
Identifying Mobile Inter-App
Communication Risks

Karim O. Elish ,Member, IEEE, Haipeng Cai ,Member, IEEE,

Daniel Barton, Danfeng Yao,Member, IEEE, and Barbara G. Ryder,Member, IEEE

Abstract—Malware collusion is a technique utilized by attackers to evade standard detection. It is a new threat where two or

more applications, appearing benign, communicate to perform a malicious task. Most proposed approaches aim at detecting

stand-alone malicious applications. We point out the need for analyzing data flows across multiple Android apps, a problem

referred to as end-to-end flow analysis. In this work, we present a flow analysis for app pairs that computes the risk level

associated with their potential communications. Our approach statically analyzes the sensitivity and context of each inter-app

flow based on inter-component communication (ICC) between communicating apps, and defines fine-grained security policies

for inter-app ICC risk classification. We perform an empirical study on 7,251 apps from the Google Play store to identify the

apps that communicate with each other via ICC channels. Our results report four times fewer warnings on our dataset of

197 real app pairs communicating via explicit external ICCs than the state-of-the-art permission-based collusion detection.

Index Terms—Android ICC, inter-app analysis, malware collusion, static analysis, risk assessment

Ç

1 INTRODUCTION

MOST current Android malware detection techniques
assume that malware apps are stand-alone and inde-

pendent [1]. Thus, they only support the analysis of individ-
ual app programs. Malware collusion is a new emerging
attack model, where two or more malicious apps work
together to achieve their attack goals, while each individual
app may appear benign under conventional detection.
Because of the flexible inter-app communication infrastruc-
tural support in Android, namely inter-component commu-
nication (ICC), writing colluding malware seems to be a
natural next step for malware writers to evade detection.

Performing program analysis on multiple apps for
detecting collusion is challenging and has not been sys-
tematically reported in the literature [2]. Existing individ-
ual app-screening solutions are inadequate. Virtually all
existing ICC-based program analyses are for detecting
vulnerable-yet-benign apps (e.g., due to inexperienced
developers). For example, CHEX [3] identifies potentially
vulnerable component interfaces that are exposed to the
public without proper access restrictions in Android
apps. ComDroid [4] and Epicc [5] identify application
communication-based vulnerabilities and describe two

main categories of abuses (i.e., intent stealing and intent
spoofing). These works address the confused deputy
attack, where a malicious app exploits vulnerable compo-
nent interfaces of a benign app. However, malware collu-
sion has a different attack model, where all colluding
apps are written by malicious developers and share com-
mon attack goals. Existing analyses on ICC (e.g., Appo-
scopy [6], IccTA [7], and Epicc [5]) are not designed to
provide end-to-end pairwise ICC flow analysis. They cannot
be directly applied for collusion detection.

In this work, we point out the need for end-to-end data-
flow analysis across application boundaries for characteriz-
ing behaviors of a chain of apps of length l. For app pairs
(l ¼ 2), end-to-end analysis requires inspecting data flows
through inter-app communication and collectively ana-
lyze the flows for security. Compared to individual app
analyses, an end-to-end analysis can provide a complete
and in-depth report of how sensitive data is generated,
passed, and consumed spanning multiple communicating
programs. However, such an analysis has new security
and scalability requirements, namely i) how to reduce
false alerts and ii) how to achieve scalability: which are
explained next.

� [Flow-level feature extraction] The pairwise app
analysis needs to characterize the context associated
with communication channels with fine granularity.
Failure to do so will result in a high number of false
alerts. For example, XManDroid is an existing (run-
time) solution for Android collusion detection [8].
It specifies classification policies on inter-app commu-
nications. The policies are based on permissions that
the source and destination apps request at the
time of installation. Permission-based policies are

� K.O. Elish is with the Department of Computer Science, Florida Polytechnic
University, Lakeland, FL 33805. E-mail: kelish@floridapoly.edu.

� H. Cai is with the School of Electrical Engineering and Computer Science,
Washington State University College of Engineering and Architecture,
Pullman, WA 99163. E-mail: hcai@eecs.wsu.edu.

� D. Barton, D. Yao, and B.G. Ryder are with the Department of Computer
Science, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061. E-mail: danielb5@vt.edu, {danfeng, ryder}@cs.vt.edu.

Manuscript received 26 May 2018; revised 5 Nov. 2018; accepted 11 Dec.
2018. Date of publication 24 Dec. 2018; date of current version 3 Dec. 2019.
(Corresponding author: Karim O. Elish.)
Digital Object Identifier no. 10.1109/TMC.2018.2889495

90 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 1, JANUARY 2020

1536-1233� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6060-4090
https://orcid.org/0000-0001-6060-4090
https://orcid.org/0000-0001-6060-4090
https://orcid.org/0000-0001-6060-4090
https://orcid.org/0000-0001-6060-4090
https://orcid.org/0000-0002-5224-9970
https://orcid.org/0000-0002-5224-9970
https://orcid.org/0000-0002-5224-9970
https://orcid.org/0000-0002-5224-9970
https://orcid.org/0000-0002-5224-9970
mailto:
mailto:
mailto:
mailto:

coarse-grained. Hence, they are limited in distin-
guishing benign ICC flows from colluding ones.

� [Scalability] We need to provide scalable solutions
with minimum complexity to vet a large number of
app pairs. The complexity of straightforward pair-
wise inter-app ICC analysis (such as in Apk-
Combiner [9]) is Oðn2mjEjÞ, where n is the number
of apps, jEj is the maximum number of edges in
an app’s graphical representation, and m is the
maximum number of inter-app ICC calls between
any pairs of apps.

We present a scalable and effective static program analysis
algorithm to screen apps for possible collusion. Our
approach statically analyzes the sensitivity and the context
of each inter-app ICC-based flow between two communicat-
ing apps. Each inter-app ICC-based flow has a varying
degree of sensitivity, depending on the type of data it car-
ries or action it invokes/requests. Thus, we perform com-
prehensive static data-flow analysis across both apps that
infers the inter-app ICC sensitivity, detailing how the data
is created, modified, and consumed. Our detection policies
are based on this in-depth analysis and are more fine-
grained than permission-based policies, reducing the
number of false alerts on benign inter-app ICC calls as
demonstrated by our experiments.

We describe a method that efficiently analyzes cross-app
data-flows. The method detects important data-flows across
app pairs and extracts behavioral features from the flows.
These flows may lead to collusion-based data leaks and
security abuses, as well as activity and service hijacks due
to vulnerabilities such as exposed exported components.

Our technical contributions are:

� We present an end-to-end program analysis for app
pairs (i.e., app-chain length l = 2) and demonstrate its
application in collusion prediction. We store proper-
ties associated with each inter-app ICC flow, largely
reducing the analysis complexity. Our algorithm
computes and stores the ICC entry and exit points of
an app only a constant number of times. Our detec-
tion has a complexity of Oðn2mþ njEjÞ, where n is
the number of apps, jEj is the maximum number of
edges in an app’s data-dependence graph (DDG),
and m is the maximum number of inter-app ICC
calls between any pairs of apps.

� We design a flow-level risk classification approach
for computing risks of inter-app ICCs. The risk level
indicates possible collusion-based data leak and sys-
tem abuse threats in a pair of apps. Our classification
is based on features extracted from inter-app ICC
flows. The flow-level features are fine-grained. They
cover data dependence, resource access, and protec-
tion properties of cross-app flow paths.

� We perform an empirical study on 7,251 apps from
Google Play store, and found 197 app pairs communi-
cate using explicit intent-based ICCs. We extracted
inter-app flow-level features from these 197 real app
pairs and classified their risk levels. We found that
19.7 percent of the app pairs exhibit risky inter-app
ICC behaviors, such as when external explicit ICCs are
not initiated by valid user triggers (in the source app)

or when external target component (in the target app)
invokes a critical operation. For comparison, we also
classified them with permission-based policies [8].
Our results suggest that our inter-app ICC risk classifi-
cation method generates four times fewer false warn-
ings compared to the permission-based policies. We
perform further case studies on sample app pairs to
validate our findings and show the advantages of end-
to-end flow analysis in differentiating varying security
risk levels of an app in various contexts when commu-
nicating with different apps, where both single-app
and existing inter-app analyses would produce false
alerts and/or miss important risks.

