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Abstract—Software is constantly changing. To ensure the
quality of this process, when preparing to change a program,
developers must first identify the main consequences and risks of
modifying the program locations they intend to change. This ac-
tivity is called change-impact analysis. However, existing impact
analysis suffers from two major problems: coarse granularity
and large size of the resulting impact sets. Finer-grained analyses
such as slicing give more detailed impact sets which, however,
are also even larger in size.While various impact-set reduction
approaches have been proposed at different levels of granularity,
the challenge persists as very-large impact sets are still produced,
impeding the adoption of impact analysis due to the great costs
of inspecting those impact sets.

To address these challenges, we present a novel dynamic-
analysis technique called SENSA which combines sensitivity
analysis and execution differencing. SENSA not only provides
fine-grained (statement-level) impact sets but also prioritizes
potential impacts via semantic-dependence quantification for pro-
gram slices. We evaluated the benefits of impact prioritization
using SENSA with respect to static and dynamic forward slicing
via an extensive empirical study of open-source Java applications
and three case studies. Our results show that SENSA can offer
much better cost-effectiveness than slicing in assisting developers
with impact inspection and fault cause-effect understanding.

Index Terms—Sensitivity analysis, execution differencing, im-
pact prediction, impact prioritization, dependence quantification

ACRONYMS

DEA differential execution analysis
BFS breadth-first search
LOC lines of code
SENSA-Inc SENSA using incremental modifications
SENSA-Rand SENSA using random modifications

NOTATION

prog example program used for illustration
P a generic program
T test suite for a program
C a set of statements (to be changed)
I a program input
L ranking given by a prioritization strategy
A actual-impact ranking
N number of statements in a ranking
NR number of modified executions per test input

I. INTRODUCTION

SUCCESSFUL modern software requires constant changes.
This evolution process [1], however, poses serious risks

to the qualify and reliability of software [2]. Thus, there is a
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crucial need for techniques that provide automated and effec-
tive support to analyze the effects of those changes. Change-
impact analysis is such a technique. It identifies potential
consequences of software changes and estimates what else
needs be modified to accomplish those changes [3].

Two typical usage scenarios of change-impact analysis exist:
predictive impact analysis which is applied before potential
changes are designed, and descriptive impact analysis which
is applied after actual changes have been made. In this paper,
we target predictive impact analysis, which helps developers
assess risks and budget of, as well as design and plan for,
their changes early [4], [5]. Importantly, for predictive change-
impact analysis (referred to as impact analysis for brevity
hereafter), the actual changes to be made are still unknown.

While impact analysis is widely recognized as a critical
step during software development [6]–[8], many challenges
have been identified by developers that hinder its practical
use [9]. The two greatest such challenges are the coarse
granularity (e.g., method-level) and large sizes of the impact
sets produced. Statement-level techniques such as slicing [10]
provide finer-grained results, which can alleviate the first
challenge but tend to suffer more from the second: the resulting
impact sets potentially contain even larger number of entities
than those produced by techniques working at coarser levels.
On the one hand, developers have to inspect the impact sets to
understand all potential consequences of changes [7]. On the
other hand, inspecting large impact sets can be prohibitively
expensive for developers, who generally have limited resources
for impact analysis in practice [9].

A large amount of research has aimed to reduce the impact-
set sizes by improving the precision of impact analysis, both
at the statement level (e.g., [11]–[13]) and coarser levels
(e.g., [14]–[16]). However, the result-size problem persists
as large impact sets are still produced frequently by these
techniques. Moreover, impact-set reduction techniques can
have additional drawbacks such as sacrificing scalability and
risking the loss of safety of the analysis result.

To address these challenges, we adopt an approach that
is different from, yet complementary to, existing impact-set
reduction techniques. Instead of reducing impact-set sizes, we
prioritize entities (statements) in impact sets so that impacts
of higher priority can be inspected earlier than others, with
the priority of a statement measured by the strength of impact
of the change on that statement. While finding all semantic
dependencies of a statement s is an undecidable problem
[17], our approach provides an effective under-approximation
of those dependencies through computing a subset of all
statements semantically affected by s and the strengths of
those statements to be impacted.
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Our new technique and tool, called SENSA,1 combines
sensitivity analysis [19] and execution differencing [20]–[24]
to estimate those frequencies as impact strengths. Unlike
a different approach by Masri and Podgurski [25], which
observes information-flow strengths for existing executions,
SENSA quantifies semantic dependencies between statements
for a much larger set of executions derived from existing
ones to explore the semantic dimensions of such dependencies.
By systematically modifying program states (resulting values
of statements) in a way similar to fuzzing [26], which uses
invalid or random inputs to test programs against exceptions,
SENSA is able to determine the effects of statements and find
dependencies that could otherwise be missed.

As a dynamic analysis, SENSA can be applied only to
statements executed at least once. However, the number of
executions it considers is large given the many modified
executions it created and analyzed. Also, dynamic analysis
has proven quite useful when executions exist (e.g., [14],
[23], [27]–[31]) or can be generated (e.g., [32]–[38]). The
goal of SENSA is to answer questions on the existence and
frequency of semantic dependencies for a specific set of
runtime behaviors—those caused by the provided executions
and alternative ones derived automatically from them.

To evaluate SENSA, we empirically compared the effective-
ness of SENSA against that of static and dynamic forward
slicing for predictive impact analysis on various candidate
change locations across six Java subjects. For each location,
we ranked statements by impact frequency (likelihood) com-
puted by SENSA and that by breadth-first search as proposed
by Weiser for slicing [10]. Then, we estimated the effort a
developer would spend inspecting the rankings to find all
statements impacted by actual changes (both bug-fixing and
bug-introducing changes) in those locations for the same
test suite. Our results indicate with statistical confidence that
SENSA outperforms both forms of slicing at predicting the
actual impacts of such changes by producing more accurate
rankings describing the real dependencies on those locations.

To further demonstrate the benefits of prioritizing impacts
with SENSA, we also performed three case studies to investi-
gate how well SENSA and program slicing isolate the cause-
effect chains that explain how bugs propagate to failing points
(crash locations or outputs) and, thus, how those bugs can be
fixed. To achieve this goal, first, we manually identified the
statements that are impacted by each bug and that propagate
the erroneous state to a failing point. Then, we computed how
well SENSA and slicing isolate those event chains. Although
we cannot draw general conclusions, we found again that
SENSA was better than slicing for isolating the specific ways
in which buggy statements make a program fail.

The main benefit of this work is the greater effectiveness of
impact prioritization via semantic-dependence quantification
compared to static and dynamic slicing, which do not address
all semantic aspects of dependencies but only distinguish them
via breadth-first traversals. With this new kind of quantitative
information, developers can identify potential code-level im-
pacts of program entities more effectively by focusing on the

1An earlier, shorter version of this paper appeared in [18]

code most likely or most strongly affected in practice.Thus,
other dependence-based software-engineering tasks might ben-
efit too from this work.

The main contributions of this paper are:
‚ A novel approach for quantifying semantic dependence

based on sensitivity analysis, execution differencing, and
fuzzing working synergistically.

‚ A new technique and tool SENSA harnessing the de-
pendence quantification to prioritize change impacts for
reducing the cost of impact inspection.

‚ An empirical study that compares the cost-effectiveness
of SENSA against slicing, and shows the superiority of
SENSA for predictive prioritization of impacts.

‚ A set of case studies that illustrates the advantages of
SENSA over slicing, as the benefits of prioritizing change
effects over just predicting them, in isolating cause-effect
chains that propagate bugs to failing points.

II. PROBLEM STATEMENT AND MOTIVATION

Today’s impact-analysis techniques usually work at coarse
granularities, such as methods and classes (e.g., [14], [27],
[39]–[42]). While these techniques provide a first approxima-
tion of potential change impacts, they do not distinguish which
statements in particular in the impacted methods or classes
are actually responsible for the impacts. Moreover, they can
miss code-level dependencies that are not captured by higher-
level structural relationships among classes or methods [43],
which may lead to false-negative dependencies. Therefore,
coarse analyses can inaccurately report change impacts, which,
according to a study by Rovegard and colleagues [9], is a
critical issue that developers encountered in practice when
using impact-analysis techniques.

Another issue with today’s impact-analysis approaches is
that they often produce very-large impact sets [14], [15], [44]–
[47]. To understand the effects of potential changes, developers
need to inspect the impact sets of those potential changes. One
strategy is to check the entire impact set, akin to the “retest-
all” strategy in regression testing [48], but this strategy incurs
too much effort. At the method level, existing dynamic impact
analysis can report over 60% false positives in their impact
sets [49], whereas static impact-analysis techniques are even
more imprecise [45]. Such imprecision tends to result in very
large impact sets. For example, impact sets of a static impact
analysis for WebKit can be as large as 41,000 methods [47].
Fully inspecting such enormous impact sets is impractical.

At the statement level, the forward version of program
slicing [10], [50] could be an attractive option for fine-grained
impact analysis (e.g., [44]), yet it can also be inaccurate. For
instance, static slicing can report too many potentially-affected
statements that are not truly affected [51] whereas dynamic
slicing [28], [30], [52] gives smaller results but can still suffer
from imprecision [22], [25], [53] in addition to low recall.

In an industrial study by Acharya and Robinson [44], the
large impact-set sizes were one of the most critical problems
of using impact analysis: The impact sets, as large as 343,758
lines of code, cannot possibly be fully explored by developers.
Indeed, producing large impact sets, hence incurring excessive
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float prog(int n, float s)
{

1: int g = n;
2: if (g ě 1 && g ď 6) {
3: s = s + (7-g)*5;
4: if (g == 6)
5: s = s * 1.1;

}
else {

6: s = 0;
7: print g, " is invalid";

}
8: return s;

}

Fig. 1: Example program used throughout this paper.

inspection efforts, is one of the main challenges to today’s
impact analysis, even more so as modern software is increas-
ingly complex and software evolution is usually subject to tight
schedules due to the volatility of requirements, technology,
and knowledge [1]. In fact, a problem reported as even more
critical than the coarse granularity is that the time developers
can devote for impact analysis is quite restricted [9].

A possible solution to this challenge is impact-set reduction,
akin to the test selection approach in regression testing [48].
Unfortunately, researchers have tried various such approaches
but the resulting impact sets can be still quite large. However,
we believe that not all statements in the large impact sets
are equally strongly impacted, thus not all of them have
always the same priority for inspection. For tasks such as
change understanding and program comprehension, developers
need to isolate the key relationships between components
of a program that explain its behavior. In particular, when
preparing to change a program, developers must first identify
the main consequences and risks of applying the changes
before properly designing and propagating those changes.

