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Abstract—The reliability and security of software are affected
by its constant changes. For that reason, developers use change-
impact analysis early to identify the potential consequences of
changing a program location. Dynamic impact analysis, in par-
ticular, identifies potential impacts on concrete, typical executions.
However, the accuracy (precision and recall) of dynamic impact
analyses for predicting the actual impacts of changes has not
been studied. In this paper, we present a novel approach based
on sensitivity analysis and execution differencing to estimate, for
the first time, the accuracy of dynamic impact analyses. Unlike
approaches that only use software repositories, which might not
be available or might contain insufficient changes, our approach
makes changes to every part of the software to identify actually-
impacted code and compare it with the predictions of dynamic
impact analysis. Using this approach in addition to changes made
by other researchers on multiple Java subjects, we estimated the
accuracy of the best method-level dynamic impact analysis in the
literature. Our results suggest that dynamic impact analysis can
be surprisingly inaccurate with an average precision of 47–52%
and recall of 56–87%. This study offers insights to developers
into the effectiveness of existing dynamic impact analyses and
motivates the future development of more accurate analyses.

Keywords—software evolution; change-impact analysis; dy-
namic analysis; empirical studies; sensitivity analysis; execution
differencing

I. INTRODUCTION

Modern software is increasingly complex and changes
constantly, which threatens its reliability and security. Failing
to identify and fix defects caused by software changes can
have enormous costs in economic and human terms [1]–[3].
Therefore, it is crucial to provide developers with effective
support to identify dependencies in code and deal with the
impacts of changes that propagate via those dependencies.
Specifically, developers must understand the risks of modifying
a location in a software system before they can budget, design,
and apply changes there. This activity, called (predictive)
change-impact analysis [4]–[6], can be quite challenging and
expensive because changes affect not only the modified parts of
the software but also other parts where their effects propagate.

A practical approach for assessing the effects of changes in
a program is dynamic impact analysis [6]–[12]. This approach
uses runtime information such as profiles and traces to identify
the entities that might be affected by changes under specific
conditions—those represented by the test suite for that pro-
gram. The resulting impact sets (affected entities) of dynamic
approaches are smaller than those obtained by static analyses
as they represent the effects of changes for the test suite

used. For scalability, most dynamic impact analyses operate on
methods as the entities that can be changed and be impacted by
changes [6]–[13]. At the statement level, dynamic slicing [14]–
[16], in its forward version, can be used for impact analysis
in greater detail but at a greater computational cost.

Despite their attractiveness, however, dynamic impact anal-
yses have not been evaluated for their ability to identify or
predict the actual impacts that changes have on software.
The only exception is the CHIANTI approach [6], but the
study of this approach only evaluates which test cases are
affected by changes—which is the purpose of CHIANTI—and
not which code is affected by them. The rest of the literature
only presents experiments that compare the sizes (relative
precision) of dynamic impact sets and the relative efficiency of
the techniques [7]–[12] without considering how closely those
impact sets approximate the real impacts of changes.

To address this problem, in this paper, we first introduce
a novel approach for estimating the accuracy (precision and
recall) of dynamic impact analyses. The approach uses SENSA,
a sensitivity-analysis approach we recently developed [17],
[18]. We adapted SENSA for making large numbers of random
changes efficiently across the software and running dynamic
impact analysis on those change locations. These random
changes approximate dynamically the concept of semantic
(real) dependence [19] as a base of comparison for dynamic
impact analysis. Although random changes do not necessarily
represent typical changes, the semantic dependencies they
find can help identify deficiencies in precision and recall of
dynamic impact analyses across the entire software.1

To find the ground truth—the code actually impacted by
changes—our approach uses execution differencing [20]–[22]
on the program before and after each change is applied to
determine which code behaves differently (really affected). By
design, we use the same test suite as the dynamic impact
analysis so that we can assess the accuracy of that analysis
under the same runtime conditions. The code found to behave
differently by changing a location is, by definition of semantic
dependence [19], truly dependent on that location. The similar-
ities and differences between this ground truth and the impact
sets indicate how accurate the impact analysis can be.

Using this approach and, in addition, changes (bug fixes)
from the SIR repository [23], we present a thorough study of

1Repositories, if available, provide typical but more limited selections of
changes. Nevertheless, we plan to incorporate such changes in future studies.



the accuracy of dynamic impact analysis on multiple Java sub-
jects. For dynamic impact analysis, we chose the most precise
and efficient technique from the literature: PATHIMPACT [7]
with execute-after-sequences (EAS) [11]. We call this tech-
nique PI/EAS. (Another analysis, INFLUENCEDYNAMIC [12],
marginally improves the precision of PI/EAS but at a greater
expense.) For each method in a subject, we obtained the impact
set predicted by PI/EAS and computed its precision and recall
with respect to the ground truth.