The proposed technique offers a proactive solution against
inter-app collusion vulnerabilities, and demonstrates the need
for end-to-end flow analysis of app chains for Android security.

We envision that it can be used by the app store to per-
form massive screening against potential collusion, as well
as by end users to do so with respect to existing apps on
their device.

Malware collusion is a relatively new class of security
threat, thus, there is no existing benchmark suite for app
collusion. Therefore, we use real-world Android apps to
evaluate our technique.

2 ATTACK MODEL

With malware collusion, privileged Android APIs necessary
for completing attacks can be distributed into multiple
applications as shown in Fig. 1. The colluding apps commu-
nicate directly or indirectly with each other in order to com-
bine their privileges and perform malicious tasks that
threaten data privacy and/or system integrity.

Computation in many existing app scoring systems is
based on properties of how privileged operations are used
in a single app (e.g., [10], [11], [12], [13], [14], [15]). Distribut-
ing privileges across multiple apps results in apps appear-
ing less risky, substantially weakening the power of these
detection systems.

There are two main categories of collusion-induced mal-
ware abuse:

� Collusion for data leak: app X has the access to some
sensitive data (e.g., contact information), but app X
does not request the capability to access the network,

Fig. 1. An example of permissions and operations being split between
colluding applications.

ELISH ET AL.: IDENTIFYING MOBILE INTER-APP COMMUNICATION RISKS 91

in order to appear innocuous to the conventional
stand-alone app screening. App Y (written by the
same malware author) has the permission to access
the network, but not the access to sensitive data.
App X asks app Y to send the sensitive data to the
remote attacker through ICC.

� Collusion for system abuse: apps X and Y work
together to send spam SMS messages. App X pre-
pares the spam SMS messages, and requests app Y
to send them. App X does not need to request per-
mission for sending SMS.

Colluding apps may communicate indirectly, e.g., via
shared files, or through covert channels as demonstrated
in [16]. Marforio et al. [16] thoroughly measured the effi-
ciency of different overt and covert channels for apps collu-
sion, but their work does not provide any concrete defense
mechanisms. Detecting covert-channel based malware
remains an open problem.

In this work, we focus on intent-based ICC channels,
which are standard communication channels in Android.
Our goal is to analyze the threats posed by colluding apps
via the explicit intent-based ICCs, as they threaten both data
privacy and system integrity in Android.

Our inter-app ICC analysis can be used for a number of
security analyses (e.g., to detect app collusion and vulnera-
bility). For app collusion analysis, our inter-app ICC analysis
provides an effective means to capture sensitive inter-app
ICC-based flows and to identify risky app pairs. For app
vulnerability analysis, our inter-app ICC analysis provides
more precise pairwise vulnerability analysis than individual
state-of-the-art solutions (e.g., ComDroid [4] and Epicc [5]).
These solutions assume that any unprotected public compo-
nent is vulnerable regardless if there is a path from the public
component to the critical operations or not. In contrast, we
perform more in-depth end-to-end flow analysis across
multiple apps and inside the public vulnerable components
to check for the existence of such a path. Hence, this will
reduce the false alarmswhen no path exists.

3 CROSS-APP FLOW ANALYSIS

To address security threats across multiple Android apps,
we develop an inter-app ICC analysis, called Cross-App ICC
Map (CAIMap), which underlies our end-to-end flow analysis
hence enables our classification of security risks. The flow
process, as shown in Fig. 2, involves the following three key
operations (phases): CAIMAP CONSTRUCTION, FLOW-FEATURE

EXTRACTION, and RISK CLASSIFICATION, as described below.

In the first phase, we adopted static flow analysis for
each individual app.

This static analysis first computes intraprocedural data
dependencies [17] (i.e., based on local reaching definitions
and live uses), followed by an Android-specific interproce-
dural control-flow analysis which connects those intrapro-
cedural dependencies of individual methods both within
each component of the app, via call and return edges, and
across different components, via intent-based ICCs. For
both of the intra- and inter-component cases, the analysis
considers interprocedural control flows due to threading
(including those through uses of AsyncTask [18]) as well
as event handling and life-cycle callbacks [19]. Thus, the
result of this analysis is an interprocedural data-depen-
dence graph (DDG)—intraproc-edural DDGs connected
through interprocedural control-flow edges.

In addition, a string analysis based on local string-con-
stant evaluation [5] is employed to identify the target com-
ponents of explicit ICCs hence produce the CAIMap graph.

The pseudocode of our cross-app flow-analysis procedure
is shown in Algorithm 1. The algorithm starts with the initial-
izations of helper data structures (lines 1–4), and then con-
structs the CAIMap (lines 5–13). Next, the second and third
phases are performed on only the linked app pairs indicated
by CAIMap entries (lines 14–19) rather than on all possible
pairs, where getApp returns the containing app of a given
component. The two subroutines, getOutFlows (lines 21–25)
and getInFlows (lines 26–31), extract ICC and flow features
from an app by backwardly and forwardly traversing the
data-dependence graph of that app, respectively (as detailed
in Section 3.2). Given the flow features of a pair of apps, the
risk level classification (lines 18–19) is performed by consult-
ing the security policies we elaborate in Section 3.3 (as sum-
marized in Table 1). Finally, the algorithm outputs the risk
levels of all linked app pairs in CAIMap (line 20).

3.1 CAIMap Construction

Our ultimate goal of constructing the CAIMap is to identify
pairs of apps that interact with each other and to model the
interaction with respect to each apps behaviors. It is based on
these behavioral interactions that our cross-app flow analysis
hence collusion analysis is performed. In particular, our
cross-app flow analysis is realized by analyzing Intent-based
ICC calls across apps (e.g., startActivity(Intent i),
startService (Intent i)). Various ICC analysis has been
proposed in prior works, yet most of them focus on statically
determining the field values of Intent objects for more precise
ICC linking [5], [20], [21], [22], [23] or better understanding

Fig. 2. Our inter-app ICC analysis workflow, with a set of apps as input (bottom left) and a risk report (bottom right) as output after three major phases
(as labeled atop).

92 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 1, JANUARY 2020

ICC induced app behaviors through characterization [24] or
visualizations [25], [26], [27]. Other works address security
vulnerabilities within apps [21], [28], [29] or do not address
in-depth cross-app data flows for collusion analysis as we
focus on here.

Definition 1: CAIMap is a directed cyclic graphGðV;EÞ for app
A. Each node v 2 V represents a component or action name,
and each edge e 2 E represents an ICC API. There are two
types of communication:

(1) internal communication: component X calls component
Y , where both X and Y are internal components in app A, and
(2) external communication: component X calls component Y ,
where componentX is in app A, and component Y is in app B.

For each app, we store the CAIMap as a set S consisting
of multiple four-item tuples < ICCName, sourceComponent,
targetComponent, typeCom> , where

� ICCName is the API name of ICC, e.g., start

Activity and startService.
� sourceComponent is the name of the component which

initiates the ICC (exit point). It is a subclass of
Activity, Service, or BroadcastReceiver.

� targetComponent is the name of the component which
receives the ICC (entry point). It is a subclass of
Activity, Service, or BroadcastReceiver.

� typeCom is the type of ICC communication, internal
or external.

Our CAIMap construction takes as input the source or
bytecode of the app and its manifest. The output is a set of
CAIMap information < ICCNamek, sourceComponentk,
targetComponentk, typeComk > for each ICCk.

Specifically, the source and target components of an
explicit ICC is identified by first trying to parse the Intent
object associated with the ICC call. If the relevant Intent object
field is empty, we then analyze calls to APIs that set up an
Intent object before it is passed to the ICC call (e.g., set-
Class(), setComponent() or setAction(), etc.) to
retrieve the target component. For implicit ICCs, the target
component, which can be any one that is declared to hand a
specific action, is identified by parsing the apps manifest file
according to Intent filters (e.g., matching Intent Actions). For
both explicit and implicit ICCs, the source component is
enclosing class/component of the API call that launches the
corresponding ICC. Whether an ICC is internal or external is
also computed from the apps manifest file, by determining
the scope of thematched target component.

We use hashmap to store some information related to ICC
exit and entry points. Specifically, we use two different hash-
maps one for exit points and one for entry points, namely,
SourceAppICCExitHashMap and TargetAppICCEn-

tryHashMap. Each hashmap has multiple entries, where
each entry consists of ComponentName as the key, and a
tuple as the value. We next describe how ICC exit and entry
points with their related information are extracted and
stored in our hashmaps.

