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Distributed software systems are increasingly developed and deployed today. Many of these systems are
supposed to run continuously. Given their critical roles in our society and daily lives, assuring the quality
of distributed systems is crucial. Analyzing run-time program dependencies has long been a fundamental
technique underlying numerous tool support for software quality assurance. Yet conventional approaches to
dynamic dependence analysis face severe scalability barriers when they are applied to real-world distributed
systems, due to the unbounded executions to be analyzed in addition to common efficiency challenges suffered
by dynamic analysis in general.

In this paper, we present Seads, a distributed, online, and cost-effective dynamic dependence analysis
framework that aims at scaling the analysis to real-world distributed systems. The analysis itself is distributed
to exploit the distributed computing resources (e.g., a cluster) of the system under analysis; it works online
to overcome the problem with unbounded execution traces while running continuously with the system
being analyzed to provide timely querying of analysis results (i.e., run-time dependence set of any given
query). Most importantly, given a user-specified time budget, the analysis automatically adjusts itself to
better cost-effectiveness trade-offs (than otherwise) while respecting the budget by changing various analysis
parameters according to the time being spent by the dependence analysis. At the core of the automatic
adjustment is our application of a reinforcement learning method for the decision making—deciding which
configuration to adjust to according to the current configuration and its associated analysis cost with respect
to the user budget. We have implemented Seads for Java and applied it to eight real-world distributed systems
with continuous executions. Our empirical results revealed the efficiency and scalability advantages of our
framework over a conventional dynamic analysis, at least for dynamic dependence computation at method
level. While we demonstrate it in the context of dynamic dependence analysis in this paper, the methodology

for achieving and maintaining scalability and greater cost-effectiveness against continuously running systems
is more broadly applicable to other dynamic analyses.
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1 INTRODUCTION
In response to scientific and societal demands on the scalability of data storage and computation, a
growing number of modern software systems are distributed by design [22] (i.e., they are designed
to leverage decentralized, high-performance computing infrastructure and resources). In particular,
most (if not all) of these systems are supposed to be running continuously, so as to provide an
uninterrupted service. Examples of such distributed systems include financial/banking systems,
web search, airline management systems, medical networks, and so on. Given their critical roles
in our society and daily lives, the quality (e.g., reliability, resiliency, and security) of distributed
systems is of paramount importance.

A fundamental strategy for understanding and validating software behaviors is to model run-time
interactions among program entities as dependencies and then reason about program behaviors
based on the dependence model [12, 45, 48]. Historically, dynamic dependence modeling and
analysis [40, 61] served as the underpinning of a variety of code-based quality-assurance tool
support, ranging from fault diagnosis [83] to security defense [7, 47]. Dynamic dependence analysis
is important because many application techniques in software quality assurance rely on dynamic
dependence information, such as program optimization, performance monitoring, software testing,
vulnerability detection, and so on [50]. For instance, the dependencies computed by a dynamic
dependence analysis can be used to detect run-time sensitive data leaks. Essentially, in order to
find where the leakages are, we would check if there are any sinks that are reachable from any
sources via any chains of the dependencies. Similarly, software testing is also crucial for software
quality assurance, for which dynamic dependencies can be utilized to detect defects in the software
by searching among the dependencies of the program entities where faulty outputs are observed.
Compared with static approaches, dynamic dependence analysis has greater precision as it

focuses on specific, concrete executions. Developing a cost-effective dynamic dependence analysis,
however, is challenging, especially given the known substantial overheads of dynamic analysis in
general. Recent research has demonstrated the difficulties and complexity in balancing the cost
and effectiveness in dynamic dependence analysis for single-process programs [18]. Developing
such an analysis for most real-world distributed systems is even more challenging because of
their typically larger size and greater complexity. Execution non-determinism, the variety of and
uncertainties in runtime environments of distributed systems, and the unbounded executions (due
to their continuously running nature) further exacerbate such challenges. As a motivating case, we
recently applied an existing state-of-the-art dynamic dependence analysis approach for distributed
programs [15] to Voldemort [4], a real-world, industry-scale distributed system (key-value store),
for three minutes of its execution. The analysis did not finish after running for 12 hours on a
high-performance server. Apparently, with this level of efficiency, current approaches are neither
practically cost-effective nor scalable for distributed systems.

In this paper, we address common distributed systems—continuously running distributed software
whose constituent components1 are (1) decoupled by networking facilities, (2) running in concurrent
processes, and (3) communicating through message passing without a global timing mechanism.
Our overarching goal is to unleash the power of dynamic dependence analysis to enable scalable
tool support for assuring the quality of distributed systems. To that end, we have developed Seads2,
a dynamic dependence analysis framework that offers practical scalability and cost-effectiveness
trade-offs for distributed systems. Our analysis exploits both code (i.e., static) and execution (i.e.,
dynamic) data of a given system to compute run-time code dependencies, with varying analysis

1A component in such a system is defined as the collection of code entities that run in a single process separately from the
rest of the software, with either one or more threads.
2Short for Scalable and cost-Effective dynamic dependence Analysis of Distributed Systems.
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parameters (e.g., flow/context sensitivity of the static analysis and data granularity of the dynamic
analysis ) to enable variable cost-effectiveness trade-offs during the dependence computation. The
framework works purely at application level, only using data it produces by itself (e.g., gathering
dynamic data via static instrumentation). In particular, Seads realizes a novel dynamic analysis
paradigm featuring three defining characteristics:

• First, Seads is distributed. Our framework answers users’ dependence queries by performing
analyses both within a single process and across multiple processes (referred to as
intraprocess analysis and interprocess analysis, respectively). The Seads framework consists
of one computing node that runs the interprocess analysis and a number of different other
computing nodes each running the intraprocess analysis for one of the
components/processes of the system under analysis (SUA). These intraprocess analyses
constantly communicate with each other to synchronize their logic clocks to enable the
interprocess analysis. This architecture brings two advantages of Seads compared to
conventional program analysis that typically runs in a centralized fashion (i.e., at one
machine): (1) It naturally leverages the distributed computing resources of the SUA to gain in
efficiency, and (2) by running intraprocess analysis that is only relevant to a component at
the machine that runs the component, unnecessary network communications and
consequent analysis delays are avoided, leading to further analysis accelerations.

• Second, Seads is online and continuous. Given the uninterruptedly running nature of the kind
of SUAs we target, an offline dynamic analysis would be largely impeded by the infeasibility
of collecting and analyzing the unbounded execution traces. While offline analysis of partial
execution traces is useful (for which Seads can accommodate as well), Seads particularly
focuses on scenarios in which whole program execution traces need to be analyzed while the
SUA runs continuously—for these situations, an offline analysis would be unscalable or even
infeasible. An online design of the analysis in Seads addresses this challenge by avoiding
tracing that involves disk I/Os. Further, the continuous nature of Seads enables on-demand
querying capabilities which are desirable for a continuously-running SUA.

• Third, Seads is cost-effective. While the distributed architecture and online design contribute
to its scalability, Seads’s primary scalability enabler is to continuously adjust its analysis
configuration in an automated manner to achieve better cost-effectiveness trade-offs. These
trade-offs are realized through the parameters (i.e., configuration items) of the static and
dynamic analyses in Seads that fall in multiple dimensions. There are two dimensions
of static analysis parameters: data_selection and sensitivity. The data_selection dimension,
including one parameter (staticGraph), concerns whether static data (i.e., static dependence)
is used, while the sensitivity dimension, including two parameters (context sensitivity and
flow sensitivity), influences the precision of the static dependence computation. Dynamic
analysis parameters also fall in two dimensions: data_selection and data_granularity. The
data_selection dimension, including two parameters (methodEvent and/or statementCoverage),
determines which types of dynamic data are used, while the data_granularity dimension,
including one parameter (MethodInstanceLevel), concerns the granularity of the dynamic data
used in Seads. Automatically adjusting these analysis parameters is essential for addressing
the potential challenge of heavy memory load with an online dynamic analysis, and the need
for providing cost-effective results to user queries that come with a response time constraint
(i.e., user budget for the average time cost of answering a query). This signature capability
of Seads is mainly offered by its novel design that automatically learns the best analysis
configurations at different time during the SUA execution according to current configurations
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and associated costs with respect to the user-specified budget, using a reinforcement learning
(Q-learning) methodology.

To evaluate the benefits and limitations of our framework, we implemented Seads as a practical
tool for Java. By applying it against eight real-world distributed systems, our evaluation revealed
the efficiency and scalability merits of Seads over a state-of-the-art conventional dynamic
dependence analysis approach, at least for method-level dependence computation. With ten
randomly chosen queries and querying intervals of random lengths for each subject, Seads
demonstrated its compelling cost-effectiveness (i.e., competitive precision of the resulting run-time
dependence sets at generally low time costs). Specifically, Seads took on average 65 seconds for
each query with negligible storage costs and less than 1x run-time slowdown (both in most cases
and on average). In comparison, the online version of the state-of-the-art dynamic dependence
analysis used as our baseline cannot answer any user queries within 12 hours for one of the
subjects, while taking 197 seconds on average for each query with other subjects at a heavy
overhead of up to 6x (and on average 3.3x) run-time slowdown. Meanwhile, Seads achieved the
scalability and substantially higher efficiency while achieving 82% of the precision attained by the
baseline. As a result, the cost-effectiveness of the baseline is only 44% and 32% of that achieved by
Seads with respect to average response time and run-time overhead (slowdown), respectively.
Through Seads, we contribute a methodology for (1) making a hybrid approach to dynamic

dependence analysis learnable by decomposing the analysis algorithm into multiple dimensions
each having a unique impact on the analysis cost and effectiveness, and (2) learning configurations
of the algorithm on the fly to enable better cost-effectiveness trade-offs than traditional approaches.
To the best of our knowledge, this methodology has not been explored before. And Seads is the first
technique instantiating this methodology. By offering a scalable, continuous run-time dependence
analysis, Seads opens many doors for distributed software analysis by enabling a large number
of dependence-based application/client techniques and tools that support quality assurance of
distributed software. In sum, our main contributions in this paper include:

• A distributed, online, and cost-effective dynamic dependence analysis framework for
common distributed systems, which demonstrates a novel dynamic analysis methodology of
overcoming the scalability and cost-effectiveness balancing challenges by reinforcement
learning cost-effective analysis configurations on the fly according to current configurations
and their costs with respect to the user-specified analysis time budget (§4).

• An open-source implementation of Seads for Java that works with real-world continuously
running distributed systems of different architectures, application domains, and scales (§5).

• An empirical demonstration and quantification of the scalability and cost-effectiveness
advantages of the proposed technique over a conventional, state-of-the-art dynamic
dependence analysis (i.e., without automatic configuration adjustment) for distributed
programs as the baseline, in terms of detailed measures on precision losses and efficiency
gains, against a diverse set of real-world distributed systems and their executions (§6).

The complete artifact package of Seads has been made available here, including the source code
and all the experimental scripts and datasets. This publicly accessible package not only enables
reproduction and replication of our work presented in this paper, but also facilitates the development
of further advanced approaches to assuring distributed software quality.

2 MOTIVATION
More and more industry-scale software systems are evolving to distributed systems that are
continuously running. As they are part of the backbone of modern information technology
infrastructure, assuring the quality of these systems is of paramount importance. One of the
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fundamental enablers for such tool support is dynamic dependence analysis, which, by modeling
the interaction among code entities in a program, underlies a range of applications in testing,
debugging, performance diagnosis and optimizations, security threat detection, and so on. For
instance, tracking run-time dependencies backward from fault-revealing entities would guide the
discovery of fault-inducing (i.e., faulty) entities in the program (i.e., the faults must propagate via
dynamic dependencies of the fault-revealing entities on the faulty-inducing entities). For another
example, tracking dynamic dependencies forward from a sensitive data accessing entity would
guide the detection of information leaking (i.e., by checking if the sensitive data flows to any
operations that send the data out of the program through the dynamic dependencies). These
dependence-based applications essentially reason about the program’s properties of interest (e.g.,
correctness and efficiency) via the dependence relationships among code entities at runtime.
However, while there is an increasing demand for tool support for distributed software quality
assurance, such tool support is largely lacking. Thus, in this context, our work focuses on common
continuously running distributed systems.
To illustrate our motivation, Figure 1 shows an example of the source code excerpt from a

real-world software project: Voldemort [4], a widely used distributed storage service (e.g., by
LinkedIn to support a large part of the web site). As a distributed non-relational (NoSQL) data
storage system, Voldemort enables high performance and availability via simple key-value data
access. In the code snippet, a method processEvents() is in the class ClientRequestSelectorManager, and
another method main(String[] args) is in the class VoldemortServer, as shown in Figure 1. These two
classes are in different processes, Store and Server, which may be on separate machines (computing
nodes). Thus, a dependence analysis approach for such a distributed system could be distributed
to monitor these executed methods and to exploit computational resources in these nodes. These
two methods communicate through message passing without a global clock, and they may have
an implicit dependence relationship: the method processEvents() may be dependent on the method
main(String[] args) in the execution. However, developers would hardly find the implicit dependencies
between these methods only via reading the source code. Nonetheless, most existing dependence
analyses rely on explicit dependencies, not capturing implicit ones. Therefore, we need a novel
approach to infer these implicit dependencies.
As shown in Figure 1, the Voldemort system continuously runs to provide functional services.

Tracing is unnecessary for an online dynamic analysis approach, which continuously runs and
analyzes the system, along with the system execution. By contrast, offline dynamic techniques
often analyze the program after the execution(s) have terminated, according to the collected traces
whose storage and I/O costs might be expensive. If the execution is infinite (i.e., unbounded), the
trace storage spaces would also be unbounded. Apparently, tracing the infinite execution is not
practical. In addition, the terminating operation may also be impractical for a production system
because a common business flow (as realized by the system) should not be interrupted merely for
dependence analyses. Thus, existing dependence analysis techniques, mostly offline, are generally
unsuitable for continuously running distributed systems; and an online and continuous analysis is
more desirable than an offline analysis for these systems.

Voldemort has 20,406 methods in 115,310 non-blank non-comment Java source code lines. There
may be serious cost-effectiveness and scalability problems for code analysis against distributed
systems of such a scale. For instance, we spent 151 seconds in gaining dependence sets from a
Voldemort integration test using a dynamic distributed-program dependence analysis technique
DistIa [19] after terminating Voldemort processes and then gathering data from the execution
traces. Though DistIa is very fast, its results (dependence sets) are very coarse. In contrast, the
most precise extension of DistIa [15], a hybrid dependence analysis (a combination of static
and dynamic analyses) solution utilizing both method-level and statement-level data to achieve
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1 // Voldemort Server Process

2 package voldemort.server;

3 public class VoldemortServer extends AbstractService {......

4 public void createOnlineServices () {

5 onlineServices.add(nioSocketService );

6 onlineServices.add(socketService );

7 ......}

8 public static void main(String [] args) throws Exception {......

9 final VoldemortServer server = new VoldemortServer(config );

10 if(! server.isStarted ())

11 server.start ();

12 ......}

13 public void startOnlineServices () {......

14 for(VoldemortService service: onlineServices) {

15 service.start (); }

16 ......}

17 protected void startInner () throws VoldemortException {......

18 for(VoldemortService service: basicServices) {

19 service.start ();

20 }

21 startOnlineServices ();

22 ......}

23 ......}

24 ......

25 // Voldemort Store Process

26 package voldemort.store.socket.clientrequest;

27 public class ClientRequestExecutorFactory implements ResourceFactory <...> {......

28 private class ClientRequestSelectorManager extends SelectorManager {......

29 protected void processEvents () {......

30 SocketChannel socketChannel = clientRequestExecutor.getSocketChannel ();

31 ......

32 socketChannel.register(selector , SelectionKey.OP_CONNECT , clientRequestExecutor );

33 ......}

34 ......}

35 ......}

1

Fig. 1. Code snippet from the Voldemort system as an example distributed system.

a dynamic dependence abstraction, was twice as precise as DistIa for small to medium sized
programs. Yet this analysis could not scale to Voldemort—even the first phase of the analysis (which
has three phases) could not finish in more than 12 hours on an Ubuntu 16.04.3 LTS workstation with
four 2.67 GHz processors, 512 GB DRAM, and 2TB HDD (finally we had to cancel the analysis). We
concluded that this more precise analysis was too expensive to analyze an industry-scale distributed
program due to the generally large size and great complexity of the target system. In general, the
extension of DistIa suffers an impractical level of efficiency hence a serious scalability problem,
hence is subject to a very-low level of cost-effectiveness for large distributed systems.

