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Machine learning-based classification dominates current malware detection approaches for Android. However,
due to the evolution of both the Android platform and its user apps, existing such techniques are widely limited
by their reliance on new malware samples, which may not be timely available, and constant retraining, which
are often very costly. As a result, new and emerging malware slips through, as seen from the continued surging
of malware in the wild. Thus, a more practical detector needs not only to be accurate on particular datasets
but, more critically, to be able to sustain its capabilities over time without frequent retraining. In this paper,
we propose and study the sustainability problem for learning-based app classifiers. We define sustainability
metrics and compare them among five state-of-the-art malware detectors for Android. We further developed
DroidSpan, a novel classification system based on a new behavioral profile for Android apps that capture
sensitive access distribution from lightweight profiling. We evaluated the sustainability of DroidSpan versus
the five detectors as baselines on longitudinal datasets across the past eight years, which include 13,627
benign apps and 12,755 malware. Through our extensive experiments, we showed that DroidSpan significantly
outperformed all the baselines in substainability at reasonable costs, by 6-32% for same-period detection and
21-37% for over-time detection. The main takeaway, which also explains the superiority of DroidSpan, is that
the use of features consistently differentiating malware from benign apps over time is essential for sustainable
learning-based malware detection, and that these features can be learned from studies on app evolution.
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1 INTRODUCTION

The increasing dominance of Android among mobile computing platforms [49] is accompanied by
its share of the vast majority (over 90%) of all mobile malware [1]. In response to the continued
surge of malware in different markets of Android applications (known as apps), there has been
a growing body of defense solutions against malware [25, 57] being proposed. A major defense
technique has been app classification based on machine learning (ML), which identifies malware by
predicting a given app as benign or malicious [10, 28, 32, 38, 52].

Typically an ML-based classification approach works by first training a classifier based on a set
of features extracted from labeled sample apps, and then applying the trained classifier to unlabeled
apps using the same feature set. Thus, the key step of such approaches is the extraction of an app’s
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features that constitute a behavior profile for the app. Existing approaches have explored various
kinds of features, computed through static [7, 9, 54, 64, 65], dynamic [3, 22], or hybrid [19, 51]
app analysis. Mostly, the features are based on apps’ usage of permissions [19, 51, 54] and/or
APIs [2, 7,9, 62, 64, 65]. However, due to the evolution of attack strategies of Android malware [55]
classifiers built on these features may not be sustainable—they would need to be retrained constantly
for later use, or their performance could downgrade over time.

The sustainability challenge with ML-based malware detection has been approached recently
(albeit implicitly), yet with only limited investigation depth and solutions. For instance,
MamaDroid [42] aims at sustainable detection by using features based on Markov modeling of
abstracted API calls. While achieving high (up to 99%) accuracy when trained and tested on
samples of same years, MamaDroid kept good performance for only one year. When trained on
samples from year N, its detection accuracy dropped noticeably over time, to 75% for testing
samples from year N+2 and below 50% for those from years N+3 and later. As another example,
RevealDroid [29] attained 98% accuracy in a time-agnostic setting (i.e., the age of apps used in
training and testing was dismissed), and the performance experienced significant drop to 87% in a
time-aware setting (i.e., older apps were used for training and newer ones for testing with respect
to a split date) within a short, three-year span.

In this paper, we extensively assess the sustainability of ML-based malware classifiers, in order to
understand how to design more sustainable approaches to malware classification. First, motivated
by the performance deterioration suffered both by existing malware detectors that motivated
MamaDroid and by MamaDroid itself, we have performed a large-scale study of five state-of-the-art
malware classifiers for Android, focusing on how well they may sustain their detection capabilities
for a relatively long period of time. We found that all the classifiers deteriorated significantly (albeit
not continuously) over years, and inspected why the deterioration occurred.

Then, motivated by our study findings, we propose a new behavioral profile for Android apps,
called sensitive access distribution (SAD), that models their run-time behaviors by capturing
quickly-exposable patterns of access to sensitive data and operations through short tracing. Given
an app, the SAD profile characterizes its execution in terms of the extent and distribution of
invocations of sensitive data sources and sinks, and those of sensitive control flows at method level.
Each SAD profile is described by a small set of 52 dynamic features, computed solely from the trace
of all method calls in the app that are exercised during the tracing. Thus, the profile construction
does not need static analysis but only straightforward, lightweight bytecode instrumentation. With
respect to this dynamic profile, we have performed a longitudinal characterization of 13,627 benign
and 12,755 malicious apps from across the past eight years. Based on the SAD profile, we
developed DroidSpan, a novel system for malware detection aiming at superior sustainability.

Our characterization reveals that sensitive access was prevalently executed in all apps over all
the examined years, with lower extent and frequency of use in benign apps than in malware, as
expected. Also, in terms of the semantics of the access, network information and account settings
were the top dominating data and operations involved, respectively, in both benign and malicious
apps (with lesser extent of use in benign apps). Over time, benign apps tended to be much more
stable than malware in terms of the SAD profile as a whole. Most notably, despite the evolution of
Android and its apps, the average SAD profile of malware and that of benign apps were consistently
separable, albeit the size of the differences fluctuated over the years.

We defined the sustainability property of app classifiers and proposed two metrics to quantify
it. We then extensively evaluated the sustainability of DroidSpan against the same longitudinal
datasets, with cross-validation and independent testing (i.e., predicting new/unseen samples). Our
evaluation shows that DroidSpan achieves F1 accuracy superior to (by 6-32% on average) one
state-of-the-art dynamic app classifier [3] and four state-of-the-art static approaches [9, 29, 42, 54]



for same-period detection (testing apps of the same year as the training data). For classifying apps
appeared one to seven years later after training (over-time detection), DroidSpan also significantly
outperformed all the five baseline techniques (by 21-37% on average) over all possible spans with
respect to our datasets.

Significance. We note that sustainability of malware detection matters for their practical adoption.
With new kinds of malware constantly emerging, an effective malware detector has to adapt
to the new malware population in order to identify them on time. With low sustainability, a
malware detector would typically rely on constant retraining using samples of newer apps. However,
retraining may not be an option for two main reasons. First and foremost, in practice, samples
of newer apps (new malware in particular, including zero-day malware) are often unavailable for
retraining a detector such that the detector could recognize them. Second, retraining a learning
model, including feature computation on new samples, can be highly expensive, especially when a
large training set is required and/or a large number of features are used. Note that online/incremental
learning [43] also is subject to the availability of new samples.

Rationale of Improvement. With a relatively intuitive and small set of features, DroidSpan has
achieved superior classification performance in both same-period and over-time settings. This
superiority is grounded in the fact that (1) the features underlying DroidSpan were discovered
through an earlier study that showed they were able to significantly differentiate malware from
benign apps, and (2) our longitudinal characterization with respect to these features as presented
in this paper confirmed that they can consistently separate malware and benign apps when both
groups evolve.

Contributions. This work makes the following contributions:

e First, we formulated the sustainability problem in malware detection techniques via ML-based
classification, and defined two metrics (reusability and stability) to quantify the classification
sustainability.

e Second, we conducted an extensive comparative study on sustainability of five state-of-the-art
static and dynamic malware detectors for Android, and empirically revealed sustainability
insufficiencies in existing approaches.

e Third, we developed a novel malware detection approach DroidSpan based on a new behavioral
profile for Android apps, sensitive access distribution, defined by a very small feature set,
which captures quickly-exposable sensitive access patterns in shortly traced app executions.

e Fourth, we evaluated the sustainability of DroidSpan against the five state-of-the-art
approaches and showed its statistically significant and large improvements in that regard
over those approaches with relatively low costs.

e Finally, we share open-source, full implementations of DroidSpan and the five existing
detectors (i.e., the parts we added for the experiments in this paper) and all datasets, which
facilitate replication of this work and development of future works on Android security. The
entire artifact package can be found at https://bitbucket.org/haipeng_cai/droidspan.

2 SUSTAINABILITY OF MALWARE DETECTION

For ML-based app classifiers, we ask the question: how long and well can a classifier sustain its
performance with and without retraining on newer samples? Accordingly, we define the sustainability
in terms of two metrics:

o Reusability. The reusability of a classifier ¢l indicates how well ¢/ can adapt to a new population
with retraining on new samples from the population, and is measured by the classification
accuracy e’ of ¢l in an average case when trained and tested on apps of the same year.
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o Stability. The stability of a classifier ¢/ indicates how stable cl is without retraining or any
other model updates, and is measured by a tuple ( e°, n), where e® is classification accuracy
cl achieves in an average case when trained on apps of year x and tested on apps of year
x+n,n=>1.

Intuitively, a key to achieving high sustainability of an ML-based app classifier lies in the
underlying features (1) being able to differentiate benign apps from malware, and (2) capturing
the change pattern of those features during the evolution of apps. Accordingly, our approach (1)
incorporates various ways to model sensitive data access, and (2) uses relative statistics (e.g., ratio)
instead of sheer numbers (e.g., number of API calls) to characterize app behavioral patterns.

In the rest of the paper, we first describe the design of DroidSpan in detail (Section 3), and then
present the characterization of our study dataset in terms of the evolution-resilient features we
discovered that consistently differentiate benign and malicious apps (Section 4). It is these features
that enabled the improved sustainability of DroidSpan, which in essence explains why our detection
approach worked better than the five baseline approaches we compared against it. Next, we present
our extensive comparative study on the sustainability of the six detectors considered (Section 5).
Although we actually performed the characterization study and the comparative study for the
five baselines before developing DroidSpan, we describe the approach first for a more concise
presentation structure. We further discuss why the baseline approaches had lower sustainability
compared to DroidSpan (Section 6), followed by validity threats of our results as well as performance
factors and limitations of DroidSpan (Section 8), before discussing related works (Section 9) and
making concluding remarks (Section 10).

3 APPROACH

This section presents DroidSpan, our novel Android app classification system using supervised
learning based on the defining features of our proposed SAD profile. The SAD profile is a new
behavioral model of Android apps that characterizes their run-time access to sensitive data (by
invoking sources) and operations (by invoking sinks). Next, we describe the defining metrics (i.e.,
features) of a SAD profile and how the profile is constructed for a given Android app. Finally, we
describe the ML component of DroidSpan.

3.1 SAD Profile Definition

The SAD profile of an app is defined by 52 features, much simpler than the app profiles used by
most existing ML-based app classifiers (which often use tens of thousands of features, e.g., 150K
in the best-performing mode of MamaDroid and over 500K in RevealDroid for a dataset of 1,000
samples). The central focus of all these features is on the distribution of source/sink invocations,
albeit they fall in three classes each addressing a different perspective: (1) the overall extent of
sensitive access in terms of total source/sink invocations, (2) the categorization of invoked sensitive
access in terms of the categories of data retrieved by the calls to sources, and the categories of
operations performed by the calls to sinks, and (3) the method-level control flows that potentially
carry out execution paths reaching to sink calls from source calls.