With these motivations, we propose to distinguish the degree
of influence of statements in a program and separate affected
statements by likelihood (or strength) of being truly affected so
that users can decide which code to inspect first. This impact
prioritization approach, similar in spirit to test prioritization in
regression testing [54], has not yet been exploited for impact
analysis. In the rest of this paper, we present how prioritizing
impacts at the statement level can be effectively realized via
semantic-dependence quantification to address the challenges
to impact analysis we just discussed.

III. BACKGROUND

This section presents core concepts of our approach and
illustrates them using the example program of Figure 1.
Program prog in this figure takes an integer n and a floating
point number s as inputs, creates a local variable g, initializes
g to the value of n, manipulates the value of s based on the
value of g, and returns the value of s.

A. Syntactic and Semantic Dependencies

Syntactic program dependencies [17] are derived directly
from the program’s syntax. These dependencies are classified
as control or data dependencies. A statement s1 is control
dependent [55] on a statement s2 if a branching decision at

s2 determines whether s1 necessarily executes. In Figure 1,
for example, statement 3 is control dependent on statement 2
because the decision taken at 2 determines whether state-
ment 3 executes or not. This dependence is intra-procedural
because both statements are in the same procedure (function
or method). Control dependencies can also be inter-procedural
(across procedures) [56].

A statement s1 is data dependent [57] on a statement s2
if a variable v defined (written) at s2 might be used (read)
at s1 and there is a definition-clear path from s2 to s1 in
the program for v (i.e., a path that does not re-define v).
For example, in Figure 1, statement 8 is data dependent on
statement 3 because 3 defines s, 8 uses s, and there is a path
x3,4,8y that does not re-define s after 3. Data dependencies
can also be classified as intra-procedural or inter-procedural.
The parameters of the example prog, however, are inputs and
thus are not data dependent on any statement.

Semantic dependencies represent the actual behaviors that
the program can exhibit, which syntactic dependencies can
only over-approximate. Informally, a statement s is semanti-
cally dependent on a statement t if there is any change that
can be made to t that affects the behavior of s. More formally,
as defined by Podgurski and Clarke [17], a statement s1 is
semantically dependent on a statement s2 in a program P if
and only if:

1) Di P I where I is the input domain of the program,
2) Dc P C where C is the set of all possible changes to the

values or conditions computed at s2, and
3) the occurrences or states of s1 differ when P runs on

input i with and without c applied to s2.
For example, in Figure 1, statement 5 is semantically

dependent on statements 1, 2, 3, and 4 because they could be
changed so that the execution of 5 changes (e.g., not executing
anymore) or the state at 5 (i.e., the value of variable s) changes.
In this case, the semantic dependencies of statement 5 coincide
with its direct and transitive syntactic dependencies.

However, in this example, if statement 1 just declares that
g is an alias of n (i.e., if it were not an executable statement)
and only values of n in [1..6] are valid inputs, the condition
at statement 2 would always be true and, thus, statement 5
would not be semantically dependent on 2 despite its being
transitively syntactically dependent on that statement.

B. Program Slicing

Program slicing [10] determines which statements in a
program may affect or be affected by another statement.
Static slicing [10], [50] identifies such statements for all
possible executions whereas dynamic slicing [30] does this
for a particular execution. (Joining the dynamic results of
multiple executions is called union slicing [58], [59].) A
(static or dynamic) forward slice from statement s is the set
containing s and all statements directly or transitively affected
by s along (static or dynamic) control and data dependencies.
Because slicing is based on the transitive closure of syntactic
dependencies, it attempts to (over-)approximate the semantic
dependencies in the program.

For example, the static forward slice from statement 3 in
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Figure 1 is the set {3,5,8}. We include statement 3 in the
slice as it affects itself. Statements 5 and 8, which use s, are
in the slice because they are data dependent on the definition
of s at 3. Another example is the dynamic forward slice from
statement 1 in prog for input xn=0, s=1y, which is {1,6,7,8}.
In this case, statement 2 uses g to decide that statements 6 and
7 execute next (i.e., 6 and 7 are control dependent on 2) and
statement 8 is data dependent on 6.

The size of a static slice is generally large [51] but varies
according to the precision of the underlying points-to analysis
used. If we use a coarse points-to analysis in which a pointer
can be any memory address, a forward slice from a statement
s that defines a pointer p would include any statement that
uses or dereferences any pointer (which may or may not point
to the same address as p) if the statement is reachable from
s. Yet, even when using a precise (and expensive) points-to
analysis, static slices can still be quite large.

C. Execution Differencing (DEA)

Differential execution analysis (DEA), or simply execution
differencing, is designed to identify the runtime semantic
dependencies [17] of statements on changes. Although finding
all semantic dependencies in a program is an undecidable
problem, DEA techniques (e.g., [20]–[22], [60]) can detect
such dependencies on changes when they occur at runtime
to under-approximate (find a subset of) the set of all semantic
dependencies in the program. Although DEA cannot guarantee
100% recall of semantic dependencies, it does achieve 100%
precision. This is usually better than what dynamic slicing
achieves [22], [25].

DEA executes a program before and after a change to collect
and compare the execution histories of both executions [22].
The execution history of a program is the sequence of state-
ments executed and, at each statement, the values computed
or branching decisions taken. The differences between two
execution histories reveal which statements had their behavior
(i.e., occurrences and values) altered by a change, which is
the conditions for semantic dependence [17].

To illustrate, consider input xn=2, s=10y for prog in
Figure 1 and a change in statement 3 to s=s. DEA first
executes prog before the change for an execution history of
x1(2), 2(true), 3(35), 4(false), 8(35)y where each element e(V )
indicates that statement e executed and computed the value
set V . DEA then runs prog after the change, obtaining the
execution history x1(2), 2(true), 3(10), 4(false), 8(10)y. Finally,
DEA compares the two histories and reports 3 and 8, whose
values changed, as the dynamic semantic dependencies on this
change in statement 3 for that input.

IV. TECHNIQUE

The goal of SENSA is, for a program P and an input set
(e.g., test suite) T , to detect and quantify the effects on P
of the runtime behavior of a statement C or any changes in
C. To this end, SENSA combines sensitivity analysis [19] and
execution differencing [22].

In this section, we first give a detailed overview of SENSA
and use an example to illustrate the overall working of our

technique and how it differs from other relevant techniques.
Next, we describe the different strategies that SENSA current
offers for modifying program states, which we call modi-
fication strategies. Finally, we formally present the SENSA
technique including its process flow and analysis algorithm.

A. SENSA Overview

Every statement s in a program has a role in the program.
This role is needed, for example, when s is considered for
changes, thus predictive impact analysis should be performed
for s to determine that role.Ideally, to find the role of s, one
should identify all statements that semantically depend on
s [17]: Semantic dependence considers all possible changes
to the computations performed at s for all possible inputs to
represent the effects of the behavior of s.

Unfortunately, computing semantic dependence is an unde-
cidable problem, although for individual changes and execu-
tions. For impact analysis, DEA can tell which statements are
dynamically impacted by a change. However, before develop-
ers can design and apply a change to a statement, they first
need to know the possible effects of changing that statement.

To both identify and quantify the actual influences (the
role) of a statement s in the program for a set of executions,
SENSA uses sensitivity analysis on s. SENSA repeatedly runs
the program while modifying the state of statement s and
identifies in detail, using DEA, the impacted statements for
each modification. Then, SENSA computes the frequency at
which each statement is impacted (i.e., the sensitivity of those
statements to s). These frequencies serve as estimates, for the
executions and modifications considered, of the likelihood and
(to some extent) the strength of the influences of s.

By design, the modifications made by SENSA are con-
strained to primitive values and strings (common objects)
computed by statements. To determine the sensitivity of the
program on a computation for any other object, such as a
method call c to a data structure, the user must identify the
statement(s) of interest in that operation, which compute the
supported values that make up the data structure, and apply
SENSA to that (those) statement(s) instead of c.2

We use the example program prog in Figure 1 again to
illustrate how SENSA works for inputs (2,10) and (4,20).
Suppose that a developer asks for the effects of line 1 on
the rest of prog. SENSA instruments line 1 to invoke a state
modifier and also instruments the rest of the program to collect
the execution histories that DEA needs. The developer also
configures SENSA to modify variable g in line 1 with values
in the “valid” range [1,6].

For each input I , SENSA first executes prog without
making changes to produce the original program (referred to
as baseline) execution history for DEA. Then, SENSA re-
executes prog on I multiple (five for illustration purpose
here) times, once for each other value of g in the range of
[1,6]. We list the execution histories for this example and
test input (2,10) in Table I; the execution histories for the
test input (4,20) are similar. Finally SENSA applies DEA to

2Naturally, SENSA can be extended in the future to modify all non-primitive
values. How to make those changes useful and valid remains to be investigated.
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TABLE I: Execution histories for prog with input (2, 10)

Run Execution history
baseline x1(2), 2(true), 3(35.0), 4(false), 8(35.0)y
modified #1 x1(1), 2(true), 3(40.0), 4(false), 8(40.0)y
modified #2 x1(3), 2(true), 3(30.0), 4(false), 8(30.0)y
modified #3 x1(4), 2(true), 3(25.0), 4(false), 8(25.0)y
modified #4 x1(5), 2(true), 3(20.0), 4(false), 8(20.0)y
modified #5 x1(6), 2(true), 3(15.0), 4(true), 5(16.5), 8(16.5)y

the execution histories of the baseline and modified runs of
each test input, and computes the frequency (sensitivity) (i.e.,
the fraction of all executions) at which each statement was
impacted by changing its state or occurrence.

A developer can use these frequencies directly or a ranking
of affected statements based on their associated frequencies.In
our example, the resulting ranking is x{1, 3, 8}, {4, 5}, {2,
6, 7}y where lines 1, 3, and 8 are tied at the top because
their states (the values of g and s) change in all modified runs
and, thus, their sensitivity is 1. Lines 4 and 5 come next with
sensitivity 0.2 because line 4’s state changes in one modified
run and 5 executes for one modification on each input (when
g changes to 6) but not reached in the baseline executions.
Lines 2, 6, and 7 rank at the bottom because 2 never changes
its state and 6 and 7 never execute.

In contrast, static forward slicing ranks statements by de-
pendence distance from line 1. These distances are found by a
breadth-first search (BFS) of the program-dependence graph—
the inspection order suggested originally by Weiser [10]. Thus,
the result for static slicing is the ranking x{1}, {2, 3, 4,
7}, {5, 6, 8}y. For dynamic slicing, a BFS of the dynamic
dependence graph [52], which is the same for both inputs,
yields the ranking x{1}, {2, 3, 4}, {8}y.