From these examples we see that, while representing the state of the art in distributed program
dependence analysis, both DistIa and its more precise extension are not suitable for common,
continuously-running distributed systems due to the scalability and cost-effectiveness problems. To
resolve these problems, an approach should be able to quickly adjust itself. Moreover, in a varying
environment such as a server performing lots of heavy tasks, merely one or a few adjustments may
not be sufficient either. For example, after an analysis has adjusted itself to the optimal condition
meeting the current user requirements, the run-time environment (e.g., operating system) or user
requirements (e.g., time budgets) may change at the next second (for a different query), and then
there may come a deviation of the analysis from the previous, optimal condition. Thus, scalable and
cost-effective dependence analysis approaches for distributed systems should be able to continually

adjust itself to meet varying requirements.
Following these observations, we develop Seads as a distributed, online dynamic dependence

analysis framework for common, continuously-running distributed systems, which automatically
and continually tunes itself to balance analysis cost and effectiveness. The technique addresses the
scalability and cost-effectiveness balancing challenges faced by existing peer approaches through
our novel approach using a reinforcement learning (Q-learning) strategy to learn cost-effective
analysis configurations for the analysis algorithm to meet changing requirements.
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3 BACKGROUND
In this section, we discuss some techniques and key concepts underlying Seads.

3.1 Dependence Analysis for Single-Process Programs
Analyzing dependencies among program entities of a software system can help developers better
understand the structure and behaviors of the system. Thus, dependence analyses are very useful
for users to develop, test, and maintain the system, because these tasks rely on the understanding
of system structure and behaviors. Program dependencies can be deduced by both static and
dynamic analyses. A static dependence analysis computes dependencies via analyzing the program
code without executing the software. On the other hand, a dynamic dependence analysis infers
dependencies from the data gathered during the execution(s) [56].

As a dynamic analysis approach, Diver [16] computes dependence sets as impact sets by using
dependence analysis techniques. As a recent advance in (offline) dynamic analysis, Diver [16]
achieves higher precision hence provides a more cost-effective option over EAS-based approaches
(which derive dynamic dependencies based on execution orders), such as Pi/Eas [6]. Diver utilizes
a static dependence analysis to significantly decrease the size of the dependence set produced by
Pi/Eas. With significantly smaller resulting dependence sets, the cost-effectiveness trade-off of
Diver is much higher even with the additional static dependence analysis cost. Diver works in
three technical phases: static analysis (Phase 1), runtime tracing (Phase 2), and post-processing
analysis (Phase 3). Diver first computes traditional control/data dependencies [41] and instruments
the input program in Phase 1. In Phase 2, the instrumented version of the program is executed
for tracing entry (i.e., program control entering a method) and returned-into (i.e., program control
returning from a callee into a caller) events. In Phase 3, the technique computes the dependence set
from the trace for any query given by the user.
An online dynamic analysis, DiverOnline [14] avoids execution tracing costs (e.g., space and

I/O costs) that are ineluctable in offline analyses, via computing dependence sets during the
executions of the program under analysis. In addition, DiverOnline provides anAll-in-One analysis,
which computes the dependence sets for all possible queries (methods), and then corresponding
dependence sets are directly delivered to the user as the result within a short response time. As
such, an All-in-One online dynamic dependence analysis may be a suitable solution for dependence
analysis of large-scale software systems. In our Seads framework, we leverage online dynamic
analysis to compute dependencies within each component of the given SUA— we treat each
component as a single-process program from the perspective of our analyses.

3.2 Dependence Analysis for Distributed Programs
For a complex distributed system with multiple processes, the developer needs to understand
various (explicit and implicit) dependencies both within a single process and across multiple
processes. Krinke proposed a slicing algorithm incorporating dependencies across distributed
components induced by socket-based message passing [51], but the dependencies were
approximated over-conservatively because they are computed through a purely static analysis.
Another approach [10] infers various kinds of dependencies due to interprocess communications,
but the approach potentially suffers a scalability problem due to its heavyweight nature, although
it was not implemented and evaluated against real-world distributed systems.

To overcome the scalability challenges, a lightweight dynamic analysis for distributed programs,
DistIa [19], was proposed. The analysis monitors and records method events and their timestamps
during the system execution, and then approximates run-time dependencies among relevant
methods, either within or across processes, based on the happens-before relations among execution
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events associated with those methods. For example, if a method 𝐴 has the last returned-into event
which was executed before the first entry event of another method 𝐵, the partial-order is 𝐴 before

𝐵, and DistIa approximately supposes that 𝐵 is dependent on 𝐴. Similarly, if one method 𝐷 is
dependent on another method 𝐶 , 𝐶 must execute before 𝐷 ; otherwise, 𝐶 cannot affect 𝐷 . Thus,
dependencies computed by DistIa are safe for the executed methods. In our design of the Seads
framework, we exploit the dependence inference based on happens-before relations as the basis for
safe interprocess dependence approximation, as did DistIa.

3.3 Reinforcement Learning
Reinforcement learning (RL) is an area of machine learning to suggest a software agent taking
actions in an environment to maximize the total reward in all possible successive actions [55]. The
agent modifies its actions or control policies according to its interactions with the environment. RL
requires less prior knowledge so that it can be applied to environments where standard supervised
learning or unsupervised learning approaches are not applicable [54]. Unlike supervised learning
and unsupervised learning, RL does not need training data. As in a Markov decision process whose
states are decided from previous states [64], an output of RL depends on the corresponding input,
and the next input depends on the current output [1]. These characteristics make RL a generally
suitable learning methodology for Seads.

Environment

Agent

actionreward

state

Fig. 2. The high-level work-

flow of Q-learning.

In particular, as a particular type of RL, Q-learning uses the Bellman
equation to minimize its cumulative cost [11]. When applied in software
adaptations, it does not require explicit or exact descriptions of software
systems and only needs state measurements in its feedback control
loop [54]. Q-learning also has an exact capability of learning the next
state according to the previous state only. Starting from an initial state,
Q-learning tries to find a way to maximize cumulative reward values by
selecting an action after measuring how good the action is in a particular
state [79]. It is an off-policy and model-free algorithm, as it does not
require an existing policy or a model [80].
The overall workflow of Q-learning is depicted in Figure 2, including the following steps: (1)

initialize Q-learning components, such as the environment, the agent, Bellman equation parameters,
and a Q-table (i.e., a lookup table calculating expected rewards); (2) at the current state, the agent
selects an action referencing themaximal value in Q-table or by random; (3) the agent receives a state
and a reward from the environment; (4) update the Q-table using the Bellman Equation [24]; and (5)
repeat (2) through (4) until the learningmeets predefined conditions (e.g., when the agent finishes the
ultimate task assigned to it). In our Seads framework where RL is applied for learning cost-effective
analysis configurations at runtime, we particularly exploit Q-learning for automatically adjusting the
configurations. Since Seads provides a continuous dependence analysis, the predefined condition
for terminating the learning process is when the SUA is terminated. That is, the learning process in
Seads repeats from (2) through (4) after finishing (1), until the SUA exits.

4 APPROACH
This section presents our technical approach with Seads. We first give an overview of the
architecture and workflow of Seads, followed by elaborating each of its key modules.

4.1 Overview
The overall workflow of Seads is shown in Figure 3. Seads consists of several kinds of components,
including an instrumenter, a set of monitors each for a process of the SUA, a set of controllers each
for a process of the SUA, and a querying_client. It takes three inputs from the user: the distributed

8



Querying Client
Answering user queries

Instrumented SUA D’

User budget B

Distributed SUA D

Instrumenter
Probing  for dynamic 
data (method  events, 
statement coverage)

Dependence Query Q

Query Dependencies 

Time

 Monitor
Arbitration & 

dependence computation

Querying Interface

Network

Controller
Adjusting analysis 
configurations 

SEADS Inputs

SEADS Output

Analysis 
Configuration

.
.
.

Process 1

Process 2

Process N

...

Fig. 3. An overview of the Seads architecture and workflow, including its input, output, and key modules.

SUA 𝐷 (in an executable format such as Java bytecode), a user budget 𝐵, and a dependence query𝑄 .
In particular, 𝐵 is a response time constraint for the dependence analysis. In addition, since Seads
works at method level, 𝑄 is a method name given by the user for searching dependencies of the
method, such as voldemort.server.VoldemortServer: void main(java.lang.String[]) .
The instrumenter first inserts probes, which will monitor entry and returned-into events of all

executed methods and/or monitor the coverage of all executed statements, into 𝐷 to generate
the instrumented SUA 𝐷 ′. Then, as time goes on (as indicated by the "Time" axis in the figure),
𝐷 ′ continuously runs (in 𝑁 distributed processes), and Seads continually adjusts itself in its
analysis configuration through a monitor and a controller running along with each process. In
particular, during the execution of 𝐷 ′, in each of its 𝑁 processes, the monitor performs arbitration
(deciding whether the adjustment is needed) and dependence computation, and the controller adjusts
analysis configurations. As shown in Figure 3, the monitors and controllers of Seads are distributed
along with 𝑁 processes: in each of the 𝑁 processes of the SUA, Seads has one monitor and one
controller running in that process for controlling and performing the computation of dynamic
intraprocess dependencies, respectively. In this way, all of the monitors and controllers together
perform (per-process) intraprocess dependence analyses in a parallel and distributed manner
naturally (with the same distributed architecture as that of the SUA itself). The querying_client
computes interprocess dependencies on one machine (where the querying_client runs), which is
the only dependence analysis step in Seads that is not distributed.
The querying_client receives query 𝑄 from the user and sends it, through the network facility,

to the querying_interface that directly communicates with the monitor in each process. After the
dependence computation in a process has finished, the resulting dependencies are delivered back
to the querying_interface attached to the monitor in that process, from which the querying_client
receives the dependencies for the process. After the distributed dependence analyses in all processes
are completed, the querying_client receives all intraprocess dependence sets and computes the
overall dependencies (via an interprocess analysis) as the final output presented to the user.
Running example. To illustrate how Seads works, we use the Voldemort system against an
integration test as our running example. We consider querying the dependence set of a query
voldemort.server.VoldemortServer: void main(java.lang.String[]) (i.e., a method main(String[] args) in the class
VoldemortServer of the Server process). For brevity, only part of the source code is shown in Figure 1.

4.2 Configuration
Our core idea for achieving better scalability and cost-effectiveness is to continually adjust analysis
configurations according to (i) the user budget, (ii) the current and previous configurations, and
(iii) time costs of dependence computations. The key insight underlying this design is that each
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analysis configuration represents a distinct trade-off between the cost and effectiveness of our
dependence analysis. Thus, in our framework analysis configurations play a critical role. Our hybrid
approach leverages varying combinations of static and dynamic analysis techniques along with
varied static/dynamic data (e.g., the static dependence graph, method events, and the statement
coverage) while using different static and dynamic configuration parameters.
As follows, we first present the parameters (i.e., configuration items) considered in our static

and dynamic analysis separately (referred to as static configurations and dynamic configurations,
respectively), and then describe our holistic (hybrid) analysis configuration encodings. The rationale
(justification) of our selection of these particular analysis parameters is that they have not only
different but also competing influences on the cost and effectiveness of the dependence analysis. First,
their influences should be different from each other because adjusting between two configurations
that lead to the same cost-effectiveness trade-off would be wasteful. Second, their influences on
the cost and those on the effectiveness should be competing because an analysis parameter that
benefits or penalizes cost and effectiveness at the same time should be always set or dismissed,
respectively, hence would be out of the scope of adjustments. Since the chosen parameters are
known to be different and competing influence factors in static/dynamic dependence analysis in
general, their selection is justified by our goal with Seads of balancing the cost and effectiveness at
runtime for better cost-effectiveness.

4.2.1 Static Configuration. There are two dimensions of static configuration parameters considered
in Seads: data_selection and sensitivity. In the data_selection dimension, we currently consider only
one parameter, staticGraph, which concerns whether static data is used.

• The parameter staticGraph determines whether Seads uses static dependencies (within each
component of the SUA, represented as a dependence graph) to compute the dynamic
dependencies of the given query. If the parameter is enabled, Seads traverses the
per-component static dependence graphs to infer more precise (run-time) dependencies with
a higher time cost. Otherwise, such static dependence graphs would not be used, and then
Seads offers rough but rapid results (dependence sets) according to dynamic data only.

The sensitivity dimension, including two parameters (context sensitivity and flow sensitivity), is
expected to bring a higher level of precision of the static dependence computation when the
respective sensitivity is set (enabled) than when it is dismissed (disabled), as explained below.

• Context sensitivity concerns the awareness of the effects of varied calling contexts on
analysis facts in a static analysis. A context-sensitive analysis distinguishes different calling
contexts of methods and computes separate information for different calls of the same
method. Conversely, a context-insensitive analysis treats all callsites of a method as one
callsite [38, 70]. For example, if a method is called twice each at a different callsite, a
context-sensitive analysis would distinguish these callsites when computing analysis facts
(e.g., dependencies). As a result, if the analysis fact is valid only with respect to one callsite,
the context-sensitive approach would be able to recognize the false result associated with
the other callsite. A context-insensitive analysis, however, would not be able to do so, thus it
may produce the false result. Meanwhile, differentiating calling contexts comes with an
additional cost compared to not doing so. Therefore, a context-sensitive analysis generally
computes more precise results with higher costs than a context-insensitive analysis.

• Flow sensitivity concerns the observance of control flow reachability in a static analysis. A
flow-sensitive analysis approach takes into account the execution order (i.e., the control flow)
of code entities (e.g., statements), whereas a flow-insensitive analysis does not consider the
order [70], when computing analysis facts (e.g., dependencies between two code entities).
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For instance, if there are two definitions of a variable in the program, with one use of the
same variable in between, a flow-sensitive analysis distinguishes the execution order of
these definitions and the use hence reports one dependence induced by the first definition
and the use. A flow-insensitive analysis, however, would additionally (and falsely) report
the dependence due to the second definition and the use. Meanwhile, accounting for the
execution order requires control flow reachability analysis, which incurs an additional cost
compared to not doing so. Therefore, a flow-sensitive analysis is often more precise but also
more expensive than a flow-insensitive analysis.

4.2.2 Dynamic Configuration. There are two dimensions of dynamic configuration parameters
considered in Seads: data_selection and data_granularity. The data_selection dimension concerns
which types of dynamic data Seads uses for its analysis. Specifically, there are two configuration
parameters in this dimension: methodEvent and statementCoverage. They determine if the
corresponding dynamic data is used, as elaborated below.

• The parameter methodEvent decides if Seads uses method (entry and returned-into) events to
compute dependencies. If the parameter is enabled, Seads infers more precise dependencies
from dynamic data (e.g., method events) with additional costs. Instead, if the parameter is
disabled, Seads coarsely but quickly computes dependence sets without method events.

• The parameter statementCoverage determines whether Seads prunes the static dependence
graphs using statement coverage information before applying the static dependencies in the
hybrid computation of run-time dependencies. The pruning means that Seads only considers
statements covered in the SUA execution analyzed, with other statements dismissed while
referring to the static dependencies. When the parameter statementCoverage is enabled, the
dynamic dependence analysis is more expensive but more precise than otherwise.

In the data_granularity dimension, only one parameter,MethodInstanceLevel, is considered, which
concerns the granularity of the dynamic data (method events) used.

• The parameter MethodInstanceLevel is about whether Seads uses all method event instances
to compute dependencies. If the parameter is enabled, Seads utilizes all instances of (entry
and returned-into) events to compute dependencies more precisely at the cost of greater
overheads (for monitoring and utilizing a greater amount of dynamic data). Otherwise, only
the first entry and last returned-into events of each executed method are collected and used,
thus the computation is faster but gives relatively rougher results (i.e., lower precision).