Table 1 gives a summary definition of the features that constitute a SAD profile, with the sizes (in
parentheses) of each feature subset. All features are consistently percentages of calls in one group
over those in total. We use these relative statistics instead of sheer numbers in order to capture the
general patterns of app behaviors regarding sensitive access. We examine each app trace in two
complementary views: callsite view concerning unique callsites regardless of the times a callsite is
invoked, and instance view counting all call instances. For each feature in the callsite view (e.g.,



Table 1. Features (52) that constitue a SAD profile

Features \Description (all starting with “percentage of™)
Extent of sensitive access

Total source/sink |callsites targeting sources (resp. sinks) over all callsites.
callsites (2)
Total source/sink call|instances of calls to sources (resp. sinks) over all call instances.
instances (2)
Categorization of sensitive data and operations accessed

Sensitive callsite | callsites targeting sources (resp. sinks) that are in each category
distribution (11) (out of 5, resp. 6) over all source (resp. sink) callsites.
Distribution of sensitive |instances of calls to sources (resp. sinks) that are in each category
call instances (11) (out of 5, resp. 6) over all source (resp. sink) call instances.
Sensitive (potentially vulnerable) method-level control flows

Vulnerable source/sink|callsites targeting vulnerable sources (resp. vulnerable sinks)

callsites (2) over source (resp. sink) callsites.

Vulnerable source/sink|instances of calls to vulnerable sources (resp. vulnerable sinks)

call instances (2) over all source (resp. sink) call instances.

Vulnerable callsite |callsites targeting vulnerable sources (resp. vulnerable sinks)

distribution (11) that are in each category (out of 5, resp. 6) over all vulnerable
source (resp. sink) callsites.

Distribution of |instances of calls to vulnerable sources (resp. vulnerable sinks)

vulnerable call instances|that are in each category (out of 5, resp. 6) over all source (resp.

(11) sink) call instances.

percentage of exercised callsites targeting a source), there is a dual feature in the instance view (e.g.,
percentage of total instances of method calls that target a source).

An app may invoke sources and sinks for legitimate purposes. Thus, source/sink invocations
can only be regarded as sensitive but not necessarily vulnerable. We consider a source vulnerable
if it reaches at least one sink callsite, and a sink vulnerable if there is at least one invoked source
that reaches the sink, both through method-level control flows (i.e., dynamic call paths). While
an imprecise approximation, the reachability based on control flows at method level is cheaper to
compute and potentially more resilient to malware evasions [41], compared to tracking sensitive
data flows [9]. Note that we do not count the numbers of sensitive flows (nor compute all of them)
but only use the reachability in the SAD profile.

We categorize sensitive data access with respect to five categories of information that sources
mostly retrieve (i.e., Account, Calendar, Location, Network info, and System configurations). We
also categorize sensitive operations with respect to six categories of operations that sinks mostly
perform (i.e., Account setting, File operation, Logging, Network access, Messaging, and System setting).
We chose these categories because they were the predominant ones according to our previous
empirical study in this regard [18].

The features defining SAD were originally discovered from an exploratory dynamic
characterization study of a set of Android apps across years (entirely different from the
longitudinal datasets used in this work). In that exploratory study, we experimented with a much
larger set of candidate features [15] before finding the SAD features.
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Fig. 1. The process flow of SAD profile construction.

3.2 SAD Profile Construction

Constructing the SAD profile for an app is reduced to extracting the 52 features from the app.
Figure 1 depicts the construction process flow, with the following three major steps indicated
by corresponding number labels. First, the app is instrumented for tracing. To overcome the
vulnerability of static analysis to code obfuscation, we probe for invocation of all methods in the
APK bytecode, including those in exception-handling constructs (e.g., catch and finally blocks)
and those invoked via reflection.! Second, the instrumented app is exercised with automatically
generated test inputs for T minutes on a device. Lastly, all the SAD features are computed from
the collected trace. Currently, DroidSpan uses T = 5 to balance between overall cost and trace
coverage—we tried shorter and longer tracing time lengths and found that 5 minutes represent
a good balance. To identify the calls to sources and sinks from the trace, we use the source/sink
lists generated by SUSI [47] and our manual categorization that refines the original one [15]. We
use these conservative (thus relatively large) lists of predefined (18K) sources and (7.2K) sinks
to consider access in apps sensitive very conservatively, which is necessary for reducing false
negatives in our malware detection based on the use of sources and sinks.

From each app trace, a timestamped dynamic call graph (TDCG) is built to facilitate computing
the features, especially those based on the statistics about vulnerable sources and sinks. A TDCG
is a dynamic call graph with call-frequency and timestamp annotations. The graph collapses all
instances of a method call, with a timestamp to denote the timing of each instance of the call. This
design decision trades precision for efficiency (relative to an instance-level dynamic call graph). We
use a straightforward timestamping algorithm that facilitates reachability computation: a trace-wise
global counter is maintained, and for a call instance, the timestamp for the caller and callee is
assigned c+1 and c+2, respectively, where c is the current value of the global counter. Thus, each
node of the graph represents a callsite invoked as found in the trace. The size of the timestamp
vector associated with a node indicates the call frequency of the callsite represented by the node.

All features concerning sensitive sources/sinks (the first 26 described in Table 1) are computed
simply by counting the number of distinct sources/sinks and their total occurrences. For the
reachability computation for the other 26 features concerning vulnerable sources/sinks, we first
locate the lowest common ancestors of each pair of source and sink on the TDCG. Then, we compute
the control flow path from the source to the sink, through backward traversal from the sink to the
ancestor and forward traversal from the ancestor to the source, using the timestamps associated
with each callsite (i.e., a call with a smaller timestamp is not reachable from a call of a greater
timestamp). To trade completeness for efficiency, the analysis underlying the TDCG construction is

IThat is, we do not recognize source/sink APIs in the source code during instrumentation; instead, all callsites are probed
for monitoring the call targets, and source/sink calls are recognized later only from the call traces.
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Fig. 2. A DroidSpan trace excerpt (left) and the corresponding timestamped dynamic call graph (right).

purely dynamic, capturing only the control flows due to ordinary function calls. As a result, control
flows induced through callbacks, inter-component communication (ICC) [35], multi-threading?,
and message passing are dismissed—capturing those would require non-trivial static analyses hence
compromise the efficiency and scalability of DroidSpan.

Ilustration. Figure 2 shows an illustrative trace (left) and the TDCG (right) built from the trace.
Each line of an app trace simply records a call instance in the format of caller— callee. In the TDCG,
each timestamp vector (fs) annotating a node maintains the timestamp for each instance of the
node. f1 and f2 are two user-defined methods, src is a source that retrieves Account information,
and sink1 and sink2 are two sinks that perform Logging and Messaging, respectively. Since there
are 1 source and 2 sink callsites, one call instance of each source/sink callsite, 5 total callsites (each
corresponding to a node on the right of the figure), and 10 total call instances (i.e., some of the
callsites are invoked multiple times; e.g., the callsite in f1 that targets f2 are invoked four times,
with timestamps 1, 6, 7, and 10), the features for the extent of sensitive access are (1/5, 2/5, 1/10, 2/10).
Given the categories of these sources/sinks and the total of five source and six sink categories we
considered (Section 3.1), the sensitive callsite distribution features are (1/1, 0, 0, 0, 0) for sources
and (0, 0, 1/2, 0, 1/2, 0) for sinks. Since each source/sink is executed once here, the 11 features for
distribution of sensitive call instances are the same. In this example, sink2 is reachable from src
(e.g., via a path “src [ts=4] — f1 [ts=5] — f2 [ts=6] — sink2 [ts=8]"), yet sink1 is not (with respect
to the timestamps: sink1 was never invoked later than any instance of src). Thus, there is only
one callsite (and instance) of source (and sink) that is vulnerable, hence the features on vulnerable
source/sink callsites and instances are (1/5, 1/5, 1/10, 1/10). The vulnerable access distribution
features are (1/1, 0, 0, 0) for sources and (0, 0, 1/2, 0, 0, 0) for sinks, same as the features on the
distribution of vulnerable call instances.

3.3 SAD-based Classification

DroidSpan is a dynamic malware detector based on the SAD profile. Like existing ML-based app
classification systems, DroidSpan works in two major phases: training and testing. In the training
phase, it relies on a set of labeled app samples to build a prediction model. Then in the testing
phase, the trained model is applied to classify novel apps. Our main goal with and motivation for
DroidSpan, however, is that this model can be used effectively (i.e., with improved classification
performance) some time (years) after it is trained, so that emerging malware can be discovered by
the system without being retrained on samples for the new malware. Intuitively, the longer the
time span, the better, hence the more sustainable the system.

ZFor instance, a sink exercised in one thread would not be considered vulnerable if it is only reachable from a source
exercised in a different thread.



To make the prediction model sustainable, the key is that the underlying features can, for a
relatively long period of time, distinguish benign apps from malware. To that end, DroidSpan uses the
features that define the SAD profile of an Android app (Table 1). Our longitudinal characterization
(Section 4.2) shows that, with the evolution of malware attack strategies and the Android system,
the behaviors of benign apps and malware developed in varying years were consistently separable
in terms of their SAD profiles, despite fluctuations in both groups over time. These findings provide
the fundamental grounds for DroidSpan to achieve improved classification sustainability over years.

Feature extraction. Extracting the SAD features is needed both for obtaining the sample set for
training DroidSpan and for later predicting the label of a novel app using DroidSpan. We compute
the features of all training and testing apps as described earlier (Section 3.2).

Classification. To find the best ML model for DroidSpan, we have performed a comparative study
of DroidSpan variants using most of the supervised classification models provided in the Scikit-learn
library [45]. These models include: random forest (RF), support vector machines (SVM) with both
linear and radial basis function kernels, decision trees/C4.5, k-nearest neighbours (k-NN), naive
Bayes with three possible probability models (Gaussian, Multinomial, and Bernoulli), AdaBoost,
Gradient Tree Boosting, Extra Trees, and the Bagging classifier. By comparing these variants of
DroidSpan with respect to classification performance (precision, recall, and F1-measure), we found
that RF consistently achieved the best performance on any of our datasets. Thus, we chose RF as
the learning algorithm for DroidSpan.> DroidSpan is first trained on benign apps labeled as BENIGN
and malicious apps all labeled as MALICIOUS (despite the varying families the malware belongs
to), and then classifies a novel app as either of the two labels.