To illustrate the usefulness of these rankings in this example,
consider their application to predictive change-impact analysis.
Suppose that the developer eventually decides to change line 1
to g = n + 2. The actual set of impacted statements for
this change and inputs is {1, 3, 4, 5, 8}. This is exactly
the set of statements placed at the top two levels of the
SENSA ranking. In contrast, static slicing predicts statement 2,
from the four predicted statements, as the second most-likely
impacted statement, but that statement is not really impacted.
Static slicing also predicts statement 5 as one of the least
impacted, even though this statement is actually impacted after
making this concrete change.

Dynamic slicing, perhaps against intuition, performs even
worse than static slicing in this example. The ranking for
dynamic slicing misses the actually-impacted statement 5 and
predicts statement 2, which is not really impacted, as the
second most-impacted. Note that, in the context of this paper,
a forward version of relevant slicing [11] would not perform
better either, although in general it may achieve a higher recall,
than forward dynamic slicing. In this example, the forward
relevant slice is identical to the dynamic slice.

Naturally, the usefulness of SENSA depends on the execu-
tions and modifications chosen as well as application-specific
aspects such as the actual change made to the statement
analyzed by SENSA. If, for example, the range [0,8] is used
instead of [1,6] to modify g in line 1, the sensitivity of

statements 4 and 5 will be higher because they will not execute
for some of the modifications. (The sensitivity for statement 3
will not change as it is always affected either by state changes
or by not executing when g is not in [1,6].) Also, the sensitivity
for 2, 6, and 7 will be non-zero because g can now be outside
[1,6]. In this particular case, the SENSA ranking does not
change but the frequencies do, and the developer’s assessment
of the possible impacts of line 1 might rely on those quantities.

Program prog is a very simple example that contains only
eight statements. This program does not require much effort
to identify, quantify, and rank potential impacts, regardless
of the approach used. In a more realistic case, however, the
differences in prediction accuracy between SENSA and both
forms of slicing can be substantial, as our studies presented
in Sections VI and VII indicate.

B. Modification Strategies

SENSA is a generic modifier of program states at given
program locations. The technique ensures that each new value
picked to modify the original value in a location is different
to maximize diversity while minimizing bias. When SENSA
runs out of possible values for a test case, it stops and moves
on to the next test case.

Users can specify parameters such as the modification
strategy to use to pick each new value for a statement.
The choice of values affects the quality of the results of
SENSA, so we designed two different strategies while making
it straightforward to add other strategies in the future. The
built-in modification strategies are:

1) Random: Picks a random value from a specified range.
The default range covers all elements of the origi-
nal value’s type except for char, which only includes
readable characters. For some reference types such as
String, objects with random states are picked. For all
other reference types, the strategy currently picks null.
Instantiating objects with random states is left for future
work.

2) Incremental: Picks a value that diverges from the orig-
inal value by increments of i (default is 1.0). For
example, for value v, the strategy picks v+i and then
picks v–i, v+2i, v–2i, etc. For common non-numeric
types, a similar idea is used. For example, for string
foo, the strategy picks fooo, fo, foof, oo, etc.

For modifications that make a program run for a very long
time or forever, SENSA skips them when the running time
of the modified program exceeds 10 times the runtime of the
original program. Modifications that cause early terminations
do not need special treatment, though, since SENSA can work
with them the same way as with normal executions.

Completeness. Although most heap object values are not
directly currently supported, any supported value within a heap
object can be modified by SENSA at the location where that
value is computed. Thus, indirectly, SENSA can target any
value in memory and track its changes via differencing.

As an example of other potential strategies to add, consider
the one using values observed in the past at C to replace the
value currently computed at C. First, the strategy would collect
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all values observed at C for the test suite. Then, the strategy
picks iteratively from this pool each new value to replace at
C. Values picked by this strategy tend to be more meaningful
to the program since they were computed at same location.

As we mentioned earlier, the way in which SENSA modifies
program executions, especially when the Random strategy is
adopted, is similar in spirit to fuzzing [26]. However, while
fuzzing is a testing technique that inputs to the program
anomalous data including invalid, unexpected, and random
values, the values that SENSA generates for the modifications
are not necessarily invalid or unexpected. In fact, SENSA tries
to produce valid values by allowing users to specify the range
of value modification and the increment, for the Random and
Incremental strategy, respectively.

It is worth emphasizing that, despite of the modification
strategy used, the changes SENSA made to a statement are
strictly constrained to the value computed at that statement—
SENSA does not change the statement itself. It is also notewor-
thy that SENSA modifications are different from the mutations
adopted in mutation testing [61], although both are intended to
change program states. First, SENSA neither changes operators
in the program nor uses any mutant operators [62], as mutation
analysis does. Second, SENSA guarantees producing and using
different values, both from the original ones and from those
used before during the same execution, for different modifi-
cations. In contrast, applying a mutation does not necessarily
end up with any change to the program state from the original
one (e.g., changing a logical operator at a predicate might not
change the value computed there).

C. Formal Presentation

SENSA is a technique that, for a statement C (e.g., a
candidate change location) in a program P with a test suite T
(or, more generally, an input set), computes for each statement
s in P a relevance value between 0 and 1. These values are
estimates of the frequencies or sizes of the influences of C
on each statement of P (or, more precisely, the static forward
slice of C). Next, we present SENSA’s process and algorithm.

1) Process: Figure 2 shows the diagram of the process
that SENSA follows to quantify influences in programs. The
process logically flows from top to bottom in the diagram and
is divided into three stages: (1) Pre-processing, (2) Runtime,
and (3) Post-processing. For clarity, computational steps are
in rectangles while inputs and outputs are in parallelograms.

For the first stage, at the top, the diagram shows that SENSA
inputs a Program and a Statement, which we denote as P
and C, respectively. In this stage, SENSA instruments at C
in program P a call to a Runtime module which executes in
the second stage. Also, it instruments P to collect execution
histories of the program for applying DEA later on, including
values written to memory [22]. (Branching decisions are
implicit in the sequences of statements in execution histories.)
The result of this stage is the Instrumented program.

In the second stage, SENSA inputs an Input set (test
suite) T and runs the instrumented program repeatedly while
modifying the resulting value computed by C (Run repeat-
edly with modified states)per test case t in T . For every
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Fig. 2: The SENSA process for dependence quantification.

test t, SENSA also runs the program once without applying
modifications (Run once without changing states) to produce
the baseline execution-history for later comparisons. For the
modified executions, the runtime module uses a user-specified
strategy (see Section IV-B) and other parameters, such as a
value range, to decide which value to use as a replacement
of the value originally computed at statement C each time
C is reached. Also, for all executions, the DEA-purpose
instrumentation collects execution histories of the program
with state-changes applied (Execution histories of modified
runs) and the execution history of the original program with
no changes applied (Execution history of the normal run) per
test case.

In the third and last stage, SENSA executes DEA to compare
each of the execution histories of all modified runs against
the execution history of the normal run and, thus, finds out
the statements affected by each modification applied to the
program during the Runtime stage. In the meanwhile, for
each test and modified execution, DEA accumulates the times
each statement in the program appeared in the execution-
history differences (i.e., affected by the modification), and then
calculates, for all test cases and modifications, the frequency
of each statement being impacted. This computation, also
referred to as influence quantification, ends up with a set of
impacted statements with their corresponding impact strengths
quantified by the frequency. Finally, SENSA ranks all impacted
statements based on such frequencies. This last step results in a
quantified impact set as the eventual output of SENSA, where
each statement is now associated with a rank indicating how
strongly it is potentially impacted with respect to the impact
strengths of other statements in that set.

2) Algorithm: Algorithm 1 formally describes how SENSA
quantifies the influences of a statement C in a program P .
The influenced statements found and ranked by SENSA are
those in the forward static slice [50] of C in P , which are the
only ones that could possibly be influenced by C. Therefore,
to begin in the first stage, the algorithm computes this static
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slice (line 1). At lines 2–4, SENSA initializes the map influence
that associates to every statement in the slice its frequency and
rank. Initially, these two values are 0 for all statements. Then,
at line 5, the algorithm instruments P to let SENSA modify at
runtime the values computed at C and to collect the execution
histories for performing DEA subsequently.

For efficiency, SENSA instruments P only once to realize all
the runtime modifications. To that end, it inserts at statement
C probes invoking runtime monitors that generate different
values for the defined variable or predicate at C. These
monitors deal with the modification strategy and associated
parameters (e.g., increment and value range) as configured
by users, generate new values that are returned to replace
the original value computed at C per the configuration, and
also record values previously produced so that unique ones
are applied at C in different executions. As such, modified
executions are spawned from a single instrumented version P 1

of P , rather than by producing many different instrumented
versions each producing one of those modified executions.

For the second stage, the loop at lines 7–12 determines, for
all test cases, how many times each statement is impacted by
the modifications made by SENSA. At line 7, SENSA executes
t without modifications to obtain the baseline execution his-
tory. Then, lines 8–9 execute this same test for the number of
times indicated by NR (short for Number of Repetitions) given
by users as a parameter of the technique. Each time, SENSA
modifies the value or branching decision computed at C with
a different value.3

If NR is not specified, a default value of NR=20 will be
used, so that at most 20 distinct modifications will be made
at C, while constrained by the value range that the user
provided and the data type of the value computed at C.
The maximum number of modifications can be less if there
are only a few distinct values (e.g., two for boolean types).
Also, this default value was not determined arbitrarily but
rather an empirical threshold identified through a preliminary
experiment: At least for the subjects and changes studied,
we tested with a larger range of values for this threshold
in the preliminary experiment, and found that continuously
increasing this threshold over the default value did not lead to
increase in the cost-effectiveness of SENSA for any subject.
In general, the user may also need to experiment with a few
different values for NR so as to find the one that gives the best
cost-effectiveness of the technique.

For the third stage, line 10 asks DEA for the differences
between execution histories of each modified run and the
baseline run. In lines 11–12, the differences found are used to
increment the frequency counter for each statement affected
by the modification. Then, the loop of lines 13–14 divides the
influence counter for each statement by the total number of
modified runs performed (|T | gives the size of the input test
set T ), which normalizes this counter to obtain its influence
frequency in the range of [0,1]. This influence frequency is
used by SENSA as the measure of impact likelihood (strength)

3As discussed in the overview, modifications are limited to supported types
of values computed at C. Any modifications involving unsupported values
require applying SENSA not to C but to the statement(s) that compute the
supported parts of such values.