4.2.3 Holistic Analysis Configuration. The holistic configuration of Seads consists of both the static
and dynamic configurations described above. We use three bits to encode the three parameters
in the static configuration, thus there are eight possible combinations (static configurations). The
first binary number 1 or 0 means whether Seads uses the static dependencies. The second and
third binary numbers of 1 or 0 mean sensitivity (i.e., the sensitivity is enabled, as denoted by 𝑌𝑒𝑠)
and insensitivity (i.e., the sensitivity is disabled, as denoted by 𝑁𝑜), respectively. The second bit
represents the analysis being context-sensitive or context-insensitive, and the third bit indicates
the analysis being flow-sensitive or flow-insensitive. Thus, the static configuration is encoded for
eight possible values, from 000 through 111. In a similar manner, we utilize three bits to encode the
three parameters in the dynamic configuration. The first through third bits represent parameters
MethodEvent, statementCoverage, and methodInstanceLevel, respectively. This way, the dynamic
configuration has 8 possible values, ranging from 000 to 111.
Therefore, the holistic (i.e., hybrid) configuration, including static and dynamic configuration

parameters, is encoded as a 6-bit binary number which ranges from 000000 through 111111. The first
to third bits are encoded as the static configuration parameters, and the fourth to sixth bits are used
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Table 1. Holistic (Hybrid) Dependence Analysis Configuration Encoding

Encoding

Static Configuration Dynamic Configuration
Data Selection Sensitivity Data Selection Data Granularity

StaticGraph
Context Flow Method Statement Method

Sensitivity Sensitivity Event Coverage InstanceLevel
000000 No (0) No (0) No (0) No (0) No (0) No (0)
000001 No (0) No (0) No (0) No (0) No (0) Yes (1)

......
111110 Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) No (0)
111111 Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) Yes (1)

as the dynamic configuration parameters. As shown in Table 1, the hybrid configuration parameters
are encoded in order from the left to the right as: staticGraph, context-sensitivity, flow-sensitivity,
methodEvent, statementCoverage, and methodInstanceLevel.
Among the possible 64 (26) hybrid configurations, some are invalid and thus are never used in

Seads, because certain configuration parameters are dependent on others and they are meaningful
only with other parameters enabled. For example, three parameters (context-sensitivity,
flow-sensitivity, statementCoverage) depend on the parameter staticGraph. If the parameter
staticGraph is disabled, meaning that Seads does not use the static data (i.e., the static dependence
graph), then the three relevant parameters (context-sensitivity, flow-sensitivity, and
statementCoverage) are meaningless—statement coverage data is only used for pruning the static
dependence graph in Seads. Thus, configurations 001xxx, 010xxx, 011xxx, and 0xxx1x are invalid,
where x is a bit which can be 0 or 1. Another example is that the parameter methodInstanceLevel

depends on the parameter methodEvent, thus configurations xxx0x1 are invalid. In addition,
configuration 000000 means that no data is utilized in the analysis, which is also invalid. In total,
there are 38 invalid configurations and 26 valid configurations in Seads.
Illustration. As shown in Table 1, the configuration 111110 indicates that all the six parameters
but methodInstanceLevel are enabled. Under this configuration, Seads would perform a hybrid
analysis of dynamic dependencies, utilizing the static dependencies first computed within each
component of the SUA through a context- and flow-sensitive analysis and then pruned with
statement coverage, as well as method execution events collected at method level (i.e., only two
events are kept per executed method). In terms of its internal workings, for the running example,
after the two Voldemort processes started, the Seads monitor in each process checks whether the
configuration file Configuration.txt exists or not. If it is found, the monitor reads the configuration
from this file. Otherwise, Seads uses the initial configuration 111111 (i.e., all the six parameters are
enabled) to gain the highest possible precision of the dependence analysis.

4.3 Instrumenter
The instrumenter of Seads inserts probes to the SUA 𝐷 to produce its instrumented version 𝐷 ′

that will continuously run. During the execution, the probes monitor and record the entry and
returned-into events per executed method. We probe for these events because they suffice for
inferring the happens-before relations among executed methods as shown before [16], while the
happens-before relations enable the approximation of dynamic dependencies among methods both
within and across processes. The instrumenter also probes for statement coverage, another kind
of dynamic data considered. For greater monitoring efficiency, only branches are probed, which
suffices for inferring statement coverage from branch coverage as we did before [18]. In particular,
besides the branches associated with explicit predicates, we also treat the entry of each method as
a special branch (i.e., entry branch), whose true edge leads to the entry (execution) of the method.
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Fig. 4. The monitor and controller modules running along with the instrumented SUA.

Illustration. For the running example, Seads traverses the bytecode of Voldemort to create its
instrumented version with probes monitoring entry and returned-into events of each method as well
as statement coverage during the execution. For example, for the source code shown in Figure 1,
Seads adds a probe before the method server.start () (Line 11) to monitor its entry events. Moreover,
another probe is inserted after the method server.start () to monitor returned-into events of this
method. In addition, as an example of statement coverage probing, Seads inserts a probe at the
entry (branch) of the main method (before Line 9) and another probe for the branch at Line 10 to
tell whether the true edges are covered. If so, statements control dependent on the edges will be
inferred as being covered as well.

4.4 Monitor
After the instrumentation, the instrumented SUA𝐷 ′ continuously runs in its𝑁 distributed processes.
Through the instrumentation, the monitor and controller modules for each process of 𝐷 ′ are
launched upon the start of that process, and then also continuously run along with the process,
as shown in Figure 4. During the execution of the process, as the core component of Seads, the
monitor module determines when the analysis configuration needs to be adjusted (i.e., arbitration)
and computing dynamic dependencies with a current configuration (i.e., dependence computation).
The module consists of two submodules: a processor and a gatherer. The gatherer focuses on
collecting dynamic data (method execution events and/or statement coverage), which feed the
processor for the dependence computation therein. More specifically, the processor computes
(updates) the dynamic dependencies for all possible queries (i.e., methods exercised at least once so
far) when (a) the time since the previous round of dependence computation (updating) exceeds a
threshold (e.g., 5 minutes) and (b) the number of method-execution events accumulated since the
previous round of dependence computation exceeds another threshold (e.g., 1000). Both thresholds
are part of Seads’s settings, customizable by users.
The dependencies need to be computed for all possible queries for two reasons. First, Seads

aims to answer arbitrary queries at arbitrary times, thus it cannot assume which queries users
would send and when. Second, Seads performs online analyses, thus it does not keep all execution
data, while the query dependencies it computes must respect all the dynamic data available up
to the query arrival time. The online nature of the analysis also justifies the computation being
continually redone (updated)—since the dynamic data used by the analysis come as streaming data.

We set both conditions, (a) and (b) above via the two thresholds, for triggering the dependence
recomputation/updating because the speed at which the dynamic data arrive can vary widely across
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Algorithm 1 Triggering the Dependence Computation and Configuration Adjustment
let𝑚𝑒𝑡ℎ𝑜𝑑 be the executed method
let 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 be the number counter of method events
let𝑇𝐶 and𝑇𝑇 be the thresholds of event number and analysis time interval, respectively
let 𝐿𝑎𝑠𝑡𝑇 be the time of the last computation
let 𝐵 be the user budget
let 𝑠𝑔𝑐_𝑇 , 𝑠𝑔𝑙_𝑇 , and 𝑑_𝑇 be timeouts of constructing/loading the static graph and computing dependencies, respectively
let𝑄𝑈 be the method event queue
let𝑇𝐶𝑁 and 𝑜𝑙𝑑𝑇𝐶𝑁 be current and immediately previous configurations, respectively
let 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 be the boolean value to record timeouts
1: Set 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0, 𝐿𝑎𝑠𝑡𝑇 = 0,𝑄𝑈 = ∅,𝑇𝐶𝑁 =111111, 𝑜𝑙𝑑𝑇𝐶𝑁 =None
2: Assign 𝑠𝑔𝑐_𝑇 , 𝑠𝑔𝑙_𝑇 , and 𝑑_𝑇 from 𝐵

3: while true do
4: if event(𝑚𝑒𝑡ℎ𝑜𝑑)==entry then
5: 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟++
6: Add (-𝑚𝑒𝑡ℎ𝑜𝑑) to𝑄𝑈

7: if event(𝑚𝑒𝑡ℎ𝑜𝑑)==returnInto then
8: 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟++
9: Add𝑚𝑒𝑡ℎ𝑜𝑑 to𝑄𝑈

10: if 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑇𝐶 𝑎𝑛𝑑 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 - 𝐿𝑎𝑠𝑡𝑇 ) > 𝑇𝑇 then //𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 is the current system time
11: Read current configuration parameters
12: 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 = false
13: if 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ then // if the staticGraph parameter is enabled
14: if Static configuration parameters are different between𝑇𝐶𝑁 and 𝑜𝑙𝑑𝑇𝐶𝑁 then
15: Construct a new static (dependence) graph
16: if (Not 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 ) 𝑎𝑛𝑑 (𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑇𝑖𝑚𝑒 > 𝑠𝑔𝑐_𝑇 ) then
17: Cancel the static graph construction, and set 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 = true
18: if The static graph 𝑒𝑥𝑖𝑠𝑡𝑠 then
19: Load the static graph
20: if (Not 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 ) 𝑎𝑛𝑑 (𝑙𝑜𝑎𝑑𝑇𝑖𝑚𝑒 > 𝑠𝑔𝑙_𝑇 ) then
21: Cancel the static graph loading, and set 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 = true
22: if not 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 then
23: Call the processor to compute dependencies with𝑇𝐶𝑁
24: if (Not 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 ) 𝑎𝑛𝑑 (𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑇𝑖𝑚𝑒 > 𝑑_𝑇 ) then
25: Cancel the dependence computation, and set 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 = true
26: 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0, 𝐿𝑎𝑠𝑡𝑇 =𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒

27: Call the gatherer to record the time cost of the analysis
28: Call the controller to obtain new configuration 𝑛𝑒𝑤𝑇𝐶𝑁

29: 𝑜𝑙𝑑𝑇𝐶𝑁 =𝑇𝐶𝑁
30: 𝑇𝐶𝑁 = 𝑛𝑒𝑤𝑇𝐶𝑁

different SUAs. If we consider (a) only, when the time reaches the threshold, there may be still too
few new dynamic data available to deserve the updating (i.e., trivial recomputation); if we consider
(b) only, the dynamic data may arrive too fast such that Seads thrashes between two rounds of
updating (i.e., overly-busy recomputation).

Next, we elaborate on the two roles of the monitor running with each SUA process: arbitration
and dependence computation. We then describe how Seads interacts with users, responding to
user queries and delivering query dependencies back to users.

4.4.1 Arbitration. Algorithm 1 shows the arbitration pseudo-code which decides when and how
to trigger dependence computations and configuration adjustments. In this algorithm, several
variables are used to denote the inputs:𝑚𝑒𝑡ℎ𝑜𝑑 as the executed method id (an integer uniquely
representing a method), 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 as the counter of method events, and 𝐿𝑎𝑠𝑡𝑇 as the time when the
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previous analysis round completed.𝑇𝐶 and𝑇𝑇 denotes the aforementioned time and event number
threshold, respectively. Moreover,𝑄𝑈 is a method event queue that records the return-into event(s)
of methods as the method id(s) and the entry event(s) as the minus method id(s)—we simply use
negative values here to indicate entry events as opposed to returned-into events. Seads first initiates
𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 , 𝑄𝑈 , and 𝐿𝑎𝑠𝑡𝑇 , and sets the current configuration 𝑇𝐶𝑁 as 111111 for the most precise
(but potentially the slowest) analysis to start with (Line 1). The variable 𝑜𝑙𝑑𝑇𝐶𝑁 is used to keep
the previous configuration, initialized as None. The values of 𝑠𝑔𝑐_𝑇 , 𝑠𝑔𝑙_𝑇 , and 𝑑_𝑇 are timeouts
for constructing/loading the static dependence graph and computing dependencies, respectively:
these values are empirically allocated from the total user-given budget 𝐵 (Line 2). To illustrate how
the monitor works, let us consider a concrete example: the user budget is 60 seconds, out of which
we allocate 𝑠𝑔𝑐_𝑇 , 𝑠𝑔𝑙_𝑇 , and 𝑑_𝑇 as 42s, 12s, and 6s, respectively; let 𝑇𝐶=1000, 𝑇𝑇=5 (minutes),
and the method being processed be voldemort.server.VoldemortServer: void startInner() (id=15700); and
let voldemort.server.VoldemortServer: void main(java.lang.String[]) be the query.
The algorithm proceeds with an infinite loop arbitrating dependence computations and

configuration adjustments (Lines 3–30), via invoking (collaborating with) the controller module for
the same process of this monitor. During the execution, in each entry event of the𝑚𝑒𝑡ℎ𝑜𝑑 , Seads
increments 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 by one and adds minus 𝑚𝑒𝑡ℎ𝑜𝑑 (e.g., -15700) to 𝑄𝑈 (Lines 4-6). In each
returned-into event, Seads also increments 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 by one (e.g., 2 now) but adds𝑚𝑒𝑡ℎ𝑜𝑑 (e.g.,
15700) to 𝑄𝑈 (Lines 7-9). If 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 is greater than 𝑇𝐶 and the time span (between the current
time and the last computation time 𝐿𝑎𝑠𝑡𝑇 ) is greater than 𝑇𝑇 (i.e., both conditions (a) and (b) are
satisfied), Seads will start a new round of analysis (e.g., updating dynamic dependencies for all
possible queries) as detailed below. To start with, Seads reads the current configuration and set
𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 as false (Lines 10-12). For example, after 1000 events occurred and 5 minutes passed,
𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟>𝑇𝐶 (1000) and (the current system time - 𝐿𝑎𝑠𝑡𝑇 )>𝑇𝑇 (5 minutes). Then, Seads reads the
current configuration TCN=111111 with 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡=false. If the staticGraph parameter is
enabled and at least one of the static analysis parameters varies between the current and
immediately previous configurations, Seads constructs a new static dependence graph (Lines
13-15) using the static configuration. For example, with TCN=111111 now, the first to third bits
(three static parameters) are all 1 (enabled). Thus, Seads constructs the new static dependence
graph with both context sensitivity and flow sensitivity applied.
The static analysis, including constructing and loading the static dependence graph, reuses

Diver [16] and DiverOnline [14] as described earlier in Section 3. Recall that each monitor only
deals with the single process associated with it, thus the static dependence analysis here only
targets the code of the SUA component that runs in the process. When the static dependence
graph is ready, Seads loads the static graph (Lines 18-19). Moreover, the processor is invoked to
compute dependencies with the current configuration 𝑇𝐶𝑁 (Line 23), as detailed in Algorithm 2
(§4.4.2). When 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 is false, if any part of the static or dynamic analysis—(i) constructing
and (ii) loading the static dependence graph and (iii) computing dynamic dependencies (costing
constructTime, loadTime, and computeTime respectively), runs timeout, Seads would cancel the
respective part of the analysis and set 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 as true (Lines 16-17, 20-21, 22-25). For example,
with the current configuration TCN=111111, Seads has not finished constructing the static graph
in 𝑠𝑔𝑐_𝑇 time (42s). Thus, the graph construction is canceled. Then, 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡=true hence Seads
skips the static graph loading and dependence computation. After resetting 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟 and 𝐿𝑎𝑠𝑡𝑇 ,
Seads calls the gatherer to collect the time costs of above analyses (i.e., constructing/loading the
static graph, computing dependencies) under the current configuration and then calls the controller
to obtain the next configuration 𝑛𝑒𝑤𝑇𝐶𝑁 (Lines 26-28), as detailed later in Algorithm 3 (§4.5). For
example, we now have 𝑔𝐶𝑜𝑢𝑛𝑡𝑒𝑟=0, the time cost=43 seconds and 𝑛𝑒𝑤𝑇𝐶𝑁=000101. Finally, the
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algorithm updates the current (𝑇𝐶𝑁 ) and previous configuration (𝑜𝑙𝑑𝑇𝐶𝑁 ) accordingly for the
next arbitration iteration (Lines 29–30). For example, now 𝑜𝑙𝑑𝑇𝐶𝑁=111111 and 𝑇𝐶𝑁=000101.
Illustration. For the example considered, the analysis starts with 𝑇𝐶𝑁=111111, for Seads to
compute the most precise dependence sets possible with respect to its current design. When there
are more than 1000 newmethod events and it is over 5 minutes since the last analysis round, with the
staticGraph parameter enabled, Seads attempts to construct a static graph with context-sensitivity
and flow-sensitivity enabled. In 𝑠𝑔𝑐_𝑇 time (42s), however, the graph construction did not finish
and thus it was canceled. Then, 𝑖𝑠𝑇𝑖𝑚𝑒𝑂𝑢𝑡 is set to be true and no static graph is created; hence,
Seads skips the static graph loading, and further skips dependence computation also. Suppose
immediately afterwards the controller produces the next (new) configuration 𝑛𝑒𝑤𝑇𝐶𝑁 000101,
which indicates two parameters (methodEvent and methodInstanceLevel) are enabled while the
other four disabled (i.e., no static dependencies nor statement coverage are used). With this new
configuration, Seads is able to finish the entire round of dependence analysis within the total
budget time (60s). Since only the method events are used for the analysis, the dependencies are
inferred immediately based on happens-before relationships according to the partially ordered
sequence of execution methods. In this example, the sequence in the Server and Store process of the
Voldemort system (in Figure 1) is shown in Figure 5 and Figure 6, respectively.

voldemort.server.VoldemortServer: void main(java.lang.String[])

......

voldemort.server.VoldemortServer: void startInner()

......

voldemort.server.VoldemortServer: void createOnlineServices()

......