Applicability Scope. The classification capability of DroidSpan is based on its modeling of app
behaviors that are (implicitly) relevant to maliciousness in terms of sensitive data access. Thus, it
might seem that this SAD-based behavior modeling only addresses sensitive information
leaking/stealing. We note that an SAD profile essentially characterizes information flow from
certain sources to sinks in general, instead of only concerning information leaking/stealing.
Information flow security is a fundamental aspect of software security [50] that deals with a
variety of specific security threats (e.g., known as taint-style security issues, including SMS trojans
and ransomware attacks [6]). Typically, a specific information flow security problem can be tackled
by looking at particular kinds of information flow of interest (e.g., file-encrypting flow in
ransomware and flow paths leading to SMS invocations in SMS trojans). Therefore, an SAD-based
classification like DroidSpan is more broadly applicable to malware of varies kinds than
information leaking/stealing malware. In fact, as shown in Table 2, our malware datasets represent
a large variety of malware in terms of malware families, thus the promising performance results of
DroidSpan suggest the wide applicability of the SAD-based classification.

4 STUDY DATASETS & CHARACTERIZATION

To understand how sensitive access in Android apps evolves, we collected real-world app samples
from early 2010 to late 2017, and characterized them in terms of their SAD profiles.

4.1 Datasets

Table 2 gives an overview of our study datasets, including total numbers of samples downloaded
(#samples), and numbers of samples that were actually used (#used). Particularly for malware, the

3This model selection strategy has been commonly used in peer work as well—for instance, MamaDroid [42] chose RF also
after considering 1-NN, 3-NN, and SVM; DroidSieve [54] chose Extra Trees after trying with RF, SVM, and eXtreme Gradient
Boost; Afonso [3] chose RF after comparing with ].48, NaiveBayes, SimpleLogic, and a few others.



Table 2. Overview of our study datasets

Benign apps Malware
Name | Year | #samples | #used | Name | Year | #samples | #used | #families
B10 | 2010 1,530 | 1,344| M10| 2010 2,029 | 1,877 78
B11| 2011 2,019 | 1,757 M11 | 2011 1,431| 1,303 116
Bi12 | 2012 2,053| 1,845| M1i2| 2012 2,225 | 1,945 207
B13| 2013 1,748 | 1,568 | M13| 2013 1,230 | 1,139 208
B14 | 2014 3,127 | 2,953| M14| 2014 1,493 | 1,337 181
B15| 2015 1,333 | 1,178 M15 | 2015 1,667 | 1,451 322
B16 | 2016 1,548 | 1,370| M16| 2016 2,171 1,769 224
B17 | 2017 1,650 | 1,612 M17]| 2017 2,205 | 1,934 263
total 15,008 | 13,627 | total 14,451\ 12,755 917

last column (#families) shows the number of malware families represented by the malicious samples
used per year. In this paper, we focus on malware detection only and do not address malware family
classification. Nevertheless, we wanted to ensure the diversity of the malware samples included so
that we may validate that the presented methodology and technique are not only applicable to a
few specific kinds of malware.

For each yearly dataset (named in the first and fifth columns), the samples on which at least one
of the six techniques (DroidSpan and five baselines) did not successfully compute features were
removed from the downloaded set: some of the apps cannot be unpacked, miss asset files, or cannot
be processed by one or more of the compared techniques. Of these 16 datasets, B17 was obtained
by downloading the top 100 popular apps in each of the app categories on Google Play. M13, M14,
M15 and B16 were obtained from VirusShare [34]. All the other datasets were obtained from the
AndroZoo suite [4]. We considered different data sources to make our benchmarks more diverse
hence more representative. Our entire datasets include 15,008 benign and 14,451 malicious samples,
for a total of 29,459 benchmarks. Out of these apps, 26,382 (13,627 benign apps and 12,755 malware)
were used. The 12,755 malicious samples represent 917 unique malware families. All the 16 datasets
are mutually disjoint (there were no apps shared by any two datasets).

We produced the SAD profile of each used sample by running the instrumented app on an
Android emulator (Nexus One), with SDK 6.0 (API 23), 2G RAM, and 1G SD storage. The emulator
ran on an Ubuntu (15.04) desktop of 8G memory and 8-core 2.6GHz CPU. Each app was exercised
for five minutes by the random inputs generated by Monkey [30]. We used Monkey because it
achieves an average code coverage at least comparable to other existing alternatives (research
prototypes) while with the best usability and reliability [20, 44]. To minimize bias, we run each app
in a fresh emulator setting (by restarting a clean emulator for each app).* The line coverage of the
per-sample traces averaged 48.2%, with standard deviation of 22.1% and median of 50.1%. With our
toolkit, a real Android device can be easily plugged in to produce traces for DroidSpan. Since it is
known that malware may hide their behaviors when they detect being run on an emulator [48], we
purposely chose an emulator over a real device in our experiments so that we can check by the
way the robustness of our dynamic detection approach against those evasion schemes.

“4Note that keeping a consistent execution environment (e.g., emulator settings) is essential for the stability of DroidSpan’s
computation of app feature values—as an counterexample, in emulators with contact lists of quite different lengths, for
many of its features, DroidSpan could compute very different values across the emulators because the app exerciser (either
an automated input generator or a human) would trigger the invocation of relevant callsites for largely varied numbers.



4.2 Datasets Characteristics: SAD Evolution

As mentioned earlier, in order to discover the evolution-resilient discriminatory features for
DroidSpan, we conducted an exploratory dynamic characterization study [15] with respect to a
large set of metrics. To avoid potential biases in our evaluation (Section 5) of the chosen baseline
malware detectors against DroidSpan, we used a smaller datasets that are disjoint from any of the
datasets of Table 2. We selected 52 out of those metrics for which the mean metric value of the
benign-app group was consistently greater or smaller than that of the malware group for any year,
and used the 52 resulting metrics as the features to form the SAD profile.

Next, we present and discuss the evidences of these SAD features being able to consistently
distinguish malware from benign apps, according to the two classes these features fall into:
source/sink use extent and used source/sink categories. For illustration purposes, we chose two SAD
features as examples to depict how the SAD profile was resilient against the evolution of both
benign-app and malware groups over the eight years we considered. This characterization on SAD
evolution essentially enabled us to understand the evolutionary patterns of sensitive accesses in
Android apps.

Evolution in source/sink use extent. We examined the evolutionary patterns of the extent of
sensitive accesses in terms of source and sink calls in both the callsite and instance views. We found
that the sensitive accesses were substantial (given our conservative definition of such accesses)
in all the benchmarks studied, benign or malicious. On the other hand, benign apps generally
tended to exercise more distinct sources and sinks (evidenced by higher percentage of source/sink
callsites out of all callsites exercised), while malware tended to invoke sources/sinks more frequently
(indicated by higher percentages of source/sink call instances out of all instances of method calls). A
plausible explanation for this contrast is that many malicious behaviors in mobile apps are related
to accessing sensitive data (via calling sources) and/or operations (via calling sinks), as we found
earlier [14, 23]. Importantly, although the average feature values fluctuated noticeably across years
in both the benign-app and malware groups with respect to each of the 8 features on source/sink
use extent, the signs of the differences between the two groups were consistent over the years: for
each feature, the value of benign apps was consistently higher/lower than that of the malware
in any of these years. This consistent separation between malware and benign apps by a feature
allows for a classifier that uses the feature to differentiate the two groups against evolution.

Figure 3 illustrates these observations with respect to two SAD features: the percentage of sink
callsites (top) and the percentage of vulnerable call instances (bottom). In each chart, we show the
average-case SAD feature values for benign versus malicious apps. Since we were interested in
comparing the means, we computed the 0.95 confidence interval for each mean (represented by the
error bars) to estimate how well these sample means approximate those of the respective populations.
We used the Vysochanskij-Petunin inequality [59] to compute the non-parametric intervals since
we cannot make assumptions about the normality of the data distribution. Considering how the
intervals are computed using the inequality, for a given set of samples, the width of such an interval
of the sample mean immediately reflects the sample variance. As shown, while benign apps had
more distinct callsites targeting a sink, malware had higher frequency of calls to sinks that are
vulnerable, as mentioned earlier. This implies that malware tended to focus on a smaller set of
sinks with each intensively invoked, when compared to benign apps.

Notably, there was no intersection between the trend curves of the two app groups. In an
average-case the feature value of benign apps was always greater (for the percentage of sink callsites)
or smaller (for the percentage of vulnerable call instances) than that of malware, although the
difference sizes varied and were small at some years.
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Fig. 3. Part of our SAD characterization results: mean percentage of calls for sensitive access (y axis) over
years (x axis) in benign apps (blue) and malware (orange). Error bars show 0.95 confidence intervals of the
means (with the interval width immediately reflecting the sample variance).

Evolution in used source/sink categories. Most of the features in our SAD profile concern the
categories of source/sink APIs associated with the sensitive access. Our results clearly indicate that
in both malware and benign apps, among all sources exercised, the dominating ones were those
retrieving network information, while calls to sinks related to account settings® dominated all sink
calls. This observation was consistent regardless of the views and whether the sources/sinks were
vulnerable or not. More importantly, like features on source/sink use extent, these categorization
based features were consistently able to distinguish between the benign and malicious apps over
the eight years, albeit the gaps were larger in some years than in others.

5 EXPERIMENTS AND RESULTS

This section presents our experimental methodology and results of evaluating the sustainability of
state-of-the-art app classification approaches in contrast to DroidSpan.

5.1 Study Setup

We assessed DroidSpan in terms of classification performance and efficiency, versus MamaDroid,
which is a state-of-the-art ML-based malware detection system and shares a similar goal to ours

5Qur source/sink categorization originated from SUSI [47] which assigns categories for source/sink APIs in a conservative
and approximate manner.



(i.e., sustainable detection®). Also, both systems use features based on API calls in an app, albeit
MamaDroid extracts features with static analysis, using FlowDroid [8] to build call graphs while
DroidSpan is based on pure dynamic analysis. Both systems use RF as the learning algorithm for
building the app classifier.

We have not been aware of other prior works that explicitly reported sustainability results,
yet it is possible that some of them may have good sustainability. Thus, we included four more
baseline techniques: (1) DroidSieve [54], another state-of-the-art static approach that uses features
computed from app resources (e.g., asset files) and Extra Trees for classification, (2) Mudflow [9], a
one-class SVM classifier that builds the classification model based on features of benign samples
only that characterize data flows from sources to sinks (computed by FlowDroid), (3) Afonso [3], a
state-of-the-art dynamic approach that classifies apps based on calls to predefined lists of APIs and
system calls using RF, and (4) RevealDroid [29], a lately proposed approach to app classification
based on apps’ usage of APIs, native code, and reflection, also using SVM for classification. For
Afonso, we implemented the entire tool according to the lists of system calls and Android SDK
APIs monitored by the approach as given in the paper [3]. We had to reimplement the tool because
we were not able to access it from a publicly available source. For Mudflow, we were able to reuse
the entire tool except for a few scripts for computing the taint flow paths using FlowDroid and
formatting the feature data to fit the tool. For other three techniques, we obtained the code for
feature computation from the authors (i.e., the core part of the tools) and used the code exactly;
we had to only implement the ML parts because they were not available for reuse— The original
ML part of RevealDroid was available but partially hard-coded for original experiments, which we
cannot immediately use.