Algorithm 1 : SENSA(program P , statement C, test suite T )

// Stage 1: Pre-processing
1: slice = STATICSLICE(P , C)
2: influence = H // map statementÑ(frequency,rank)
3: for each statement s in slice do
4: influence[s] = (0, 0)
5: P 1 = SENSA-INSTRUMENT(P , C)

// Stage 2: Runtime
6: for each test case t in T do
7: exHistBaseline = SENSA-RUNNORMAL(P 1, t)
8: for i “ 1 to NR do
9: exHistModified = SENSA-RUNMODIFIED(P 1, t)

// Stage 3: Post-processing
10: affected = DEA-DIFF(exHistBaseline, exHistModified)
11: for each statement s in affected do
12: influence[s].frequency``

// Stage 3: Post-processing (continued)
13: for each statement s in influence do
14: influence[s].frequency /= NRˆ|T |
15: RANKBYFREQUENCY(influence)
16: return influence // frequency and rank per statement

of a change on a statement affected by that change, and ranked
in a non-ascending order (line 15) with higher (lower) value
indicating stronger (weaker) impact.

V. SCOPE AND APPLICATIONS

As a dynamic analysis, SENSA requires the existence of
at least one test case that covers the analyzed statement.
However, test suites may not achieve 100% coverage of their
programs. Therefore, SENSA is only applicable to covered
statements or when new covering executions can be created.

As with any dynamic analysis, the results of SENSA are also
subject to the quality and representativeness of the test cases
and, in particular, those covering the analyzed statement C.
The more behaviors are exercised for C, the more dependen-
cies SENSA can find and quantify, and the more representative
those behaviors are of the real usage of C, the more accurate
the quantification will be.

The quality of SENSA’s predictions is also a function of
the accuracy of the modification strategies for modeling the
effects of C’s behavior. Intuitively, the more modifications are
made to C, the more effects of C are reflected in the results.
Therefore, the user may want to make these strategies modify
C and re-execute the program as many times as it is practical
according to that user’s budget.

It is worth noting that, in a change-impact analysis scenario,
the test suite for the subject will be used as the input set for
SENSA. This test suite, perhaps with a few updates, will be
used again after the changes. Thus, the change effects that
the developer will experience will be subject to the same or
similar runtime conditions as the one exploited by SENSA for
predictive change-impact analysis.

SENSA has, potentially, a range of applications in software
engineering. Virtually any task that uses program dependencies
and slicing can benefit from semantic-dependence discovery
and quantification. In this paper, we focus on the two appli-
cations that originally motivated our development of SENSA.
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The first application is predictive change-impact analy-
sis [3], [14]. Before designing and applying any changes,
a developer identifies the location(s) that might need to be
changed, and often the implications of changing that loca-
tion(s) must be pondered early. Most impact-analysis tech-
niques point the developer to the potentially-affected parts of
the program which might need to be inspected, possibly be
changed also, and later be tested against the changes made.
Yet, those affected parts can be too large to fully inspect.
Thus, SENSA quantifies those impacts to help the developers
focus first on the most-likely impacted parts. We study this
application in Section VI.

The second application is failure comprehension. After
localizing a fault, to fix it properly, a developer might need to
understand how that fault leads to a failure point somewhere
else in the program, such as a failed assertion, a bad output,
or the location of a crash. SENSA can isolate the most-likely
ways in which that fault propagates to the failure point by
giving high scores to the statements that participate in that
propagation. Program slicing can report many ways (effects)
in which a fault propagates to a failure point, but not all
such effects are necessarily erroneous. SENSA can focus the
developer better on the effects that matter (Section VII).

VI. STUDY: IMPACT PREDICTION AND PRIORITIZATION

To evaluate SENSA, we first studied its ability to predict
the impacts of changes of a particular kind, fault fixes, in the
context of the test suites of the programs containing those
changes. We compared these predictions with those of static
and dynamic slicing using Weiser’s traversal of slices [10].4

The rationale is that the more closely a technique approxi-
mates the actual impacts (including the ordering of impacts)
that changes will have, the more effectively developers will
focus their efforts to maintain and evolve their software. To
this end, we formulated three research questions, two about
effectiveness and the third about efficiency:

RQ1: How accurately does SENSA predict the real impacts
of changes with respect to slicing?

RQ2: How accurately does SENSA predict these impacts,
compared with slicing, under budget constraints?

RQ3: How expensive is it to use SENSA?

The first two questions address the comparative effectiveness
of SENSA overall and per ranking-inspection effort (when
users can only inspect a portion of the predicted ranking in
practice), respectively. The third question targets the practi-
cality of the technique.

A. Experimental Setup

We implemented SENSA in Java as an extension of our
dependence analysis and instrumentation system DUA-FO-
RENSICS [64], [65], which is built upon the Soot [66] Java
bytecode analysis and manipulation framework. As such,
SENSA works on Java bytecode as its input, without relying

4Relevant slicing [11], [63] is an option in between for comparison, but a
forward version must be developed first. We expect to do this in future work.

TABLE II: Experimental subjects and their characteristics

Subject Short description LOC Tests Changes
Schedule1 priority scheduler 301 2,650 7
NanoXML-v1 XML parser 3,521 214 7
XML-security-v1 encryption library 22,361 92 7
JMeter-v2 performance tester 35,547 79 7
Ant-v2 project builder 44,862 205 7
PDFBox 1.1.0 tool for pdf files 59,576 32 7

Total: 42

on accesses to the source code of programs. Both the SENSA
tool and DUA-FORENSICS are available to the public for
download.5 DUA-FORENSICS also provides static and dy-
namic slicing and execution differencing for computing the
actual impacts of changes. DUA-FORENSICS computes for-
ward static slices by traversing data and control dependencies
starting from the slicing criterion (change locations). Data
dependencies and control flow are determined using context-
and flow-insensitive points-to analysis. DUA-FORENSICS also
performs forward dynamic slicing based on dynamic depen-
dence monitoring. More details about DUA-FORENSICS can
be found in [65]. To run our experiments, we used a Linux
workstation with an 8-core 3.40GHz Intel i7-4770 CPU and
32GB DDR2 RAM.

We studied six Java subjects of different types and sizes
and seven changes (fault fixes) per subject, for a total of 42
changes. For most of these subjects (the largest five except
PDFBox), seven is the maximal number of changes that our
current implementation of SENSA supports with respect to the
limited data types of variable it could modify (Section IV-A).
Also, as we report average results over all studied changes per
subject, we intended to avoid inconsistent numbers of individ-
ual data points across these subjects that would otherwise bring
up possible biases in those results. Therefore, we chose seven
changes consistently for all subjects (for subjects having more
changes to use, we chose the first seven). Table II describes the
subjects. Column LOC shows the size of each subject in non-
comment non-blank lines of Java code. Column Tests shows
the number of tests for each subject. Column Changes shows
the number of changes we studied for each subject.

The first subject, Schedule1, is part of the Siemens suite
that we translated from C to Java. This program can be
seen as representative of small software modules. NanoXML
is a lean XML parser with small memory footprint. XML-
security is the XML signature and encryption component of
the Apache project. JMeter is also an Apache application but
for measuring the performance of software. Ant is a popular
tool for building software projects. PDFBox is an Apache
library for programming against PDF documents.

JMeter and Ant, in particular, exhibit some non-determinism
(i.e., some behaviors vary from execution to execution for
the same test input) due to their use of the system time and
random number generators. To guarantee the reproducibility
required by SENSA and DEA to find the impacts really caused
by our changes, we manually determinized these subjects by
ensuring that the same sequences of system-time and random

5http://nd.edu/„hcai/sensa/html
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values were obtained before and after each change. To verify
that we did not break the original program semantics of those
subjects, at least for their test suites used in our studies, we re-
run those test suites and found no differences in the outputs
and test outcomes between the executions of the test cases
before and after this manual determinization. To automate
this manual process, at least for non-determinism caused by
using system times or randomly generated values, a potential
approach is to first utilize DEA to identify the sources of non-
determinism (i.e., program locations producing different values
between two executions of the same code and input), and
then replace those values (in a way similar to which SENSA
realizes runtime modifications) with the ones of the original
types returned from an external library (like the monitors in
SENSA). This library uses fixed initial values (e.g., starting
times or randomization seeds) to generate consistent sequences
of values to replace the original ones for any repetitions
of program execution. While not a generic solution, such
an approach can at least automate the determinization for
particular cases and reduce manual efforts for others.

Table III lists the ids of the faults whose fixes we used as
the changes for our experiment. The faults for all subjects
except PDFBox were introduced by other researchers and
contributed to the SIR repository [67]. For PDFBox, we
obtained version 1.1.0 from its SVN repository6 and we used
a random number generator to select seven statements. For
each statement, we randomly chose a mutation operator (and
value when appropriate) from the sufficient mutant operators
identified by Offutt and colleagues [62], and applied it to that
statement. In short, these mutant operators attempt to mutate
program states by replacing arithmetic, relational, or logical
operators, or values, with alternatives of the same category or
type as the original ones. Simulated faults injected through
mutations as such have been shown to be effective [68], [69]
and are actually used to produce many of the faults in the SIR
repository too.More details on these PDFBox changes and the
process we followed for generating them can be found on the
SENSA project page.5

For each fault, the “fixed” (changed) program is the program
as is: the one without the fault. Each fault fix modifies, adds, or
deletes one to three lines of code. For Schedule1, v7 involves
two methods so we chose v8 instead. (Future plans include
studying SENSA on multiple changes.)

As for the test input data required by the dynamic analysis
of SENSA, we utilized the input sets given by the provider of
the subject programs. Specifically, for PDFBox, we used the
test cases coming as part of the project package we checked
out from its SVN repository; for other five subjects, we used
test cases provided with the programs that we obtained all
from the SIR repository. Finally, we adopted default values for
SENSA parameters, including NR=20, increment i=1.0 for the
Incremental strategy, and default data ranges (Section IV-B)
for the Random strategy, consistently for all subjects. Also,
as we mentioned before, modifications that led to abnormally
long executions (10 times longer than normal ones) were
discarded and not counted toward NR. For modifications

6http://svn.apache.org/repos/asf/pdfbox

TABLE III: Fault ids whose fixes used as changes in our study

Subject Source Fault ids
Schedule1 SIR v1, v2, v3, v4, v5, v6, v8
NanoXML SIR v1s1, v1s2, v1s3, v1s4, v1s5, v1s6, v1s7
XML-security SIR v1s2, v1s3, v1s5, v1s14, v1s16, v1s17, v1s20
JMeter SIR v2s1, v2s2, v2s5, v2s6, v2s11, v2s13, v2s19
Ant SIR v2s3, v2s4, v2s5, v2s6, v2s7, v2s8, v2s15
PDFBox SVN Version 1.1.0 – s1, s2, s3, s4, s5, s6, s7

Ranking 
comparison 

Actual impact 
computation SENSA 

Statement, Program, Test suite 

Quantified 
 influences 

Actually-impacted 
statements 

Predictive effectiveness  
of SENSA 

Change 

Fig. 3: Experimental process for predictive impact analysis,
where the potential change location (given by the statement)
is known to SENSA but the actual change and ground truth
(actual impacts) to evaluate those predictions are not.

leading to invalid values (e.g., those causing earlier termina-
tion of programs), SENSA simply handled the corresponding
execution-histories as for those from normal values.