ClientRequestExecutorFactory$ClientRequestSelectorManager: processEvents

......

Fig. 5. An example partially ordered sequence of executed methods in the Server process of Voldemort.

voldemort.store.socket.clientrequest.ClientRequestExecutor: java.nio.channels.SocketChannel getSocketChannel()

voldemort.store.socket.clientrequest.ClientRequestExecutorFactory$ClientRequestSelectorManager: void processEvents()

......

......

......

Fig. 6. An example partially ordered sequence of executed methods in the Store process of Voldemort.

4.4.2 Dependence Computation. When Seads calls the processor to compute dependencies, the
online analysis based on DiverOnline [14] is adopted, avoiding execution tracing to economize
analysis costs, such as storage and disk I/O costs. Algorithm 2 gives the pseudo-code of the online
algorithm to compute dependencies. In Algorithm 2, 𝑄𝑈 is the same method event queue as in
Algorithm 1, and 𝐷𝑆 (𝑚) is the dependence set for the method 𝑚. First, four configuration
parameter variables (i.e., 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ, 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑𝐸𝑣𝑒𝑛𝑡 ,
𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , and 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙 ) are read from the
current configuration (Line 1). For example, from the current configuration 000101, we have these
variables assigned 0, 1, 0, 1, respectively. If the parameter methodInstanceLevel is disabled, Seads
filters the first entry and the last return-into events from the event sequence in 𝑄𝑈 (Lines 2–3). For
example, since 𝑚𝑒𝑡ℎ𝑜𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙 is enabled, Seads skips the filtering. If 𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ and
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𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 are both enabled, the static dependence graph is pruned according to the
statement coverage (Lines 4–5). For example, since both 𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ and 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 are
disabled, Seads skips the pruning. Then, Seads traverses 𝑄𝑈 to compute dynamic dependencies
corresponding to the method events in 𝑄𝑈 (Lines 6–24), as elaborated as follows.
For each event 𝑒 in 𝑄𝑈 , let𝑚 be the corresponding method of 𝑒 and 𝐷𝑆 (𝑚) be the dependence

set of𝑚 which is empty initially (Line 7). For example, for 𝑒 = -15700, 𝐷𝑆 (𝑒) is empty now, where
15700 is the id of method voldemort.server.VoldemortServer: void main(java.lang.String[]).) If the parameter
methodEvent is enabled and the value of 𝑒 is negative (i.e., 𝑒 is an entry event) and𝑚 is executed,
Seads adds𝑚 itself into the dependence set 𝐷𝑆 (𝑚) (Lines 8–10). For example, since the parameter
methodEvent is enabled and 𝑒 = -15700 (< 0), the method (of id = 15700) is added to 𝐷𝑆 (𝑚).
If parameters methodEvent and staticGraph are enabled, Seads adds dependencies via calling a

subroutine AddDSForEntry for the negative 𝑒 value (entry event) or calling another subroutine
AddDSForReturnInfo for the positive 𝑒 value (returned-into event) (Lines 11–15). For example, as
the parameter staticGraph is not enabled, Seads skips both subroutines. We leveraged
DiverOnline [14] to develop these two subroutines, in which Seads traverses the static
dependence graph to add dependencies into 𝐷𝑆 (𝑚), using different dependence propagation rules
for the entry and returned-into event of the method (𝑚), respectively.
If the parameter methodEvent is enabled and the parameter staticGraph is disabled, upon each

negative 𝑒 (i.e., an entry event), Seads adds all methods whose last (returned-into) event in 𝑄𝑈

happened after 𝑒 , into the dependence set 𝐷𝑆 (𝑚) (Lines 16–20). For example, since parameter
methodEvent is enabled and the parameter staticGraph is disabled, Seads adds all methods whose
last (returned-into) event in 𝑄𝑈 happened after 𝑒 (-15700) into the dependence set 𝐷𝑆 (𝑚).

If the parameter methodEvent is disabled and the parameter staticGraph is enabled, Seads simply
calls these two subroutines AddDSForEntry and AddDSForReturnInfo to add dependencies into
𝐷𝑆 (𝑚) (Lines 21–24): in this situation, these two subroutines compute the dependencies by
traversing the static dependence graph without utilizing any dynamic data. With the example
configuration being considered (methodEvent is enabled and staticGraph is disabled), Seads skips
both subroutines here.
Note that for each process the monitor only computes the run-time dependencies within the

process (referred to as intraprocess dependencies). Dependencies across processes (referred to as
interprocess dependencies) will be computed for a given query 𝑄 by the querying_client of Seads
after it receives the intraprocess dependencies of 𝑄 from each of the SUA’s processes.
Illustration. Consider the same example used for illustrating the arbitration algorithm above.
With the new configuration 000101, the partially ordered sequences of methods are those in
Figures 5 and 6. The pruning of the first entry and last return-into events is not executed because
the parameter 𝑚𝑒𝑡ℎ𝑜𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙 is enabled in this configuration. With this configuration,
static dependence analysis and graph pruning are skipped too. Next, in the loop of traversing the
queue 𝑄𝑈 ,𝑚 and 𝐷𝑆 (𝑚) are initiated firstly. With the parameter methodEvent enabled, for each 𝑒

that is an entry event (the 𝑒 value is negative), Seads adds all methods whose last returned-into
events in the queue 𝑄𝑈 happened after 𝑒 , into the dependence set of the method𝑚 (i.e., Lines
17–20). As a result, Seads computes the run-time dependencies for all possible queries (i.e.,
methods executed in any process). For example, for the query method voldemort.server.VoldemortServer:

void main(java.lang.String[]) exercised in the Server process, the dependence set at a particular
querying time is partially shown in Figure 7, while a resulting dependence set of the query method
voldemort.store.socket.clientrequest.ClientRequestExecutor: java.nio.channels.SocketChannel getSocketChannel()

executed in the Store process is partially shown in Figure 8. Note that each of these dependence sets
includes intraprocess dependencies only, despite the existence of methods executed in more than
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Algorithm 2 Computing dependencies
let𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ be 𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ parameter of current configuration
let𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑𝐸𝑣𝑒𝑛𝑡 be𝑚𝑒𝑡ℎ𝑜𝑑𝐸𝑣𝑒𝑛𝑡 parameter of current configuration
let𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 be 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 parameter of current configuration
let𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙 be𝑚𝑒𝑡ℎ𝑜𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙 parameter of current configuration
let 𝐷𝑆 (𝑚) be dependence set for method𝑚
1: Read current configuration parameter settings
2: if 𝑁𝑜𝑡 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙 then
3: 𝑄𝑈 =getFirstLastInstances(𝑄𝑈 )
4: if 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ and𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 then
5: Prune the static graph with the statement coverage
6: for each method event 𝑒 ∈ 𝑄𝑈 do
7: 𝑚=abs(𝑒), 𝐷𝑆 (𝑚) = ∅
8: if 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑𝐸𝑣𝑒𝑛𝑡 then
9: if 𝑒 < 0 then
10: 𝐷𝑆 (𝑚) ∪ = {𝑚}
11: if 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ then
12: if 𝑒 < 0 then
13: AddDSForEntry(𝑚)
14: else
15: AddDSForReturnInto(𝑚)
16: else
17: if 𝑒 < 0 then
18: for each last returned-into event 𝑒′ that happens after 𝑒 ∈ 𝑄 do
19: 𝑚′=abs(𝑒′)
20: 𝐷𝑆 (𝑚) ∪ = {𝑚′ }
21: else
22: if 𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑖𝑐𝐺𝑟𝑎𝑝ℎ then
23: AddDSForEntry(𝑚)
24: AddDSForReturnInto(𝑚)

one process (e.g., the method voldemort.store.socket.clientrequest.ClientRequestExecutorFactory

$ClientRequestSelectorManager: void processEvents() in this illustrative example).

{ voldemort.server.VoldemortServer: void main(java.lang.String[]),

voldemort.server.VoldemortServer: void startInner(), 

voldemort.server.VoldemortServer: void createOnlineServices(),

...... }

voldemort.store.socket.clientrequest.ClientRequestExecutorFactory$ClientRequestSelectorManager: void processEvents(),

......,

Fig. 7. An example set of intraprocess dependencies of a query in the Server process.

{ voldemort.store.socket.clientrequest.ClientRequestExecutor: java.nio.channels.SocketChannel getSocketChannel()

voldemort.store.socket.clientrequest.ClientRequestExecutorFactory$ClientRequestSelectorManager: void processEvents()

...... }

......,

Fig. 8. An example set of intraprocess dependencies of a query in the Store process.
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4.4.3 Querying Interface. To offer the querying service to users, the monitor module for each
process includes a querying_interface to receive the dependence query 𝑄 from and send
corresponding dependence sets back to, the querying_client module of Seads, both through the
network facility (see Figure 3). When a query is received at (the querying_interface of) the monitor

module, there are two situations, dealt with by the interface differently as follows:

(1) The monitor is in the middle of computing/updating the dependence sets for all possible
queries. In this situation, the querying_interface will wait until the dependence
computation/updating is completed to return the dependence set of 𝑄 .

(2) The monitor is performing arbitration functionalities, but not computing/updating
dependencies—that is, it has completed a previous round of dependence
computation/updating and is waiting for the next round. In this situation, the
querying_interface will immediately return the most recently computed dependence set of 𝑄 .

As mentioned earlier, while the querying_interface (attached to the monitor) for each process
computes intraprocess run-time dependencies, the querying_client module of Seads derives
interprocess dependencies hence produces the final dependence set, while merging all the
per-process intraprocess dependence sets, for the user-supplied query 𝑄 . Once it has received 𝑄 ,
the querying_client sends it to the querying_interface for each process, and then waits for all the
per-process interfaces to return their respective intraprocess dependence sets for all possible
queries. The reason is that all these dependence sets may be needed for deriving interprocess
dependencies for 𝑄 . More specifically, the querying_client will identify the process 𝑃𝑖 where 𝑄 was
executed first (i.e., where the earliest first entry event of 𝑄 occurred). If no process exercised 𝑄 , an
empty dependence set would be returned immediately back to the user. Otherwise, the final
dependence set of 𝑄 , noted as 𝑓 𝐷𝑆 (𝑄), is initialized as the intraprocess dependence set of 𝑄
returned from the querying_interface for 𝑃𝑖 (noted as 𝑖𝑛𝑡𝑟𝑎𝐷𝑆 (𝑄, 𝑖)).
Then, for each other process 𝑃 𝑗 :

(1) if 𝑃 𝑗 also exercised 𝑄 , 𝑖𝑛𝑡𝑟𝑎𝐷𝑆 (𝑄, 𝑗) is straightforwardly merged into 𝑓 𝐷𝑆 (𝑄); otherwise,
(2) for each method𝑚 exercised in 𝑃 𝑗 , 𝑖𝑛𝑡𝑟𝑎𝐷𝑆 (𝑚, 𝑗) is straightforwardly merged into 𝑓 𝐷𝑆 (𝑄)

if the last returned-into event happens after the first entry event of 𝑄 .

This merging process implicitly derives and adds to 𝑓 𝐷𝑆 (𝑄) the interprocess dependencies for 𝑄
according to the happens-before relationships among method execution events across all processes.
Illustration. Suppose when the two monitors, one for the Voldemort Server process and the other
for the Store process, have received the same dependence query voldemort.server.VoldemortServer: void

main(java.lang.String[]) from their respective querying_interface, both are just performing routine
arbitration (not in the middle of computing/updating dependencies). Thus, both monitors have all
of their dependence sets (computed in the previous round of analysis) ready. Further suppose the
Server process executed this query while the other process did not. The intraprocess dependencies
of the query voldemort.server.VoldemortServer: void main(java.lang.String[]) in the Server process include
voldemort.server.VoldemortConfig: int getBdbCleanerLookAheadCacheSize(), voldemort.server.VoldemortServer:

voldemort.server.StoreRepository getStoreRepository(), and a few other methods. In the Store process, only
one method, voldemort.store.stats.Tracked: java.lang.String toString(), has its last returned-into event
happened after the first entry event of the query here, and includes in its dependence set the
method voldemort.store.socket.clientrequest.ClientRequestExecutorFactory $ClientRequestSelectorManager: void

processEvents() and a few others, besides itself. Then, according to the process of deriving the final
(cross-process) dependencies as described above, the querying_client will return to the user the
final dependence set as shown in Figure 9. Here the two methods in the Store process are added to
the dependence set due to their implicit dependencies on the query via happens-before relations.
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{ voldemort.server.VoldemortServer: void main(java.lang.String[]),

voldemort.server.VoldemortServer: void startInner(), 

voldemort.server.niosocket.NioSocketService: void <init>(...),

...... }

voldemort.store.socket.clientrequest.ClientRequestExecutorFactory$ClientRequestSelectorManager: void processEvents(),

......,
voldemort.store.socket.clientrequest.ClientRequestExecutorFactory: void <init>(...),

voldemort.server.VoldemortServer: void createOnlineServices(),

......,

Fig. 9. The dependence set for an example query returned to the user.

Algorithm 3 Configuration Adjustment using Q-learning
let𝑇𝐶𝑁 and 𝑛𝑒𝑤𝑇𝐶𝑁 be current and new configurations
let𝑄𝑡𝑎𝑏𝑙𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 , 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 , 𝑠𝑡𝑎𝑡𝑒𝑠 , 𝛾 , 𝛼 , and 𝜖 be components and parameters used by Q-learning
let𝑇 be overall dynamic dependence analysis time cost with the current configuration
let 𝐵 be the user budget
let 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 be the possibility to select the action according to the largest value in𝑄𝑡𝑎𝑏𝑙𝑒

1: Initiate Q-learning components: 𝑙𝑒𝑎𝑟𝑛𝑒𝑟 , 𝐴𝑔𝑒𝑛𝑡 ,𝑄𝑡𝑎𝑏𝑙𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 , 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 , and 𝑠𝑡𝑎𝑡𝑒𝑠
2: Set Bellman equation parameters 𝛾 , 𝛼 , and 𝜖 between 0 and 1
3: Update 𝑟𝑒𝑤𝑎𝑟𝑑 = 1/(𝐵 -𝑇 ) * 1000.
4: Update𝑄𝑡𝑎𝑏𝑙𝑒 using the Bellman equation
5: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦=random(0,1)
6: if 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 < = (1 - 𝜖) then
7: Take the best action according to the largest value in𝑄𝑡𝑎𝑏𝑙𝑒

8: else
9: Randomly take an action
10: Compute a new configuration 𝑛𝑒𝑤𝑇𝐶𝑁 according the action and𝑇𝐶𝑁

4.5 Controller
For each process of the SUA, Seads runs a controller to adjust analysis configurations in Seads.
As shown in Figure 4, the controller takes the costs of the current configuration and user budget
𝐵 as inputs to determine which next configuration the analysis should use in order to achieve a
better cost-effectiveness (than with the current configuration) while respecting the user budget
(i.e., containing the total analysis cost under the budget). Recall that the analysis in Seads is
distributed, thus the controller associated with each process of the SUA is only responsible for
adjusting the configuration for the analysis of that process—the controllers across all processes
work independently of one another.

Each controller module consists of two submodules: a learner and an executor. The learner
utilizes the data from the gatherer (i.e., the analysis costs under the current configuration) while
referring to the user budget, to adjust the configuration—the output is a configuration that may
be the same as or different from the current configuration. Then, the executor updates Seads to
the new configuration: it takes the learner’s output and simply prepares for transferring the new
configuration to the collaborating monitor. Specifically, the preparation is realized by serializing
the configuration to an external file which is later loaded by the processor in the monitor. Next, we
elaborate the learner’s inner workings for configuration adjustment.