We computed the features of these baselines using corresponding tools with the exact
configurations described in the respective original papers (e.g., tracing each app on an Android
emulator against Monkey inputs for 5 minutes for Afonso). With help of their authors, we were
able to replicate the performance results against part of the datasets originally used, hence gained
confidence about the correctness of our tool setups. Given the large number of malware detectors
in the literature, we limited our baselines to the ones that appeared more lately and surpassed
many prior ones (e.g., RevealDroid over Drebin [7]).

We conducted two studies. In Study I, we assess the performance of DroidSpan with training and
testing apps developed in a same period of time (referred to as same-period detection). The goal
of this study is to assess the reusability of app classifiers. In Study II, we focus on evaluating the
stability of the six tools by assessing their performance when they are trained on older datasets
and predict labels of newer ones, spanning one to seven years (referred to as over-time detection).
We used the benchmarks listed in Table 2 for both studies. MamaDroid, Mudflow, and RevealDroid
require large amount of memory, due to which we computed features and classification results on
a HP DL580-G7 server with 256GB memory.

5.2 Methodology

We gauged the performance of DroidSpan versus the baselines in terms of precision, recall, and
F1-measure (accuracy). Give an app p under classification, p is a true positive (TP) if the true label is
L and the predicted class label is L; it is a false positive (FP) if the true label is not L and the predicted
label is L; it is a true negative (IN) if the true label is not L but the predicted label is not L; and it is a
false negative (FN) if the true label is L and the predicated label is not L. Accordingly, regardless of
the number of classes (distinct labels) in the model: Precision (P) = %, Recall (R) = %, and F1

%Sustainability was not explicitly addressed nor quantified originally for MamaDroid [42] but its motivation was similar in
spirit to sustainable malware detection as we focus on in this work.
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two classes in malware detection (i.e., BENIGN and MALICIOUS), where the weights are class sizes.
We used these average metrics (over both malware and benign classes) in order to measure not
only malware detection rate (i.e., true positive rate, which concerns the malware class only as used
as the primary evaluation metric in prior work on malware detection [7, 9, 19, 54, 63]), but also
the ratio of false alarms (concerning the benign class) which immediately affects user-inspection
effort—inspecting benign apps that were falsely flagged as malware is wasteful.

In Study I, we conducted 8 rounds of training and testing, each using the benign-app and malware
datasets from the same year (e.g., B10+M10, meaning benign apps of year 2010 combined with
malware of year 2010). Specifically, we randomly selected a third of samples from each class
(malware or benign) and reserved them as unseen/novel samples. By doing so, we intend to test
the capability of a technique in classifying apps that it never used in training (albeit from the
same time period as the training set). Concerning possible biases in the random selection, we also
performed 10-fold cross-validations (CV) against the baselines as a smoothing scheme. For Study II,
we conducted 28 rounds of training and testing, each using the benign-app and malware datasets of
year x for training and those of year ye[x+1,2017] for testing (e.g., training on B15+M15 and testing
with B16+M16 and B17+M17, respectively). For fair comparisons, we produced the classification
results of the six techniques from exactly the same apps for each training-testing round. In the case
of a technique working at multiple modes/settings, we used the best results it produced on each
dataset. We also performed two statistical analyses to assess the statistical significance and sizes of
performance differences between DroidSpan and all the baselines.

5.3 Study I: Same-Period Detection (Reusability)

In this study, we assessed the reusability of the six compared techniques through evaluating their
classification performance for same-period detection. A more reusable app classifier achieves higher
F1 accuracy in an average case when it is applied to datasets from varying years.

Table 3. Reusability of DroidSpan versus the five baselines on datasets over eight years (hold-out validation).

DroidSpan MamaDroid DroidSieve Afonso RevealDroid Mudflow

Dataset ™5 TR [ F1 | P | R [ FI | P [ R [Fl [ P [ R [Fl | P [ R [Fl | P [ R[F
B10+M10{0.9376(0.9360|0.9362|0.8424(0.8357| 0.8367(0.8353[0.9347(0.8822(0.8788(0.8710/|0.8718|0.8600|0.8540|0.8549|0.5246|0.5319{0.5065
B11+M11{0.9432(0.9417| 0.9413|0.9893|0.9893|0.9793(0.9583(0.7091(0.8151{0.8978(0.8978|0.8978|0.8700(0.8641|0.8616|0.4598|0.4537|0.4563
B12+M12{0.9424(0.9424|0.9423(0.8378|0.8378| 0.8377(0.9203[0.8000(0.8560(0.8954(0.8935|0.8935|0.82830.8279|0.8277|0.7344|0.6419|0.6450
B13+M13(0.9554(0.9529|0.9525(0.9141{0.9076| 0.9060(0.9935[0.8102(0.8926(0.9217(0.9182|0.9172|0.89150.8823|0.8830{0.6362|0.6433|0.6311
B14+M14(0.9302(0.9272|0.9250(0.8462|0.8467| 0.8449(0.8981(0.4528(0.6020(0.8673(0.8693|0.8665|0.8360|0.8389|0.8367|0.7040(0.7048|0.6930
B15+M15(0.9061|0.9042|0.9036|0.8450{0.8440| 0.8442|0.8162|0.9193|0.8647|0.7798|0.7610|0.7514(0.8236|0.80140.7939|0.7213|0.7218(0.7125
B16+M16(0.9352|0.9342|0.9339(0.9021{0.8969| 0.8955(0.8275(0.9787|0.8968|0.8138|0.8068|0.8025|0.8660|0.84440.8389]0.7532]|0.5936(0.6135
B17+M17(0.9723(0.9720(0.9720(0.9126{0.9093| 0.9098(0.8910{0.8892(0.8891(0.9510(0.9493|0.9493|0.85460.8360|0.8334|0.8331|0.7105|0.6668
Average (0.9408/0.9393|0.9388|0.8835(0.8810| 0.8794|0.8929(0.7956|0.8271|0.8780|0.8738|0.8719|0.8523|0.8431|0.8408|0.6761|0.6284(0.6185

Table 3 lists the precision (P), recall (R), and F1 accuracy of each of the 8 independent tests (noted
in first column) achieved by DroidSpan versus the five baseline techniques (first row). For instance,
when using two thirds of the benign apps in B10 and two thirds of the malware in M10 for training,
DroidSpan had an F1 accuracy of 93.62% in predicting the labels of one third of unknown samples
of respective classes in the same datasets. This accuracy was higher than 83.67% by MamaDroid,
88.22% by DroidSieve, 87.18% by Afonso, 85.49% by RevealDroid, and 50.65% by Mudflow. Note that
each F1 number was not computed from the associated precision and recall, but was the average of
respective metric values for the two app classes (BENIGN and MALICIOUS). The last row shows the
averages of classification performance results over the 8 tests, weighted by the number of testing
samples in each test, which indicate the reusability of these compared techniques.
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As shown, DroidSpan achieved precision, recall, and accuracy all ranging from 90% to 97%
for the datasets of any of the past eight years. The classification performance had very small
variations, indicating generally good reliability of DroidSpan. In comparison, the baselines all had
relatively larger variations with any of the three metrics, indicating the greater dependence of their
performance on particular datasets. On the other hand, DroidSpan outperformed all the baselines
in all cases, with the only exception of MamaDroid on one single case of B11+M11, in terms of the
F1 accuracy (in all cases, the best F1 is highlighted in boldface). DroidSpan performed the worst on
B15+M15, which was also nearly the most-challenging datasets for most of the baseline techniques.
As an overall average, the reusability of DroidSpan was 93.88%, versus 87.94% by MamaDroid.
Afonso achieved slightly lower reusability than MamaDroid (87.19%), but higher than the other
three baselines. Mudflow had the lowest performance among all the six detectors with a substantial
gap in any of the three metrics. With respect to the originally reported performance, it was indeed
the least accurate (around 86% versus above 95% in other baselines, albeit not based on the same
datasets). The gap here in our study based on the same dataset suggests that modeling the behavior
of only one (benign) class can face a great reusability challenge.

Table 4. Reusability of DroidSpan vs MamaDroid (10-fold CV)

DroidSpan MamaDroid
Dataset ™5 T F | P | R | T
B10+M10 | 0.9251 | 0.9211 | 0.9215 | 0.8498 | 0.8400 | 0.8482
B11+M11 | 0.9305 | 0.9291 | 0.9286 | 0.9916 | 0.9908 | 0.9901
B12+M12 | 0.9312 | 0.9309 | 0.9309 | 0.8628 | 0.8630 | 0.8637
B13+M13 | 0.9459 | 0.9424 | 0.9417 | 0.9225 | 0.9156 | 0.9157
B14+M14 | 0.9113 | 0.9086 | 0.9055 | 0.8399 | 0.8381 | 0.8387
B15+M15 | 0.8960 | 0.8943 | 0.8937 | 0.8450 | 0.8412 | 0.8403
B16+M16 | 0.9258 | 0.9245 | 0.9241 | 0.8961 | 0.8845 | 0.8902
B17+M17 | 0.9632 | 0.9622 | 0.9622 | 0.9175 | 0.9128 | 0.9098

[ Average [0.9288 | 0.9268 | 0.9261 | 0.8881 [ 0.8834 [ 0.8848 |

As a smoothing strategy, we also performed a 10-fold CV per detector and yearly datasets. Table 4

lists the P, R, and F1 of DroidSpan against MamaDroid, the most competitive baseline in the hold-out
validation. As shown, for both detectors the results were very similar between the two validation
settings (see Table 3). While not shown, this is also the case for the other four baselines. The average,
also weighted by the testing set sizes, shows similar reusability contrasts between DroidSpan and
the baselines.
Conclusion. Our results revealed that DroidSpan achieved competitive reusability of 94% with
small variations across years, outperforming all the five baselines considered in our study (by 6-32%).
Thus, with newer samples available for retraining, it is promising to use DroidSpan continuously
into the future.