B. Methodology

Figure 3 shows our experimental process for SENSA. The
inputs of SENSA are a program, a statement (e.g., a candidate
change location), and the test suite of the program. SENSA
quantifies the runtime influence of this statement on every
other statement of the program. The output of SENSA that
we use is the set of program statements ranked by decreasing
influence. For tied statements (statements assigned with a same
rank) in the ranking, the rank assigned to all of them is the
average position in the ranking of those tied statements. To
enable a comparison of this ranking with the rankings for static
slicing, the SENSA ranking includes at the bottom, tied with
influence zero, those statements in the static forward slice not
found by SENSA to be affected.

Similarly, because forward dynamic slicing usually does not
find all statements truly affected by potential change locations,
our empirical approach also assigns to the statements in the
static forward slice not found by dynamic slicing an influence
of zero and adds them to the bottom of the dynamic slicing
ranking to enable comparisons with SENSA and static slicing.
Figure 4 illustrates the relationships among the three types of
rankings for the example case discussed in Section IV-A.

To the right of the experimental process diagram (Figure 3),
the Actual impact computation takes the same three inputs and
a change for the selected statement. This procedure uses our
execution-differencing technique DEA [22] to determine the
exact set of statements whose behavior changes when running
the test suite on the program before and after this change. It is
crucial to note that this step of computing actual impacts with
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Static slice

Non-zero influence

Static slice

Fig. 4: An illustration of the three impact-ranking strategies
and the relationships among them, using the example program
and rankings of Section IV-A. Statements sharing the same
rank are placed in one cell, and the ranks decrease from left to
right. In each ranking, statements with non-zero influence are
those found to be affected, while statements in the static slice
but not found by the strategy are all assigned zero influence
and appended to the bottom of the ranking. As such, each of
these rankings includes the entire static slice.

DEA on both program versions (before and after the change
is made) is used only for comparative evaluation purposes:
SENSA, as a predictive impact-analysis technique, does not
assume or use any knowledge about the actual changes.

The procedure Ranking comparison at the bottom of the
diagram measures the predictive effectiveness of the SENSA
ranking for the selected statement, when the actual change is
not even known, by comparing this ranking with the ranking of
the actually-impacted statements after the change is designed
and applied to that statement. This actual-impact ranking is
computed the same way as is the SENSA ranking (i.e., running
DEA on the versions before and after the change), except
that for the actual-impact ranking the modified program is the
version in which the actual change has been applied.

The experimental process makes a similar comparison, not
shown in the diagram, for the rankings obtained from breadth-
first searches (BFS) of the dependence graphs for static and
dynamic slicing. BFS is the traversal order of slices proposed
by Weiser [10]. We should note that, while the semantics
of slicing do not guarantee a stronger impact of the slicing
criterion on statements closer to the top of the slice, as
an impact-prioritization strategy, the ordering of statements
in a slice ranking is the result of a BFS traversal of the
dependencies of those statements on the criterion. Therefore,
for developers who inspect the impacts in a forward direction,
it is natural to compare the BFS ordering of slices to the
impact-strength-based ranking of SENSA. For dynamic slicing,
we join the dynamic slices for all executions that cover the
selected statement. This is known as a union slice [59].

Ranking comparison computes the effectiveness of a rank-
ing at predicting the actually-impacted statements by determin-
ing how high in the ranking those statements are on average.
The rank of each impacted statement represents the effort a
developer would invest to find it when traversing the ranking
from the top. The more impacted statements are located near

the top of the ranking, the more effective is the ranking
at predicting the actual impacts that will occur in practice
after making the change. The average rank of the impacted
statements is the average inspection effort.

Ideal case. As a basis for comparison of the predictions
given by the techniques we studied, we also computed the
inspection effort for the ideal (best) scenario for each change.
This ideal case corresponds to a ranking in which all state-
ments impacted by the change are placed at the top of that
ranking. No other ranking can make a better prediction. The
ideal ranking is the actual-impact ranking which includes at
the bottom all statements in the static forward slice that are not
in the actual impact set. Those statements have zero influence
and are tied at the bottom of the ideal ranking, as we do for
SENSA and dynamic slicing for meaningful comparisons.

For RQ1, we computed, for all changes of each subject,
the average inspection efforts for the entire rankings for
SENSA, static slicing, and dynamic slicing. For each of these
three impact-prioritization ranking strategies, we calculated
this inspection effort for each change by dividing the sum
of the ranks produced by the strategy for that change by the
sum of the worst-case ranks (i.e., the length of the ranking
given by the strategy) of all actually-impacted statements with
respect to that change. Suppose L and A are the rankings given
by a strategy and the actual-impact ranking for the change,
respectively, the inspection effort for L is computed as

ř

statement s PA the rank of s in L

|A| ˆ |L|
(1)

where |A| and |L| are the numbers of elements in rankings
(sets of ordered statements) A and L, respectively. Then, we
report such ratios as percentages for each change and compute
the average over all seven changes per subject.

Example. Consider again the example program discussed
in Section IV-A which has 8 lines of code that are all in
the static slice. For SENSA, lines 1, 3, and 8 are tied at
the top of the ranking with average rank (1+2+3)/3 = 2 and
lines 4 and 5 are tied at average rank 4.5. SENSA does not
detect differences in lines 2, 6, and 7, which get tied at the
bottom with rank 7. If a change is actually made that impacts
lines 1–4 and 8, the average inspection effort of using the
predicted SENSA ranking (before making the change) is the
average rank of those lines divided by the static slice size,
or (2+2+2+4.5+7)/(5ˆ8) = 43.75%. For static and dynamic
slicing, the average efforts are computed similarly but with
respect to the actual impacts.

For RQ2, we computed, for each ranking, the percentage of
actually-impacted statements found in each fraction from the
top of the ranking, for fractions 1

N to N
N where N is the size of

the ranking. The result for each change in each subject is a set
of two-dimensional points, with each point px, yq representing
that y% of the actually-impacted statements can be found by
inspecting the top x% of the statements in the ranking. Let
L be the ranking for that change, to obtain those points, the
experiment process traverses L to calculate y for each x when
incrementing x by 1

N .
To merge such points across all changes per subject for
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comparison, we first linearly interpolated the data points for
each change with an interval of 0.1% (i.e., to have 1,000 points
for each change in the subject) and then computed the average
per point for all seven changes. We report, visually using a
plot of those points, the average cost-effectiveness curve per
subject. Note that the plots are usually not smooth curves,
even for the ideal case, because the size of L can be much
larger than that of the corresponding actual impact set after
all zero-influence static-slice statements are added to L.

For RQ3, we measured the execution time costs of the
subjects for their provided test suites and the time each phase
of SENSA takes on that program and test suite.

Test suite choice. By design, the test suites we use to
compute the SENSA and dynamic-slicing predictions before
making changes are the same as we used to find the actual
impacts (the ground truth) after making the changes. To the
casual reader, using the same test suite to obtain both the
prediction and ground truth might seem biased. However, we
chose to do so because developers will normally use the entire
test suite of the program for SENSA before they decide their
changes and then the same (occasionally updated) test suite to
observe the actual impacts after defining and applying those
changes. Therefore, using the same test suite before and after
is not only appropriate, but necessary for evaluation.

Reverse analysis. In this study, we primarily looked at how
well SENSA and the baseline (slicing) techniques operated
on bug-fixing changes (or referred to as original changes) to
understand various factors behind corresponding results.We
found that, because these changes are fault fixes and the
predictive techniques were applied to the faulty versions of
the programs, for many of these faults the executions covering
them stopped shortly afterwards, typically with an unhandled
exception. Static slicing does not use these executions, but
SENSA and dynamic slicing do. As a consequence, SENSA
often had less data available than usual. In many cases, SENSA
could not “guess” the modifications that would fix the fault and
therefore missed the impacted statements that execute only
when the fault is fixed (i.e., after the real change is applied).

This problem does not occur if SENSA analyzes executions
that proceed normally after the candidate change location,
which is the case for most other impact-prediction scenarios.
Therefore, we also studied the reverse versions of the bug-
fixing changes (i.e., bug-introducing changes, or referred to
as reverse changes) where the fixed program is used instead
by SENSA. Although the reverse changes might not be as
common and representative of real changes, they nevertheless
correspond to modifications that can occur in software. More
importantly, studying these reverse changes provides insights
on how SENSA would compare to slicing when executions
continue normally after the analyzed location. Yet, since we
focus on the original changes and used the reverse ones mainly
for complementary analyses, and the detailed results for the
latter would be shown similarly as those for the former, we
give brief analyses in text only, and summary results just for
RQ1 as an example, for reverse changes.

C. Results and Analysis

TABLE IV: Inspection efforts for original (bug-fixing) changes

Subject
Ideal Average effort
(best) Static Dynamic SENSA SENSA

case slicing slicing Rand Inc
Schedule1 47.90 50.14 48.34 48.01 48.01
NanoXML 8.84 22.71 27.09 20.27 22.37
XML-security 5.00 31.94 45.37 13.15 21.49
JMeter 0.15 9.26 24.65 7.50 7.51
Ant 3.21 39.16 41.55 29.84 23.76
PDFBox 2.72 39.77 47.51 34.73 34.73
average 11.30 32.16 39.08 25.59 26.31
standard dev. 17.26 16.52 14.47 20.92 21.86

p-value w.r.t. static slicing: 3.70E-03 1.21E-02

1) RQ1: Overall Effectiveness:
Data. Table IV presents the average inspection effort per

subject (seven changes each), using Equation 1 to obtain
the cost per change, and the average effort and standard
deviation for all 42 changes. As explained before, the units
are percentages. For the Ideal case, the effort is an absolute
value representing the minimum possible effort: the best
possible prediction. For each of Static slicing, Dynamic slicing,
and SENSA with Random (SENSA-Rand) and Incremental
(SENSA-Inc) strategies, the table shows the average effort
required to find all actual impacts in their respective rankings.

