	44.6	13.6	

Total trace size (MB)





Schedule1	NanoXML	XML-security	JMeter	2	2.1333333333333333	3.2230769230769232	2.6753731343283582	

Factor of code size growth



Use scenarios

Scenario 1: dynamic slicing

11

TracerJD - dynamic dependence querying subroutines

Last definition

Last predicate

Transitively traverse backward dependencies

criterion

slice











Use scenarios

Scenario 2: performance profiling

12

TracerJD - dynamic dependence querying subroutines

Statement instances

Compute time elapses between instances 

Set of statements

Execution-time report

Timing flag











13

Conclusions

A framework that provides generic dynamic dependence information to support various applications

An effective trace indexing scheme that enables efficient dynamic-dependence querying 

Two example client analyses that offer readily utilities and demonstrate the flexibility of building diverse applications
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