5.4 Study Il: Over-Time Detection (Stability)

This study aims at evaluating the stability of DroidSpan versus the baselines. We consider all
28 possible independent tests with our datasets that each trains a classifier on older benign and
malicious apps while testing on at least one-year newer apps. We report P, R, and F1 for each test
and compare them among the six detectors.
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Fig. 4. Performance (y axis) of the six techniques compared, trained on B10+M10 and tested on apps of all
possible next years with respect to our datasets (x axis).
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Fig. 5. Same format as Figure 4 but trained on B11+M11 (left) and B16+M16 (right).
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Fig. 6. Same format as Figure 4 but trained on B12+M12 (left) and B15+M15 (right).

Classification performance. Figures 4 through 7 show the performance metrics values resulted
from all the 28 tests. Each figure compares the six techniques in terms of the three performance
metrics, with one pair of (benign-app and malware) training datasets from one year (as noted in
the figure caption) and the pairs of testing datasets from all possible later years (as noted under the
x axis). For instance, Figure 4 depicts the performance results for the test in which B10+M10 was
used for training the classifiers, while samples in each of the following seven years were used to
test the trained detectors. To save space, each of the other three figures shows the comparative
results from two tests. F1 bars are framed by rectangles to ease comparisons.
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Fig. 7. Same format as Figure 4 but trained on B13+M13 (left) and B14+M14 (right).

Overall, the performance of any technique varied noticeably when being tested on datasets of
different years after it was trained on the datasets of a specific year. For instance, after being trained
on B10+M10, most of the techniques worked the best on apps from year 2014, as shown in Figure 4,
while when trained on B11+M11 and B12+M12, the best performance of DroidSpan was seen by
apps of year 2017, as shown in Figures 5 and 6, respectively. In terms of the performance numbers,
these figures clearly show that over-time detection is much more challenging than same-period
detection for all the techniques studied. For example, in most cases, even the best F1 accuracy out
of the six techniques was below 80% in this setting, significantly lower than an average-case F1
accuracy seen in the same-period detection. On the other hand, while the performance of all the
classifiers degraded from same-period to over-time settings, the degradation was not monotonic.

Importantly, DroidSpan had higher accuracy than all baseline techniques in 25 of the 28 tests,
albeit the precision or recall was slightly lower than one or two baseline techniques in a small
number of cases. Also, the improvements of DroidSpan over these peer techniques were mostly
substantial, or at least noticeable. In the three exceptional cases (trained on B11+M11 and tested on
B16+M16, trained on B13+M13 and tested on B15+M15 and B16+M16), DroidSpan was outperformed
by Mudflow with moderate/appreciable differences (around 10% in F1). These three cases were also
the worst cases for DroidSpan. An intuitive reason is that the SAD profile differences between the
benign-app and malware groups of years 2015 and 2016 were generally much smaller than those
in other years—for instance, with respect to the two SAD features we illustrated in Figure 3, the
differences between the two groups were among the smallest. For apps of these years (and likely
those of future years alike), according to our methodology for improving sustainability, further app
evolution studies may be needed to discover more discriminatory features.

Among the five baseline techniques considered, Mudflow performed the best in most cases,
followed by MamaDroid, Afonso, and then RevealDroid. As in the same-period detection setting,
DroidSieve again had the lowest classification performance for over-time detection. Mudflow also had
the smallest gap between these two detection testings among all these malware detectors compared,
followed by DroidSpan. In fact, Mudflow appeared to be consistent in its classification performance
across the two settings (in terms of the gap magnitude), yet unfortunately the performance was
consistently low (mostly 50-60%). DroidSieve saw the largest performance gap between the two
settings, indicating its greatest overfitting to the features of apps from same years.

Average Stability. To obtain an average-case view of the stability of DroidSpan versus the baseline
techniques, we computed the mean F1 accuracy of each technique from all the 28 tests with one-
through seven-year spans between the training and testing data. Figure 8 illustrates the average
stability according to our over-time detection study for different spans (i.e., the numbers of years,
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Fig. 8. Average stability with accuracy (y axis) and different spans (i.e., number of years after training, x axis)
among the six techniques compared.

Table 5. Overall stability of DroidSpan versus the five baselines

DroidSpan | MamaDroid | DroidSieve | Afonso | RevealDroid | Mudflow
71.81% 42.43% 34.59% | 41.72% 36.24% 50.39%

listed on x axis). As shown, DroidSpan clearly outperformed all the baseline techniques at any
of the seven spans. For detecting malware appeared five years later after training, the accuracy
improvement of our technique over the best performing baseline for that span (i.e., Afonso) was
relatively small. At all other spans, however, the improvements of DroidSpan over any of the baseline
techniques were much more substantial. As seen earlier, Mudflow performance was relatively
consistent across these spans (i.e., for different span lengths), and it was the best-performing
baseline, for the over-time detection. Recall that Mudflow had the lowest performance in the
same-period detection setting. The contrast implies that, while learning only from the benign class
may suffer from low classification accuracy, doing so benefits stability against app evolution. An
intuitive justification is that since no malware is used for training, the classifier is not subject to
overfitting with malware samples as are two-class classifiers. Among the remaining four baselines,
there was no any technique that consistently outperformed the other three at all the spans. On the
other hand, DroidSieve had the lowest accuracy at most (five) of the seven spans. Table 5 shows
the average stability over all these spans. The overall average F1 of DroidSpan was 72%, followed
by Mudflow, MamaDroid, Afonso, RevealDroid, and DroidSieve, in that order, consistent with the
contrasts observed from Figure 4 through Figure 7.

Conclusion. When switched from same-period detection to over-time detection, all the six
detectors degraded in performance substantially. Yet, degradation was neither monotonic nor
linearly correlated with the length of span. On the other hand, among these compared detectors,
DroidSpan noticeably outperformed all the five baselines in terms of stability at any span. Overall,
DroidSpan improved over the baselines by 21% to 37% in terms of average stability.

5.5 Overall Sustainability

Putting results of Studies I and II together revealed that our technique consistently surpassed
the four state-of-the-art learning-based app classifiers, static or dynamic. To further corroborate
the superiority of our approach, we performed two statistical analyses. First, we performed a



set of paired Wilcoxon signed-rank tests [60] in which the two groups were the F1 scores given
by DroidSpan and each baseline contrasted (2=.05). We adopted this nonparametric test to avoid
assuming about the normal distribution of the F1 scores. The goal is to see whether the improvements
of our approach are statistically significant. Second, we computed the Cliff’s delta [21] (in a
paired setting with a=.05), a nonparametric effect-size metric, to gauge the magnitude of those
improvements our approach made over the baselines.

Table 6. Statistical differences in F1 between DroidSpan and baselines

Reusability Stability
Contrast Group p-value |Effect size | p-value |Effect size
DroidSpan vs MamaDroid | 4.23E-02 0.75| 4.00E-06 1
DroidSpan vs DroidSieve |1.43E-02 1|4.00E-06 1
DroidSpan vs Afonso 1.43E-02 1|4.00E-06 1
DroidSpan vs RevealDroid | 1.43E-02 1|8.51E-06 0.86
DroidSpan vs Mudflow 1.43E-02 1|5.84E-05 0.64

Table 6 lists the significance values and effect sizes for both the same-period and over-time
settings. The results clearly show that the performance improvement of DroidSpan over any of
these baselines was statistically significant. Further, the contrasts in effect sizes demonstrate that
the improvements were significantly large: an effect size of d here means 100|d|% of values in the
first group (i.e., F1 of DroidSpan) are larger (smaller if d is negative) than values in the second group
(i-e., one of the five baselines). For instance, concerning reusability, the significance was the least
(with the largest p-value 4.23E-02) and the effect size was the smallest (0.75, in contrast with 1 in
other comparisons) when compared to MamaDroid, consistent with the earlier finding that it was
the best-performing baseline in terms of reusability.

Conclusion. The performance merits of DroidSpan over the baselines were not only noticeable
in terms of sheer F1 numbers, but also statistically significant and large based on non-parametric
hypothesis tests and effect-size measurement, both in same-period and over-time detection settings.

5.6 Efficiency Results

Table 7 summarizes the time spent by each technique for feature extraction (feature time) and ML
computation (learning time) on each single app. In particular, the feature computation costs include
all relevant time costs (e.g., for static analysis by DroidSpan, Mudflow, RevealDroid, and MamaDroid,
resource analysis by DroidSieve, and runtime overhead by DroidSpan and Afonso). Like Afonso,
DroidSpan has the total feature computation time dominated by the (5min) tracing time. For these
two dynamic techniques, the cost for the ML part is quite small, though, mainly because only a
small number of features were used. Nevertheless, the relatively long dynamic analysis time would
impede both dynamic techniques in scenarios of online detection—rather, both are more suitable
for offline app security analysis.

MamaDroid incurred the highest ML time because of its very-large number of features per app,
which is also the cause for its high-memory demand, followed by RevealDroid (e.g., over 900K
features for B14+M14). DroidSieve had relatively substantial prediction (testing) time because of
the same reason (20K+ features per app). We encountered scalability issues with Mudflow, having
failed to extract features for most of the benchmarks initially on a machine with 64GB memory
(due to out of memory errors). We thus had to get a 256GB-memory machine to run it, yet still the
feature extraction time was high (actually the highest among the six detectors). The reason is that
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Table 7. Average time (in seconds) and storage (in KB) costs of the six techniques for each single app

feature time | learning time | total time | storage cost

DroidSpan 351.1s 0.01s 351.1s 21.2K
MamaDroid 430.9s 41.9s 471.9s 1736.01K
DroidSieve 75.2s 3.5s 78.7s 0.4KB
Afonso 521.4s 0.015s 521.4s 32.5K
RevealDroid 78.4s 18.3s 96.7s 1156.81K
Mudflow 698.7s 0.2978s 698.9s 46.67K

Mudflow features are computed from static taint (data) flows using FlowDroid [8], which is known
to be highly expensive.

In total, Mudflow incurred the highest cost, followed by Afonso and then by MamaDroid and
DroidSpan. Mudflow took two months for 2,866 apps with 730GB memory as reported in [9]. For
our study, we took almost half a year to compute the Mudflow features for all our benchmark
apps. DroidSieve and RevealDroid are relatively lightweight among the six, especially for the
feature computation part. However, their ML training part was quite expensive—just training on
10K samples for RevealDroid, for instance, would take over 51 hours, not counting the feature
computation cost. For MamaDroid, the best-performing existing detector, retraining on 10K samples
would take 5.5 days. These numbers echo one of our motivations for developing a sustainable
detector: constant retraining might not be an option in practice.