For example, for XML-security, the best position on average
in the ranking for all statements impacted by the changes is
5.0% of the static forward slice. On top of this, static and
dynamic slicing add 26.94% and 40.37% average inspection
effort, for a total of 31.94% and 45.37%, respectively. These
extra efforts can be seen as the imprecision of the techniques.
Meanwhile, SENSA-Rand and SENSA-Inc impose 8.15% and
16.49% extra effort, respectively, over the ideal case, which is
considerably less than slicing.

Analysis. The Ideal case results indicate that the number of
statements impacted in practice by the changes in our study, as
a percentage of the total slice size, decreased with the size of
the subject—from 47.90% in Schedule1 down to 5% or less in
the four largest subjects. This phenomenon can be explained
by two factors. First, the larger subjects consist of a variety of
loosely coupled modules and the changes, which are thus more
scattered, can only affect smaller fractions of the program.
Second, static slicing will find connections among modules
rarely, if ever, exercised at runtime: Aliasing in larger object-
oriented subjects is a major reason for the imprecision of
slicing. For Schedule1, however, there is little use of pointers,
and most of the program executes and is impacted on every test
case and by every change. In fact, an average of 97.8% of the
statements in the slices for Schedule1 were impacted. These
factors explain the much greater inspection efforts needed by
all techniques in this subject.

Remarkably, for all subjects but Schedule1, dynamic slicing
produced worse predictions than static slicing. This counterin-
tuitive result is explained by the divergence of paths taken by
executions before and after the changes. Because of these di-
vergences, dynamic slicing missed many impacted statements
that were not dynamically dependent on the input statement
before the change but became dynamically dependent after
the change. SENSA did not suffer so much from this problem
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TABLE V: Inspection efforts for reverse changes

Subject
Ideal Average effort
(best) Static Dynamic SENSA SENSA

case slicing slicing Rand Inc
Schedule1 47.90 50.15 48.30 48.05 48.03
NanoXML 8.84 22.64 20.66 11.23 12.24
XML-security 5.00 31.91 45.16 9.02 9.33
JMeter 0.15 9.26 20.46 8.63 9.34
Ant 3.21 37.27 33.45 15.94 15.32
PDFBox 2.72 39.77 42.60 28.60 28.58
average 11.30 31.83 35.11 20.24 20.47
standard dev. 17.26 16.40 17.11 20.35 20.10

p-value w.r.t. static slicing: 7.16E-06 1.48E-05

because its modifications altered some paths to approximate
the effects that any change could have.

For Schedule1, the inspection effort for both variants of
SENSA was, on average, 0.11% more than the ideal, which is
very close to the ideal result. After SENSA, dynamic slicing
also did well at predicting change impacts with only 0.44%
extra effort, whereas static slicing was the worst predictor
with 2.24% extra effort. Considering the high minimum effort
for this small subject, however, these differences in effort
are rather small in absolute terms. For NanoXML, the ideal
average effort is much lower at 8.84%. Thus, impact prediction
can be much more effective in this case. For this subject,
SENSA-Rand was the best variant of SENSA, requiring 2.44%
less effort on average than static slicing. SENSA-Inc, however,
was only slightly better than static slicing, by less than 0.5%.

For XML-security, in contrast, both variants of SENSA
(especially SENSA-Rand) were considerably more effective
than static slicing, which required more than six times the ideal
effort to isolate all impacts, whereas SENSA-Rand required
less than three times the least possible effort. For JMeter,
however, SENSA-Inc was almost as good as SENSA-Rand,
both outperforming over static slicing. Although the difference
was not large, the absolute levels of effort below 10% make
that difference important.

For Ant, SENSA-Inc was the best variant with a consider-
able decrease of 15.4% in effort compared to static slicing.
Finally, for PDFBox, both variants of SENSA reduced the
average effort with respect to static slicing by about 5%.

Importantly, on average for all 42 changes, both variants
of SENSA outperformed static slicing, with SENSA-Rand
requiring 6.57% less effort than static slicing and 13.49% less
than dynamic slicing to capture actual impacts. The standard
deviation for both variants of SENSA, however, is greater than
for both forms of slicing, which suggests that they are less
predictable than slicing.

Statistical significance. To assess how conclusive is the
advantage of both variants of SENSA over static slicing (the
best-performing form of slicing here), we applied to our 42
data points a Wilcoxon signed-rank one-tailed test [70] which
makes no assumptions about the distribution of the data. Both
p-values, listed in the last row of Table IV, are less than
.02, indicating that the superiority of both variants of SENSA,
especially SENSA-Rand, is statistically significant.

Reverse analysis. Table V shows the results per subject and
overall for the reverse changes. For these changes, the predic-

tions of SENSA, especially SENSA-Inc, improve considerably.
Dynamic slicing also improves but remains ineffective. Static
slicing changes little as it does not depend on runtime data.
The Ideal case is the same because execution differencing is
symmetric. In all, SENSA outperforms static slicing with even
stronger statistical significance for these changes.

Conclusion. For these subjects and changes, with statistical
significance, SENSA is more effective on average than slicing
techniques at predicting the statements that are later impacted
when changes are made. These results highlight the impre-
cision of static and dynamic slicing for predicting impacts,
contrary to expectations, and the need for a technique like
SENSA to detect semantic dependencies. SENSA is partic-
ularly superior when longer executions are available. In all,
SENSA can save developers a substantial amount of effort for
identifying the potential consequences of changes.

2) RQ2: Effectiveness Distribution: Developers might not
always be able to examine the entire rankings produced by
SENSA. In such cases, they can focus only on a fraction
of each ranking, normally those statements at the top. Thus,
developers can prioritize their inspection efforts by analyz-
ing as many highly-ranked impacts as possible within their
budget. To understand the effects of such prioritizations, we
investigated the effectiveness of each portion of the SENSA
and slicing rankings starting from the top.

Data. Figure 5 shows, for each subject and all fault fixes
in that subject, the average cost-effectiveness curves of five
examination orders: the ideal (best possible) ranking, SENSA
with Random and Incremental strategies, and static and dy-
namic slicing. The horizontal axis indicates the fraction of the
ranking examined from the top of the ranking that predicts
impacts. The vertical axis indicates the percentage of actually-
impacted statements found within that fraction of the ranking,
on average for all changes in the subject. Note that the
results in Table IV are the average of the Y values for the
corresponding rankings in these figures.

Analysis. The Ideal curves in these graphs provide detailed
insights on how cost-effective impact prediction techniques
can aspire to be. For all subjects except Schedule1, this curve
rises sharply within the first 10% of the ranking. These curves
are not straight lines because they are the average curves for
all changes in each subject and the actual impacts for these
changes (which define Ideal) vary in size. Only for Schedule1,
the Ideal curve is mostly a straight line because the sets of
actual impacts have almost the same size.

At the beginning, the curves for SENSA, especially SENSA-
Rand for NanoXML and XML-security and SENSA-Inc for
Ant, grow faster than those for slicing. For Schedule1, because
of the high baseline (ideal) costs, all curves are very close. For
that subject, the SENSA curves overlap with the ideal curve
for about 90% of the ranking, whereas the dynamic-slicing
curve breaks from them at about 75%. This contrast means that
SENSA correctly predicts virtually all impacts for inspection
budgets of 90% or less, whereas dynamic slicing has the same
benefit for budgets up to 75%. Static slicing, however, always
stays slightly below the ideal.
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(c) XML-security

  0%  20%  40%  60%  80% 100%
  0%

 20%

 40%

 60%

 80%

100%

%
 o

f i
m

pa
ct

s 
fo

un
d

% of slice inspected

 

 

Ideal
Static slicing
Dynamic slicing
SensA−Rand
SensA−Inc
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(f) PDFBox

Fig. 5: Impacted code found per inspection effort for the six Java programs we studied, using different impact ranking
(prioritization) strategies: the ideal case, static slicing, dynamic slicing, SENSA-Rand (SENSA with the Random strategy), and
SENSA-Inc (SENSA with the Incremental strategy). In each diagram, the x axis shows the percentages of statements in a
ranking that need be inspected, forwardly from the top, to reach the percentages of statements, shown on the y axis, in the
associated actual-impact ranking. For each subject and ranking strategy, the curve displayed is the average of the curves for all
changes for that subject, which are merged after each was normalized to 1,000 data points using linear interpolation. Because
the sizes of all the rankings are the same per change as those of the corresponding static slices, which are usually much larger
than the sizes of the corresponding actual-impact sets, the curves may not be smooth, even in the ideal cases.
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TABLE VI: Average time costs of SENSA in seconds

Subject Normal Static Instrumented Influence
name run analysis run ranking
Schedule1 186.0 6.1 4,756.8 1,054.1
NanoXML 15.4 16.5 773.1 10.0
XML-security 65.2 179.3 343.9 20.8
JMeter 40.5 604.6 2,967.8 0.3
Ant 75.2 942.9 439.0 7.0
PDFBox 5.4 504.0 1,094.0 7.7

The results for the other five subjects, which are more
representative of modern software, indicate important cost-
effectiveness benefits of SENSA with respect to slicing, up to
about 60% of the ranking for NanoXML and 75% for PDF-
Box. For XML-security, SENSA-Rand outperforms slicing at
80% and SENSA-Inc does so by 65%. For Ant, SENSA-Inc
and SENSA-Rand are more cost-effective than static slicing,
up to about 85% and 60% of the ranking, respectively.

JMeter is, to some extent, an exception. Both variants of
SENSA outperform static slicing in JMeter only up to 18% of
the ranking. Beyond those points, static slicing becomes more
competitive than SENSA up to 90% of the ranking. Yet, the
superiority of SENSA for JMeter is substantial before this 18%
point, which explains the overall advantage of SENSA reported
in Table IV. More importantly, SENSA outperforms slicing
considerably where we believe it matters the most, which is
at the top of the ranking.

Reverse analysis. For the reverse changes, we found that
the cost-effectiveness for the top portions of the SENSA
rankings was even greater than for the original changes. This
was expected given the greater overall superiority of SENSA
for the reverse changes revealed in Table V. For NanoXML,
XML-security, Ant, and PDFBox, SENSA was always better
than static slicing from the top of the ranking to the point
where static slicing reaches 100% effectiveness. For JMeter,
SENSA was more cost-effective than static slicing up to about
24% of the respective rankings and by a greater amount than
for the original changes.

Conclusion. For these subjects, changes, and test suites,
SENSA is not only more effective than slicing overall (i.e., at
100% of the ranking), as Tables IV and V show, but also this
superiority is concentrated at the top portions of the resulting
rankings, which are the areas likely to be inspected first. There-
fore, SENSA is especially more cost-effective than slicing
when users are constrained by a budget which forces them
to prioritize their inspection by some metric (e.g., influence).

3) RQ3: Computational Costs: Provided that the existing
executions cover the statements to be analyzed, the other
major factor that affects the practicality of SENSA is its
computational cost.