The results of our study are rather surprising. For most
subjects, the average precision of the impact sets is only
about 50%. In other words, roughly, only one in two methods
identified by PI/EAS was actually impacted by our changes.
Moreover, for most subjects, the average recall of PI/EAS
was far from perfect, revealing that dynamic impact analyses
can also miss many real impacts. These findings suggest that
developers should not expect a good accuracy from existing
dynamic impact analyses and that there is plenty of room for
improving the ability of these techniques to predict impacts.

Our study also showed that, often, the precision was
high and the recall was low or vice versa. We hypothesized
and confirmed that, when the program execution is shorter
before a change (when predictive impact analysis is performed)
than after a change, runtime effects are missed (e.g., many
methods execute only in the changed program). Interestingly,
the precision in such cases is greater than usual, suggesting
that methods in dynamic impact sets are more likely to be
truly impacted if they execute relatively soon after the change.

In all, the contributions of this paper are:

‚ A novel approach for evaluating the accuracy of dy-
namic change-impact analysis techniques with respect
to the actual impacts of (random or real) changes

‚ An implementation of this approach for Java programs
that performs massive numbers of changes without
creating explicit copies of the program

‚ A study on multiple Java subjects that estimates, for
the first time, the accuracy of one of the most precise
dynamic impact analyses known

‚ An investigation finding that, for programs whose
executions end early, many effects can be missed by
impact analysis even though their precision increases

Section II provides the necessary background, including a
working example. Section III analyzes the qualities of PI/EAS
that affect its accuracy. Then, Section IV presents our approach
for estimating the accuracy of dynamic impact analyses and
Section V presents our study using this approach. Finally,
Section VI discusses related work and Section VII concludes.

II. EXAMPLE AND BACKGROUND

Figure 1 shows an example program P used in this paper.
In P , the entry method M0 in class C calls methods M1 and
M4 in classes A and B, respectively. M1 receives two integers
from M0 and passes the sum to M2, which conditionally calls
M5. Then, M0 calls M4, which sets variable t that M5may read.

A. Dynamic Impact Analysis

Dynamic impact analysis uses execution information to
compute change-impact sets (e.g., for a test suite) that estimate

the impacts that any changes in a set of program locations
might have on the entire program (at least for the executions
considered). Developers typically apply the analysis on the
unmodified program to find the potential impacts of changing
that program. Thus, we call this analysis predictive.

Of the existing predictive dynamic impact analyses in
the literature, PATHIMPACT [7] with execute-after sequences
(EAS) [11], which together we call PI/EAS, has shown almost
the best precision and about the best efficiency compared with
the alternatives [7], [8], [10]–[12]. Only one other technique,
INFLUENCEDYNAMIC [12], has shown a marginally better
precision than PI/EAS but at a much greater cost.

PI/EAS computes the impact set of a method m based
on the method-execution order of the program. The idea of
PI/EAS is that any method called or returned into after m
starts executing might be impacted by a program state modified
at m. The original version, PATHIMPACT, first collects the
trace of events of entering and exiting each method. Then,
PATHIMPACT responds to a query for the impact set of a
method m by finding in the trace the set of all methods entered
or returned into after entering m. The set includes m itself.

To illustrate, Figure 1 on the bottom left shows an example
trace for program P , where r indicates a method return, x is
the program exit, and a method name (e.g., M1) represents
the entry to that method. For a candidate change location M2,
for example, PATHIMPACT first traverses the trace forward and
identifies M5 and M3 as impacted because they are entered after
M2. In this traversal, PATHIMPACT also counts two unmatched
returns. Then, a backward traversal from M2 finds the two
matching methods M1 and M0 for those return events. The
resulting impact set is {M0,M1,M2,M3,M5}. PATHIMPACT

repeats this process for all occurrences of the candidate method
in all traces considered and reports the union of the sets.

EAS improves PATHIMPACT to obtain the same results for
a much lower cost. Instead of using traces, EAS only keeps
track of the first and last time each method is entered or returns.
From this, we can infer the execution order of all methods
and, thus, their dynamic impacts. To illustrate, Figure 1 on
the bottom right shows the first and last values within square
brackets for the methods of P . A “timer” starts at 0 and is
incremented on each event. The first event for M2 occurs at
time 2 when it is entered. M4 is not executed so its registers
are uninitialized. All other methods execute after time 2, so the
impact set of M2 is, again, {M0,M1,M2,M3,M5}. For another
example, the impact set for M3 is {M0,M1,M3} because only
the last events for M0 and M1 occur after time 6.

B. Execution Differencing

Differential execution analysis (DEA) [20]–[22] identi-
fies semantic dependencies [19] at runtime of statements on
changes—statements truly affected by those changes. For-
mally, a statement s is semantically dependent on a change
c and a test suite T if, after change c is made, the behavior
of s (the values computed by s or executions of s) changes
when running T [21]. The approach requires the execution
of the program before and after the change under the same
conditions for all sources of non-determinism to ensure that a
difference in the behavior of s is, in fact, caused by the change.



