ABSTRACTING PROGRAM DEPENDENCIES USING
THE METHOD DEPENDENCE GRAPH

Haipeng Cai and Raul Santelices

Department of Computer Science and Engineering

University of Notre Dame

% Y UNIVERSITY OF
NOTRE DAME

(_:()Ilcgc of Engineering

Supported by ONR Award NOOO141410037

Dependence analysis underlies many tasks
294 Motivation

Testing / Evolution / Performance

Debugging Maintenance Optimization

)))]

Program Dependence Analysis

ﬁ

Program

Traditional dependence model is heavyweight
3 Motivation

-1 Offer fine-grained results

0 Suffer from low scalability

void main() {
inti=1; intsum = 0;
while (i<11) {
sum = add(sum, i);
i = add(i, 1);
}
printf("sum = %d\n", sum);
printf("i = %d\n", i);
}

static int add(int q, int b)

{

return(a+b);

}

control
data

An example program and its System Dependence Graph (SDG), both courtesy of GrammaTech Inc.

Fine granularity may not be necessary
Ca | otivation

71 Impact analysis

0 Mostly based on program dependence analysis

0 Commonly adopted at method level (even coarser levels)

1 Program comprehension

O Largely reduced to understanding program dependencies

0 More practical to explore method-level artifacts

Problems with fine-grained model
.59 Motivation

1 Excessive overhead

o Building the model is expensive or impractical

1 Low cost-effectiveness

O Large overhead not well paid off

Problems with existing abstraction
69 Background

o1 Static execute after (SEA) [J. Jasz et al., 2012]
0 ICFG (Interprocedural Control Flow Graph)

void main() {

inti=1; intsum = 0;
while (i<11){
sum = add(sum, i);
i = add(i, 1);
}
printf("sum = %d\n", sum);
printf("i = %d\n", i);
} print sum
static int add(int g, int b)

{

return(a+b);

}

while (i<11

call return

Problems with existing abstraction
Background

o1 Static execute after (SEA)

0 Further simplified as ICCFG (Interprocedural Component CFG)
m SEA := CALL U RET U SEQ
= SEA (A,B) => B depends on A

void main() {
inti=1; intsum = 0; W
while (i<11) { o ccd |

-
-

’
/
1

\ /

~ 7’

S -

-1 Control flow does not imply
dependency

sum = add(sum, i);

i = add(i, 1);
}
printf("sum = %d\n", sum);
printf("i = %d\n", i);

} O Imprecision

static int add(int g, int b)

{ -1 Fast but rough
return(a+b); O Low cost-effectiveness

}

Abstracting program dependencies
.8 J Approach

1 Solution

1 Method-level dependence abstraction
" Model complete dependencies among methods directly

1 Goals

o Improved precision

= Compute dependencies explicitly
O Improved cost-effectiveness
w Trade precision for efficiency
-1 Approach

00 METHOD DEPENDENCE GRAPH (MDG)
= An abstraction of the SDG

Abstracting program dependencies
9 | Approach

1 The MDG abstraction
o Ports

u Statements at the boundary of a method
w Endpoints of interprocedural dependence edges
o Classification of ports
= Incoming /outgoing ports (IP/OP)
» Data-dependence (DD) / control-dependence (CD) ports

b
static int add(int a, int b)
a]

{
return(a+b); [ad
}

a+b (ret. val.)

Abstracting program dependencies
0y Approach

- The MDG abstraction

O Interprocedural dependencies
= Incoming /outgoing dependencies (ID/OD)

= Data /control dependencies

® Data dependencies: Parameter / Return / Heap

O Intraprocedural dependencies

= Abstract with summary dependencies

Abstracting program dependencies
11 | Approach

—» data dependence
- - % control dependence
p: parameter

r: return value
h: heap variable

An example MDG (top) and the closeup of one node M2 (bottom)

Abstracting program dependencies
124 . Approach

-1 Construction of MDG for a program P
o Initialize MDG for P

o For each method min P
® Find all CD ports on m
@ Find all DD ports on m

o For each method m in P

® Match OPs of m against IPs of all other methods

" Build procedure dependence graph (PDG) of m [J. Ferrante et al.,
19871

»m Connect IPs to OPs in m based on the PDG of m

Abstracting program dependencies
i3y . Approach

-1 Data-Dependence (DD) port matching

DD type Outgoing Port (OP) Incoming Port (IP)

- Parameter ./ rameter arameter at callee’

Return Return value at callee Use of return at caller site

Abstracting program dependencies
49 . Approach

-1 Control-Dependence (CD) port matching

Outgoing Port (OP) Incoming Port (IP)

Exception-driven Exception-throwing site Entry of catch block that
handles the exception