ICC Exit Points. We identify the ICC exit points, user trig-
ger, and sensitive data through static analysis. The ICC exit
points include all intent-based ICC APIs such as startAc-
tivity(Intent i), startService (Intent i), and
sendBroadcast(Intent i). User trigger refers to a user’s
input or action/event on the app. For example, the user’s
input may be text entered via a text field, while the
user’s action/event is any click on an UI element, such as a
button. Relevant API calls in UI objects that return a user’s
input value or listen to user’s action/event are defined as
triggers. The sensitive data refers to the APIs that retrieve
private data, such as getAccounts() and getPassword

(...). We perform backward depth-first traversal on the
DDG of the app under analysis from each ICC exit point to
check if it involves sensitive data or user trigger and to store
this information in SourceAppICCExitHashMap.

Each entry in this exit-point map consists of SrcCom-
ponentName as the key, and a tuple <ICCExitName,

SensitiveData, UserTrigger> as the value.
(compX, <startService(Intent i), getDeviceID

(), onClick()>), for example, represents one entry
where compX is the component name that initiates the
inter-app ICC call startService (Intent i) with
sensitive data device ID as part of the intent i and
onClick() as the user event to trigger this call.

ICC Entry Points. We identify the ICC entry points and
critical operations also through static analysis. The ICC
entry points include all components’ entry points such as
onStart() and onCreate(...). Critical operation is an
API call which refers to a function call providing system ser-
vice such as network operations, file operations, telephony
services in the app. Additionally, we analyze the target
app’s manifest.xml file to get the information about the pro-
tection of each component (i.e., the permission(s) defined to
access the component). We perform forward depth-first tra-
versal on the DDG of the app under analysis from each ICC
entry point to find any critical operations and store this
information in TargetAppICCEntryHashMap.

TABLE 1
Our Risk Classification Policies for Explicit Intent Inter-App ICC

Source Component/App Destination Component/App

Policy User Trigger Access to Sensitive Data Exposed Component* Critical Operation Inter-App ICC Risk Level

1 No Yes Yes Yes High
2 No Yes No Yes Medium
3 No No Yes Yes High
4 No No No Yes Medium
5 Yes Yes Yes Yes Medium
6 Yes No Yes Yes Medium

All others – – – – No Risk

*Component is public and not protected by permission(s).

ELISH ET AL.: IDENTIFYING MOBILE INTER-APP COMMUNICATION RISKS 93

Algorithm 1. Inter-App ICC Flow Risk Analysis

Input: AppSet: a set of Android apps
Output: risk_levels: a map from app pair to risk level (as high,

medium, or no) for all explicitly linked app pairs in
AppSet

1: CAIMapInfo ; //a list of entries each being a tuple
< ICCName, srcComp, tgtComp, typeCom>

2: DDGmap ; //a map from the package name of an app
to its data-dependence graph

3: outFlows ; //a map from source component name to a
tuple < ICCExitName, SensitiveData, UserTrigger>

4: inFlows ; //amap from target component name to a tuple
< ICCEntryName, ComProtection, CriticalOperations>
/* CAIMAP CONSTRUCTION */

5: for each app in AppSet do
6: DDG construct the data dependence graph of app
7: add (app, DDG) to DDGmap
8: for each explicit ICC icc, in component srcComp, of app do
9: tgtComp find the target component of icc in AppSet
10: if tgtComp == null then continue
11: typeCom external
12: if tgtComp is in app then typeCom internal
13: add < icc, srcComp, tgtComp, typeCom> to CAIMapInfo
14: for each entry e in CAIMapInfo do

/* FLOW-FEATURE EXTRACTION */
15: if e.typeCom == internal then continue
16: getOutFlows(DDGmap[getApp(e.srcComp)], outFlows)
17: getInFlows(DDGmap[getApp(e.tgtComp)], inFlows)

/* RISK CLASSIFICATION */
18: risk_level match the flow features in outFlows

[e.srcComp] and inFlows[e.tgtComp] against predefined
security policies

19: add (< getApp(e.srcComp), getApp(e.tgtComp)> ,
risk_level) to risk_levels

20: return risk_levels
21: procedure getOutFlowsDDG, outFlows
22: ICCList retrieve ICC-invoking call sites from DDG
23: for each icc, from component comp, in ICCList do
24: < sensData, userTrigs > collect backward-

reachable sensitive API calls and user triggers
from icc on DDG

25: add (comp, < icc, sensData, userTrigs>) to outFlows
26: procedure getInFlowsDDG, inFlows
27: CompEntList extract all component entries from

DDG
28: for each compEnt of component comp in CompEntList do
29: crtOPs collect forward-reachable critical opera-

tions from compEnt on DDG
30: comProt check component protection for comp
31: add (comp, < compEnt, comProt, crtOPs>) to inFlows

Each entry in this entry-point map consists of TrgCom-
ponentName as the key, and a tuple <ICCEntry Name,

CompProtection, CriticalOperations> as the
value. (compY, <onStart(), No, java. io.FileOut-

putStream.write()>), for example, represents one
entry in the TargetAppICCEntryHashMap, where compY

is the component name that receives the inter-app ICC call,
and onStart() is the entry point of compY which is not
protected (hence the value No) and has critical operation
java.io.FileOutputStream. write() reachable from
the ICC call.

Matching ICCs. The creation of the hash data structures
for each source and target component aims at efficiently
computing ICC flows across communicating app pairs. We
start with traversing the CAIMap. For each tuple therein, we
retrieve the source and target components, with which
we then look up the corresponding hash maps to retrieve the
information on entry and exit points. The inter-app ICCs
are then matched according to the entry and exit points,
while obtaining the complete data flow path associated with
the app pair. These matched pairs form the basis for our next
step of policy engineering and risk classification.

3.2 Cross-App Flow-Level Features Extraction

We extract four types of features from ICC flows, two from
the source app and two from the destination app, as
described next.

� Features extracted from the source app are:
User trigger validation. We compute how much the

app actively involves a user in implicitly authorizing
inter-app ICC calls. Previous work on single-app
classification showed that statically extracted fea-
tures on user-trigger dependence (i.e., the degree of
sensitive API calls having def-use dependence rela-
tions on user inputs) are effective (e.g., [12], [30]).
User inputs may be entered through onClick(),
onItemClick(), etc. Researchers found that benign
single apps typically have a high degree of user-trig-
ger dependence, whereas malware, often performing
activities under stealth mode, does not [12], [31]. We
extend that user-trigger dependence characteristics
to the context of app collusion. We use the data-
dependence graphs to quantify the ICC calls’
dependence relations with user inputs. This feature
captures whether inter-app ICC calls are initiated by
the users (in the source app).

Access to sensitive data. This feature is based on
whether the inter-app ICC call involves transmitting
any sensitive data (e.g., getPassword(...)), specif-
ically exfiltrating sensitive data to external receivers.

� Features extracted from the destination app are:
Permission checking. This feature captures whether

the target component (in the target app) is protec-
ted by permission checking when responding to
requests from external intents. This feature is related
to the risk associated with malware exploiting vul-
nerable target app as part of the collusion.

Critical operation. The feature captures if inter-app
ICC calls involve critical operation (e.g., network
and file operations) in the target component.

Next, we give a detailed description of our risk classifica-
tion policies based on these features.

3.3 Risk Classification Policies

Risk classification is performed on each communicating app
pair based on flow-level features and classification policies,
evaluating risks associated with collusion vulnerability of
the pair. We extract flow-level features from both ends of
the inter-app ICC communications, and then apply a rule-
based classification by inspecting the sensitivity of each
inter-app ICC flow.

94 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 1, JANUARY 2020

onClick()
onItemClick()

We formulate our classification policies based on the
flow features which collectively approximate security risks
via inter-app ICCs as follows:

� Category 1: Suppose component C1 in app P1 calls
component C2 in app P2. If the ICC exit point in C1

does not have a valid user trigger and has access to
sensitive data and the target component C2 is not
protected by permission checking and has critical
operation, then this ICC channel is classified as a
high risk inter-app ICC channel.

� Category 2: Suppose component C1 in app P1 calls
component C2 in app P2. If the ICC exit point in C1

does not have a valid user trigger and has no access
to sensitive data and the target component C2 is not
protected by permission checking and has critical
operation, then this ICC channel is classified as a
high risk inter-app ICC channel.