1 public class A {
2 static int M1(int f, int z) {
3 M2(f+z);
4 return new B().M3(f,1); }
5 void M2(int m) {
6 if (m > 0)
7 C.M5(); }}

8 public class B {
9 public static int t=0;
10 int M3(int a, int b) {
11 int n = b*b - a;
12 return n; }
13 static void M4() {
14 t = 10; }}

15 public class C {
16 public static boolean M5() {
17 return B.t > 10; }
18

19 public static void M0() {
20 if (A.M1(4,-3) > 0)
21 B.M4(); }}

PATHIMPACT trace: M0 M1 M2 M5 r r M3 r r r x EAS first-last events: M0[0,8] M1[1,7] M2[2,4] M3[6,6] M4[-,-] M5[3,3]

Fig. 1: The example program P , an example PATHIMPACT runtime trace, and the corresponding EAS first and last events.

Although finding all semantic dependencies in a program is
an undecidable problem, DEA detects at least a subset of those
dependencies at runtime. To do that, DEA compares the execu-
tion histories of a program before and after a change is made.
An execution history is the ordered sequence of statements
executed and the values computed by them. The differences
between histories mark the statements whose behaviors change
and are thus semantically dependent on the change.

To illustrate, consider in Figure 1 the execution of P
starting at M0 and a change in line 6 to if (m<0). DEA first
executes P before the change to obtain the execution history

x20(false), 3(1), 6(true), 7(), 17(false), 4(-3), 11(-3), 12(-3)y
Each element spvq in this sequence indicates that statement s
executes and computes value v. DEA then runs the changed
P and obtains the execution history

x20(false), 3(1), 6(false), 4(-3), 11(-3), 12(-3)y.

Finally, DEA compares the two histories and reports state-
ments 6, 7, and 17 as truly affected at runtime (i.e., semanti-
cally dependent on the change) because 6 computes a different
value and 7 and 17 execute only before the change is made.

To study method-level impact analyses, we adapted DEA
to report all methods containing at least one affected statement.
We call this variant MDEA. For our example change, MDEA
finds for M2 the actually-impacted set {M2,M5} because those
methods contain the affected statements 6, 7, and 17.

III. ANALYSIS OF PI/EAS

A. Precision

PI/EAS relies solely on runtime execution orders to iden-
tify, for a method m, its dynamic impact set. At a first glance,
the technique is safe as only methods that execute after m can
be affected by m. PI/EAS also produces smaller impact sets
than approaches based on runtime coverage [8] for almost the
same cost [11]. However, not all methods executed after m are
necessarily affected by m, so PI/EAS can be quite imprecise.

For the example of Figure 1, PI/EAS predicts that the dy-
namic impact set of M2 is I={M0,M1,M2,M3,M5}. However,
after our example change in line 6 (see Section II-B), the only
truly-affected methods are M2 and M5. Thus, the predictive
precision of PI/EAS in this case is only |IXM |{|I| “ 2{5 “
40%. The imprecision is caused by the limited effects of the
change, which prevents 7 from executing and from calling M5
but has no other consequence. Of course, for other changes,
the precision can reach 100%. Therefore, we must empirically
measure the precision of PI/EAS to draw any conclusion.

In general, given a set of executions, PI/EAS can produce
large and potentially imprecise impact sets for a method m in
a program. This problem occurs when one or more executions
continue for a long time after the first occurrence of m and
a large number of methods are called or returned into during
that process, but only a small portion of those methods are
dynamically dependent on m. In some cases, the execution of
the program at m goes deep into a call structure but, because
of modularity, a change in m propagates only to some of those
calls. Similarly, m might be called when the call stack is long,
making PI/EAS mark all methods in that stack as impacted
even if many of them are completely unrelated in reality.

B. Recall

Naturally, no method that can only execute and return
before another method m is called for the first time can be
affected by the behavior of m. Therefore, in a descriptive
sense, PI/EAS has 100% recall. For example, for the program
of Figure 1, PI/EAS reports all methods but M4 as possibly
impacted by M2, which has 100% recall because M4 does not
execute and, thus, cannot be dynamically impacted. For an-
other example, the impact set for M3, which is {M0,M1,M3},
also has 100% recall in a descriptive sense because M2 and
M5 are no longer executing while or after M3 executes.

However, developers normally need to identify to know not
only the effects of a method on a single version of the program
but also the impacts that changing that method can have on the
entire program, even before changes are designed and applied.
This task is called predictive impact analysis. Any method m1
that a dynamic analysis does not report as potentially impacted
by a method m might be actually impacted by a change in m
that affects the control flow of the program so that m1 executes
after the changed m. In consequence, for predictive purposes,
the recall of a dynamic impact analysis can be less than 100%.

For example, if the expression b*b-a in line 11 in our
example changes to a*a-b, the value returned by M3 and M1
becomes 15 instead of -3. Thus, the expression at line 20 now
evaluates to true and line 21 executes, calling (and impacting)
M4. However, the dynamic impact set for M3 does not include
M4. The change modifies the control flow of P so that M4,
which did not execute before, now executes after M3. Thus,
the recall of PI/EAS for this example change is 75%.