The storage cost concerns the space (in KB) needed for storing app features, and optionally

(for dynamic approaches specifically) the runtime traces. DroidSieve required very little storage,
and two dynamic approaches incurred medium-level storage costs. MamaDroid and RevealDroid
needed a substantial amount of disk space to store large feature files (again due to their great size
of per-app feature vectors).
Conclusion. DroidSpan brings significant sustainability improvement at very reasonable time
and storage costs. It is actually more efficient than the best-performing baseline (MamaDroid).
Compared to other baselines, the much greater sustainability of DroidSpan should pay off the extra
costs—this is particularly true because with DroidSpan retraining is least often needed (thanks
to its greatest sustainability). Mudflow can face scalability challenges in practice due to its high
memory demand and, even with large memory, a high analysis overhead (the highest among the
six detectors).

6 CASE STUDIES

To gain a deeper understanding on how to improve the sustainability of ML classification-based
malware detectors, we conducted a series of case studies to examine what it is that made DroidSpan
a more sustainable detector compared to the baselines. More broadly, we attempted to gain intuitive
insights into effective approaches to sustainable malware classification, including DroidSpan—while
outperforming the five baselines, it still suffers from sustainability challenges (a noticeable gap
remains between its performance in same-period detection and that in the over-time setting). To
this end, we characterized the evolution of features of each baseline detection technique over the
eight years studied, using our yearly datasets, with a focus on differences in evolutionary patterns
between malware and benign apps.

Specifically, from an average-case perspective, we computed the mean feature values over all the
benchmarks in each app group per detector, and then compared the group means per year as we
did for DroidSpan as exemplified in Figure 3. Given the large number (over 5K at least) of features
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Fig. 9. Part of our case-study results: mean feature values (y axis) over years (x axis) in benign apps (blue)
and malware (orange) of two Afonso features. Error bars show 0.95 confidence intervals of the means.

used by most of the chosen baseline techniques, we narrowed down our inspection scope to only
the features that were consistently ranked at top 100 according to feature importance [54] in all the
classification tests.

We found that for any of these five baselines, among the 100 most important features there was
not even a single one that was consistently higher/lower in the malware group than the benign-app
group, unlike what we observed with DroidSpan features. To illustrate, Figure 9 depicts the evolution
of two Afonso features (frequency of system call recvfrom and that of system call ioctl), in the
same format as Figure 3. The error bars also show Vysochanskij-Petunin confidence intervals of
means (with @=0.05). As shown, there was not a consistent contrast (in terms of the sign) between
malware and benign apps with respect to any of these features—for the same feature, the malware
feature value was substantially higher than benign-app feature value in some years but the contrast
was the opposite in other years. Intuitively, based on such features, the classification model trained
on apps of one year was difficult to differentiate the two app groups of other years. In contrast,
DroidSpan features were able to consistently differentiate benign apps from malware over the
years (see Figure 3). Such a comparison between DroidSpan and the baselines provides an intuitive
explanation of why DroidSpan achieved a higher level of sustainability. We further found that
when a detector used a larger number of features with which the signs of yearly malware-benign
group differences flipped frequently between adjacent years, the detector tended to have lower
sustainability. For instance, DroidSieve, the least sustainable detector among the six studied, had
the largest number of such features.
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Conclusion. The sustainability of a classification-based malware detector tended to largely rely
on the capability of its features in differentiating malware and benign apps consistently against
the evolution of both groups. Using a larger number of features that lack this capability tended to
result in a lower sustainability of the classifier.

7 THREATS TO RESULTS VALIDITY

Our results suffer from common validity threats due to benchmark selection. While we purposely
collected samples from diverse sources to mitigate such threats, our yearly datasets may not be
representative of the app population in respective years. Thus, our results and conclusions are
best interpreted with respect to the benchmarks we analyzed. Another validity threat concerns
possible errors in our tool implementations. To mitigate this threat, we maximally reused existing
implementations accessible to us; for the necessary re-implementations, we did careful code review
and manually validated tool correctness against a few relatively simple test samples.

Since our approach is purely dynamic, it would not work with an app that cannot be executed to
produce a minimal trace that captures the exposable app behaviors for constructing a meaningful
SAD profile. For instance, if an app starts with a login page that requires real, registered user account
information, DroidSpan may not work with it because the current underlying input generator
(Monkey) would most likely get stuck with the login screen. As a result, it would not be able
to exercise the rest of the app hence the dynamic features would not be computed to enable
accurate classification. We note that this is an implementation, rather than technical, limitation
of our approach—technically, the Monkey tool we currently use can be replaced (or assisted) by
a smarter input generator (e.g., [40]). Nevertheless, a minimum coverage is a constraint for the
applicability of our technique. Finding out the actual minimum line coverage required for DroidSpan
to effectively work on an app remains to be studied. Also, our findings and conclusions from the
longitudinal characterization (Section 4.2) are immediately subject to the actual behaviors covered
by the executions used in the study.

In addition, for constructing the SAD profile for an app, DroidSpan as a purely application-level
approach relies on instrumenting the app to monitor the data underlying the dynamic measures that
constitute the SAD profile. This necessary step has a side effect, though: the instrumentation leads to
changes in both the signature and the overall behavior of the app. Fortunately, the benign/malicious
nature of the app should not be much affected by these changes, as evidenced by our promising
results on DroidSpan’s classification performance. Also, the instrumentation is only for the sake of
our detection analysis—the original APK can still be used by the app user for various purposes.
With respect to our experimental dataset, for the apps that were excluded due to instrumentation
issues, the dominating cause was damaged/incomplete APKs. However, the changes do generally
affect the applicability of DroidSpan itself—some apps are not amenable for instrumentation—for
example, their instrumented versions may fail to run normally (e.g.,crash) as they may self-check
their integrity, signature, and/or behaviors against the changes. For this and other reasons (e.g.,
the limitation of our instrumentation in handling some APKs), there are apps that could not
be classified by DroidSpan because the instrumentation issues disable its feature computation.
These application-level instrumentation induced limitations could be avoided by instrumenting
the Android runtime system (e.g., Android ART or Dalvik VM) or using dynamic instrumentation
techniques. However, these alternative approaches would bring about portability and compatibility
issues: first, changing the runtime platform may not always be an option to users; second, for each
different version of the runtime platform, the system-level instrumentation or other modifications
to the platform may need to be redone differently with significant effort, which may not be
always feasible in practice (especially in the consideration of the constant evolution of the Android
ecosystem—including that of its runtime platform).
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A threat to conclusion validity of our results concerns the generalizability of our methodology
in the domain of mobile malware detection. The primary conclusion of this work is that the
sustainability of learning-based malware detection can be improved by discovering
evolution-resilient features through studying/characterizing the evolution of apps over many
years. However, really stealthy malware can be purposely crafted to bypass detection by all means
(e.g., evading emulator environments, self-checking integrity, etc., as discussed in more detail
below in Section 8). Thus, if the features discovered are not resilient against these attacks, our
methodology may still not be able to bring better sustainability for the malware detector even if
the features are resilient against app evolution. On the other hand, a fully-fledged malware
detector that is resilient against various adversarial attacks and capable of capturing more complex
malware behaviors that we currently do not address (e.g., sensitive control flows, from sources to
sinks, across threads and/or processes) may not be able to adopt our methodology to achieve better
sustainability (e.g., the features used vary randomly over time, or the detector does not even use
features whose evolutionary patterns can be characterized as we did with our methodology).

8 DISCUSSION

In this section, we discuss relevant concerns about DroidSpan as another classification-based
malware detector, including its resiliency against obfuscation, sensitivity to input coverage, and
limitations of the technique itself and those of its current tool implementation.

Resiliency against obfuscation. While not a focus of this work, resiliency against obfuscation
is a practical concern with malware detectors [33]. Thus, we performed an additional study as
a sanity check, against an obfuscated malware suite Praguard [41]. We used its most obfuscated
subset (which adopted multiple obfuscation schemes combined: reflection, string encryption, class
encryption, and renaming, etc.), of which 1,214 (of around year 2012) were usable for our study.
Along with our B12 samples, this malware set was used to test each of the six detectors trained on
B10+M10 and B11+M11, respectively. Our results revealed that DroidSpan’s resiliency was close to
that of DroidSieve and RevealDroid (the two state-of-the-art obfuscation-resilient detectors)—for
any of these three, the detection accuracy (F1) was only <2% lower than that when testing against
B12+M12. The other three detectors saw 15-22% F1 decreases with the obfuscated malware set
used. For MamaDroid and Mudflow, the reason was mainly because of their reliance on FlowDroid
whose static analysis was largely impeded by code obfuscation (e.g., class/string encryption). Given
its use of features based on counting Android SDK API and system calls by referring to predefined
lists of function signatures, Afonso is directly subject to reflection and renaming obfuscation. In
sum, this additional study suggested that DroidSpan can be expected to be overall resilient against
common known obfuscation schemes. In fact, in our main experimental datasets as described
in Table 2, on average over 32% of the yearly samples, in both malware and benign-app groups,
adopted obfuscation schemes of some most common kinds (e.g., renaming, reflection, etc.).

Sensitivity to input coverage. Concerned about the common subjection of dynamic analysis to
input availability and coverage, we originally aimed at discovering features that can capture app
behaviors that are quickly exposable with random inputs and without demanding high coverage.
We further investigated the impact of input coverage on the performance of DroidSpan by (1)
comparing DroidSpan accuracy in testing individual samples that received varied line coverage,
and (2) comparing the overall accuracy of DroidSpan when trained on samples traced for 5min
(default) versus for shorter (1min) and longer (10min) per-app execution time. For (1), we found
no correlation between the coverage for an app and DroidSpan’s accuracy in predicting its label.
For (2), when trained on samples all traced for 1min, DroidSpan only had at most 1.5% drop in
average F1 while increasing to 10min tracing only led to about 1% growth in F1. Thus, 5min seemed
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to offer a good tradeoff. Also, the superior classification accuracy achieved by DroidSpan in both
same-period and over-time detection settings with extensive experiments (where the line coverage
of underlying traces varied widely) seems to suggest only minor dependence of DroidSpan on the
input coverage. A main reason is that the DroidSpan features are all about percentages (ratios) of
method calls of one kind (e.g., calls to sinks) to those of a super kind (e.g., all method calls)—as long
as the ratio (i.e., feature value that contributes to differentiating benign apps from malware) can be
captured, the absolute number of calls in each class traced (which is immediately affected by code
coverage) did not matter much.

Sustainability against adversarial attacks. While studying sustainability of malware detectors,
we essentially assumed adversarial attacks as an orthogonal problem. In practice, however, those
attacks would compromise the sustainability of DroidSpan. Like many learning-based malware
detectors, DroidSpan uses implementation-level features for classification. These features, once
revealed, can be mimicked by malware so as to cheat the classification (e.g., a malicious app can
adapt to the SAD profile of a benign app by adding glue code and/or useless methods calls). To
achieve generally improved sustainability, DroidSpan purposely avoids using semantic features
(e.g., those based on fine-grained data flows) that are explicitly relevant to malicious behaviors.
Yet this strategy also facilitates adversarial attacks (e.g., code pollution). Although the primary
goal of DroidSpan is to demonstrate a methodology for achieving sustainable app classification
through app evolution studies, as a tool itself DroidSpan nevertheless suffers from the sustainability
compromises due to such adversarial attacks.