� Category 3: Suppose component C1 in app P1 calls
component C2 in app P2. If the ICC exit point in C1

does not have a valid user trigger and has access to
sensitive data and the target component C2 is pro-
tected by permission checking and has critical opera-
tion, then this ICC channel is classified as a medium
risk inter-app ICC channel.

� Category 4: Suppose component C1 in app P1 calls
component C2 in app P2. If the ICC exit point in C1

does not have a valid user trigger and has no access
to sensitive data and the target component C2 is pro-
tected by permission checking and has critical opera-
tion, then this ICC channel is classified as a medium
risk inter-app ICC channel.

� Category 5: Suppose component C1 in app P1 calls
component C2 in app P2. If the ICC exit point in C1

has a valid user trigger and has access to sensitive
data and the target component C2 is not protected by
permission checking and has critical operation, then
this ICC channel is classified as a medium risk inter-
app ICC channel.

� Category 6: Suppose component C1 in app P1 calls
component C2 in app P2. If the ICC exit point in C1

has a valid user trigger and has no access to sensitive
data and the target component C2 is not protected by
permission checking and has critical operation, then
this ICC channel is classified as a medium risk inter-
app ICC channel.

� Category 7: Suppose component C1 in app P1 calls com-
ponent C2 in app P2. If the ICC exit point in C1 has a
valid user trigger and has no access to sensitive data
and the target component C2 is protected by permis-
sion checking and has critical operation, then this ICC
channel is classified as a no risk inter-app ICC channel.

We introduced the checking of the component’s expo-
sure in the target app as one of the policies in our classifica-
tion. The reason is that the attackers may exploit vulnerable
target app, which is not originally developed for this pur-
pose, as part of their apps collusion attack. In particular,
any outside communication coming to the vulnerable app
with unprotected components can be classified as collusion,
although the vulnerable app is not designed to collude with
any apps.

Our classification policies are summarized in Table 1.
The final classification decision of the app pair is deter-
mined as follows:

� The app pair is classified as high risk if there is at
least one high risk inter-app ICC channel between
the apps.

� The app pair is classified as medium risk if there is at
least one medium risk inter-app ICC channel and no
high risk ones between the pair.

� Otherwise, the app pair is classified as no risk.
Admittedly, all policies have their limitations and may

be bypassed by sophisticated malware writers. Yet, the
advantages of fine-grained policies are twofold: making the
tool more usable by reducing the number of false alerts, and
creating bigger obstacles for malware to bypass.

4 EMPIRICAL STUDY

This section presents the experimental results that charac-
terize the effectiveness of our approach in classifying exter-
nal explicit intent-based ICCs. In particular, the objective of
our evaluation is to answer the following questions:

1) How many communicating app pairs have risky
communication? (Section 4.1)

2) What are the merits of end-to-end over single-app
analysis? (Section 4.2)

3) What are the specific characteristics of high risk
inter-app ICC channel? (Section 4.3)

4) Do our policies have fewer false alerts than permis-
sion-based policies? (Section 4.4)

5) What are the causes of false alerts in permission-
based policies? (Section 4.5)

6) Is our analysis scalable for practical use on real apps
in terms of total execution time? (Section 4.6)

We performed our empirical study on 7,251 free popular
real-world Android apps randomly selected from Google
Play store. These apps cover various application categories
and different levels of popularity as determined by the user
rating scale. In particular, we used 2,917 high popularity
apps, 2,031 intermediate popularity apps, and 2,303 low
popularity apps. We checked these apps using tools such as
VirusTotal1 that screen individual apps, and these tools
labeled all the samples as benign. Our prototype is imple-
mented in Java based on the Soot framework [32], which
parses Dalvik bytecode and extracts the manifest from a
given APK file.

4.1 Risky App Pairs Found

We constructed the CAIMap for each of the 7,251 apps. 197
of app pairs communicate using direct explicit intent-based
ICC channels. We performed our analysis on these 197 app
pairs to evaluate the effectiveness of our explicit inter-app
ICC risk classification policies.

We found that 178 out of the 197 app pairs use Activity-
based inter-app ICC channels (e.g., startActivity

(...)), 29 app pairs use Service-based inter-app ICC chan-
nels, and 9 pairs use Receiver-based inter-app ICC channels.
Some app pairs use more than one type of explicit inter-app

1. https://www.virustotal.com/

ELISH ET AL.: IDENTIFYING MOBILE INTER-APP COMMUNICATION RISKS 95

https://www.virustotal.com/

ICC call. Service and Receiver components perform opera-
tions in the background without the user awareness as
opposed to the Activity component. Thus, we expect the
malware developers to utilize Service and Receiver-based
inter-app ICC channels for the apps collusion to hide the
communication.

Table 2 presents our classification results on 197 app pairs
according to our external explicit intent-based ICC policies
defined in Table 1. Note that 32 app pairs (16.2 percent)
are classified as high risk by policy #3 defined in Table 1 (i.e.,
they have high risk ICC channels).

Seven app pairs (3.5 percent) have medium risk ICC
channels according to our policy #6 defined in Table 1.
Each of these two medium risk pairs has explicit inter-app
ICCs which are initiated by user triggers, however the
target components are not protected. Also, no sensitive
data is involved in the inter-app ICCs between them. For
19.7 percent app pairs classified as high/medium risk, we
found that the explicit inter-app ICCs initiate critical opera-
tions only in the target apps and no sensitive data involved
as shown in Table 3.

Additionally, we found that the explicit inter-app
ICCs between 160 app pairs (81.3 percent) do not pose
any security risk according to our policies. This means
that either (i) the external explicit ICCs are initiated by
user triggers and target components are protected or (ii)
no sensitive data or critical operations are involved in
the external explicit ICCs.

We performed an additional evaluation with 1,433 stand-
alone malware apps collected by [33] and [34]. We used our
Cross-App ICC Map (CAIMap) tool to identify the set of
malware apps that interact with each other in order to find
malware app pairs and further conduct our analysis. Unfor-
tunately, we found no malware app pairs, i.e., no interaction
between these malware apps.

4.2 End-to-End versus Single-App Analysis

To assist users with inspecting and understanding the
results of our analysis, we provide a visualization interface
atop CAIMap depicting how the apps under analysis inter-
act with one another. Fig. 3a gives such a visualization of
the risk level associated with the explicit inter-app ICC calls
among the 197 app pairs. As shown, the com.adobe.air

app, the system runtime environment from Adobe that
allows for cross-platform application development and
deployment, appears to be of the highest risk based on its
largest number of risky connections with other apps as per
our security policies—as can be seen with another central
(yet gray) node, degree centrality alone does not imply the
level of risk.

Our detailed investigation reveals that this app has as
many as 198 ICC exits, of which 16 explicitly point to other
apps with access to sensitive data (e.g., WiFi MAC address
in its com.abode.air.net component). In the mean-
while, it contains 24 exported components (including activi-
ties, services, and receivers) that accept incoming ICCs from
external apps of a broad scope (according to the associated
intent filters as we checked). These incoming ICCs do not
appear to be reached by sensitive data or user triggers (e.g.,
input or user actions).

Also, none of the exported components of com.adobe.
air are protected by any permissions. Moreover, eight use
permissions are declared inclusive of those allowing access
to the Internet and the state of WiFi and cellular network.
These permissions enable each of the incoming ICCs to (for-
wardly) reach five different critical operations (including
android.content.ContentResolver.delete(..)

and java.io.BufferedReader.readLine()) in vari-
ous components (e.g., serializing messages to local storage
in its com.abode.air.wand.message component). As a
result, many external apps are connected to com.adobe.

air with the inter-app communication classified as high
risk as per our classification rules.

A particularly interesting and important observation is
that some apps communicate with one set of apps at no risk
while having high/medium-risk communications with
other apps, as illustrated in Fig. 3b. In fact, among the risk-
classification results of all the 197 app pairs, we have found
10 such cases. Discovery of these cases demonstrates the
need for an end-to-end flow analysis over multiple apps, as
well as the advantage of our analysis approach—neither a
single-app analysis alone, even of fine-granularity and high
precision, nor an inter-app analysis looking at coarse infor-
mation only, such as those based purely on permission

TABLE 2
Summary of Explicit Intent Inter-App ICC Classification

Results on 197 App Pairs

Risk Level # of app pairs (%)

High Risk 32 (16.2%)
Medium Risk 7 (3.5%)
No Risk 160 (81.3%)

Total # of app pairs 197 (100%)

High risk ICC channel is where external explicit intent ICC is not initiated by the
user trigger in the source app, and exposed target component in the target app
invokes critical operation(s). The medium risk app pairs found have user-trigger
dependences, however, their target components are not protected.