C. Accuracy

To be useful, in addition to efficient, an approach such as
dynamic impact analysis must be accurate. Typically, neither
precision nor recall measures alone are enough, but a good



balance is desired. For instance, on one hand, PI/EAS might
achieve 100% recall for a method m if all methods execute
after m but only a few of them is truly impacted, which yields
a low precision. On the other hand, the program might always
end at a method m so that PI/EAS predicts an impact set
{m} for m with 100% precision but, after changes to m,
many methods might execute after m so yielding a low recall.
Therefore, in this paper, we also use an F-measure [24] to
estimate the balance of PI/EAS. We use the first such measure:

F1 “ 2 ˆ precision ˆ recall

precision ` recall

To illustrate, consider again the example change of
statement 6 in method M2 to if (m<0). As we saw
in Section III-A, PI/EAS produces an impact set of
{M0,M1,M2,M3,M5} for M2, whereas the actual impact set is
{M2,M5}. Thus, precision is 40% and recall is 100%, whereas
the accuracy is 2ˆp0.4˚1.0q{p0.4`1.0q “ 57.1%. For another
example, for the change in the expression in statement 11 in
method M3 from b*b-a to a*a-b, (see Section III-B), the
precision is 100% and recall is 75%, for an accuracy of 85.7%.

D. Exception Handling

The PI/EAS approach, as published [11], can suffer from
unpredictable results in the presence of unhandled exceptions
that can make the runtime technique miss return or returned-
into events. To process such events, PI/EAS assumes that an
exception raised in a method m is caught in an existing catch
or finally block in m before m exits or in the method that called
m when m raised that exception. However, this assumption
does not hold for many software systems, including some of
those studied in this paper.

If neither method m nor the (transitive) callers of m handle
an exception thrown in m, the returned-into events for m and
all methods in the call stack that do not handle the exception
will be missed. As a result, those methods will not be added
to the resulting impact set. To illustrate, in Figure 1, if an
exception is raised in M3, it will not be handled. Thus, the last
records for M1 and M0 will not be updated to reflect that they
were returned into after M3 exited abnormally, and the impact
set for M3 will miss M1 and M0.

For this paper, we decided to fix this problem by developing
an improved version of PI/EAS that accounts for unhandled
exceptions. Our design captures all return or returned-into
events by wrapping all methods in special try-catch blocks.
Those blocks catch unhandled exceptions, process the events
that would otherwise be missed, and re-throw those exceptions.
In the rest of this paper, whenever we mention PI/EAS, we
will be referring to our fixed design.

IV. EXPERIMENTAL APPROACH

To support studies of the predictive accuracy of dynamic
impact analyses such as PI/EAS, we designed an approach that
(1) systematically applies impact analysis to a large number
of candidate change locations throughout the program, (2)
changes those locations one at a time, and (3) compares the
predicted impact sets with the actual impacts found by MDEA.

A. Process

Figure 2 outlines our experimental approach. The process
uses a changer module that, for each change location (state-
ment) in a set C for program P , performs a number of changes
in that location to produce one version of the program per
change. For greater realism, each changed program version is
treated as the unchanged (base) program for predictive impact
analysis and the original P is treated as the “fixed”, changed
version. In other words, the changes can be seen as bug fixes.

The changer first instruments P at the locations C to
produce a large number N of base (unchanged) versions of P
called PMI1 to PMIN . Then, at runtime, the instrumentation
in P invokes the changer for the points in C to produce the N
base versions, one at a time, across which the C locations
(statements) are distributed. A change strategy is provided
for customization. By default, this strategy is random, which
replaces the values or control-flow decisions computed at each
change point with random values.

The new values that replace the original values for each
execution of P are stored so that each base execution of P can
be reproduced. Unlike other similar tools, to speed up the pro-
cess by avoiding disk-space blowup, our system uses only two
versions of the program: the original P and the instrumented P
controlled at runtime by the changer. At runtime, using the test
suite provided with P , the approach applies dynamic impact
analysis to each of the N base versions to obtain the dynamic
impact set of each method that contains a change location.
Then, MDEA is applied to that version and P with the same
test suite to compute the actual impacts. We deliberately use
the same test suite so we can compare predicted and actual
impacts under the same runtime conditions.

In the last step, the system compares the dynamic impact
set of each changed method against the ground truth calculated
by MDEA to determine the predictive precision, recall, and
accuracy (F1) of that impact set. The last step, on the right of
Figure 2, computes statistics on these accuracy values for the
final report for the subject P .

B. Generation of Base Versions

At the core of our approach is the creation of N base
versions from P . Each of those versions has one change in
one statement and the subject of study is the reverse of that
change that “fixes” it to obtain P . To make the study thorough
and representative of the entire program, the system selects the
change set C to cover as many methods of P as possible. Then,
the impact set for each such method is compared against the
actual impacts of all changes in C located in that method.