Seads makes decisions on new analysis configurations using a reinforcement learning
methodology, in particular the Q-learning method (Section 3). Supervised learning, which needs a
large training set, is not appropriate for the configuration adjustment in Seads, because there are
not enough data for training when Seads starts with a particular SUA. Meanwhile, since the
dynamics of execution may vary widely across different SUAs, learning from other SUAs
beforehand may not be effective either. Thus, given the unpredictably changing environment

during the execution of an SUA, reinforcement learning, which is not subject to those constraints,
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is more suitable. Moreover, Q-learning as a special type of reinforcement learning is particularly
appropriate for configuration adjustments in our framework, because dependence computation
time costs constantly vary during the execution without an existing policy or a strict model of the
adjustments [80]. Therefore, we employ Q-learning as an off-policy and model-free learning
strategy for Seads.

Environment:
(Monitor)

Agent:
(Controller)

Action:
Select a new 
configuration

Reward
(function)

State:
Dependence 
computation
configuration

Fig. 10. The interactions between the agent and

environment of Q-learning in Seads

In Q-learning as applied in Seads, an agent
receives a state (i.e., the current configuration)
from the environment and takes an action (i.e.,
selecting a new configuration), either from a Q-table
or by a random exploration of possible actions.
As a consequence, the agent receives feedback
in terms of a reward computed according to the
action’s performance. As shown in Figure 10, a state
represents the current dependence computation
configuration, and the monitor is the environment
while the controller is the agent. With the user budget and analysis time cost, a reward is calculated
and sent back to the agent as feedback. In the case of a positive reward, the corresponding action is
encouraged (i.e., reinforced); otherwise, the action is discouraged. Q-learning uses the reward to
update the Q-table whose largest value will be presumably selected as the future action [32]. In
other words, for Seads, the larger the reward is, the more possible the corresponding configuration
is selected.
Q-learning updates the Q-table according to the Bellman equation to find optimal policies and

value functions [43]. With this equation, the value in the Q-table (i.e., 𝑄𝑉 ) for the next state is
computed as follows:

𝑄𝑉 = 𝑄𝑉 + 𝛼 ∗ [𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛾 ∗max{𝑞 |𝑞 ∈ 𝑄-𝑡𝑎𝑏𝑙𝑒} −𝑄𝑉 ] (1)

where 𝛾 and 𝛼 are two equation parameters. In particular, 𝛾 is a discount factor between 0 to 1 to
determine the importance of future rewards. If 𝛾 is 0, the Q-learning agent only considers current
rewards; if 𝛾 is 1, the agent strives for a long-term high reward. The other parameter, 𝛼 , indicates
the learning rate between 0 to 1 to control how much the difference between previous and new𝑄𝑉

values is considered. If 𝛼 is 0, the agent only exploits prior knowledge; if 𝛼 is 1, the agent considers
only the most recent information to explore possibilities and ignores prior knowledge. Another
relevant parameter, 𝜖 , as part of the learning algorithm, is used to control the agent taking an action
(i.e., selecting a new configuration) either from the Q-table or by a random exploration of possible
actions. If a randomly calculated variable value is less than or equal to (1 - 𝜖), the agent uses the
epsilon greedy strategy [84] to take the best action according to the largest value in the Q-table.
Otherwise, the agent randomly selects an action [26].

Algorithm 3 shows the pseudo-code of the learning process for configuration adjustment. In the
first place, Seads initiates Q-learning components (e.g., 𝑙𝑒𝑎𝑟𝑛𝑒𝑟 , 𝐴𝑔𝑒𝑛𝑡 , 𝑄𝑡𝑎𝑏𝑙𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 , 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 ,
𝜖 , and 𝑠𝑡𝑎𝑡𝑒𝑠) and Bellman equation’s parameters: 𝛾 and 𝛼 (Lines 1–2). For example, we set the
values in the Q-table as all zeros and the parameters 𝛾 , 𝛼 , and 𝜖 as 0.9, 0.9, and 0.2, respectively.
Since 𝛾=0.9 is slightly lower than 1, the Q-learning agent prefers a long-term high reward rather
than the current reward. Also, 𝛼 is 0.9, thus the agent prefers for the most recent data (e.g., reward,
values in the Q-table). In addition, 𝜖 = 0.2, thus (1 - 𝜖) = 1 - 0.2 = 0.8 = 80%. Therefore, the possibility
that the agent takes the best action according to the largest value in the Q-table is 80% while the
possibility that the agent randomly selects an action is 20%.
Then, the 𝑟𝑒𝑤𝑎𝑟𝑑 and 𝑄𝑡𝑎𝑏𝑙𝑒 are updated (Lines 3–4). The 𝑟𝑒𝑤𝑎𝑟𝑑 is defined as 1/(the user

budget 𝐵 - the current dependence analysis time cost 𝑇 ) * 1000—the rationale is that the closer the
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analysis cost is to the user budget (the learning goal here), the higher the reward. For example,
suppose the user budget 𝐵 is 60000 (ms) and the current analysis time cost 𝑇 is 43000 ms. Then
the 𝑟𝑒𝑤𝑎𝑟𝑑 is 1/(60000 - 43000) * 1000 = 0.0588 as used to update the Q-table. In our algorithm, the
action means the transfer from the current state (configuration) to the next state (configuration).
If the randomly calculated 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 value equals or is less than (1 - 𝜖), the Q-learning 𝐴𝑔𝑒𝑛𝑡

uses the epsilon greedy strategy [8, 77] to take the best action according to the largest value in
the 𝑄𝑡𝑎𝑏𝑙𝑒 (Lines 5–7). For example, suppose Seads randomly calculated the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 value as
0.813, which is greater than 0.8. Then, Seads skips taking the best action according to the largest
value in 𝑄𝑡𝑎𝑏𝑙𝑒 . Otherwise, the 𝐴𝑔𝑒𝑛𝑡 randomly selects an action (Lines 8–9). For example, the
𝐴𝑔𝑒𝑛𝑡 may randomly take an action (selecting the next configuration). Lastly, a new configuration
𝑛𝑒𝑤𝑇𝐶𝑁 (e.g., 000101) is computed according to the action and the current configuration (Line 10).
Illustration. For the running example, we first initiate the values in the 𝑄𝑡𝑎𝑏𝑙𝑒 as all zeros and
set Q-learning parameters 𝛾 , 𝛼 , and 𝜖 as 0.9, 0.9, and 0.2, respectively. The user budget 𝐵 is 60000
(ms), and the current time cost 𝑇 is 43000 ms after Seads canceled the static dependence graph
construction because of the timeout. Then the 𝑟𝑒𝑤𝑎𝑟𝑑 is 1/(60000 - 43000) * 1000 = 0.0588 which is
used to update the Q-table. After the 𝑟𝑒𝑤𝑎𝑟𝑑 and 𝑄𝑡𝑎𝑏𝑙𝑒 were updated, the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 calculated
randomly is 0.813 (> 0.8). And 1 - 𝜖 = 1 - 0.2 = 0.8. Thus, the 𝐴𝑔𝑒𝑛𝑡 randomly selects 000101 as the
new configuration which only has two parameters enabled: methodEvent and MethodInstanceLevel.
With this new configuration 000101, Seads will quickly infer rough and rapid dependence sets only
from the dynamic data: full (instance-level) events of all executed methods.

5 IMPLEMENTATION AND LIMITATIONS
We have implemented Seads as a tool for Java to work with various distributed systems used in
the real world. In this section, we discuss some key technical issues for the implementation, as well
as its current limitations.

5.1 Analysis of Intraprocess Dependencies
Seads reused our Java dynamic dependence analysis tools, Diver [16] and DiverOnline [14], both
based on the Soot [53] bytecode manipulation and instrumentation framework. In particular, we
reused relevant code from Diver implementation for (1) constructing the static dependence graph
for each SUA component, (2) instrumenting and probing for the two kinds of method execution
events, and (3) for computing dynamic dependencies at method level within each process with the
hybrid dependence analysis approach that utilizes the per-component static dependencies and the
intraprocess method execution events. We then reused DiverOnline when developing the online
version of the dynamic dependence analysis for each process. We also leveraged the capabilities
of both tools in handling exceptional handling constructs (e.g., catch and finally blocks) and
computing the data/control flow facts induced by those constructs. This is important for making
Seads work for modern real-world Java systems since exception-handling code is prevalent in
those systems.
In addition, we leveraged the Indus Java code analysis (slicing) framework [65] to compute

threading-induced static dependencies. In particular, we reused their code for inferring inter-thread
ready, synchronization, and interference dependencies. The fact that Indus is also built on Soot
facilitated our integration of these analysis parts into our Seads framework.

5.2 Inferring Interprocess Dependencies
Seads derives interprocess dependencies from partially ordered method execution events across
all SUA processes throughout its execution, similarly to what we did in DistIa [19], although we
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further utilized static dependencies and statement coverage data to refine intraprocess dependencies.
Thus, we reused relevant code from DistIa implementation, mainly for probing for and monitoring
message-passing events (i.e., the event of a messing being sent and the event of a message being
received) that are used to partially order the method execution events at runtime. This includes
handling various kinds of network I/Os in such ways that the run-time monitoring and processing
of the message-passing events do not affect the original communication semantics of the SUA,
which is crucially important for our Seads tool to work with real-world distributed systems of
varied architectures. We also leveraged the capabilities of DistIa in handling exceptional control
flows to address message-passing events initiated in exception-handling constructs of Java.

5.3 Responding to UserQueries
To enable users to interact with and query the continuously running Seads, we implement the
querying_client as a command-line tool, which takes user queries and collaborates with the
querying_interface in each process of the SUA in a classical client/server architecture. More
specifically, to avoid potential interferences of user querying with the continuous analysis in
Seads, each querying_interface communicates with the querying_client via a Java non-blocking IO
(NIO) socket channel [23]. This way, Seads deals with the user interaction asynchronously with its
internal workings. In contrast, using network I/O working in a blocking and synchronous mode
for the communication would be inefficient. Users would typically launch the querying_client tool
on demand (i.e., whenever dependence querying is needed). Recall that the users here are
commonly dependence-based client analyses/techniques that utilize the run-time dependencies to
enable particular applications (e.g., diagnosing performance issues and security threats).

5.4 Reuse of Prior Techniques/Tools
Wehave leveraged a few of our own prior techniques and tools in developing Seads, includingDiver,
DiverOnline, and DistIa as described earlier in Sections 3 and 5. While not our main contribution
(the key novel contribution of this work is the use of RL to learn hence tune analysis configurations
at runtime), customizations and improvements were necessary for our non-trivial reuse of these
existing techniques/tools in Seads. We considerably extended the dynamic interprocess dependence
computation algorithm of DistIa, a lightweight dynamic analysis for distributed programs. DistIa
was immediately reused only when Seads works at a particular configuration (000100), which only
has one analysis parameter (i.e., methodEvent) enabled: the analysis uses only one form of dynamic
data (i.e., executed method events) while without using any static information of the SUA. For other
configurations, Seads only utilizes the algorithm of DistIa for inferring the happen-before relations
between method events; it adapted the algorithm to work also with all of the other configurations
and for some of them incorporated static dependencies and statement coverage.
Also, we enhanced the algorithms of the Diver/DiverOnline dynamic analysis frameworks

for constructing the static dependence graph, probing for dynamic data, and computing dynamic
intraprocess dependencies. Diver/DiverOnline can only deal with a single-process program in
building a single static dependence graph for the program. For a distributed program, Seads needed
to build such a graph for each of the distributed (and decoupled) components of the program. To that
end, it had to improve the static dependence analysis algorithm in Diver/DiverOnline to identify
and traverse all of the entry points of the distributed program before starting the static analysis with
each entry point. Accordingly, in utilizing the static dependencies and method execution events
to compute the dynamic dependencies within each process, Seads had further to first identify
the right dependence graph (i.e., of the component corresponding to the process) and the method
events that only belong to the process. In addition, Diver or DiverOnline only represents one of
the multiple static configurations in Seads (i.e., with the parameter context sensitivity disabled and
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Table 2. Experimental subjects

Subject (version) #Method #SLOC Test type
NioEcho (r69) 27 412 Integration
MultiChat (r5) 37 470 Integration
OpenChord (v1.0.5) 736 9,244 Integration
Thrift (v0.11.0) 1,941 14,510 Integration
xSocket (v2.8.15) 2,209 15,760 Integration
ZooKeeper (v3.4.11) 5,383 62,194 Integration, Load, System
Netty (v4.1.19) 12,389 167,961 Integration
Voldemort (v1.9.6) 20,406 115,310 Integration, Load, System

the parameter flow sensitivity enabled). Seads extended these prior tools to support all of the four
static configurations (i.e., for the static analysis to be context/flow sensitive/insensitive).

5.5 Limitations
During the instrumentation, Seads needs to insert probes into the bytecode of the SUA to monitor
method events. If administrators do not allow to modify the bytecode, Seads has no way to work.
Seads targets continuously running distributed systems, offering online dynamic dependence
analysis (querying) capabilities with practical scalability and cost-effectiveness trade-offs. If no
querying is performed before the SUA is terminated (hence Seads exits accordingly), Seads would
not provide useful results since it does not dump (or save in other ways) its analysis results.
Also, Seads tries to provide the most cost-effective result (dependence set) achieved within a

response time constraint (i.e., the user budget for the average time cost for processing a dependence
query). However, our current controller (Q-learning) algorithm may not be optimal—it does not
necessarily choose the next configuration that is optimal (i.e., the configuration with which the
dynamic dependence computation/updating does not necessarily have the optimal cost-effectiveness
trade-off possible with respect to our framework). For instance, the Q-learning algorithm might
take a wrong action (especially when the selection is random—see Algorithm 3) at certain steps.
As a result, the dynamic dependence analysis, as informed by the controller, may not be always
the most cost-effective as it could be. In addition, if the user sets an improper budget (e.g., one
that is far off the typical time cost for answering a dependence query against the particular SUA),
the analysis configuration adjustment by the controller can be even less effective (i.e., leading the
analysis in Seads to be further away from optimal cost-effectiveness balances). On the other hand,
when the user does not specify a budget, Seads would have to use a default budget, which may not
be desirable to the user or not suitable for the given SUA.

6 EVALUATION
Aiming to assess the scalability/efficiency and cost-effectiveness of Seads and its merits in these
regards, our evaluation was guided by the following research questions:

• RQ1: How efficient is Seads in terms of its query response time in an average case?
• RQ2: How scalable and efficient is Seads in terms of its analysis overheads?
• RQ3: How cost-effective is Seads in terms of query response time and analysis overheads?

6.1 Experiment Setup
We applied Seads against eight Java distributed systems, as shown in Table 2. As study subjects,
these systems typically run continuously. The sizes of these subjects are measured as the number
of methods defined in the subject source code (the second column #Method) and the number of
Java source code lines excluding blank lines and code comments (the third column #SLOC). The

24



last column shows the test types, including integration, load, and system tests. We chose these
subjects with different architectures, domains, and scales. NioEcho [72] is a simple system whose
server echoes any message from the clients. MultiChat [36] is a chat system whose clients broadcast
messages to all other clients through the server. OpenChord [75] uses distributed hash tables to
provide peer-to-peer network services. Thrift [5] is an application development framework that
has a code generation engine for developing scalable cross-language services. xSocket [76] is a
framework based on non-blocking IO (NIO) for constructing high-performance, scalable software
systems. ZooKeeper [2, 44] is a coordination system providing distributed synchronization and
group services. Netty [63] is an asynchronous NIO client-server framework used to rapidly develop
network applications. Voldemort [3] is a distributed key-value storage system used by LinkedIn.
In each integration test, we started several server/client instances and performed various

operations, to cover main subject functionalities in respective SUA components. For NioEcho, we
started a server and a client, and next sent random text messages from the client to the server, and
then waited for the echoing of each message. For MultiChat, we sent random text messages from a
client to the server and then broadcasted these messages to all other clients. For OpenChord, a
peer-to-peer system, we first started three nodes, A, B, and C and then performed following
operations: On a machine (node) A, we created an overlay network; on other nodes B and C, we
joined the network; on the node C, we inserted a new data entry to the network; on the node A, we
searched and then removed the data entry; on the node B, we listed all data entries. For Voldemort,
after we started a server and a client, the ordering of our operations is: adding a key-value pair,
finding the key for its value, removing the key, and retrieving the pair. For ZooKeeper, we started
two instances of a server and a client, and our operations were: creating two nodes, searching
them, looking up their attributes, updating their data association, and removing these two nodes.
Particularly for Thrift, xSocket, and Netty, which are all libraries/frameworks, we developed

one sample application program of each of them to cover their major functional features, and
then exercised these subjects via executing corresponding applications. For Thrift, we developed a
calculator application with a server and a client. Some basic arithmetic operations were sent from
the client to the server, and the calculation results were sent back from the server to the client. For
xSocket, after a server and a client started, the client sent text messages to the server. For Netty, we
started a client sending messages to the server. In our developed application programs, each client
interacts with the server regularly and infinitely. Besides the integration tests, the load and system
tests were downloaded as parts of software packages from respective official project websites.
We note that all of these test cases for our subjects were used as run-time inputs to trigger the

subject executions so as to generate the dynamic information needed by Seads’s analyses, yet
we did not aim to use them to test the subject systems or to address specific testing problems.
In the paper, we did not develop and evaluate any specific dependence-based applications (e.g.,
testing) but rather focus on the foundational dependence analysis itself; accordingly, our evaluation
focuses on assessing the efficiency, effectiveness (i.e., precision), scalability, and cost-effectiveness
of Seads versus the baseline. Recall that Seads targets SUAs which run continuously; thus, in real
deployment settings, the executions analyzed by Seads are supposed to be uninterrupted. For the
purpose of our evaluation experiments, however, we ran each SUA for as long as it needed for ten
randomly selected sample queries to be processed by Seads. And these queries were sent from
the querying_client with a random interval between 5 to 15 seconds. In our evaluation results, we
thus report the cost and effectiveness measures with respect to such executions for the subject
systems. For the controller, we set relevant parameters as follows: 𝑠𝑔𝑐_𝑇=42s, 𝑠𝑔𝑙_𝑇=12s, 𝑑_𝑇=6s,
𝑇𝐶=1000, 𝑇𝑇=1 mins for the two smallest subjects (NioEcho and MultiChat) and 5 mins for others.
In addition, with respect to the likely great variety of user budgets in practice, we specified the
user budget for each subject also randomly, ranging from 14 to 200 seconds.