TABLE 3
A Comparison between Permission-Based Policies and Ours on Explicit Intent Inter-App ICCs

Permission-based Our Work

#app pairs #app pairs

Inter-App ICC with Sensitive Data Only from Source App 11 0
Inter-App ICC with Critical Operations Only in Target App 33 39
Inter-App ICC without Sensitive Data or Critical Operations 108 0
Inter-App ICC with Sensitive Data and Critical Operations 0 0

Total # of app pairs 152 39

Out of 197 app pairs, 152 app pairs classified as collusion by the permission-based policies, and 39 app pairs classified as high/medium risk by our work. Our analysis
has around four times fewer flags than the permission-based policies.

96 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 1, JANUARY 2020

checking, would be able to distinguish the communications
of an app with others that potentially occur at the same time
yet carry different levels of security risk.

To illustrate, consider the example in Fig. 3b, a single-app
analysis would decisively identify App A as either secure or
risky. However, since it is secure when App C connects to it
but becomes risky when it is connected to App B, the single-
app analysis would either raise a false warning or miss a
dangerous true risk, and potentially suffer from both issues
when analyzing a set of apps. Similarly, a coarse permission-
based inter-app analysis can have the same problem, which
we illustrate through a dedicated case study in Section 4.5.

4.3 Case Study I

In this case study, we looked into one specific pair of com-
municating apps that is classified as high risk for the exis-
tence of high risk inter-app ICC channels between them. In
this pair, the first app is called com.pdanet which allows
the user to share the mobile device’s Internet connection
with any device through USB, Bluetooth or WiFi Hotspot.
The second app is called com.foxfi.addon which enables
free WiFi Tether on the mobile devices. Two components,
com.foxfi.al and com.foxfi.aq, in the com.pdanet app
communicate with the Receiver component com.foxfi.

addon.AddOnEvents in the second app com.foxfi.addon

by sending explicit inter-app ICC calls using sendBroad-

cast(android.content.Intent). While these calls do
not carry any sensitive data, the destination component
com.foxfi.addon.AddOnEvents has many critical opera-
tions that are executed in response to the inter-app ICC call.
The critical operations include java.io.InputStream.

read(...) and java.io.OutputStream.write(...).
The inter-app ICC calls are considered to be high risk

according to our policies because they are initiated without
user awareness (no user trigger) in the source app com.pda-

net. Furthermore, the destination component com.foxfi.

addon.AddOnEvents in the target app com.foxfi.addon

is exposed and not protected by the permission(s). This
example shows a risky app pair executing critical operations
in a stealthy mode. Further investigation is needed to con-
firm if it is indeed malware collusion.

4.4 Flow- versus Permission-Level Policies

The purpose of this experiment is to demonstrate that it
is feasible to design flow-based policies for an effective clas-
sification. We compare our classification policies with a
well-known permission-based collusion detection (XMan-
Droid) [8]. XManDroid is a dynamic analysis tool monitor-
ing communication channels between apps, and it defines
communication classification policies based on certain per-
missions combinations. For example, an app with permis-
sion READ_CONTACTS must not communicate with an app
that has permission INTERNET.

We evaluated a set of permission-based policies [8] on
our 197 app pairs. Table 3 presents the classification results
using permission-based policies [8] on 197 pairs of commu-
nicating apps. The permission policies classify 152 out of
197 app pairs as collusion according to permission-based
policies. In other words, 77.1 percent of the app pairs are
classified as collusion. Table 4 shows the number of the 197
app pairs that trigger alerts per permission-based poli-
cies [8]. Some app pairs trigger multiple alerts.

In order to investigate the correctness of the flags raised
by permission-based policies and to estimate the false posi-
tives reported, we analyzed each inter-app ICC channel in
152 app pairs that are classified as collusion by XManDroid.

Fig. 3. (a) Visualization of the connections among the 197 app pairs via explicit inter-app ICC calls. Red nodes and edges represent high- and
medium-risk inter-app ICC flows classified, while gray nodes and edges represent no-risk inter-app ICC calls, according to our security policies.
(b) Illustration of the advantage of end-to-end flow analysis across multiple apps: App A exhibits high/medium-risk (color in red on the relevant node
and edge) security behavior when communicating with app B, yet its communication with a different app C appears to be of no risk (denoted by the
gray edge and/or node).

ELISH ET AL.: IDENTIFYING MOBILE INTER-APP COMMUNICATION RISKS 97

We analyzed each inter-app ICC channel to check if it
involves sensitive data, critical operations, or both.

For the 152 app pairs classified as collusion by permis-
sion-based policies, we found that 11 app pairs (5.1 percent)
have inter-app ICC calls with sensitive data, and 33 app
pairs (15.4 percent) perform critical operations due to inter-
app ICC calls. 108 app pairs (54.9 percent) do not have
sensitive inter-app ICC channels (i.e., no sensitive data or
critical operations are involved) as shown in Table 3. We
thus infer that permission-based policies produce a large
number of false warnings: 113 (71 percent) out of 152 app
pairs are misclassified as collusion. The main category of
false positives is due to the non-sensitive inter-app ICCs,
specifically a lack of sensitive data or critical operations
involved in a benign explicit inter-app ICC call which does
not pose any security concerns.

Compared to permission-based policies, our classifica-
tion rules are more fine-grained and our analysis produces
four times fewer flags as shown in Table 3. The results reveal
that the majority of the app pairs classified as collusion by
permission-based policies do not have sensitive explicit
inter-app ICC calls (involving no sensitive data or critical
operations). Note that although the XManDroid approach
considers implicit ICCs too, here we evaluate it with respect
to explicit ICCs only for a fair comparison to our approach.

4.5 Case Study II

We performed a second case study on a pair of communi-
cating apps that is misclassified as colluding apps according
to the permission-based policies [8]. In this study, one app
com.projectx.android.ScouterLite is used for
entertainment to measure the “power” level of the people
and save pictures. The other app com.cooliris.media.

Gallery is a gallery app used to show pictures taken from
the camera app. These two apps communicate using an
explicit inter-app ICC call startActivity(android.

content.Intent). We checked the sensitivity of the
inter-app ICC call and found no sensitive data or critical
operations involved. These apps request sensitive permis-
sions without using them in the code. According to our poli-
cies, this app pair does not pose any security risks. Howeve,
this app pair is classified as collusion by the permission-
based policies [8] as it violates policy #8 in XManDroid: the
app (com.cooliris.media.Gallery) with permission
ACCESS_FINE_LOCATION must not communicate to the
app that has permission INTERNET (com.projectx.
android.ScouterLite).

The permission-based policies can not assess the sensitiv-
ity of the inter-app ICC calls well enough, and hence pro-
duce high number of false alerts. In contrast, our approach
performs in-depth data flow analysis in the source and the
destination apps and applies more fine-grained policies
which are able to reduce the number of false alerts on
benign inter-app ICC calls.

4.6 Performance Analysis

To gauge on the performance of our approach, we exe-
cuted our analysis against all the studied pairs of apps on
a laptop running Ubuntu 14.05 with an Intel i7-5600U
CPU@2.6 GHz and 4 GB heap memory for the JVM. For
the pool of apps ranging from 16 KB to 70 MB in APK
size, our analysis took an average of 41.8 seconds per pair
and maximum of 271.2 seconds.

Furthermore, to measure the execution time needed to
perform the flow analysis on individual apps, not pair of
apps, we compared our analysis with more fine-grained,
more precise flow analyses, and evaluated two other popu-
lar apps, airpass.MyMap and com.facebook.katana,
and run FlowDroid [19] versus our analysis (for the CAI-
MAP CONSTRUCTION and FLOW-FEATURE EXTRACTION phases).
With the same experimental setup, FlowDroid did not finish
in three hours (and we killed the execution) while our anal-
ysis completed in 3 and 10 seconds, respectively, for these
two apps.