To create the changer, we adapted SENSA [17], [18],
our sensitivity-analysis technique and tool for Java bytecode.
SENSA can modify values of primitive types and strings in
assignments and branching conditions. (Other statements not
supported by SENSA are normally affected directly by those
supported by SENSA.) Therefore, the change set C is selected
from all statements to which SENSA is applicable. We call a
method with no applicable statements non-applicable.

The goal of our approach is to change every applicable
statement in the program at least once. However, this can be
impractical for large subjects. Therefore, our system chooses
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Fig. 2: Process for estimating the accuracy of dynamic impact analyses through sensitivity analysis and execution differencing.

a well-distributed subset of those statements according to
per-method limits L and Lmax which default to 5 and 10,
respectively. For each method m and applicable-statements
set Am in m, the change locations set Cm for m is Am

if |Am| ď L. Otherwise, the size of Cm is limited to
minp|Am|, Lmaxq to ensure that at most Lmax locations are
used in m. In that case, to evenly cover m, the system splits the
method into Lmax segments of (almost) equal length. For each
segment i of consecutive applicable statements in positions
rmaxp0, i´1qˆ|Am|{Lmaxs to rmaxp1, iqˆ|Am|{Lmaxs, the
system randomly picks for Cm one statement in that segment.

V. EMPIRICAL STUDIES

We now present our studies of the predictive accuracy of
PI/EAS using our SENSA-based approach and SIR changes.

A. Experimental Setup

For our studies, we selected six open-source Java subjects,
some of them well known, and the test suites provided with
them. Table I lists these subjects with brief descriptions and
their statistics, including their sizes in non-comment non-blank
lines of Java source code (#LOC), the total number of methods
(#Methods), and the number of test cases (#Tests).

The first five subjects came from the SIR repository for
software reliability studies [23]. When applicable, the subject
name includes the SIR version. Schedule1 is representative
of small modules for specific tasks. NanoXML is a lean and
efficient XML parser. Ant is a popular cross-platform build
tool. XML-security is the encryption component of the Apache
project. JMeter is an Apache application for performance
assessment of software. The last subject is ArgoUML, an UML
modeling tool. We chose its repository revision r3121—the
largest the current implementation of SENSA can handle.

The subjects JMeter, Ant, and ArgoUML exhibit some
non-determinism (a few different behaviors for the same test
inputs) due to their use of the system time and random
number generators. To guarantee the reproducibility required
by MDEA to find the impacts really caused by our changes,
we made these subjects deterministic by ensuring that the same
sequences of system-time and random values were used before
and after each change. To check that we did not accidentally

TABLE I: Experimental subjects and their characteristics

Subject Description #LOC #Methods #Tests
Schedule1 priority scheduler 290 24 2650

NanoXML-v1 XML parser 3521 282 214

Ant-v0 Java build tool 18830 1863 112

XML-security-v1 encryption library 22361 1928 92

JMeter-v2 performance test tool 35547 3054 79

ArgoUML-r3121 UML modeling tool 102400 8856 211

break those subjects (at least for their test suites in our studies)
we re-run those test suites and found no outcome differences.2

We implemented our approach in Java as described in
Section IV as well as PI/EAS according to Section II with our
fix from Section III-D. We built this infrastructure on top of our
analysis framework DUA-FORENSICS [25], which includes
MDEA, and our SENSA tool [17]. Also, to separately analyze
the effects of changes that shorten executions considerably, our
implementation classifies changes that decrease the number of
PI/EAS events to 50% or less as shortening (S) and the rest
as normal (N).

B. Study I: SENSA Changes

For this study, we used our full approach described in
Section IV. Table II summarizes the results of this study. For
each subject, the table reports the average precision, recall, and
accuracy for all changes in that subject. Since the data points
were collected per change, methods that contain more changes
are better represented in those results. This is appropriate
because they contain more code that developers could change.
The first column names the subject and the second column
is Coverage—how much of the program is truly studied—
which corresponds to the percentage of all statements located
in methods executed and changed at least once.

The row for each subject has three sub-rows, each named
by the type of base program in the third column: All (both
normal and shortening), N (normal only), and S (shortening
only). The extent of the changes made to each subject per
category is indicated by columns #Changed Statements for
the total number of executed and changed statements and
#Changed Methods for the number of methods containing at

2For the future, we plan to implement automated determinization.



TABLE II: Accuracy of PI/EAS for SENSA changes, for all changes and their two subsets: normal (N) and shortening (S).