25



Table 3. Time (in seconds) and storage costs (in MB) and precision (ratios) of Seads versus Doda

Execution

Normal Doda Seads

Precision StorageRun Run Slow Response Run Slow Response
Time Time Down Time Time Down Time

NioEcho 158.37 228.17 44.07% 14.39 214.15 35.22% 13.71 100.00% 2.00
MultiChat 148.96 241.89 62.39% 15.12 223.67 50.15% 14.32 100.00% 2.00
Openchord 233.78 606.87 159.59% 51.36 359.37 53.72% 25.33 77.44% 14.00
Thrift 199.87 573.49 186.93% 45.23 345.19 72.71% 23.82 90.68% 25.00
xSocket 380.59 1,817.61 377.58% 170.82 772.38 102.94% 65.37 83.25% 21.00
Netty 589.39 4,218.85 615.80% 409.56 1,226.16 108.04% 115.16 87.12% 105.00
Zookeeper
Integration 598.34 3,543.47 492.22% 343.19 1,139.25 90.40% 103.21 66.29% 96.00
Zookeeper
Load 616.16 3,804.37 517.43% 368.43 1,209.77 96.34% 111.97 65.55% 96.00
Zookeeper
System 598.17 3,676.91 514.69% 355.56 1,183.97 97.93% 107.94 63.28% 96.00
Voldemort
Integration 398.06 - - - 791.37 98.81% 69.62 - 200.00
Voldemort
Load 194.44 - - - 731.71 276.32% 67.58 - 200.00
Voldemort
System 355.78 - - - 719.38 102.20% 66.96 - 200.00
Average: 372.66 2,079.07 330% 197.07 743.03 99% 65.41 81.5% 88.08

6.2 Results and Analysis
In this section, we illustrate and discuss our empirical results related to the research questions.
One of the key innovations in Seads is its capability of adjusting analysis configuration at runtime
through reinforcement learning to automatically achieve better cost-effectiveness than techniques
with a fixated analysis configuration. In order to show the impact and merits of this innovation, and
given the absence of a directly comparable peer technique, we created and used an online version of
D2Abs [15], the state-of-the-art dynamic dependence analysis for distributed programs to the best of
our knowledge, as the baseline in our evaluation (referred to as Doda). In terms of implementation,
Doda is essentially a variant of Seads that does not change its analysis configurations on the fly
but constantly uses a fixated configuration (111111, for the highest precision possible within our
analysis infrastructure)—otherwise, these two tools are not different.
Table 3 presents our major experimental results, including the cost and effectiveness measures

of Seads versus the baseline Doda against the 12 SUA executions (as listed in the first column).
The third to fifth and sixth to eighth columns list the total run time (Run Time)—the continuous
running time during which we sampled ten random queries with random intervals, run-time
slowdown (SlowDown), and average query response time (Response Time), for each instrumented
SUA execution with Doda and Seads, respectively. The normal run time (the second column) for
each SUA execution was the total length of execution of the SUA against the same sequence of
run-time inputs used for driving the corresponding instrumented SUA execution. To enable the
comparison between our approach and the baseline, we ensured that, for each SUA execution,
the run-time inputs to the SUA were exactly the same during the analysis by both techniques, in
addition to feeding them with the same sequence of queries.
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In the ninth column (Precision), we report the average precision of Seads via a relative measure
(to the baseline): for each SUA execution and each query, the measure was computed as the ratio
of the size of query dependence set computed by Doda to the size of the query dependence set
computed by Seads. We chose to compute and report the relative measure for two reasons. First,
we do not have the ground-truth dependence sets available for the sample queries, and we are not
aware of an existing tool that scales to and works with our subject systems to compute such ground
truths. Second, the main goal of our evaluation is to validate the scalability and cost-effectiveness
merits (over conventional analyses which have a fixated configuration) of Seads due to its on-the-fly
adjustable analysis configurations and its ability to learn the configurations to adjust to. With
respect to this goal, measuring relative cost and effectiveness differences between Seads and the
baseline, which represents the conventional analyses, should suffice. Also, we only report precision
as the effectiveness metric, assuming the design (of adjusting analysis configurations) of Seads
does not affect the recall of the dynamic dependence analysis relative to the baseline—because the
baseline always uses the most precise configuration while Seads sacrificing precision for better
scalability and overall cost-effectiveness. To validate this hypothesis, we compare the dependence
sets between the two techniques against each query—we confirm that Seads does not sacrifice
recall if its dependence set includes the dependence set produced by Doda for the same query.

The last column (Storage) lists the total storage costs (disk space taken) of Seads, ranging from
2MB for the two smallest subjects (NioEcho and MultiChat) to 200MB on the largest system
(Voldemort), for an average of 88MB across all the 12 executions. These are the space costs mainly
incurred by storing the static analysis data (i.e., the static dependence graph for each SUA
component) and the instrumented versions of the SUAs. As these costs with the baseline are almost
the same as those with Seads for each SUA execution, we omitted the numbers for the baseline.
Results for Doda against the Voldemort executions are unavailable (hence missing from the

table) because the baseline did not scale to the system: we killed the analysis after running it for 12
hours. For this reason, the relative precision of Seads for these executions is missing also. Next, we
discuss major findings and observations from these results, so as to answer our research questions.

6.2.1 RQ1: Efficiency: Response time. The response time, as shown in the fifth and eighth columns,
is the user’s waiting time since a dependence query is sent out until the user receives the dependence
set in return. Over all SUA executions, Seads took 65.41 seconds on average to respond to random
user queries with random intervals and user-specified budgets. For individual executions, Seads
took the shortest response time (13.71 seconds) on average against the NioEcho execution, most
plausibly due to its smallest size. On the other hand, Seads took the longest average response
time (115.16 seconds) on Netty, the largest system among our subject SUAs. Yet looking at this
efficiency measure across all the SUA executions reveals no consistent correlation between subject
sizes and the average response time. One reason is because the source size of a subject is not
the only factor that affects this efficiency measure—for example, the complexity of the execution
analyzed is another major factor here. In fact, the three SUA executions for the same SUA Voldemort
saw noticeably different average response time with Seads. Other factors, such as the time cost
of network communication and that of merging dependence sets while deriving interprocess
dependencies at the querying_client after it receives all per-process dependence sets, also have
non-trivial effects on the response time perceived by the user.
In addition, the variations in the response time have to do with how Seads works: when it

receives a query, Seads may be in one of two possible situations, as mentioned earlier: (1)
computing/updating dependence sets for all queries or (2) being idle during the time interval
between two consecutive rounds of dependence computation. In the first case, the relevant
dependence sets will be delivered back to the user after the computation is done. Depending on the
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timing of query arrivals, the query response time can be substantial in this case. This situation
often occurs when the user requests a query for an SUA of a large code size or a great execution
complexity, for which the dependence computation may take a relatively long time. Of course,
even in this situation, the response time can still be fairly short: for example, for small subjects
such as NioEcho and MultiChat, any round of dependence computation is very fast, so that Seads
can deliver newly computed dependence sets shortly after receiving a dependence query.
Otherwise, in the latter case, the computed results (i.e., dependence sets) are sent back to the
querying_client at once, since the results (from the most recent round of dependence computation)
are already available. In consequence, the response time is generally short in this case.
For the same query requests as sent to Seads, Doda took 197 seconds by average over the 12

SUA executions, with the average response time for individual SUA executions ranging from 14.39
seconds on NioEcho to 409.56 seconds on Netty. In particular, for Voldemort, Doda could not answer
any user query within 12 hours—as mentioned earlier, we had to kill, after that long time, the
analysis by Doda against this subject SUA (for any of its three executions, because the scalability
challenge mainly lies in the static dependence analysis part). In practice, a user (either a human or
an application/client analysis using the dynamic dependence results) is not very likely to wait even
longer than 12 hours for querying a dependence set. That is, Doda may suffer a serious scalability
problem that impedes its practical adoption to industrial-scale distributed systems. In contrast, for
the three executions of Volemort studied, Seads took a bit over one minute to respond, highlighting
the scalability and efficiency advantages of our approach over the conventional dependence analysis.

It is worth noting that the efficiency advantage in terms of mean response time of Seads over the
baseline was generally more significant with larger-scale SUA executions. As shown, the gap in this
efficiency measure between the two techniques tended to increase when the SUA grows in source
size and execution complexity—for instance, for the two smallest SUAs, the average response time
of Doda was very close to that of Seads (the difference was less than one second on average for
each query); for a medium-scale SUA such as Thrift, Seads was about 2x faster; and for the largest
SUAs, Seads was over 3x faster. This further implies that the efficiency/scalability merits of Seads
over Doda are especially important and needed for large, complex real-world distributed systems.

Answer to RQ1: Seads is more than 3x faster than the baseline by responding to user
queries within about 65 seconds versus the baseline taking 197 seconds for the same queries,
on average over 12 unique system executions of eight SUAs. Particularly, the baseline could
not be applied to large-sized distributed systems, such as Voldemort, due to its severe
scalability issues. In contrast, Seads was able to scale to such systems and respond to user
queries reasonably fast, demonstrating the scalability advantage of our approach over the
conventional dynamic dependence analysis approach.

6.2.2 RQ2: Efficiency: Analysis overheads. Beyond the average response time, we further gauged
the efficiency/scalability of Seads relative to the baseline in two measures of analysis overheads:
the run-time slowdown caused by the instrumentation, and the storage costs. The measurement of
run-time slowdown followed the standard computation. In our study in particular, we were
concerned about the overall slowdown of each technique during the entire continuous execution of
each SUA that we considered. Thus, this measure was computed as the percentage of increase
between the Normal Run Time (the second column of Table 3) and the Run Time of each technique
(the third and sixth columns). Specifically, a run-time slowdown of Doda was calculated as
(𝑇𝐷 -𝑇𝑛)/𝑇𝑛 , where 𝑇𝐷 was the run time of the SUA instrumented by Doda and 𝑇𝑛 was the run time
of the original SUA. For example, the original NioEcho executed 158.37 seconds, and the run time
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of the Doda-instrumented NioEcho was 228.17 seconds. As a result, the run-time slowdown of
Doda in this case was (228.17 - 158.37)/158.37 = 0.4407 = 44.07%, as shown in the fourth column
(Slow Down). Similarly, a run-time slowdown of Seads was computed as (𝑇𝑆 -𝑇𝑛)/𝑇𝑛 , where 𝑇𝑆 was
the run time of the SUA instrumented by Seads (the sixth column Run Time). For instance, the run
time of NioEcho instrumented by Seads was 214.15 seconds. Thus, we calculated the run-time
slowdown caused by Seads as (214.15 - 158.37)/158.37 = 35.22% (the seventh column Slow Down).
From Table 3, we can see that the run-time slowdown of Seads ranged from 35% (NioEcho) to

276% (Voldemort load test), with 99% on average over the 12 SUA executions. In comparison, the
run-time overheads of Doda ranged from 44% (NioEcho) to 616% (Netty), with 330% on average.
Recall that both techniques perform dynamic dependence analysis online. Thus, the slowdown was
resulting from the time cost of the online analysis (e.g., collecting analysis data and computing
dependencies, both during the instrumented SUA execution). Therefore, the slowdown measures
are connected to the factors that influence the online analysis costs. Intuitively, these factors are
similar to those that caused the variations in the average response time in relation to the source
size and execution complexity of the subject SUAs. Generally, the slowdown of either technique
was greater against larger SUAs with more complex executions, as expected.

Although the run time of Doda-instrumented Voldemort is absent in the table as explained earlier,
we know that for each of three Voldemort executions the time was at least 12 hours. Since Doda
did not answer any dependence query within that period of time, the corresponding slowdown
measures were not meaningful thus omitted—albeit they would be extremely high: at least (12*3600
- 398.06/398.06) = 4,319,900%. For the other 9 SUA executions for which the individual run-time
slowdown measures were available for both techniques, Seads was consistently more efficient than
the baseline. Similar to their contrasts in average response time, the advantage of our approach
over Doda was increasingly significant for SUAs of growing size and execution complexity. For
instance, while for the two smallest and simplest SUAs the slowdowns of both techniques were
close, Doda incurred over 2x greater slowdown than Seads for a medium-scale SUA xSocket; for
the large-scale SUAs like Netty and ZooKeeper, Doda’s slowdown was 4–5x greater. Overall, Seads
was over 3.3x as efficient as the conventional approach to dynamic dependence analysis in terms
of the slowdown measure, further elucidating the merits of the on-the-fly analysis configuration
adjustments through reinforcement learning in our approach.
In terms of the other overhead measure, storage cost, the two techniques compared were very

close both for any individual SUA execution and overall. Thus, Seads did not have substantial
advantages in this regard. Yet given the generally negligible storage costs as shown in (the last
column of) Table 3—no more than 200MB, the results on this overhead measure do not affect the
efficiency and scalability advantages of Seads against the baseline otherwise.

Answer to RQ2: For the SUAs and their executions that Doda can scale to, Seads incurred
mostly no more than 1x run-time slowdown, compared to Doda causing 2–6x slowdown.
On overall average, Seads caused a 99% slowdown versus 330% by the conventional dynamic
dependence analysis, with greater advantages against larger-scale systems. Both techniques
were highly and similarly scalable in terms of storage costs.