These results suggest that our approach is realistically
efficient for practical use, and has substantially higher scal-
ability than more fine-grained flow analysis like FlowDroid.
In all, we trade precision for high efficiency in the most
time-consuming step (i.e, the static analysis), enabling a rea-
sonable balance between the cost and benefit of a static
inter-app security analysis.

4.7 Summary of Results

We summarize our major experimental findings as follows.

1) We observed that the state-of-the-art approach using
permission-based policies classifies 77.1 percent of
the 197 app pairs we studied as collusion. In particu-
lar, 108 of the app pairs are classified as collusion
do not have any sensitive inter-app ICC calls (i.e.,
no sensitive data or critical operations are involved).
This suggests that purely permission-based collus-
ion detection can generate a very-high number of
false alerts.

TABLE 4
Summary on the Numbers of App Pairs (#Pairs), Out of the Total 197 Pairs Studied, that Trigger Alerts per Permission-Based Policies

Permission-based Policy [8] #Pairs

(8) A third party application with permission ACCESS_FINE_LOCATIONmust not communicate to a third party applica-
tion that has permission INTERNET

149

(9) A third party application that has permission READ_CONTACTSmust not communicate to a third party application
that has permission INTERNET

137

(10) A third party application that has permission READ_SMSmust not communicate to a third party application that has
permission INTERNET

121

(11) A third party application that has permissions RECORD_AUDIO and PHONE_STATE or PROCESS_OUTGOING_CALLS
must not directly or indirectly communicate to a third party application with permission INTERNET

119

Some app pairs trigger alerts for more than one policy.

98 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 1, JANUARY 2020

2) 19.7 percent of the 197 app pairs were found to have
risky inter-app ICC calls. We checked the sensitivity of
each inter-app ICC call between these app pairs and
found that no sensitive data is, yet critical operations
are, involved in those ICC calls. This indicates that
these app pairs do not leak sensitive data, but they
may abuse system resources by utilizing critical APIs.

3) Our method significantly reduces the number of
false alerts given by the state-of-the-art solution.
Combined together, our static analysis and detailed
security policies constitute a more fine-grained end-
to-end risk-classification approach than purely per-
mission based solutions.

4) Our end-to-end security analysis is able to distinguish
varying risk levels of an app in variant communication
contexts with different other apps, for which single-
app analysis and coarse permission-based approaches
can both give false alerts and miss true threats.

4.8 Limitations

In this work, we focus on analyzing explicit intent inter-app
ICCs only. However, some apps my communicate via
implicit intent inter-app ICCs. Moreover, some apps can uti-
lize indirect communication channels such as shared files or
external server for message passing to evade detection. We
plan to address these two limitations by extending our
approach to approximate implicit intent inter-app ICCs,
and to investigate other communication channels than ICCs
among Android apps for identifying potential collusion.

Similar to any static analysis based solution (e.g., [12],
[21], [35]), our analysis share some inherent limitations in
performing the analysis on programs that employ dynamic
code loading, obfuscation techniques, or use of reflection.
One can use hybrid analyses (static and dynamic) to pro-
vide precise and robust analysis tool. We performed our
analysis on the reversed engineering Java bytecode using
Dare tool to translate Dalivk bytecode to Java bytecode. The
accuracy of our analysis is constrained by the accuracy of
the reverse engineering tool.

Currently, our collusion analysis is primarily based on
specific, manually-defined rules to classify communication
risk levels between communicating pairs. In particular,
the risk is determined according to cross-app ICC flows
with respect to what are present in the two given apps. As
a result, our risk classification might miss app information
that could be potentially important for identifying existing
risk levels we defined with higher precision and/or for
identifying other risks. To over overcome this limitation,
we plan to leverage machine learning techniques to deduce
more information (from the training dataset) and utilize
such information to learn a more capable classifier based on
features based on ICC flows and other relevant features.

5 RELATED WORK

Malware collusion is a new threat against Android security
that has not been systematically studied. Most existing static
ICC-based analyses are for detecting vulnerable-yet-benign
apps. We address related work on i) app collusion analysis,
ii) app vulnerability analysis, and iii) general-purpose app
analysis.

App Collusion Analysis. XManDroid [8] is a runtime moni-
toring solution of communication channels between apps. It
defines communication classification policies based on cer-
tain permissions combinations of communicating apps. We
compared the effectiveness of this approach with our tech-
nique in Section 4. FlaskDroid [36] is another runtime solu-
tion that enforces mandatory access control policies to
prevent collusion and privilege escalation attacks. It
requires modifications in the Android middleware and ker-
nel layer. These dynamic analysis for collusion detection is
more appropriate for analyzing a small set of apps and do
not scale to hundreds of thousands of apps. In comparison,
our static-analysis approach is more feasible and scalable
for analyzing app-pair security under this circumstance.

FUSE [37] presents a single-app and multi-app static
information flow- and context insensitive analysis. Similar
to XManDroid, FUSE defines coarse-grained information
flow assertions based on permissions combinations. In con-
trast, our flow-level policies are more fine-grained. FUSE is
focused on evaluating single apps. COVERT [38] proposes a
formal method approach (namely model checking) to ana-
lyzing app pairs, using the first-order logic based formal
specification language Alloy. The program analysis results
are then subject to formal verification in a model checker.
DidFail [29] combines FlowDroid [19] and Epicc [5] to track
data flows between Android components. DidFail currently
focuses on ICC flows between Activities only, and hence it
does not track data flows across other components such as
Service and Broadcast Receiver.

ApkCombiner [9] proposes to pack multiple Android apps
(apk files) into a single app package for accommodating
existing intra-app analysis tools (e.g., IccTA [7]) to inter-app
analysis scenarios. While this approach might offer a straight-
forward solution to some particular problems (e.g., mapping
ICCs across multiple apps), inter-app analysis problems
are not generally reducible to intra-app ones. In fact, Apk-
Combiner drops certain individual-app information and can
leave unresolved various conflicts that arise during the merg-
ing process thus lead to inexecutable resulting apps and/or
incorrect inter-app analysis results. For instance, it would be
inapplicable to our analysis because the combined package
differentiates neither components from different apps nor
the originally separate sets of permissions, both of which are
needed for our risk classification.

BlueSeal [39] presents a flow permissions analysis to iden-
tify single-app flows as well as cross-app flows via IPC mech-
anism. BlueSeal requires modification to Androids package
installer to add discovered flow permissions for display at
installation-time and for cross-app analysis done on a phone.
In contrast, our approach focuses on analyzing the sensitivity
and context of each inter-app ICC flow (e.g., sensitive data,
critical operations) and defines fine-grained security policies,
as opposed to analyzing flow permissions. Moreover, Blue-
Seal requires modifying the app to include the newly-added
flow permissions to display at installation-time. Our approach
does not require any modification to the app and it is offline
analysis. Although BlueSeal focuses only on permissions, it is
complementary to our approach.

PRIMO [40] presents a probabilistic technique for esti-
mating and prioritizing the likelihoods of inter-app ICC
connections to reduce the workload of security analysts.

ELISH ET AL.: IDENTIFYING MOBILE INTER-APP COMMUNICATION RISKS 99

Although PRIMO does not provide a complete ICC security
detection solution, it is complementary to our work. Mar-
forio et al. [16] implements and measures the efficiency of
different overt and covert channels for applications collu-
sion. It does not provide any collusion defenses or classifica-
tion policies.

App Vulnerability Analysis. Privilege escalation attack in
the Android system was first demonstrated by Davi
et al. [41]. However, they did not provide any defense tech-
niques for this attack. Confused deputy is a special type of
privilege escalation attack where a malicious app exploits a
vulnerability of a trusted app to perform a critical operation.
IPC Inspection [42] addresses confused deputy attack and
found that a number of pre-installed apps are vulnerable to
this attack. The idea of IPC Inspection is to reduce the per-
missions of an app when it receives a message from another
app with less privilege. This approach is somewhat strict
because the apps can not receive messages from a less privi-
leged app for legitimate purposes. In addition, reducing the
app’s privileges can make the app malfunction or crash.
Similarly, QUIRE [43] provides a lightweight provenance
system to prevent the confused deputy attack. It tracks the
call chain of ICC and denies the request if the caller app
does not have the required permission. However, QUIRE is
not designed for detecting the malicious colluding apps.
Saint [44] presents policies for install-time permission grant-
ing and runtime inter-application communication based on
their permissions. Their policies allow the application to
control which applications can access it. Chan et al. [45]
present a static analysis tool of Android apps to check if the
apps can be exploited to launch privilege escalation attacks.
However, this tool is coarse-grained since it analyzes the
manifest file only, not the app’s code.