Subject Coverage
Change

Type
#Changed
Statements

#Changed
Methods

PI/EAS
I.S. Size

Actual
I.S. Size #FP #FN

Precision Recall Accuracy (F1)
mean conf. range mean conf. range mean conf. range

Schedule1 82%

all 46 12 16.1 13.4 4.5 1.8 0.73 [0.59, 0.87] 0.90 [0.81, 0.99] 0.72 [0.59, 0.85]
N 12 6 16.7 5.8 11.0 0.2 0.33 [0.09, 0.56] 0.99 [0.95, 1.00] 0.43 [0.17, 0.69]
S 34 12 15.9 16.0 2.2 2.4 0.87 [0.77, 0.97] 0.87 [0.75, 0.99] 0.83 [0.72, 0.93]

NanoXML-v1 85%

all 379 129 74.6 54.2 39.3 18.8 0.46 [0.40, 0.52] 0.73 [0.68, 0.79] 0.40 [0.34, 0.46]
N 181 78 81.2 18.0 64.6 1.4 0.24 [0.16, 0.31] 0.95 [0.91, 0.98] 0.27 [0.20, 0.34]
S 198 107 34.1 82.2 3.3 51.3 0.73 [0.66, 0.81] 0.31 [0.25, 0.36] 0.41 [0.35, 0.47]

Ant-v0 77%

all 437 121 21.8 78.2 9.2 65.7 0.67 [0.62, 0.73] 0.53 [0.48, 0.58] 0.39 [0.35, 0.44]
N 381 102 17.6 27.6 8.8 18.8 0.65 [0.59, 0.71] 0.59 [0.54, 0.64] 0.43 [0.38, 0.48]
S 56 22 49.9 422.4 12.4 384.8 0.81 [0.70, 0.91] 0.11 [0.05, 0.17] 0.14 [0.09, 0.20]

XML-security-v1 80%

all 1405 297 149.1 208.1 53.8 112.8 0.7 [0.67, 0.73] 0.42 [0.39, 0.45] 0.40 [0.38, 0.43]
N 843 218 127.2 112.9 77.3 63.0 0.56 [0.52, 0.60] 0.38 [0.35, 0.42] 0.31 [0.28, 0.34]
S 562 122 182.0 350.9 18.6 187.6 0.91 [0.89, 0.93] 0.47 [0.43, 0.52] 0.54 [0.50, 0.58]

JMeter-v2 78%

all 1439 401 81.6 51.6 54.5 24.4 0.42 [0.39, 0.44] 0.58 [0.56, 0.61] 0.38 [0.36, 0.40]
N 1241 357 78.7 32.5 57.1 10.8 0.38 [0.35, 0.41] 0.60 [0.58, 0.63] 0.37 [0.35, 0.40]
S 198 82 99.9 171.3 38.4 109.7 0.66 [0.60, 0.72] 0.44 [0.37, 0.51] 0.42 [0.36, 0.48]

ArgoUML-r3121 70%

all 1239 421 81.6 51.4 56.9 26.6 0.39 [0.36, 0.41] 0.65 [0.63, 0.67] 0.37 [0.35, 0.39]
N 1043 371 77.3 33.3 58.8 14.8 0.34 [0.32, 0.37] 0.68 [0.65, 0.71] 0.35 [0.34, 0.37]
S 196 70 104.9 147.6 46.9 89.7 0.62 [0.55, 0.70] 0.49 [0.43, 0.54] 0.44 [0.38, 0.49]

Overall
(all subjects) 73%

all 4945 1381 46.7 47.8 25.0 26.8 0.52 [0.50, 0.53] 0.56 [0.55, 0.58] 0.39 [0.38, 0.40]
N 3701 1132 38.2 26.4 25.8 11.6 0.43 [0.41, 0.45] 0.59 [0.58, 0.61] 0.35 [0.34, 0.37]
S 1244 415 80.0 135.6 21.0 87.4 0.79 [0.77, 0.81] 0.44 [0.41, 0.47] 0.47 [0.45, 0.50]

least one changed statement. Note that the sums of numbers
of methods for categories N and S can be greater than for All
because some methods contain both N and S changes.

Next, the table shows the accuracy results per subject and
change category, starting with the average number of impacted
methods found by PI/EAS (I.S. means impact set) and the
average number of actually-impacted methods identified by
MDEA (Actual I.S. Size). The next two columns show the
average number of false positives (#FP) and false negatives
(#FN) for PI/EAS with respect to the actual impacts. Finally,
the last three columns show the average resulting precision,
recall, and accuracy (F1) of PI/EAS for the subject and
change category. Each of those columns presents the mean
and its 95% confidence interval (conf. range) obtained via the
non-parametric Vysochanskij-Petunin inequality [26], which
makes no assumptions about the distribution of the data.

To illustrate, consider the results for JMeter, for which 78%
of its code was in methods that contained one or more changes,
which are those analyzable by PI/EAS and MDEA. Of the
1439 statements on which changes were studied, distributed
over 401 methods, 198 of them, distributed over 82 methods,
contained changes that shortened the executions of the base
program to less than half. On average for JMeter, the PI/EAS
impact set had 81.6 methods, the actual impacts were 51.6, and
the false positives and negatives of PI/EAS were 54.5 and 24.4
methods, respectively. The average precision of PI/EAS was
0.42 with 95% confidence that its real value is not outside the
range [0.39, 0.44]. Recall and accuracy are presented similarly.