6.2.3 RQ3: Cost-Effectiveness: Precision-cost ratios. To evaluate the cost-effectiveness of our
approach, we need to first compute the precision by comparing the average sizes of query
dependence sets computed by Doda and Seads. The precision for each SUA execution, as shown
in the ninth column (Precision) of Table 3, is the average ratio of the size of the dependence set for
each query computed by Doda to the size of that computed by Seads for the same query. For each
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dependence query, we also compared the content of both dependence sets, and found that Seads’s
dependence set always subsumed the dependence set given by Doda for any of the queries involved
in our evaluation—this confirms that Seads, although sacrificing precision by adjusting analysis
configuration to achieve higher scalability and efficiency, had no loss in recall. These relative
effectiveness measures essentially treated the baseline results as ground truths. Thus, given the
equally 100% recall of both techniques, we only considered the relative precision of Seads (with
Doda precision as constantly 100%) when computing the cost-effectiveness of both techniques as
the ratio of effectiveness to cost.
Our results show that, for the 9 SUA executions for which the baseline dependence sets were

available to enable the relative precision measurement for Seads, the precision achieved by Seads
ranged from 63% to 100%, for an overall average of 82%. In the best cases, for the two smallest
SUA and simplest SUA executions (i.e., NioEcho and MultiChat), Seads did not lose any precision
relative to the baseline. The reason was mainly because the online analysis by Seads constantly
incurred time costs lower than the user budgets even with the most precise analysis configuration
for these subjects; thus, Seads did not need to switch away from the highest-precision configuration
it started with throughout the entire online analysis. Likewise, Seads had the lowest precision of
63.28% for Zookeeper system test, most plausibly because Seads experienced the most aggressive
and frequent adjustments of its analysis configuration in order to maintain scalability and efficiency
with respect to the given user budgets. That is, the average (relative) precision (over the ten queries)
that Seads achieved for an SUA execution had to do with the size and complexity of the SUA
execution, which was reflected in part in the two efficiency metrics (response time and run-time
slowdown). Indeed, the numbers in Table 3 generally revealed a connection between the precision
(the ninth column) and those efficiency metrics (the seventh and eighth columns)—the shorter
average response time and smaller slowdown mostly went with higher precision, despite the
absence of an always consistent correlation. Such potential interplays between precision and costs
further necessitate the assessment of cost-effectiveness as a holistic measure.
To compute the cost-effectiveness measure for each technique, for each SUA execution, we

calculated the ratio of the average precision (over the ten queries) to one of the two cost measures
we considered: average response time (over the ten queries), and run-time slowdown (overall
during the entire execution across the ten queries). Accordingly, we had two measures, each with
respect to one of the two cost measures, in our cost-effectiveness assessment and comparison
between the two techniques, shown in Figure 11 (with average response time as the cost factor) and
Figure 12 (with the run-time slowdown as the cost factor), respectively. For ease of presentation
with respect to space constraints, we use abbreviations in both figures as follows (on the 𝑥 axis):
MC. for MultiChat, OC. for OpenChord, V for Voldemort, Z for ZooKeeper, I. for integration test, L.
for load test, and S. for system test. In particular, to highlight the merits of our approach over the
baseline, either figure only shows how Seads compared to Doda in terms of the cost-effectiveness
per SUA execution (indicated along the 𝑦 axis), as the percentage of Doda’s cost-effectiveness
over the cost-effectiveness of our approach, rather than showing the individual cost-effectiveness
measure numbers of each technique separately. This is why both figures show the bars for Seads
constantly corresponding to 100%, whereas the cost-effectiveness of the baseline is shown as a
fraction of that of our approach. The rationale of doing so is to normalize the measure values,
especially ironing out the large differences in cost measures across these SUA executions. Because
Doda could not be applied to Voldemort, the corresponding cost-effectiveness measures were zero.
We do not consider storage costs as another cost factor in computing the cost-effectiveness because
they were almost negligible (only 88MB on average and 200MB at most) hence did not affect much
the efficiency/scalability of either technique.
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Fig. 11. Comparisons (𝑦 axis) of the cost-effectiveness expressed as the ratios of the precision to the response

time of Doda and Seads per execution (𝑥 axis). The higher the ratio, the more cost-effective.
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Fig. 12. Comparisons (𝑦 axis) of the cost-effectiveness expressed as the ratios of the precision to the run-time

slowdown of Doda and Seads per execution (𝑥 axis). The higher the ratio, the more cost-effective.

In Figure 11, we can see that the cost-effectiveness (with respect to response time) of Doda was
about 44% of that of Seads on average. For individual SUA executions, Doda and Seads had very
close cost-effectiveness against the two smallest and simplest SUAs, NioEcho and MultiChat. In
RQ1 and RQ2, we observed that the efficiency and scalability advantages of Seads over the baseline
were more prominent when applied to larger and more complex systems. This comparative trend
applies here also: the cost-effectiveness merits of our approach were more substantial with SUAs of
large scale and more complex executions, compared to Doda. For instance, Doda cost-effectiveness
was around 60% of that of Seads for medium-scale SUAs like Open chord and Thrift, while the
ratio went down to less than 45% for larger systems like ZooKeeper and further down to 30% for
even the larger SUA Netty; at one extreme of this trend, the baseline cost-effectiveness was zero for
Voldemort, the most challenging SUA in our study.

Concerning the run-time slowdown as the cost factor, Figure 12 shows the cost-effectiveness
contrasts between the two techniques in the alternative measure. Overall, the cost-effectiveness with
respect to this cost measure of Doda was only about 32% of that of Seads on average, substantially
lower than the cost-effectiveness with respect to average user-query response time as shown in
Figure 11. The reason is apparently because the efficiency and scalability advantages of Seads
over the baseline in terms of run-time slowdowns were greater than those in terms of average
response time. On the other hand, compared to the cost-effectiveness variations in relation to the
underlying SUA executions analyzed in Figure 11, the variations in the cost-effectiveness with
respect to run-time slowdown were similarly associated with the scale of the SUA executions—the
cost-effectiveness advantages of our approach were greater against larger and more complex SUAs.

Put together, Seads was substantially more cost-effective than Doda, regardless of the cost factor
concerned with. This implies that, although looking at the precision losses alone seemed to suggest
that Seads sacrificed effectiveness significantly in exchange for higher scalability and efficiency,
the precision sacrifices were well paid off by the gains in efficiency and scalability, resulting in
the ultimate merits in cost-effectiveness overall. Thus, our methodology of adjusting analysis
configurations at runtime appeared to be a scalable and cost-effective solution to the dynamic
dependence analysis of large-scale, real-world distributed systems.
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Answer to RQ3: On overall average, the precision of Seads was about 82% relative to the
baseline, with equal recall between the two techniques. This effectiveness loss of Seads
was far outweighed by its efficiency and scalability gains compared to the baseline, though.
As a result, the average cost-effectiveness of the baseline was only 44% and 32% of that of
our approach, with respect to average user-query response time and run-time slowdown,
respectively. Moreover, the cost-effectiveness advantages of our approach were even greater
for larger-scale and more complex distributed systems.

6.3 Accuracy Validation based on Ground Truth
As we discussed earlier, for the evaluation of our technique Seads versus the baseline Doda,

ground-truth dependence sets for the studied subjects and executions are unavailable while there
are no existing tools available to compute them either. Meanwhile, thoroughly identifying all
ground truth needed with manual effort would be too expensive to be practical. Nevertheless, it is
still useful to manually construct partial ground truth to validate the accuracy of both techniques,
so as to provide confidence about their correctness.
Methodology. Given the tedious nature of the manual process, we limited the validation scale to
10 randomly chosen sample queries per subject execution for which the method-level dependence
sets computed by Doda included no more than 30 methods. For each of the 12 subject executions,
we manually constructed the ground-truth dependence set 𝑇𝐷 for each of such queries 𝑞 through
understanding the subject code and tracing the program execution paths starting at the query.
We then computed the precision and recall of Doda for each query 𝑞 according to 𝑇𝐷 and the
dependence set 𝐷𝐷 produced by Doda for 𝑞. For Seads, we assessed its precision and recall for
the same query 𝑞 by comparing 𝐷𝐷 against each of the dependence sets 𝑆𝐷 produced by Seads for
𝑞 at each of five querying times with random intervals during Seads’s continuous analysis.
Results. Our manual study revealed that Doda had overall average precision of 97.7% with
constantly 100% recall for the ten random queries across the 12 subject executions, according to
our manual ground truth. The imprecision was mainly attributed to the interprocess dependence
approximation which was based on happens-before relations between method events across
processes. For Seads, we validated that for each query 𝑞, the dependence set given by Doda was
always a subset of that given by Seads (i.e., 𝐷𝐷-𝑆𝐷==∅), which suggested that Seads had the
same recall as Doda did (i.e., 100%).

We also checked dependencies reported by Seads but not by Doda (i.e., 𝑆𝐷-𝐷𝐷) and found that
all of those dependencies were false positives, further supporting the 100% recall of the baseline. Our
results showed that these false positives led Seads to a lower precision than Doda—80% on overall
average with respect to the manual ground truth, or 81% with respect to the baseline dependence
sets (which is consistent with the results from our empirical evaluation in Section 6.2).

6.4 Speed of Configuration Learning
As Seads uses Q-learning to learn analysis configurations for obtaining and maintaining

scalability and better cost-effectiveness of the dynamic dependence analysis, its controller module
takes time to learn hence start producing reasonably good decisions (i.e., the next configuration to
switch to). In fact, Q-Learning as an iterative learning method widely used in approximate
dynamic programming for Markov decision processes (MDPs) computes an optimal MDP policy
through multiple iterations such that the averaged dynamics could be desired with convergence
properties [60]. To see how fast Seads can learn cost-effective configurations, we have collected
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the numbers of Q-learning iterations and learning time before Seads started computing more
cost-effective results (i.e., when the controller started stably choosing the next configuration that
led to more cost-effective dynamic dependence computation than would the current configuration)
in our empirical evaluation (Section 6).

Table 4. The number of iterations and learning time

(in seconds) of Q-learning in Seads

Execution #Iteration Time

NIOEcho 1 36.73

MultiChat 1 41.38

OpenChord 2 327.19

Thrift 2 316.70

xSocket 3 639.37

ZooKeeper_integration 4 1013.73

ZooKeeper_load 4 1097.26

ZooKeeper_system 4 1053.82

Netty 4 1132.98

Voldemort_integration 3 697.35

Voldemort_load 3 632.42

Voldemort_system 3 621.94

Overall Average: 3 634.24

Table 4 shows the number of learning
iterations (#Iteration) and learning time (Time)
in seconds for each of our 12 subject executions
(Execution). As we described earlier, executions
for all of the subjects other than Zookeeper and
Voldemort were driven by respective integration
tests. Generally, Seads tended to take more
iterations to learn better configurations for more
complex system executions, intuitively because
of the greater variations in the dynamics of these
executions. Note that the learning time included
the time cost of dependence computations across
the corresponding iterations. According to the
efficiency results in Table 3, Seads took longer
time to compute dependencies hence responded
more slowly to dependence queries for more
complex system executions. This explains the
observation here that the learning time was
generally longer as well for those system
executions. On overall average, Seads needed
3 rounds of learning and 634 seconds before it
started achieving more cost-effective results.

6.5 Optimality of Configuration Learning
From our evaluation results, we see that although Seads has scalability and cost-effectiveness

advantages over Doda, Seads is not optimal and suffers an inability to maximally utilize the user
given time budget while having noticeable room for improvement in precision (only 81.5% on
average relative to the baseline). An immediate explanation for this inability is that the controller
in Seads did not always give the optimal (i.e., most cost-effective possible) configuration for the
dependence analysis algorithm to take, as we mentioned earlier in Section 5.5. Our further
examination suggested that a plausible underlying reason for the lack of optimality in our
configuration learning is that currently Seads simply uses a generic Q-learning algorithm whose
reward function is not optimized for a particular subject—the algorithm is not aware of the
particular characteristics of the subject and does not consider the different execution
characteristics across different subject systems.

Towards gaining the optimality of configuration learning in Seads in the future, we have multiple
directions to pursue. One possible idea is to develop a control-theoretical method using a feedback
control mechanism to predict optimal configurations for the analysis algorithm so that it can utilize
as much of the user-specified analysis time budget as possible in order to obtain the highest level of
precision possible when the configuration adjustment is arbitrated. Another idea is to optimize the
Q-learning algorithm used by the Seads controller to provide optimal cost-effectiveness trade-offs
for the analysis algorithm by learning a reward function that is specific to (i.e., parameterized
for) each particular subject execution. We will also consider exploring other popular learning
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methods to optimize the controller underlying our dynamic dependence analysis, such as multi-step
Q-learning [60], self-adapt neural network [27], multi-modal deep learning [66], and so on.

6.6 Threats to Validity
Our empirical results are subject to various common kinds of validity threats according to [82]. We
describe below each major kind and discuss how we control or mitigate relevant threats.
Internal validity. The major threat to internal validity concerns potential mistakes in the
implementation of Seads, Doda, and our experimental procedure. Errors in any of these
implementations would compromise the validity of our empirical results and our conclusions
drawn based on the results. However, Seads is based on Soot [53], a framework that has matured
over a decade. Many of the key components of Seads and Doda, including the code for static
instrumentation, static dependence analysis, run-time monitoring/profiling, and hybrid
computation of dynamic dependencies, were drawn from tools developed in previous
work [16] [19] [14] which have been debugged and tuned for years. To minimize the threats
concerning the experimentation scripts and newly developed components of Seads and Doda (e.g.,
the controller backed by the Q-learning algorithm), we conducted careful code review and manual
inspection against simple samples (e.g., the two smallest SUAs) and cases (e.g., queries with
relatively small dependence sets) to ensure functional correctness.

Another kind of internal validity threat is that the instrumenter of Seadsmay cause false negatives
and false positives. First, our instrumenter is static thus it cannot instrument dynamically loaded
code which is not available during the instrumentation phase. As a result, Seads cannot catch entry

and returned-into events of methods invoked in the dynamically loaded code, which may lead to
false negatives in its profiling step hence later in its dynamic dependence computation. Dynamic
instrumentation would overcome this threat, but it would cause a portability problem because it
typically needs to customize underlying platforms such as runtime systems or operating systems.
Secondly, the message-passing API list used by the instrumenter might be incomplete, thus Seads
may miss some message-passing events at runtime which are necessary for timing synchronization
across distributed processes. This incompleteness could lead to incorrect partial ordering of method
execution events hence false positives and/or false negatives in the dynamic dependence analysis in
Seads. To mitigate this implementation-wise threat, Seads currently includes the most commonly
used kinds of message-passing APIs by default. Users can readily supplement the default list with
other such APIs used in their systems under Seads’s analysis.
External validity. One threat to the external validity of our results lies in the representativeness
of the subject SUAs and their executions used in our evaluation study. The SUAs we chose may
not well represent all real-world distributed systems that Seads could apply to, and the executions
considered for each chosen SUA may not have exercised all the typical behaviors of that SUA
(or may not reflect its representative operational profiles). If the differences between our sample
SUA executions used and representative distributed system executions are significant, users of
Seads may experience its performance and merits differently from what we reported here. We
have attempted to reduce these threats by considering subject SUAs of varying size, architecture,
and application domains, as well as execution scenarios of varied kinds. Nevertheless, to minimize
such threats, we would need to use real operational scenarios of real-world distributed systems in
their actual deployment settings.
Construct validity. The baseline chosen for the comparative evaluation is not ideal—to avoid
potential biases, we would need to use a state-of-the-art online dynamic dependence analysis tool
developed by others (rather than ourselves) that at least works with some (if not able to scale to all)
real-world distributed systems. Even more desirably, we would want to use as the baseline a scalable
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and cost-effective dynamic dependence analysis tool for distributed systems, which may achieve the
scalability and cost-effectiveness (potentially at different levels from those offered by our approach)
through different methodologies from ours. Given the unavailability of such desirable baselines,
we used Doda as an alternative. This choice may have led to biases in our evaluation since Doda
was also developed by ourselves. To reduce this threat, we built Doda on top of the state-of-the-art
dynamic dependence analysis for distributed software systems while ensuring both Doda and
Seads share underlying analysis infrastructure and utilities as far as possible.
In addition, given the unavailability of actual ground-truth dependence set for each query, we

only considered relative measures to evaluate the precision and recall of Seads with respect to
the baseline’s results, which constitutes another threat to construct validity. Also, the dependence
queries chosen may not represent real queries sent by users (either human users or application
analyses/tools) in practice. A similar threat concerns the user budgets considered for each subject
SUA execution. To reduce these threats, we randomly chose the queries and sent them at random
intervals, and specified user budgets also randomly, trying to cover a variety of these inputs to
Seads in real use scenarios. Finally, we only observed continuous executions within a limited
amount of time and used a limited number of queries in the evaluation. As a result, users interacting
with real-world distributed systems for a much longer time with much more queries sent at different
intervals from those in our experimental setup could obtain performance results with our techniques
that are different from what we reported.
Conclusion validity. The main conclusion validity threat lies in the generalizability of our
evaluation results and conclusions. Due to the limited number and diversity of subject SUAs and
SUA executions we considered, as well as the discussed concerns with the baseline choice and
other experimentation settings, we do not claim that our results (e.g., those supporting the
substantial cost-effectiveness advantages of Seads over Doda) generalize to an arbitrary
real-world distributed system in all operational scenarios while in comparison to any other
relevant baseline approaches. Finally, our conclusions based on the results of the dynamic
dependence analysis at method level may not generalize to finer-grained levels (e.g., statement
level), at which the analysis would face much greater scalability and efficiency challenges.