ComDroid [4] and Epicc [5] identify application com-
munication-based vulnerabilities. They analyze the intent
object used by ICC API calls to describe two main categories
of attacks, namely intent stealing and intent spoofing. The
focus of the analysis is on individual applications. Yet, they
did not provide classification policies nor examine inter-
app information flow but rather check ICC exit and entry
points only.

Also, they assume that any unprotected public compo-
nent is vulnerable regardless if there is a path from the pub-
lic component to the critical operations or not. However,
this approach may increase the number of false alerts when
there is no path from the public component to the critical
operations. On the other hand, in comparison to the more
precise resolution of ICC calls in Epicc which deals with
both explicit and implicit ICCs, we adopted an approxi-
mated static analysis (including the local string-constant
evaluation) to resolve explicit ICCs only. While this approx-
imation deals well with explicit ICCs, a more sophisticated
analysis like Epicc would be necessary for extending our
current design to address end-to-end flows via implicit
ICCs as well.

CHEX [3] identifies potentially vulnerable component
interfaces that are exposed to the public without proper
access restrictions in Android apps, using data-flow-based
reachability analysis. CHEX is designed to detect vulnerable
interfaces components within a single app and does not
track data through app boundaries.

General-Purpose App Analysis. FlowDroid [19] and Droid-
Safe [46] present a general information flow analysis frame-
work for Android applications to detect data leaks. Ernst
et al. [47] proposes an information flow verification model
for Android applications to guarantee that the applications
are free of malicious information flows. Apposcopy [6]
presents a static analysis approach for detecting stand-alone
malicious apps based on extracting data- and control-flow
properties of the target app and matching them against pre-
defined malware-class specification (signature).

Amandroid [21] offers a framework for precise depen-
dence analysis of Android apps, on which a range of depen-
dence-based clients including taint analysis can be built. Yet,
these frameworks work on individual apps and none of them
address inter-app flows or provide classification policies
against the apps collusion attack as we target in this work.

Other app security analyses exist, such as detecting risky
Android apps based on the types of permissions requested
[14], classifying Android apps based on the requested per-
missions and API calls of the app [11], and identifying
Android malware through characterizing sensitive API calls
without user-trigger dependence [12], [31]. In contrast, our
approach not only considers permissions but also examines
detailed inter-app data flows due to ICCs. The detection of
malicious campaign in [48] shares similar goals to ours, yet
it targets the cellular network as opposed to our focus on
mobile apps.

6 CONCLUSIONS AND FUTURE WORK

We presented a precise and scalable end-to-end flow analysis
to identify the risk level associated with communicating
Android applications. Our approach with fine-grained secu-
rity risk classification policies is able to reduce the number of
false alerts generated by the state-of-the-art permission-based
solution. Our inter-app ICC analysis can be used for many
useful security analyses which include, but are not limited to,
applications collusion analysis and vulnerability analysis.

As an immediate next step, we are about to strength our
current inter-app analysis by addressing twomajor limitations
of the presented technique. First, we plan to extend our
approach to approximate implicit intent-based inter-app ICCs
and define more security policies to further improve the clas-
sification accuracy. Second, we plan to investigate other com-
munication channels than ICCs among Android apps for
collusion detection. Finally, we plan to expand our framework
by learning the cross-app ICC flow features from a large set of
apps and classifying unknown communicating apps with the
trained predictor to cover risks that are not explicitly exposed
in the given pair of apps.

REFERENCES

[1] T. W€uchner, M. Ochoa, and A. Pretschner, “Robust and effective
malware detection through quantitative data flow graph metrics,”
in Proc. Detection Intrusions Malware Vulnerability Assessment, 2015,
pp. 98–118.

[2] K. Elish, D. Yao, and B. Ryder, “On the need of precise inter-app
ICC classification for detecting Android malware collusions,” in
Proc. IEEE Mobile Secur. Technol. Workshop Conjunction IEEE Symp.
Secur. Privacy, 2015, pp. 1–4.

[3] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,” in Proc.
ACM Conf. Comput. Commun. Secur., 2012, pp. 229–240.

100 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 1, JANUARY 2020

[4] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in Android,” in Proc. Mobile
Syst. Appl. Serv., 2011, pp. 239–252.

[5] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. L. Traon, “Effective inter-component communication mapping
in Android with Epicc: An essential step towards holistic security
analysis,” in Proc. USENIX Secur. Symp., 2013, pp. 543–558.

[6] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of Android malware through static analysis,” in
Proc. Int. Symp. Found. Softw. Eng., 2014, pp. 576–587.

[7] L. Li, A. Bartel, T. Bissyand�e, J. Klein, Y. Le, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting inter-
component privacy leaks in Android apps,” in Proc. 37th Int. Conf.
Softw. Eng., 2015, pp. 280–291.

[8] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on
Android,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2012, pp. 1–18.

[9] L. Li, A. Bartel, T. F. Bissyand�e, J. Klein, and Y. Le Traon,
“ApkCombiner: Combining multiple android apps to support
inter-app analysis,” in Proc. ICT Syst. Secur. Privacy Protection,
2015, pp. 513–527.

[10] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust Malware detection in Android,” in Proc. Int.
Conf. Secur. Privacy Commun. Netw., 2013, pp. 86–103.

[11] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Efficient and explainable detection ofAndroidmalware in
your pocket,” inProc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 1–12.

[12] K. Elish, X. Shu, D. Yao, B. Ryder, and X. Jiang, “Profiling user-trigger
dependence for Android malware detection,” Comput. Secur., vol. 49,
pp. 255–273, 2015.

[13] M. C. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker:
Scalable and accurate zero-day Android malware detection,” in
Proc. Int. Conf.Mobile Syst. Appl. Serv., 2012, pp. 281–294.

[14] H. Peng, C.Gates, B. Sarma,N. Li, Y. Qi, R. Potharaju, C.Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking
risks of Android apps,” in Proc. ACM Conf. Comput. Commun. Secur.,
2012, pp. 241–252.

[15] F. Liu, C. Wang, A. Pico, D. Yao, and G. Wang, “Measuring the
insecurity of mobile deep links of Android,” in Proc. 26th USENIX
Conf. Secur. Symp., 2017, pp. 953–969.

[16] C. Marforio, H. Ritzdorf, A. Francillo, and S. Capkun, “Analysis of
the communication between colluding applications on modern
smartphones,” in Proc. Annu. Comput. Secur. Appl. Conf., 2012,
pp. 51–60.

[17] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Trans. Program. Languages Syst.,
vol. 12, pp. 26–60, 1990.

[18] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani,
E. J. Lehner, S. Y. Ko, and L. Ziarek, “Information flows as a per-
mission mechanism,” in Proc. 29th IEEE/ACM Int. Conf. Automated
Softw. Eng., 2014, pp. 515–526.

[19] S.Arzt, S. Rasthofer, C. Fritz, E. Bodden,A. Bartel, J. Klein, Y. L. Traon,
D. Octeau, and P. McDaniel, “FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,”
in Proc. ACM SIGPLAN Conf. Program. Language Des. Implementation,
2014, pp. 259–269.

[20] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel,
“Composite constant propagation: Application to android inter-
component communication analysis,” in Proc. 37th Int. Conf. Softw.
Eng., 2015, pp. 77–88.

[21] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and gen-
eral inter-component data flow analysis framework for security
vetting of Android apps,” in Proc. ACM Conf. Comput. Commun.
Secur., 2014, pp. 1329–1341.

[22] F. Liu, H. Cai, G. Wang, D. Yao, K. Elish, and B. Ryder, “MR-
Droid: A scalable and prioritized analysis of inter-app communi-
cation risks,” in Proc. Mobile Secur. Technol. Workshop Conjunction
IEEE Symp. Secur. Privacy, 2017, pp. 189–198.

[23] A. Bosu, F. Liu, D. Yao, and G. Wang, “Collusive data leak and
more: Large-scale threat analysis of inter-app communications,”
in Proc. ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 71–85.

[24] H. Cai and B. Ryder, “Understanding Android application pro-
gramming and security: A dynamic study,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2017, pp. 364–375.