The last row presents the overall results for all changes in
all subjects, so that each change has the same weight in those
results. Thus, subjects with more changes (column #Changed
Statements) have a greater influence in those results. Overall,
the changed methods covered 73% of the code even though
these methods were only a fraction of all methods in the
subjects (see Table I). This means that the methods that never
executed or for which SENSA was not applicable were much
smaller than the average. In total, the study spanned almost
5000 changes. About 3 in 4 of them were normal.

For all changes, on average, the precision of PI/EAS was
.52, its recall was .56, and its accuracy was only .39. The non-
parametric statistical analysis shows with 95% confidence that
these values are no farther than 2 percent points from the real
value. (Naturally, for individual subjects which have fewer data
points, the confidence ranges are wider). These numbers indi-
cate that only a bit more than one in two methods reported by
PI/EAS are actually impacted by those changes. Also, almost
one in two methods truly impacted were missed by PI/EAS for
a low recall. On average, the PI/EAS impact sets were about
the same size as the actual impact sets, but the large numbers
of false positives and false negatives led to this low accuracy.
Thus, we can conclude with high statistical confidence that,
at least for SENSA changes, the accuracy of PI/EAS is low.
Hence, for many practical scenarios, dynamic impact analyses
appear to be in need of considerable improvements.

For a more detailed view of the distribution of the accuracy
of PI/EAS, Figures 3–5 present box plots for the precision,
recall, and accuracy (F1) of all subjects for changes in all, N,
and S categories, respectively. Each box plot consists of the
minimum (lower whisker), the 25% quartile (bottom of middle
box), the 75% quartile (top of middle box), and the maximum
(upper whisker) of the three metrics, respectively. The medians
are shown as central marks within the middle boxes. The
vertical axis of each box plot represents the values of the
metrics—precision, recall, and accuracy—for all changes in
the corresponding subject.

For Schedule1, the simplest subject, the precision, recall,
and accuracy are the highest of all subjects. This can be
explained by the shorter executions and smaller number of
methods in Schedule1, which makes any change likely to truly
impact the methods executed after it. The box plots for Sched-
ule1 also show the concentration on the top of the accuracy
values for its 46 changes. NanoXML also had a high recall,
possibly for the same reasons as Schedule1, but its precision
was low—less than half the methods that execute after the
change were truly impacted. This low precision suggests that
NanoXML performs a larger number of independent tasks (so
that changes to one task do not affect the other tasks).



For the largest four subjects, the average recall was much
lower, ranging from .42 to .65, suggesting that changes in them
have greater effects on their control flow because false-negative
methods not covered after executing change locations in base
versions do execute in changed versions. In other words,
there seem to be many methods that execute under specific
conditions satisfied only in changed program versions. As for
precision, Ant and XML-security had a greater value than
NanoXML and closer to Schedule1, suggesting that the degree
of propagation of the effects of changes in those subjects is
high, possibly by performing sequences of tasks that feed into
each other. The largest two subjects had the lowest precisions,
suggesting that their internal tasks are less coupled.

When considering the N and S categories separately, the
changes in N usually have higher recalls than changes in
S. This result was expected, as normal base versions of
the subjects execute more methods and, therefore, the larger
impact sets of PI/EAS should include more actual impacts.
At the same time, the precision for S was greater than for
N , which we also expected because the shorter executions
analyzed by PI/EAS correspond to methods executed soon
after each change, which we speculated would be more likely
related to the changed method and, thus, actually impacted.
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Fig. 3: Distribution of accuracy of PI/EAS for all changes.
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The recall trend for N and S, however, does not apply
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Fig. 5: Distribution of accuracy of PI/EAS for shortening
changes.

to XML-security, where the recall is lower for N than for
S. To understand this phenomenon, we manually examined
the source code and executions of this subject by randomly
picking five change points of type N with a recall below .0001.
These changes, by definition of N , had traces of similar length
before and after each change. However, the traces diverged for
the most part after each change, making the actual impacts
very different from the predicted impact sets. In contrast, for
the changes of type S in this subject, the recall was greater,
suggesting that in reality these changes did not affect the
control flow of the program so dramatically.

C. Study II: SIR Changes

To contrast and complement our SENSA-based results, we
performed a second study on four subjects from Table I also
available at the SIR repository [23]: Schedule1, NanoXML,
XML-security and JMeter. Our choice was guided by the
availability of faults (real or artificial) submitted by other
researchers to this experimental repository. The changes in this
study are the fixes of those faults. We adapted our experimental
infrastructure so that the change points in our approach are the
locations of these faults and the changer (Figure 2) uses the
fixes of these SIR faults instead of random changes.