7 DISCUSSION
In the section, we discuss additional aspects of our technical approach and empirical evaluation.

7.1 Objectives of Empirical Evaluation
Compared to the baseline approach Doda which prioritizes analysis precision with a fixated
configuration, Seads sacrifices (relaxes) analysis precision in order to contain the analysis cost
within the user-specified time budget. It is intuitive that the price for a less precise and accurate
analysis is generally lower. Thus, it was well expected that Seads would be less precise and more
efficient than the baseline. Yet we cannot simply assume and expect that the precision loss would
be always outweighed by the efficiency gains hence the overall cost-effectiveness would be higher
than the baseline. Therefore, while the general evaluation results on the efficiency merits of our
approach are not surprising, it is still important to deeply measure the precision loss and efficiency
gains of Seads compared with Doda as done in our empirical evaluation, so as to explicitly validate
and quantify the cost-effectiveness and scalability advantages of our approach.

7.2 System-Level Scalability Challenges
A distributed system may start with a very large number of concurrent processes in its executions.
It is also likely that the number of processes in the execution of a long-running (or
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continuously-running) system increases to be very large at runtime. In either situation, the scale of
the distributed system execution may generally cause a scalability challenge to Seads when
applied against such systems. The goal of Seads is to address the scalability issue (with dynamic
dependence analysis of long/continuously-running distributed systems) caused by the great
overhead of both of its static and dynamic analysis parts. Although our evaluation results indicate
that the overall cost/overhead dealt with by Seads was dominated by the cost of its static analysis
(i.e., computing the static intracomponent dependencies) part, generally the cost of its dynamic
analysis part can become substantial too (e.g., when the system execution has a very large number
of processes to start with or added in the middle of the execution). Such substantial dynamic
analysis costs would trigger Seads to adjust its analysis configurations in order to strive for a good
cost-effectiveness trade-off and maintain scalability.

Meanwhile, when there are a large number of processes in the system execution, a challenge to
the underlying platform and infrastructure (e.g., computing power and network bandwidth) would
arise. If these underlying resources cannot scale to the distributed system execution itself, the
execution of Seads would certainly be impeded as well. Thus, since it works purely at application
level, Seads deals only partially with the system-level scalability issues that involve the run-time
platform and computing infrastructure of the distributed system under analysis.

7.3 Analysis on Execution Slices
While Seads aims to address scalability and cost-effectiveness balancing challenges for dynamic
dependence analysis based on long-/continuously-running executions (hence long/unbounded
traces), it is also feasible and useful to adopt a dynamic analysis technique on a (relatively short) slice
of the executions (i.e., trace slice). Seads can be readily adapted to work on a trace slice too. However,
there are two issues to be considered for such an analysis against a long-/continuously-running
system. The first one is that the dependence analysis working on a trace slice may be incomplete:
without previous run-time states (e.g., the events occurring prior to the start of the slice) of the
system being considered, the dependencies computed for the slice are not complete with respect
to the system’s entire execution up to the end of the slice. The second one is that some dynamic
dependence based applications may produce incorrect analysis results if only a slice of the execution
is analyzed. For instance, in a dynamic taint analysis (based on dynamic dependencies), when a
source is executed beyond a slice while a sink that is actually reachable from the source at runtime
is executed within the slice, the dynamic information flow path from the source to the sink (hence
the sensitive data leak) would be missed. In this paper, we address dynamic dependence analysis
with complete executions of continuously-running systems (i.e., unbounded traces).

7.4 Online versus Offline Analysis
While we designed Seads as an online technique, offline dependence analysis and its applications
(e.g., impact analysis) are generally useful as well. In fact, our previous techniques (e.g., Diver,
DistIa) which compute dynamic dependencies for dynamic impact prediction are mostly offline
dynamic analysis approaches. Yet we note that these prior techniques only address short-running
programs producing traces that are not very large, while considering the entire traces. They would
not work with long-/continuously-running programs that produce infinite and voluminous traces.
For long-/continuously-running programs, when we need to consider entire execution traces

(we exemplified such situations in Section 7.3), an offline analysis is generally infeasible because
the execution traces are unbounded hence cannot be completely serialized. On the other hand, an
offline analysis would work well when (1) the program does not run very long and whole program
execution traces are not very large, even though entire execution traces need to be analyzed, or

36



(2) only a part of the execution traces needs to be analyzed. For both cases, Seads would readily
accommodate as well by just considering the trace part (slice) of interest.
We also note that although we have referred to impact analysis as an example application of

the dynamic dependence analysis offered by Seads, impact analysis itself is just one of the many
possible applications based on dynamic dependencies. In this paper, our focus is more generally
on dynamic dependence analysis rather than on its particular application to impact analysis. Also,
with Seads, we mainly address the situations in which entire program execution traces need to be
analyzed while these traces are unbounded.

8 RELATEDWORK
There are several classes of prior work that are most related to ours: program dependence analysis,
dependence analysis for distributed systems, analysis with variable cost-effectiveness, and adaptive

software systems and techniques.

8.1 Program Dependence Analysis
Dependence analyses are used to infer dependence relationships among program entities and to
further reason about the relationships for coding, debugging, and testing software systems [50, 61].
We can compute program dependencies using static, dynamic, or hybrid approaches. A static
dependence analysis approach computes dependencies without referring to the program executions,
while a dynamic dependence analysis solution utilizes the execution data of programs for the
computation [56]. Another type of analysis, called hybrid analysis, combines static and dynamic
analysis techniques [69], to deduce dependencies. According to the nature of the analysis result
(dependencies), hybrid analysis can be regarded as a special type of dynamic analysis, as opposed to
purely dynamic analysis, since its results are dynamic: its results only hold for particular executions
utilized (as opposed to static analysis producing results that hold for all possible executions). In the
paper, we focus on the hybrid approach to dynamic dependence analyses.
One example dynamic analysis is dynamic program slicing. For instance, Korel and Laski [48]

utilized arrays and dynamic data structures to significantly reduce the slice size for a finer
localization of program fault(s). Zhang and Gupta introduced a dynamic program slicing algorithm
Opt based on a precise dynamic dependence graph (dyDG) representation which is rapidly
traversable [86]. Hybrid approaches have also been proposed for dependence computations. For
instance, Diver employs a static dependence analysis to significantly reduce the computation time
of the final dynamic dependence analysis [16]. Existing dependence analysis approaches mostly
focused on single-threaded systems. For example, besides Diver, TracerJd is also a dynamic
dependence analysis approach, including a static analysis phase, for single-threaded programs [17].
In addition, Rus and Rauchwerger proposed a hybrid dependence analysis for automatic
parallelization, to achieve almost maximum parallelism with minimum run-time overhead using an
integrated compiler via seamlessly merging static and dynamic analysis techniques together [69].
Concurrent program slicing deals with multi-threaded but mostly single-process code, as
exemplified in [35, 37] as dynamic approaches—most existing approaches in this domain are
static [21, 35, 51, 58, 65]. On the other hand, for multi-process applications, SimEvo employs static
and dynamic analysis techniques to identify system-level concurrent dependencies [85], thus it can
also be considered a hybrid analysis approach.

Seads clearly differentiates itself from these existing dependence analysis approaches in that it
targets distributed software, which executes in multiple, distributed processes each including
single or multiple threads. Moreover, the defining distinction of Seads lies in its changing analysis
configurations on the fly, versus existing approaches commonly using a fixated analysis
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configuration. Meanwhile, Seads leverages the state-of-the-art hybrid dependence analysis
approaches (i.e., [16, 19]) for computing intraprocess dependencies.

8.2 Dependence Analysis for Distributed Systems
Some dependence analyses have enabled numerous client applications for distributed systems,
including impact prediction [33, 62, 74] and performance optimization [46]. Yet these analysis
approaches are static and limited to specialized systems (e.g., DEBS [57] and RMI-based systems)
or a customized language that relies on developer annotations [25]. As a dynamic analysis for
commonly deployed distributed systems, DistIa, including its basic and enhanced versions, can
compute dependencies both within and across processes by exploiting the partial ordering of
executed methods. Moreover, the enhanced version of DistIa is much more cost-effective than the
basic version because the former prunes methods that do not satisfy the message-passing semantics,
to improve the cost-effectiveness [19]. Relative to these approaches, Seads differs clearly in that it
computes dynamic dependencies while achieving an even greater level of cost-effectiveness than
DistIa by utilizing static dependencies and statement coverage when the user budget allows.
DistTaint [29], a purely application-level dynamic information flow analyzer for common

distributed programs, computes intraprocess and interprocess dependencies from globally
partial-ordered execution method events to handle implicit dependencies with high analysis
precision at a fine-grained (statement) level. DistTaint achieves practical cost-effectiveness and
resolves multiple technical challenges, including applicability, portability, and scalability
challenges, through a principled, multi-phase analysis strategy [31]. The key difference between
DistTaint and Seads is that the former as an information flow analyzer is essentially a targeted
dependence analysis: for a given query, only the dependencies through which the query reaches to
known targets (i.e., the sinks) are computed. Thus, compared to Seads as a general dependence
analysis, DistTaint has a much narrower analysis scope. Moreover, like other existing
dependence analyses, DistTaint uses a fixated configuration during the entire analysis. Also,
DistTaint is an offline dynamic analysis, as opposed to the online analysis in Seads.

8.3 Analysis with Variable Cost-Effectiveness
Most existing analysis approaches commonly suffer from challenges of balancing the analysis
cost and effectiveness: They are either precise but too expensive or efficient but too imprecise. To
deal with these challenges, one existing solution is to offer variable cost-effectiveness balances to
satisfy varying user needs. For example, the DiaPro framework provides flexible cost-effectiveness
choices for a variety of levels of cost-effectiveness trade-offs with the best options for variable
user requirements and budgets [18]. By combining the static and dynamic data, DiaPro unifies
Pi/Eas [6], Diver [16], and three dependence-based dynamic impact analysis techniques: one
using coverage and trace, one using aliasing and trace, and the other using all these dynamic data
(aliasing, coverage, and trace). Another example is D2Abs [15], which aims at practical scalability
and offers various levels of cost-effectiveness trade-offs in the dynamic dependence analysis for
distributed programs. Its most precise computation of run-time dependencies has been used to
measure interprocess communication (IPC) coupling in distributed systems [30]. To achieve different
cost-effectiveness trade-offs, D2Abs provides four versions each enabling and disabling different
analysis steps. In contrast to these peer approaches, which achieve variable but a small number of
(four or less) cost-effectiveness levels via the same number of versions of an analysis with each
still utilizing a fixated analysis configuration, Seads achieves a much greater and easily extensible
number of cost-effectiveness levels in one analysis that adjusts its configurations on the fly.
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8.4 Adaptive Software Systems and Techniques
Self-adaptive systems automatically adapt themselves to continuously meet requirements in
dynamic, uncertain, and unpredictable environments [71]. Self-adaptive systems also monitor
relevant changes in the environments and adapt themselves to ensure adaptations [28]. For
example, Bodden [13] developed a dedicated domain-specific language and intermediate
representations to express self-adaptive static analyses. These representations allow for an
automatic adaptation of the code of the analysis, both ahead-of-time (through static analysis) and
just-in-time during the execution of the analysis. In addition, Heo et al. proposed a new technique
for developing a resource-aware program analysis [39], which monitors the resource usage of the
analysis and adjusts the analysis’s behaviors by coarsening program abstraction usually using less
memory and time, in order to meet the constraint on the usage of physical resources (e.g.,
memory). The analysis adjusts itself many times under the direction of a controller to decide how
much the analysis should coarsen the abstraction, with the varying computation of the analysis.
Seads shares a similar goal with these adaptive approaches, but it adjusts itself (in its
configuration) concerning the analysis cost and user budget both in terms of time as opposed to
hardware resources (e.g., memory). Also, Seads is a dynamic analysis versus the peer approaches
being static. On the other hand, some control-theoretical approaches have been designed for
self-adaptation, such as [59], [34], [49], and [81]. These approaches generate and update explicit
architectural models of themselves for self-adaptation [71].
As a computational intelligence subfield, machine learning has been widely applied to provide

self-adaptation capabilities. As a subfield of machine learning, RL refers to a set of trial-and-error
methods by which an agent could learn how to make good decisions through interactions with
an environment. The adaptive nature of RL makes it very appropriate for self-adaptation [9].
Cardellini et al. presented an Elastic and Distributed data stream processing Framework (EDF)
to autonomously control elastic data stream processing applications. EDF elastically self-adapts
at run-time to prevent resource wastage and match the workload. In EDF, several distributed
self-adaptation policies were designed, including a model-free RL (Q-learning) solution and a
model-based RL [52] solution. The framework utilizes different levels of available knowledge about
system dynamics, where distributed agents learn the most valuable reconfiguration actions [20].

In addition, Zhao et al. proposed a framework for self-adaptation through combining an offline
learning phase to create adaptation rules for goal settings, and an online adaptation phase to make
adaptation decisions using the generated rules. At these two phases, there are two key
self-adaptation capabilities of the framework: (1) at the offline phase, the framework automatically
learns adaptation rules from different goal settings; (2) at the online phase, the framework
automatically evolves adaptation rules from the environment and user goals [87]. Wan et al.
presented another self-adaptation framework to handle the complexities of software changes using
a rule-based RL self-adaptation planning method [78]. Also, Hrabia et al. presented an approach
that integrates RL into a hybrid decision-making and planning framework for online learning from
beneficial behaviors’ experiences of robots depending on the environment. In the framework, RL is
used to improve self-adaptation and to deal with dynamically changed target conditions [42].
For managing multiple containers deployed across multiple host nodes (machines), Rossi et al.

developed Elastic Docker Swarm (EDS) extending a container management tool Docker Swarm
with self-adaptation capabilities. EDS is based on (model-based) RL to adapt the deployment of
container-based applications at run-time in a decentralized manner. For the sake of comparison, the
authors also designed approaches based on Q-learning and Dyna-Q [73] algorithms [68]. Fabiana
Rossi [67] also proposed decentralized policies based on RL to adapt the application deployment,
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in terms of container migrations and elasticity. As a first step, the author designed and evaluated
Q-learning, Dyna-Q, and model-based RL solutions to exploit system dynamics.

In sum, these prior approaches generally focus on bringing self-adaptation capabilities to various
kinds of software applications through RL, adapting the behaviors of the software itself to the
runtime environments and/or system-level resources. In comparison, Seads also leverages the RL
methodology to achieve adaptation capabilities, but it aims to adapt a foundational program analysis
of software applications (as opposed to adapting the software itself) to better cost-effectiveness
trade-offs while targeting continuously-running distributed software in particular.

9 CONCLUSION AND FUTUREWORK
We have presented Seads, a distributed, online, scalable, and cost-effective dynamic dependence
analysis framework for common continuously running distributed systems with concurrent and
decoupled processes. Seads itself is distributed, with nodes (each analyzing one of the distributed
processes of the SUA) to compute dependencies in parallel using the SUA’s distributed computing
resources. Seads is online to avoid disk I/O and storage costs of dynamic data tracing. To achieve
practical scalability and cost-effectiveness, Seads automatically and continually adjusts its analysis
configurations during the SUA execution, according to previous configurations, corresponding
costs, and the user-defined budget, using a reinforcement learning (Q-learning) strategy.
Our evaluation targeted eight real-world Java distributed systems with continuous executions.

The results revealed that Seads offers a scalable, cost-effective, online, and continuous dynamic
dependence querying service, with practical run-time overheads (99% slowdown), acceptable
response time (65 seconds), and almost-negligible storage costs (only 88MB) in an average case. We
also demonstrated that Seads has scalability and cost-effectiveness advantages over our baseline,
the online version of a state-of-the-art dynamic dependence analysis for distributed program but
using a fixed (highest-precision) analysis configuration: (1) Seads was 3x faster than the baseline
to respond to the user (65 seconds vs 197 seconds); (2) Seads was 3.3x as efficient as the baseline in
terms of the run-time slowdown caused by the online analysis; (3) Seads was more cost-effective
than the baseline which only attained 44% and 32% of Seads’s cost-effectiveness with respect to
average response time and run-time slowdown, respectively; and (4) Seads scaled to enterprise-scale
SUAs, such as Voldemort, while the baseline could not.
Through Seads, we demonstrated a novel methodology for achieving a scalable and

cost-effective online dynamic dependence analysis, as a fundamental dynamic analysis that has
numerous applications in various domains (e.g., debugging, testing, security defending, and
performance-tuning distributed systems). Thus, one immediate next step is to develop practical
client analyses and tools for these application problems for real-world, enterprise-scale distributed
systems. Another future direction is to develop an optimal self-adaptive dynamic dependence
analysis framework that provides optimal cost-effectiveness trade-offs at arbitrary querying time.
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