Evaluating the MDG
5y . Evaluation

71 Subject programs

Subject KLOC #Methods

24

NanoXml 3 e

1,863

XML-security-v1 22.4 1,928

Evaluating the MDG
64 Evaluation

-1 Data

0 Method-level forward dependence sets

-1 Metrics
0 Effectiveness: precision and recall

0 Costs: time costs of MDG construction and querying

1 Ground truth

o Statement-level forward static slicing

u Uplifted to method level slices

MDG is significantly more accurate

-1 Results: precision

Mean precision improvement: 46.9%

1 Schedulel a Al NanoXMl;ﬂ_ _ Ant : o A XML-security _—y Jaba]
09t * n 109t 109 v 109¢ l 109t 1
08¢ 108} 108 108} 108} 1
0.7} 10.7¢} 10.7 10.7¢ 10.7¢ ~
06} 106} 106 106} 106} -
0.5¢} 105¢ 105 105¢ 10.5¢ -
04} 104¢ 104 104} 1041 1
03¢ 103} 4103 10.3¢ {103} -
0.2} 10.2¢ 10.2 102} 10.2} .
0.1} 10.1¢ 10.1 10.1¢ 10.1} -

0 0 0 0

0
B sea [voG

*Both techniques are sound (100% recall). The higher the bar, the better

MDG remains efficient
‘i Evaluation

1 Results: costs

o Abstraction time

SEA MDG

22s 775

Overall average 14.8s 104.4s

MDG remains efficient
‘19 Evaluation

1 Results: costs

0 Mean querying time

Subject SEA MDG Static slicing
4m 124ms

NanoXml Oms 3ms 12,67ms
45ms ~ 34,896ms

XML-security-v1 | 50ms 43ms | 24,092ms
- . : . 44,188ms

Overall average 131.4ms 53.3ms | ” 55737.9ms

Summing up
Contributions

0 A new method-level program-dependence abstraction — the
method dependence graph (MDG)

O Empirical evidence showing the advantage of the MDG over the
baseline abstraction approach (SEA)

o0 Study contrasting traditional dependence model and method-
level abstraction for forward dependence analysis

Future work
o Improve hybrid dynamic analysis using the MDG

0 Develop MDG-based program-comprehension tools

Acknowledgements
|21

I
hanks:

Abstracting Program Dependencies using the Method Dependence Graph
Haipeng Cai
http://cse.nd.edu/~hcai/
hcai@nd.edu

Problems with existing abstraction

Component dependence graph [B. Li et al., 2005]

High-level coarse dependencies among components for

component-based systems w /o traditional code-level analysis

Influence graph [B. Breech et al., 2006]

Interface-level data dependencies among functions for
procedural programs w /o intraprocedural dependencies

Program summary graph [D. Callahan, 1988]

Interprocedural data dependencies w/o control dependencies

Linkage grammar [S. Horwitz et al., 1990]

Statement-level dependencies (from in to out parameters)

MDG Construction Algorithm
234

Algorithm 1 : BUILDMDG(program P, exception set unhandled)

I: G :=empty graph // start with empty MDG of P
2: IP := OP := 0 /I maps of methods to incoming/outgoing ports
" Step I: ﬁnd ports
3: for each method m of P do
4: FINDDDPORTS(m, IP, OP)
5: FINDCDPORTS(m, IP, OP)
// Step 2: connect ports
6: for each method m of P do
7: for each DD port z € OP[mJ do
8: add {{z,2") | 3m’ s.t. 2’€IP[m’] A data_dep(z,2")} to G
0. COMPUTEINTERCDS(G, unhandled, m, IP, OP)
10: pdg := GETPDG(m)
11: for each port z € IP[m] do
12: add {(z,2’) | 2’€0P[m] A reaches(z,z’ pdg)} to node G,
13: return G
Algorithm 2 : FINDDDPORTS(m, IP, OP) Algorithm 3 : FINDCDPORTS(m, IP, OP)
1: for each call site cs in m do 1: add entry of m to IP[m] // entry represents all CD targets for callers
f for each callee m” of ¢s do 2: for each edge (h,t) in GETCDG(m) do
3: add {D(a,cs) | a € actual_params(cs)} to OP[m] . - if ¢ is a single-target call site then {add h to OP[m]}
4 add {U(f,m’) | f € formal_params(m’)} to IP[m’] 4: if £ unconditionally throws unhandled exception in m then
5: if return_type(m)#void then 5: add h to OP[m]
6: add {D(rs) |rs € return_sites(m)} to OP[m] 6: for each multi-target call site c¢s in m do {add cs.s to OP[m]}
a for each caller site crs of m do 7: for each statement s in m do
8: add {U(cr?v.s,r s) | r.s.e i en‘;m_sues(m)} to IP[crs.m] 8: if s catches interprocedural exception then {add s to IP[m]}
9: for each heap variable definition id in m do add hd to OP[m] 0: if s conditionally throws exception unhandled in m then
10: for each heap variable use /e in m do add hu to IP[m] 10: add s to OP[m]

The method dependence graph
offers a program abstraction of
better cost-effectiveness tradeoff
than both fine-grained model and
existing alternative abstractions.