DroidSpan could be vulnerable to advanced app obfuscation and evasion schemes particularly
targeting dynamic analysis. For example, adversaries can use timing bombs to evade the detection
by DroidSpan: once the adversarial knows that DroidSpan only exercises an app for 5 minutes, it
can purposely delay exercising its true behaviors by more than 5 minutes. As a result, no valid
dynamic features would be captured by DroidSpan for its detection. Other similar examples include
waiting for an incoming command from a command-and-control server, for the satisfaction of
particular system properties (e.g., the mobile device being at certain locations), and for specific user
interactions (e.g., the user clicking certain widgets). DroidSpan currently cannot work properly
with these adversarial apps.

In addition, it is well known that tricky malware can evade detection by withholding their
malicious behaviors when they find being executed on an emulator. Our promising evaluation
results obtained from traces collected on an emulator suggest that emulator evasion does not
seem to much affect the effectiveness of DroidSpan. Yet our detector may still suffer from other
sophisticated evasions against dynamic analysis [48]. We currently could not report the statistics
on app samples that adopted those evasion schemes because detecting such schemes in a given app
is not trivial—a dedicated technique would be needed for the automated detection.

Other limitations. An additional limitation of DroidSpan is that substantial updates of the Android
SDK leading to changes of source/sink APIs may affect the performance of our technique, and thus
would trigger retraining (using the updated source/sink lists). Also, although we have looked at the
evolutionary patterns of malware in the past eight years and leveraged these patterns in building a
more sustainable malware detector with DroidSpan, we cannot claim that DroidSpan will surely
continue to work as well as shown for future malware. The unpredictable app evolution in the
future would be also another trigger of retraining the DroidSpan classifier.

Our results on stability from Study II (Section 5.4) showed that, while substantially outperforming
the five baseline techniques, DroidSpan still has large room for improvement in terms of its absolute
classification accuracy (72% F1) in the over-time detection setting. One possible contributing reason
is that some benign apps might have been falsely classified as malware because they had abnormal
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feature values in terms of sensitive accesses (e.g., abnormally higher frequency of source/sink calls).
As partially depicted in Figure 3, our DroidSpan features were selected because they can separate
benign apps and malware consistently over time in an average-case analysis—for some outlier apps,
the feature values might have been closer to malware than to benign apps. As a result, these outlier
apps can be falsely classified (i.e., resulting in false positives). Meanwhile, there might also have
been individual malicious apps that were falsely classified as benign (resulting in false negatives)
because their values of certain features were closer to benign apps than to malware. In addition,
these kinds of abnormal cases can also happen due to the diversity within each group (e.g., benign
apps of different functionality categories, and malware of different families).

9 RELATED WORK

Characterization of Android apps. Previous characterization studies of Android apps mostly
focused on (static) metrics extracted from the app code. For example, in [24], 1,100 popular apps
were studied to understand their use and misuse of private information of mobile phones and
users through reverse engineering. A few dynamic characterization studies exist, which concern
the installation and activation methods of malware only [66] or execution structure of benign
apps only [18]. Another examples include the dynamic study [61] that profiles apps in terms of
their inter-component communications (ICC) [36] and network traffic. CopperDroid [56] can be
used for characterizing system calls in apps, and the recently developed toolkit in [16, 17] serves
both static and dynamic characterizations. In contrast, our characterization is purely dynamic,
focusing on run-time sensitive accesses in both benign and malicious apps. More importantly,
our characterization aims at a longitudinal examination of the evolution of Android apps. The
characterization of evaluation datasets in [42] reveals the evolutionary characteristics of both
malware and benign apps also, but it instead focuses on API calls in apps and is static.

Android Malware Detection. Numerous approaches have been proposed for detecting Android
malware, by statically analyzing data and/or control flows [26, 32, 58, 64], API use [2, 9, 62, 64, 65],
app descriptions [31], and/or installation-time permission [7, 9, 19, 51, 62]. ICCDetector [63]
distinguishes malware from benign apps based on their different patterns in ICCs. The five
state-of-the-art malware detectors have been discussed in detail earlier.

Dynamic malware detectors have mainly exploited monitoring system and/or API calls in
apps [3, 10, 19], or high-level behaviors exhibited through the usage of system resources such
as file and network access [52]. Some of these approaches used static features in addition to
dynamic ones [19, 39, 51]. Approaches relied on static calls in app code are generally vulnerable
to code obfuscation (e.g., reflection) [54]. As suggested by the study in [42], prior approaches
are rarely shown to be capable of sustainable detection. For example, DroidAPIMiner [2], which
was used as the baseline of MamaDroid, did not sustain its capabilities up to one year without
retraining [42]. DroidSpan targets a better sustainability of malware detection than MamaDroid and
other state-of-the-art alternatives, using only dynamic features based on the extent and distribution
of exercised sensitive accesses and vulnerable, method-level control flows in app executions.

As a static detector, Mudflow [9] also uses features based on source/sink usage like our approach.
It builds a normal behavior model based on the statement-level sensitive data flows [8, 13] in a
training set of benign apps and absolute numbers (of flow paths) to identify new malware, compared
to our approach using dynamic method-level control flows and relative statistics (percentages).
Our empirical results suggest that, while by eliminating reliance on new malware samples for
training Mudflow achieved relatively consistent classification performance across same-period
and over-time settings, it suffered from low accuracy partially because the fine-grained data-flow
features it relied on varied largely within both malware and benign apps (hence the constant lack
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of consistently substantial differences between the two groups in terms of those features). Another
static detector [53] leverages common API-call subsequences of source-sink information flow paths
(referred to as complex flows) to model app behaviors and then detects malware from benign apps
based on their differences in terms of complex-flow patterns (characterized using n-gram). Given its
behavioral modeling based on API sequences, this approach is expected to suffer from sustainability
barriers due to the rapid API evolution in the Android ecosystem.

Researchers have approached the sustainability problem of malware detectors through adaptive
classification via online/active learning [43, 46]. Also, detecting concept drift in malware
classifiers [37] helps understand and diagnose the problem hence informs the design of more
sustainable malware detectors [5]. Sharing a similar goal to ours, these techniques can be
leveraged to further enhance the sustainable detection performance of our approach (e.g., by
tuning the classifier to delay time decay [46]). A preliminary version of this work [11] only
compared DroidSpan to MamaDroid against smaller yearly datasets for a shorter maximum span,
and a summary of the major results and conclusions was presented in [12]. This paper also
extended our most recent version of DroidSpan, which was only summarized very briefly in [27],
mainly by including Mudflow in the comparative study.

10  CONCLUSION

As malware remains rampant in the Android ecosystem threatening its large user base, defending
against Android malware is crucial. Numerous approaches have been proposed, mostly training
a learning model to predict the label of novel apps. Yet, existing approaches tend not to sustain
without retraining, which is not practical for detecting emerging malware.

To understand this problem, we performed extensive studies on how representative
classification-based malware detectors for Android sustain their performance over time. We found
that state-of-the-art detectors generally suffer from undesirable sustainability, and as a main cause
they used features that do not well differentiate benign apps from malware against evolution of
both groups. Leveraging our study findings, we developed DroidSpan, a novel malware detection
approach based on a new behavior profile of Android apps that models the distribution of their
sensitive accesses. We also performed a longitudinal characterization using this profile, and
revealed that our studied benign apps and malware were consistently separable in terms of the
profile over the past eight years. We quantitatively defined sustainability as a new validity factor of
a learning-based app classifier and evaluated it on DroidSpan against five state-of-the-art malware
detectors covering representative static and dynamic approaches. Our results showed that
DroidSpan outperformed the five baselines in sustainability with statistically significant and large
improvements at reasonable time and storage costs. By grounding the superior sustainability in the
use of features consistently separating malware and benign apps, DroidSpan demonstrated a
methodology for designing a sustainable malware detector.

11 ACKNOWLEDGMENTS

We would thank the reviewers for their constructive and insightful comments, which helped us
improve the original manuscript significantly. This work was supported in part by the National
Science Foundation grant CCF-1936522. Any opinions, findings, and conclusions expressed herein
are the authors’ and do not necessarily reflect those of the sponsor.

REFERENCES

[1] 2015. Android malware accounts for 97% of all malicious mobile apps. https://www.theinquirer.net/inquirer/news/
2414949/android-accounts-for-97-percent-of-all-mobile-malware.

25


https://www.theinquirer.net/inquirer/news/2414949/android-accounts-for-97-percent-of-all-mobile-malware
https://www.theinquirer.net/inquirer/news/2414949/android-accounts-for-97-percent-of-all-mobile-malware

(2]

[10

—

[11

—

[12

—

[13

—

[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21
[22

—

[23]
[24]

[25]

Yousra Aafer, Wenliang Du, and Heng Yin. 2013. DroidAPIMiner: Mining API-Level Features for Robust Malware
Detection in Android. In SecureComm. 86-103.

Vitor Monte Afonso, Matheus Favero de Amorim, André Ricardo Abed Grégio, Glauco Barroso Junquera, and Paulo Licio
de Geus. 2015. Identifying Android malware using dynamically obtained features. Journal of Computer Virology and
Hacking Techniques 11, 1 (2015), 9-17.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo: Collecting millions of android
apps for the research community. In Proceedings of Working Conference on Mining Software Repositories. 468—471.
Paulo RL Almeida, Luiz S Oliveira, Alceu S Britto Jr, and Robert Sabourin. 2018. Adapting dynamic classifier selection
for concept drift. Expert Systems with Applications 104 (2018), 67-85.

Nicol6 Andronio, Stefano Zanero, and Federico Maggi. 2015. Heldroid: Dissecting and detecting mobile ransomware.
In International Symposium on Recent Advances in Intrusion Detection. Springer, 382—-404.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. 2014. Drebin: Efficient and
Explainable Detection of Android Malware in Your Pocket. In Proceedings of Network and Distributed System Security
Symposium.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of ACM Conference on Programming Language Design and Implementation.
259-269.

Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric
Bodden. 2015. Mining apps for abnormal usage of sensitive data. In Proceedings of IEEE/ACM International Conference
on Software Engineering. 426—436.

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid: behavior-based malware detection system
for Android. In Proceedings of ACM workshop on Security and privacy in smartphones and mobile devices. 15-26.
Haipeng Cai. 2018. A Preliminary Study On the Sustainability of Android Malware Detection. arXiv preprint
arXiv:1807.08221 (2018).