Data. To study the cost factor, we collected the time SENSA
took on the 42 changes in our experimental environment
(Section VI-A) using the respective test suites. Table VI first
shows the average time in seconds it took to run the entire test
suite for each subject without instrumentation (column Normal
run). The next three columns report the average time taken by
each of the three stages of SENSA per subject.

Analysis. First, the pre-processing stage (column Static
analysis) performs static slicing, which is needed by our
experiment and also necessary for SENSA to instrument the
program, as well as for dynamic slicing and DEA.As expected,
this time grows with the size and complexity of the subject,
where the three largest subjects (35-65K LOC) dominate. The
average costs per subject were all less than 16 minutes, though,
which we consider reasonably acceptable for an unoptimized
prototype tool.

The runtime stage (column Instrumented run) of SENSA re-
peatedly executes 20 times (the default value for the parameter
NR) those test cases that cover the candidate change location.
In contrast with the first stage, the cost of the runtime stage
is proportional to the number of test cases that cover those
locations. The number of test cases available for our subjects
is inversely proportional to the subject size (Table II), which
explains the cost distribution seen in the table. The average
costs for Instrumented run range from 6 to 79 minutes, which
might or might not be acceptable for a developer depending on
the circumstances. Finally, the costs of the third stage for all
subjects except Schedule1 (for which a disproportionate total
of 2650 test cases exist) are quite small as this stage simply
reads the runtime data, computes frequencies, and ranks the
semantically-dependent statements.

With the per-stage cost SENSA incurred put together, the
total running time of our technique for one potential change
(location) is 96 minutes in the worst case (for Schedule1) and
38 minutes on average over the six subjects. In contrast, worst
normal runtime of the original programs is three minutes (also
for Schedule1) and the mean over all subjects is about one
minute. From these numbers, we can see that SENSA may
cause considerable overhead relative to the normal running
times. However, it is crucial to note that the predominant part
of such overhead comes from the runtime stage, which can be
significantly optimized by running multiple modifications and
multiple test cases in parallel. Although our current prototype
does not yet implement the parallelization, such optimizations
can be easily added. Another important reduction in the
overhead can be achieved by using fewer test cases: only those
of interest or necessary for specific usage scenarios.

Reverse analysis. The results for the reverse changes (not
shown here), which had longer executions, were not very
different. We found that, for these changes, SENSA was no
more than 1.3 times costlier than for the original changes.
These results suggest that longer executions do not seem to
cause an explosion in the computational cost of SENSA.

Comparisons to baselines. In comparison to static slicing,
SENSA apparently costs more since computing the static
slice is part (the first step) of the static analysis stage of
SENSA, as seen in Figure 2 and Algorithm 1. At the same
time, however, static slicing also constantly dominates the
entire static-analysis cost of SENSA as shown in Table VI.
Thus, the running times of the other two stages of SENSA
approximately constitute its additional cost over static slicing.
In addition, static slicing does not rely on the availability and
quality of test inputs as SENSA does as discussed earlier in
Section V. Nevertheless, like any static analysis, static slicing
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can suffer from overly large analysis results with respect to
all possible program inputs. And static slicing itself does not
quantify and prioritize impacts as SENSA is able to. Therefore,
SENSA would still be a better (more cost-effective) option
for developers interested in examining impacts for concrete
program behaviours with respect to specific inputs.

Like other dynamic analysis, dynamic slicing suffers from
the same constraints regarding program inputs as SENSA.
However, just as static slicing, the dynamic slicing technique
itself does not separate impacts by relevance either. Also, our
empirical data (not shown here) suggest that using dynamic
slicing for impact prediction would be much less practical
than SENSA just in terms of its efficiency: in our experimen-
tal environment, dynamic slicing was constantly much more
expensive than SENSA, on average incurring over an hour for
static analysis and about five hours for runtime alone, and
total costs of over ten hours for the entire analysis for one
potential change (location). The worst-case cost of dynamic
slicing was even as large as over a day (on XML-security
and JMeter). Although a well-optimized version of dynamic
slicing may incur lower costs than we had experienced in our
study, the generally heavyweight nature of the fine-grained
dependence analysis required by dynamic slicing for providing
results comparable to ours implies more difficult efficiency
challenges to such slicing techniques in practice.

Conclusion. The observed costs are encouraging for the
practicality of SENSA for three main reasons. First, we think
that developers using our non-optimized prototype can in many
cases accept to get the impact predictions from SENSA if
they are provided budgets within the time frames that all
subjects but JMeter exhibit. (For Schedule1, a smaller subset
of its large test suite can be used.) Second, the cost-benefit
ratio of prioritizing the inspection efforts with SENSA can
be even smaller for developers inspecting larger impact sets,
and the overhead can be more acceptable when the impact
sets are too large to be fully inspected. Third, our prototype
implementation can be significantly optimized by parallelizing
the large number of runs made by SENSA, to the extent that
even JMeter might be analyzable at reasonably low costs.

D. Threats to Validity

The main internal threat to the validity of our study is
the potential presence of implementation errors in SENSA for
sensitivity analysis and the underlying DUA-FORENSICS [65]
for execution differencing and slicing. Although SENSA is a
research prototype developed for this work, we have tested and
used it for more than two years already. Meanwhile, DUA-FO-
RENSICS has been in development for many years [64] and has
matured considerably. Another internal threat is the possibility
of procedural errors in our use of SENSA, DUA-FORENSICS,
and related scripts in our experimental process. To reduce this
risk, we tested, manually checked, and debugged the results
of each phase of this process.

The main external threat to the validity of our study and
conclusions about SENSA is that our set of subjects, changes,
and test suites might not represent the effects of similar
changes (bug fixes) in other software. Nevertheless, we chose

our subjects to represent a variety of sizes, coding styles,
and functionality to achieve as much representativeness as
possible. The SIR subjects, in particular, have been used
extensively in other experiments conducted by the authors
and by many other researchers. Moreover, all subjects but
Schedule1 are real-world open-source programs.

Importantly, we do not claim that our results generalize to
all kinds of changes in software. We only studied changes that
represent bug fixes and small corrections as a first demonstra-
tion of SENSA. These changes are commonly available for
experimentation, yet may not be commonly found in other
sources such as code repositories. To mitigate this threat, we
examined different dimensions of our approach with respect to
not only the bug-fixing changes but also their reverse versions.
The reverse changes, to some extent, may represent a different
type of changes—those that introduce bugs. Nevertheless, it
will be of interest to study with even more types of changes,
such as feature-adding ones, and real changes developers
actually made in practical software evolution process,which
we intend to explore more broadly in future work on impact
analysis. In all, this study on bug-fixing changes highlights one
of the many potential applications of SENSA. We presented
and studied a second application in Section VII.

Another threat to external validity related to the above
one comes from the limitation of our results to changes
at single locations. It is possible that SENSA may exhibit
different characteristics when working on multiple-location
changes, including changes to multiple locations within single
methods and those to either single or multiple locations across
multiple methods. As one approach to accommodating such
changes, SENSA itself can be extended to directly work on
them by applying multiple modifications at the same time
during runtime and enhancing DEA to support more generic
execution-history differencing. An alternative way could be
to break one large multiple-location change into a set of
smaller (single-location) changes, apply the present tool to
each separately, and then synthesize the results. The latter
adaptation may not be viable if change interactions [22] have
to be considered, though.

For construct validity, one threat can be our choice of
ground truth (the actual impacts of changes) and the method to
compute it. We used execution differencing (DEA) to find, for
a test suite, which statements behave differently in response to
changes in another statement. DEA, like SENSA, works at the
statement level, unlike repository-mining methods which are
coarser and possibly noisier. Also, the actual impacts found
via DEA are a subset of all impacts a change can have, so we
chose subjects for which reasonable test suites exist. Moreover,
we used the same test suites for SENSA as for DEA so that
its predictions apply to the same runtime profile.

Another construct threat is the metric we used to compare
the effectiveness of SENSA over slicing. Intuitively, this metric
correlates with the benefits that developers experience when
using a predictive technique that places actual impacts higher
in a ranking. However, the fidelity of this metric and the use-
fulness of SENSA for this task can only be, ultimately, studied
on software developers in real production environments.
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Lastly, a conclusion threat is the appropriateness of our
statistical analysis and our data points. To minimize this threat,
we used a well-known test that makes no assumptions about
the distribution of the data [70], [71]. Another issue could be
the use of an equal number of changes per subject. For each of
the larger SIR subjects, however, seven was the largest number
of faults we could use and we deemed inadequate to study
less than seven changes in smaller subjects. Moreover, SENSA
outperformed slicing by greater margins for larger subjects.
Thus, we expect the statistical significance will increase if
we drop changes from small subjects. Finally, as mentioned
earlier, we compared SENSA to static slicing regarding the
cost-effectiveness in the context of impact inspection and
concluded about the advantage of SENSA in that regard; yet,
the performance of SENSA is subject to the availability of
quality execution sets required by the dynamic analysis in
SENSA while static slicing does not have such constraints.
Thus, static slicing might be a preferable option over SENSA
in practice when high-quality inputs are not available.

VII. CASE STUDIES: FAILURE ANALYSIS

To further investigate the effectiveness of SENSA, we stud-
ied how well it predicts the cause-effect chains that link faulty
code to a particular failure. Unlike impact analysis, whose
goal is to identify all impacted code for maintenance, this
task looks for the specific subset of all effects of a fault that
made a program fail.

To that end, we conducted three short case studies of fault
cause-effect isolation. After a (possibly) faulty statement is
identified during fault localization [12], [72], a developer must
decide how to fix it. This decision requires understanding how
the fault really affects the failing point (a failed assertion, a bad
output, or crash location). However, not all effects of a fault
are necessarily erroneous or are responsible for the failure.
The interesting behavior is the chain of events that propagates
this fault to the failing point. Unlike Zeller’s approach that
finds cause-effect chains based on differencing program states
between passing and failing runs [73], SENSA inputs a change
(location) and prioritizes, in addition to finding, the effects of
that change to help inspect and understand them.

We performed our case studies on the first fault provided
at SIR [67] for each of these three subjects: NanoXML,
XML-security, and JMeter. For each fault, we identified the
first failing point (one statement in each case) where the
fault is manifested. Given the faulty statement, we manually
identified the sequence of all statements that propagates the
fault to the failing point. We discarded affected statements
that did not participate in this propagation to the failing point.
All statements are Java bytecode instructions in a readable
representation [66].