[25] A. Sadeghi, H. Bagheri, and S. Malek, “Analysis of Android inter-
app security vulnerabilities using COVERT,” in Proc. 37th Int.
Conf. Softw. Eng., 2015, pp. 725–728.

[26] J. Jenkins and H. Cai, “ICC-inspect: Supporting runtime inspec-
tion of Android inter-component communications,” in Proc. 5th
Int. Conf. Mobile Softw. Eng. Syst., 2018, pp. 80–83.

[27] J. Jenkins and H. Cai, “Dissecting Android inter-component com-
munications via interactive visual explorations,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2017, pp. 519–523.

[28] W. Ahmad, C. K€astner, J. Sunshine, and J. Aldrich, “Inter-app
communication in Android: Developer challenges,” in Proc. 13th
Int. Conf. Mining Softw. Repositories, 2016, pp. 177–188.

[29] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android
taint flow analysis for app sets,” in Proc. 3rd ACM SIGPLAN Int.
Workshop State Art Java Program Anal., 2014, pp. 1–6.

[30] B. Wolfe, K. Elish, and D. Yao, “Comprehensive behavior profiling
for proactive Android malware detection,” in Proc. Inf. Secur.
Conf., 2014, pp. 328–344.

[31] K. Elish, D. Yao, and B. Ryder, “User-centric dependence analysis
for identifying malicious mobile apps,” in Proc. IEEE Mobile Secur.
Technol. Workshop Conjunction IEEE Symp. Secur. Privacy, 2012,
pp. 1–4.

[32] R. Vall �ee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot-a Java bytecode optimization framework,”
in Proc. Conf. Centre Adv. Stud. Collaborative Res., 1999, Art. no. 13.

[33] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteri-
zation and evolution,” in Proc. IEEE Symp. Secur. Privacy, 2012,
pp. 95–109.

[34] VirusShare. (2015). [Online]. Available: http://virusshare.com/
[35] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of

Android application security,” in Proc. 20th USENIX Secur. Symp.,
2011, pp. 21–21.

[36] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on Android for diverse security and
privacy policies,” in Proc. 22nd USENIX Conf. Secur., 2013,
pp. 131–146.

[37] T. Ravitch, E. R. Creswick, A. Tomb, A. Foltzer, T. Elliott, and
L. Casburn, “Multi-app security analysis with FUSE: Statically
detecting Android app collusion,” in Proc. 4th Program Protection
Reverse Eng. Workshop, 2014, Art. no. 4.

[38] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “COVERT: Com-
positional analysis of android inter-app permission leakage,”
IEEE Trans. Softw. Eng., vol. 41, no. 9, pp. 866–886, Sep. 2015.

[39] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani,
E. J. Lehner, S. Y. Ko, and L. Ziarek, “Information flows as a per-
mission mechanism,” in Proc. 29th ACM/IEEE Int. Conf. Automated
Softw. Eng., 2014, pp. 515–526.

[40] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein,
and Y. L. Traon, “Combining static analysis with probabilistic
models to enable market-scale Android inter-component analy-
sis,” in Proc. 43rd Annu. ACM SIGPLAN-SIGACT Symp. Principles
Program. Languages, 2016, pp. 469–484.

[41] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy,
“Privilege escalation attacks on Android,” in Proc. 13th Int. Conf.
Inf. Secur., 2010, pp. 346–360.

[42] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proc. USE-
NIX Secur. Symp., 2011, pp. 22–22.

[43] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“QUIRE: Lightweight provenance for smart phone operating sys-
tems,” in Proc. USENIX Secur. Symp., 2011, pp. 23–23.

[44] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D. McDaniel,
“Semantically rich application-centric security in Android,” in
Proc. Annu. Comput. Secur. Appl. Conf., 2009, pp. 340–349.

[45] P. P. Chan, L. C. Hui, and S. Yiu, “A privilege escalation vulnera-
bility checking system for Android applications,” in Proc. Int.
Conf. Commun. Technol., 2011, pp. 681–686.

[46] M. Gordon, D. Kim, J. Perkins, L. Gilhamy, N. Nguyen, and
M. Rinard, “Information-flow analysis of Android applications in
DroidSafe,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2015, pp. 1–16.

[47] M. D. Ernst, R. Just, S. Millstein, W. M. Dietl, S. Pernsteiner,
F. Roesner, K. Koscher, P. Barros, R. Bhoraskar, S. Han, P. Vines,
and E. X. Wu, “Collaborative verification of information flow for
a high-assurance app store,” in Proc. ACM Conf. Comput. Commun.
Secur., 2014, pp. 1092–1104.

[48] N. Boggs, W. Wang, S. Mathur, B. Coskun, and C. Pincock,
“Discovery of emergent malicious campaigns in cellular networks,”
in Proc. Annu. Comput. Secur. Appl. Conf., 2013, pp. 29–38.

ELISH ET AL.: IDENTIFYING MOBILE INTER-APP COMMUNICATION RISKS 101

http://virusshare.com/

Karim O. Elish received the PhD degree in
computer science from Virginia Tech, in 2015. He
is an assistant professor of computer science,
Florida Polytechnic University. Before joining
Florida Poly, he was an assistant professor with
the Department of Computer Science and the
associate director of the Information Analytics
and Visualization (IAV) Center, Purdue University
(Fort Wayne Campus). He received the Florida
Polytechnic University Award for Excellence in
Teaching, in 2017 for excellence in teaching

practices reflecting the highest standards in pedagogy. His current
research interests focus on mobile security, software security, and soft-
ware engineering. One of his journal papers was placed in the top 10
most cited papers by the Elsevier Journal of Systems and Software
(JSS). He is a member of the IEEE, ACM, Upsilon Pi Epsilon, and Phi
Beta Delta Honor Society.

HaipengCai received the PhD degree in computer
science and engineering from the University of
Notre Dame, Notre Dame, in 2015. He worked on
computer graphics and visualizations during his
previous graduate studies and was a software
developer in Internet search services and embed-
ded systems. He is currently an assistant prof-
essor with the School of Electrical Engineering and
Computer Science, Washington State University,
Pullman. His research interests include software
engineering and software systems in general with

emphasis on program analysis and its applications for the quality, security,
and reliability of evolving software. He is amember of the ACMand IEEE.

Daniel Barton received theMSdegree in computer
science from Virginia Tech, Blacksburg, Virginia.
His research interests include mobile security,
malware analysis and detection, and developing
security tools for cyber analysts. He is currently a
software engineer with LockheedMartin.

Danfeng Yao received the BS degree from
Peking University, Beijing, China, the master’s
degrees from Princeton University and Indiana
University, Bloomington, and the PhD degree
from Brown University. She is an Elizabeth and
James E. Turner Jr.’56 faculty fellow and CACI
faculty fellow. Her expertise is on software
and system security. Her recent work on Java
secure coding has driven multiple high-profile
Apache projects to harden their code, including
Apache Spark and Apache Ranger. In the past

decade, she has been working on designing and developing deployable
anomaly detection to defend against stealthy exploits and attacks. She
holds multiple U.S. patents for her anomaly detection technologies.
She is the lead author of the book Anomaly Detection as a Service.
She has been named an ACMdistinguished scientist for her contributions
to cybersecurity research.

Barbara G. Ryder received the AB degree in
applied mathematics from Brown University, in
1969, the master’s degree in computer science
from Stanford University, in 1971, and the PhD
degree in computer science from Rutgers Univer-
sity, in 1982. She is a emerita faculty member
with the Department of Computer Science,
Virginia Tech, where she held the J. Byron Mau-
pin professorship in engineering. From 2008-
2015, she served as head of the Department of
Computer Science, Virginia Tech, and retired on

September 1, 2016. She served on the faculty of Rutgers from 1982-
2008. Her research interests on static and dynamic program analyses
for object-oriented systems, focus on usage in practical software tools
for ensuring the quality and security of industrial-strength applications.
She became a fellow of the the ACM in 1998, received the ACM SIG-
SOFT Influential Educator Award (2015) and the ACM President’s
Award (2008), was selected as a CRA-W distinguished professor
(2004), and received the ACM SIGPLAN Distinguished Service Award
(2001). She currently is an editorial board member of the ACM Transac-
tions on Software Engineering Methodology, the IEEE Transactions on
Software Engineering, the Software: Practice and Experience, and the
Science of Computer Programming.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

102 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 1, JANUARY 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