Haipeng Cai and John Jenkins. 2018. Towards sustainable Android malware detection. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings. ACM, 350-351.

Haipeng Cai and John Jinkens. 2018. Leveraging Historical Versions of Android Apps for Efficient and Precise Taint
Analysis. In IEEE/ACM Working Conference on Mining Software Repository (MSR). 265-269.  [https://dl.acm.org/
authorize?N661846pdf, https://bitbucket.org/sabatu/iterative-taint-analysisproject].

Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. 2018. Droidcat: Effective android malware detection and
categorization via app-level profiling. IEEE Transactions on Information Forensics and Security 14, 6 (2018), 1455-1470.
Haipeng Cai and Barbara Ryder. 2016. Understanding application behaviours for android security: A systematic charac-
terization. Technical Report. Department of Computer Science, Virginia Polytechnic Institute & State Unversity.
Haipeng Cai and Barbara Ryder. 2017. Artifacts for Dynamic Analysis of Android Apps. In International Conference on
Software Maintenance and Evolution (ICSME). 659.

Haipeng Cai and Barbara Ryder. 2017. DroidFax: A toolkit for systematic characterization of Android applications. In
Proceedings of International Conference on Software Maintenance and Evolution (ICSME). 643-647.

Haipeng Cai and Barbara Ryder. 2017. Understanding Android Application Programming and Security: A Dynamic
Study. In International Conference on Software Maintenance and Evolution (ICSME). 364-375.

Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. 2016. StormDroid: A Streaminglized Machine
Learning-Based System for Detecting Android Malware. In Proceedings of ACM Asia Conference on Computer and
Communications Security. 377-388.

Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Automated Test Input Generation for Android:
Are We There Yet?. In Proceedings of IEEE/ACM International Conference on Automated Software Engineering. 429-440.
Norman Cliff. 1996. Ordinal methods for behavioral data analysis. Psychology Press.

Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly Tam, Mansour Ahmadi, Johannes Kinder,
and Lorenzo Cavallaro. 2016. DroidScribe: Classifying Android Malware Based on Runtime Behavior. Proceedings of
IEEE Mobile Security Technologies (2016).

Karim Elish, Haipeng Cai, Daniel Barton, Danfeng Yao, and Barbara Ryder. 2018. Identifying Mobile Inter-App
Communication Risks. IEEE Transactions on Mobile Computing (2018).

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011. A study of android application security.
In Proceedings of the 20th USENILX conference on Security. 21-21.

Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti, and Muttukrishnan
Rajarajan. 2015. Android security: a survey of issues, malware penetration, and defenses. IEEE Communications Surveys
& Tutorials 17, 2 (2015), 998-1022.

26


https://dl.acm.org/authorize?N661846
https://dl.acm.org/authorize?N661846
https://bitbucket.org/sabatu/iterative-taint-analysis

[26] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-Based Detection of Android Malware
through Static Analysis. In FSE.

[27] Xiaoqin Fu and Haipeng Cai. 2019. On the deterioration of learning-based malware detectors for Android. In Proceedings

of the 41st International Conference on Software Engineering: Companion Proceedings. IEEE Press, 272-273.

Hisham Shehata Galal, Yousef Bassyouni Mahdy, and Mohammed Ali Atiea. 2015. Behavior-based features model for

malware detection. Journal of Computer Virology and Hacking Techniques (2015), 1-9.

[29] Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight, obfuscation-resilient detection and family

identification of Android malware. ACM Transactions on Software Engineering and Methodology (TOSEM) 26, 3 (2018),

11.

Google. 2017. Android Monkey. http://developer.android.com/tools/help/monkey.html.

Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014. Checking app behavior against app

descriptions. In Proceedings of the 36th International Conference on Software Engineering. ACM, 1025-1035.

[32] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012. Riskranker: scalable and accurate
zero-day Android malware detection. In Proceedings of ACM International Conference on Mobile Systems, Applications,
and Services. 281-294.

[33] Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A large-scale empirical study on the effects of code

obfuscations on Android apps and anti-malware products. In Proceedings of the 40th International Conference on

Software Engineering. ACM, 421-431.

https://virusshare.com/. 2016. VirusShare. https://www.virusshare.com/.

John Jinkens and Haipeng Cai. 2017. Dissecting Android Inter-Component Communications via Interactive Visual

Explorations. In International Conference on Software Maintenance and Evolution (ICSME). 519-523.

[36] John Jinkens and Haipeng Cai. 2018. ICC-Inspect: Supporting Runtime Inspection of Android Inter-Component

Communications. In IEEE/ACM International Conference on Mobile Software Engineering and Systems (MobileSoft).

80-83.

Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro.

2017. Transcend: Detecting concept drift in malware classification models. In 26th { USENIX} Security Symposium

({USENIX} Security 17). 625-642.

Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, Xiao-yong Zhou, and XiaoFeng

Wang. 2009. Effective and Efficient Malware Detection at the End Host. In Proceedings of USENIX Security Symposium.

351-366.

[39] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. 2015. Marvin: Efficient and comprehensive
mobile app classification through static and dynamic analysis. In Proceedings of IEEE Computer Software and Applications
Conference, Vol. 2. 422-433.

[40] Peng Liu, Xiangyu Zhang, Marco Pistoia, Yunhui Zheng, Manoel Marques, and Lingfei Zeng. 2017. Automatic text
input generation for mobile testing. In Proceedings of the 39th International Conference on Software Engineering. IEEE
Press, 643-653.

[41] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. 2015. Stealth attacks: An extended
insight into the obfuscation effects on Android malware. Computers & Security 51 (2015), 16-31.

[42] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross, and Gianluca
Stringhini. 2017. MAMADROID: Detecting Android Malware by Building Markov Chains of Behavioral Models. In
Proceedings of Network and Distributed System Security Symposium.

[43] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu. 2017. Context-aware, adaptive, and
scalable Android malware detection through online learning. IEEE Transactions on Emerging Topics in Computational
Intelligence 1, 3 (2017), 157-175.

[44] Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu. 2018. On the effectiveness of random testing for
Android: or how i learned to stop worrying and love the monkey. In Proceedings of the 13th International Workshop on
Automation of Software Test. ACM, 34-37.

[45] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, Oct (2011), 2825-2830.

[46] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. 2019. TESSERACT:
Eliminating Experimental Bias in Malware Classification across Space and Time. In USENIX Security Symposium.

[47] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-learning Approach for Classifying and Categorizing
Android Sources and Sinks.. In Proceedings of Network and Distributed System Security Symposium.

[48] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. 2017. Making Malory Behave Maliciously:
Targeted Fuzzing of Android Execution Environments. In Proceedings of IEEE/ACM International Conference on Software
Engineering.

[28

—

[30
[31

—

[34
[35

—_

[37

—

[38

—

27


http://developer.android.com/tools/help/monkey.html
https://www.virusshare.com/

[49] International Data Corporation (IDC) Research. 2016. Android dominating mobile market. http://www.idc.com/promo/
smartphone-market-share/.

[50] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE Journal on Selected
Areas in Communications 21, 1 (2003), 5-19.

[51] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2016. Madam: Effective and efficient
behavior-based Android malware detection and prevention. IEEE Transactions on Dependable and Secure Computing
(2016).

[52] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012. “Andromaly": A Behavioral Malware
Detection Framework for Android Devices. Journal of Intelligent Information Systems 38, 1 (2012), 161-190.

[53] Feng Shen, Justin Del Vecchio, Aziz Mohaisen, Steven Y Ko, and Lukasz Ziarek. 2018. Android malware detection
using complex-flows. IEEE Transactions on Mobile Computing 18, 6 (2018), 1231-1245.

[54] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes Kinder, Giorgio Giacinto, and Lorenzo

Cavallaro. 2017. DroidSieve: Fast and accurate classification of obfuscated Android malware. In Proceedings of ACM

Conference on Data and Application Security and Privacy. 309-320.

Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Cavallaro. 2017. The evolution of Android

malware and Android analysis techniques. Comput. Surveys 49, 4 (2017), 76.

Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015. CopperDroid: Automatic Reconstruc-

tion of Android Malware Behaviors.. In Proceedings of Network and Distributed System Security Symposium.

Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al. 2015. Securing Android: a survey, taxonomy, and challenges.

Comput. Surveys 47, 4 (2015), 1-45.

Omer Tripp, Marco Pistoia, Pietro Ferrara, and Julia Rubin. 2016. Pinpointing Mobile Malware Using Code Analysis. In

Proceedings of the International Workshop on Mobile Software Engineering and Systems. 275-276.

[59] D.F. Vysochanskij and Y.I. Petunin. 1980. Justification of the three-sigma rule for unimodal distributions. Theory of
Probability and Mathematical Statistics 21 (1980), 25-36.

[60] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying E. Ye. 2011. Probability and Statistics for Engineers
and Scientists. Prentice Hall.

[61] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012. ProfileDroid: multi-layer profiling of
Android applications. In Proceedings of ACM International Conference on Mobile Computing and Networking. 137-148.

[62] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. 2012. Droidmat: Android malware
detection through manifest and API calls tracing. In Proceedings of Asia Joint Conference on Information Security. 62—69.

[63] Ke Xu, Yingjiu Li, and Robert H Deng. 2016. ICCDetector: ICC-Based Malware Detection on Android. IEEE Transactions

on Information Forensics and Security 11, 6 (2016), 1252-1264.

Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. 2014. DroidMiner: Automated mining and

characterization of fine-grained malicious behaviors in Android applications. In Proceedings of European Symposium

on Research in Computer Security. 163-182.

[65] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware Android malware classification using
weighted contextual api dependency graphs. In Proceedings of ACM Conference on Computer and Communications
Security. 1105-1116.

[66] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android malware: Characterization and evolution. In Proceedings of
IEEE Symposium on Security and Privacy. 95-109.

[55

—

[56

—

[57

—

[58

—

[64

=

28


http://www.idc.com/promo/smartphone-market-share/
http://www.idc.com/promo/smartphone-market-share/

	Abstract
	1 Introduction
	2 Sustainability of Malware Detection
	3 Approach
	3.1 SAD Profile Definition
	3.2 SAD Profile Construction
	3.3 SAD-based Classification

	4 Study Datasets & Characterization
	4.1 Datasets
	4.2 Datasets Characteristics: SAD Evolution

	5 Experiments and Results
	5.1 Study Setup
	5.2 Methodology
	5.3 Study I: Same-Period Detection (Reusability)
	5.4 Study II: Over-Time Detection (Stability)
	5.5 Overall Sustainability
	5.6 Efficiency Results

	6 Case Studies
	7 Threats to Results Validity
	8 Discussion
	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

