
Supported by ONR Award N000141410037QRS 2015

ABSTRACTING PROGRAM DEPENDENCIES USING

THE METHOD DEPENDENCE GRAPH

Haipeng Cai and Raul Santelices
Department of Computer Science and Engineering

University of Notre Dame

2

Dependence analysis underlies many tasks
Motivation

Program Dependence Analysis

Program

Testing /
Debugging

Evolution /
Maintenance

Performance
Optimization

……

3 Motivation
Traditional dependence model is heavyweight

 Offer fine-grained results
 Suffer from low scalability

void main() {
int i = 1; int sum = 0;
while (i<11) {

sum = add(sum, i);
i = add(i, 1);

}
printf("sum = %d\n", sum);
printf("i = %d\n", i);

}
static int add(int a, int b)
{

return(a+b);
}

An example program and its System Dependence Graph (SDG), both courtesy of GrammaTech Inc.

4 Motivation
Fine granularity may not be necessary

 Impact analysis
 Mostly based on program dependence analysis
 Commonly adopted at method level (even coarser levels)

 Program comprehension
 Largely reduced to understanding program dependencies
 More practical to explore method-level artifacts

5

Problems with fine-grained model

 Excessive overhead
 Building the model is expensive or impractical

 Low cost-effectiveness
 Large overhead not well paid off

Motivation

Problems with existing abstraction
6

 Static execute after (SEA) [J. Jasz et al., 2012]

 ICFG (Interprocedural Control Flow Graph)

Background

void main() {
int i = 1; int sum = 0;
while (i<11) {

sum = add(sum, i);
i = add(i, 1);

}
printf("sum = %d\n", sum);
printf("i = %d\n", i);

}
static int add(int a, int b)
{

return(a+b);
}

i=1

main

sum=0

while (i<11)

add

return a+b

call add

call return

print sum

print i

exit

call add

call return

Problems with existing abstraction
7

 Static execute after (SEA)
 Further simplified as ICCFG (Interprocedural Component CFG)

 SEA := CALL U RET U SEQ
 SEA (A,B) => B depends on A

Background

main

add

void main() {
int i = 1; int sum = 0;
while (i<11) {

sum = add(sum, i);
i = add(i, 1);

}
printf("sum = %d\n", sum);
printf("i = %d\n", i);

}
static int add(int a, int b)
{

return(a+b);
}

 Control flow does not imply
dependency
 Imprecision

 Fast but rough
 Low cost-effectiveness

?

Abstracting program dependencies

 Solution
 Method-level dependence abstraction
Model complete dependencies among methods directly

 Goals
 Improved precision
 Compute dependencies explicitly

 Improved cost-effectiveness
 Trade precision for efficiency

 Approach
 METHOD DEPENDENCE GRAPH (MDG)
 An abstraction of the SDG

8 Approach

Abstracting program dependencies

 The MDG abstraction
 Ports
 Statements at the boundary of a method
 Endpoints of interprocedural dependence edges

 Classification of ports
 Incoming/outgoing ports (IP/OP)
 Data-dependence (DD) / control-dependence (CD) ports

9 Approach

static int add(int a, int b)
{

return(a+b);
}

add

a b

a+b (ret. val.)

Abstracting program dependencies

 The MDG abstraction
 Interprocedural dependencies
 Incoming/outgoing dependencies (ID/OD)
 Data /control dependencies

 Data dependencies: Parameter / Return / Heap

 Intraprocedural dependencies
 Abstract with summary dependencies

10 Approach

11

p: parameter
r: return value
h: heap variable

data dependence
control dependence

An example MDG (top) and the closeup of one node M2 (bottom)

Abstracting program dependencies
Approach

Abstracting program dependencies

 Construction of MDG for a program P
 Initialize MDG for P
 For each method m in P
 Find all CD ports on m
 Find all DD ports on m

 For each method m in P
Match OPs of m against IPs of all other methods
 Build procedure dependence graph (PDG) of m [J. Ferrante et al.,

1987]
 Connect IPs to OPs in m based on the PDG of m

12 Approach

Abstracting program dependencies

 Data-Dependence (DD) port matching
13 Approach

DD type Outgoing Port (OP) Incoming Port (IP)

Parameter Actual parameter at call site Formal parameter at callee’s
entry

Return Return value at callee Use of return at caller site

Heap Definition of heap variable Use of heap variable

Abstracting program dependencies

 Control-Dependence (CD) port matching
14 Approach

CD type Outgoing Port (OP) Incoming Port (IP)

Normal Branch / polymorphic call site Entry of callee

Exception-driven Exception-throwing site Entry of catch block that
handles the exception

Evaluating the MDG

 Subject programs
15 Evaluation

Subject KLOC #Methods

Schedule1 0.3 24

NanoXml 3.5 282

Ant-v0 18.8 1,863

XML-security-v1 22.4 1,928

Jaba 37.9 3,332

Evaluating the MDG

 Data
 Method-level forward dependence sets

 Metrics
 Effectiveness: precision and recall
 Costs: time costs of MDG construction and querying

 Ground truth
 Statement-level forward static slicing
 Uplifted to method level slices

16 Evaluation

MDG is significantly more accurate

 Results: precision
17 Evaluation

*Both techniques are sound (100% recall). The higher the bar, the better

Mean precision improvement: 46.9%

MDG remains efficient

 Results: costs
 Abstraction time

18 Evaluation

Subject SEA MDG

Schedule1 3s 4s

NanoXml 4s 9s

Ant-v0 17s 130s

XML-security-v1 22s 77s

Jaba 28s 302s

Overall average 14.8s 104.4s

MDG remains efficient

 Results: costs
 Mean querying time

19 Evaluation

Subject SEA MDG Static slicing

Schedule1 6ms 4ms 124ms

NanoXml 9ms 3ms 12,67ms

Ant-v0 64ms 45ms 34,896ms

XML-security-v1 50ms 43ms 24,092ms

JABA 213ms 121ms 444,188ms

Overall average 131.4ms 53.3ms 55737.9ms

Summing up

 Contributions
 A new method-level program-dependence abstraction – the

method dependence graph (MDG)
 Empirical evidence showing the advantage of the MDG over the

baseline abstraction approach (SEA)
 Study contrasting traditional dependence model and method-

level abstraction for forward dependence analysis

 Future work
 Improve hybrid dynamic analysis using the MDG
 Develop MDG-based program-comprehension tools

20 Conclusion

Acknowledgements
21

Abstracting Program Dependencies using the Method Dependence Graph
Haipeng Cai

http://cse.nd.edu/~hcai/
hcai@nd.edu

22

Problems with existing abstraction

 Component dependence graph [B. Li et al., 2005]

 High-level coarse dependencies among components for
component-based systems w/o traditional code-level analysis

 Influence graph [B. Breech et al., 2006]

 Interface-level data dependencies among functions for
procedural programs w/o intraprocedural dependencies

 Program summary graph [D. Callahan, 1988]

 Interprocedural data dependencies w/o control dependencies

 Linkage grammar [S. Horwitz et al., 1990]

 Statement-level dependencies (from in to out parameters)

Motivation

MDG Construction Algorithm
23

Q&A
24

The method dependence graph
offers a program abstraction of
better cost-effectiveness tradeoff
than both fine-grained model and
existing alternative abstractions.