Given a chain of events (the set of propagating statements)
and the bug fix provided with the subject, we computed
how close to the top the chain is in the rankings computed
by SENSA versus by forward static and dynamic slicing
from the fault. While forward slicing is not typically used
for debugging, these small case studies are intended for
investigating the effectiveness of SENSA against both slicing

techniques and in assisting with fault understanding, which
may help with debugging, rather than performing debugging
or fault-localization tasks directly. Specifically, we calculated
the average rank of the statements in this chain in each ranking
to estimate how well those rankings highlight the effects of
the fault that actually cause the failure.

Although three case studies are insufficient for statistically-
significant conclusions (the manual effort for these studies is
large), these cases shed light on the workings of the three
techniques that we studied for this application. Next, we
present our results and analysis for these brief case studies.7

A. NanoXML

Fault v1s1 in NanoXML is located in a condition for a while
loop that processes the characters of the DTD (Document Type
Definition) of the input XML document. The execution of
this fault by some test cases triggers a failure by failing to
recognize the end of the DTD, which then causes an unhandled
exception to be thrown when parsing the next section of the
document by using the method that parses DTD. The bug and
its propagation mechanism are not easy to understand because
the exception is not thrown immediately after the execution of
the faulty statement. After exhaustive inspection, we manually
identified the 21 Java Jimple [66] statements that constitute the
entire cause-effect chain from the fault to the failure.

All 21 statements that cause the failure, which will help
design the bug fix, are placed by SENSA-Rand in the top
18.54% of the ranking and by SENSA-Inc in the top 23.14%,
whereas static and dynamic slicing place them in the top
33.53% and 26.28% of their rankings, respectively. Thus, with
either modification strategy, SENSA isolated the entire cause-
effects chain better than both forms of slicing.

The average inspection effort for finding these statements,
computed with the method of Section VI-B, is 7.08% for
SENSA-Rand, 12.49% for SENSA-Inc, 8.86% for static slic-
ing, and 7.44% for dynamic slicing. Therefore, for this
particular fault, dynamic slicing was, comparatively, much
more effective than for most impact-analysis cases studied in
Section VI. Nevertheless, SENSA-Rand was still slightly better
than dynamic slicing, close to the favorable trend observed for
SENSA-Rand on faulty programs (Section VI-C1).

B. XML-security

Fault v1s2 in XML-security is revealed by only one of the
92 test cases available. This test fails because of an assertion
failure caused by an unexpected value. Manually tracing the
execution backwards from that assertion to the fault location
reveals that the fault caused an incorrect signature on the input
file via a complex combination of control and data flows. The
complete sequence of events for the failure trace contains more
than 200 Jimple statements. Yet, many of those statements are
in helper functions that, for practical purposes, work as atomic
operations. Therefore, we skipped those functions to identify
a more manageable and focused cause-effect chain that can be
understood more easily.

7All data details are available at http://nd.edu/~hcai/sensa/casestudies
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For the reduced chain of 55 statements, SENSA places 36 of
them at the top 1% of its ranking and 86.3% of those top 1%
statements are in the chain. In sharp contrast, for the top 4% of
its ranking, static slicing only discovers 9 of those statements.
The cost of inspecting the entire sequence using SENSA is
6.6% of the slice whereas static slicing requires inspecting
33.15% of the slice and dynamic slicing needs 17.9%.

The entire forward static slice consists of 18,926 Jimple
statements. Thus, users will be able to find the entire chain
within the first 1,255 statements in the SENSA ranking. Using
static and dynamic slicing, however, users would need to
inspect 6,274 and 3,388 statements, respectively, to fully
examine the same chain. Thus, for this fault, a developer using
our technique can find the effects that make the assertion fail
much faster than if using slicing.

C. JMeter

For this case study, we chose again the first fault provided
with JMeter (v2s1) and we picked, from all 79 test cases,
the one that makes the program fail for that fault. The failing
point is an assertion by the end of that test. Despite the much
larger size of both the subject and the forward slice from this
fault than those in previous two cases, the fault-propagation
sequence consists of only four statements.

Static slicing ranks two of those statements in the top 1%
and the other two statements farther away. SENSA, in contrast,
places the entire sequence on its top 1%, making it easier to
distinguish the failure-related statements for this fault from
the other, non-failing effects of it. The inspection of the entire
failure sequence using static slicing would require a developer
to go through 2.6% of the forward slice, or 848 statements.
For SENSA, this cost would be only 0.1%, or 32 statements.

As we observed for dynamic slicing in Section VI, consid-
ering the effects of fixing this fault, dynamic slicing would
cost much more than SENSA and static slicing to identify the
fault-propagation sequence. To find all the four statements in
the sequence, users would have to traverse 12.6% of the static
slice, which corresponds to 4,094 statements. Once again,
this case shows the advantage of SENSA over both forms of
slicing, dynamic slicing in particular, in isolating the failure
cause-effect sequence.

VIII. RELATED WORK

In [74], we outlined an early version of SENSA and we
showed initial, promising results for it when compared with the
predictions from breadth-first traversals of static slices [10],
[12]. In this paper, we expanded our presentation of SENSA,
its process, algorithm, and modification strategies. Moreover,
we extended our experiments from four to six Java subjects,
included dynamic slicing in our comparisons, and added three
case studies of cause-effects isolation using SENSA.

A few other techniques discriminate among statements
within slices. Two of them [13], [75] work on dynamic
backward slices to estimate influences on outputs, but do
not consider impact influences on the entire program. These
techniques could be compared with SENSA if a backward

variant of SENSA is developed in the future. Also for back-
ward analysis, thin slicing [12] distinguishes statements in
slices by pruning control dependencies and pointer-based data
dependencies incrementally as requested by the user. Our
technique, instead, can be used to automatically estimate the
influence of statements in a static slice in a safe way, without
dropping any of them, to help users prioritize their inspections.

In [25], [76], Masri and Podgurski followed an information-
theoretic approach to measure the strength of dynamic infor-
mation flow between variables through dynamic data and con-
trol dependencies. Their concept of dynamic flow strength is
similar to the impact strength we used in SENSA for semantic-
dependence quantification. However, although their approach
can also be employed for quantifying dynamic dependence,
we designed a more comprehensive approach to measuring
dependence strengths by using fuzzed program executions and
execution differencing, in contrast to using existing executions
only as in [25], [76]. On the one hand, fuzzing helps SENSA
alleviate the drawbacks of using a limited set of executions,
which may not represent well the usage pattern of the analyzed
parts of the program. On the other hand, we could enhance in
future work the approach of Masri and Podgurski via fuzzing.

Program slicing was introduced as a backward analysis for
program comprehension and debugging [10]. Static forward
slicing [50] was then proposed for identifying the statements
affected by other statements, which can be used for change-
impact analysis [3]. Unfortunately, static slices are often
too big to be useful. Our work alleviates this problem by
recognizing that not all statements are equally relevant in a
slice and that a dynamic analysis can estimate their relevance
to improve the effectiveness of the forward slice. Other forms
of slicing have been proposed, such as dynamic slicing [30],
union slicing [58], [59], relevant slicing [11], [63], deletion-
based slicing approaches [77]–[79], and the already mentioned
thin slicing [12], all of which produce smaller backward slices
but can miss important statements for many applications. Our
technique, in contrast, is designed for forward analysis and
does not trim statements from slices but scores them instead.

Dynamic impact analysis techniques [14], [27], [42], which
collect execution information to assess the impact of changes,
have also been investigated. These techniques, however, work
at a coarse granularity level (e.g., methods) and their results
are subject strictly to the available executions. Our technique,
in contrast, works at the statement level and analyzes both the
available executions and, in addition, multiple variants of those
executions to predict the impacts of changes. Also, our tech-
nique is predictive, unlike others that are only descriptive [22],
[42] (using knowledge of the changes already made).

Mutation testing is a specific form of sensitivity analysis
that simulates common programming errors across the entire
program [61], [80]–[82]. Its purpose is to assess the ability of
a test suite to detect errors by producing different outputs. This
approach is related to testability-analysis approaches, such as
PIE [83], which determine the proneness of code to propagate
any errors to the output so they can be detected. Similar to
these approaches, SENSA modifies program points to affect
executions but it focuses on points of interest to the user
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(e.g., candidate change locations) and analyzes not only the
influences on outputs but also the influences on all statements.

Many fault-localization approaches [12], [72], [84]–[86], al-
though not directly related to SENSA, share a common aspect
with our work: they assess their effectiveness in terms of the
inspection effort for finding certain targets in the program.
For fault localization, those targets are faults, whereas in our
work they are the influences of a statement. This effort is
often measured as the percentage of the program that must be
inspected to reach those targets. Nevertheless, as demonstrated
in a few other relevant techniques [87]–[89], impact analysis
can be immediately applied in fault localization and under-
standing. We have preliminarily explored in this line through
several case studies. It will be rewarding to further investigate
potential benefits of SENSA in debugging and testing more
broadly in the future.

Fuzzing is a well-known technique that has been widely
used in software security testing and quality assurance [26],
especially for detecting software vulnerability and reliability
issues [90]. However, to the best of our knowledge, fuzzing
has not been exploited for dependence quantification or impact
analysis before. Yet, while SENSA shares the spirit of fuzzing,
it does not necessarily use invalid or unexpected values.

IX. CONCLUSION AND FUTURE WORK

Two main challenges faced by existing predictive impact-
analysis techniques are the coarse granularity and large size of
the impact sets they produce. To address both challenges, we
presented a new technique and tool called SENSA that works
at the statement level by offering a fine-grained impact anal-
ysis and prioritizing impacts based on semantic-dependence
quantification. This approach helps overcome the drawbacks
of large impact sets without pruning statements.

Our studies suggest that SENSA outperforms the two main
alternative fine-grained approaches, static and dynamic slicing,
for predicting and prioritizing the impacts of candidate change
locations. We conclude that prioritizing the effects (impacts) of
potential changes via sensitivity analysis, powered by fuzzing,
and execution differencing is more effective than slicing tech-
niques in assisting developers with inspecting possible change
effects and isolating fault cause-effect chains.

Our immediate plan is to expand our studies to subjects
and changes of other types and sizes to further generalize
our results and characterize the best and worst conditions for
the use of SENSA. We are also developing a visualization
for quantified dependencies to improve our understanding of
the approach, to enable user studies, and to support other
researchers. Using this tool, we will study how developers
take advantage in practice of quantified slices.

Slightly farther in the future, we foresee adapting SENSA
to quantify dependencies for other key tasks, such as debug-
ging, comprehension, mutation analysis, interaction testing,
and information-flow measurement. More generally, we see
SENSA’s scores as abstractions of program states as well as
interactions among such states. These scores can be expanded
to multi-dimensional values and data structures to further
annotate slices. Such values can also be simplified to discrete
sets as needed to improve performance.
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