For the three largest subjects, the maximum number of SIR
changes usable for our approach was exactly seven. Thus, for
each subject, we chose seven changes and run PI/EAS on the
faulty versions to predict the impact set of the corresponding
bug fixes. These changes (fixes) usually involve one or a few
statements. For Schedule1, more changes were available but
we chose the first seven to prevent this subject from having
a disproportionate weight in the overall results. For these 28
changes, we compared the PI/EAS impact sets with those of
MDEA to determine the predictive accuracy of PI/EAS.

Table III, similar to Table II, shows the results of the
study. We did not classify the SIR changes into the N and
C categories because each of those categories did not have
enough changes to produce confidence ranges narrow enough
to be meaningful. The PI/EAS and actual impact set sizes
were similar to those in Table II for all subjects except JMeter,
suggesting that the SIR changes on JMeter were less similar
the SENSA ones for this subject, although the ratio of predicted
to actual impacts did not differ much.



TABLE III: Second study of the accuracy of PI/EAS using SIR changes.

Subject #Changes
#Changed
Methods

PI/EAS
I.S. Size

Actual
I.S. Size #FP #FN

Precision Recall Accuracy (F1)
mean conf. range mean conf. range mean conf. range

Schedule1 7 4 18.0 10.1 7.9 0.0 0.56 [0.38,0.74] 1.00 [1.00,1.00] 0.71 [0.57,0.85]

NanoXML-v1 7 7 96.7 30.1 66.9 0.3 0.39 [0.01,0.80] 0.99 [0.98,1.00] 0.48 [0.09,0.88]

XML-security-v1 7 6 189.7 159.4 119.3 89.0 0.53 [0.13,0.92] 0.64 [0.24,1.00] 0.40 [0.18,0.61]

JMeter-v2 7 7 37.1 17.4 22.6 2.9 0.40 [0.05,0.75] 0.84 [0.52,1.00] 0.43 [0.12,0.74]

Overall
(all subjects) 28 24 85.4 54.3 54.1 23.0 0.47 [0.30,0.64] 0.87 [0.72,1.00] 0.51 [0.36,0.66]

For Schedule1, NanoXML, and JMeter, the average pre-
cision of PI/EAS was even lower for SIR changes than for
SENSA changes—by 2 to 17 percent points. These numbers
are actually closer to the category N of SENSA changes,
suggesting that, for most SIR changes, the changed subject still
runs for long enough for PI/EAS to identify as impacted larger
numbers of unaffected methods. Interestingly, the bounds
of the confidence ranges of precision resemble the average
precisions for categories N and S in that first study.

Recall for SIR changes, in contrast, was much higher on
average per subject than the recalls for all SENSA changes.
Similar to the case of precision, though, the recalls for SIR
changes were closer to those for the category N of changes
in the first study. However, this difference is still considerable
and suggests that, if it is not caused by the smaller number of
data points, the recall of PI/EAS might not be as bad as we
found in out first study. However, recall is still far from perfect.
In that 13% of false negatives there can be many important
impacts missed by users of PI/EAS. This increase in recall,
however, is unable to make up for the lower precision—the
accuracy (F1) per subject is almost the same in both studies.

D. Implications of the Results

The goal of our studies was to assess the practical accuracy
of the best dynamic impact prediction technique in the litera-
ture, which is critical to client applications such as regression
testing and maintenance—needed to ensure reliability and
security over time. Despite differences mostly in recall in
both studies, the results show that the predictive accuracy
of PI/EAS can be surprisingly low. Although we cannot
generalize the magnitude of the accuracy values obtained using
SENSA and SIR changes, the numbers cast serious doubts
on the effectiveness and practicality of PI/EAS. Thus, more
accurate dynamic techniques are needed to fully exploit the
knowledge that program executions can provide.

From these results we conclude that, at least for the subjects
and types of changes considered, the precision of PI/EAS can
indeed suffer because this technique is quite conservative—it
assumes that all methods executed during or after the change
are infected [27], [28] (affected) by the change. In practice,
however, methods execute for many purposes and the order of
execution does not always imply dependence.

Moreover, while PI/EAS was supposed to be safe relative
to the execution traces utilized [11], our studies revealed
that PI/EAS can even suffer from low recall. However, this
drawback of dynamic impact analysis has not been noticed
or reported prior to our studies in this paper. The recall
problem is particularly important for changes for which the
base (unchanged) program has smaller executions, such as
when there is a crashing bug that needs fixing. Therefore,

developers who consider using PI/EAS may first want to
determine whether a change would lengthen the execution of
the program. If so, PI/EAS should probably be avoided.

E. Threats to Validity

The main internal threat to the validity to our observations
and conclusions is the possibility of implementation errors in
our infrastructure, especially in the new modules PI/EAS and
MDEA. However, both are built on top of our analysis and
instrumentation framework DUA-FORENSICS, which has been
in development for many years [25], [29] and has matured
considerably. Moreover, DUA-FORENSICS has been carefully
tested over time. Another internal threat is the potential for
procedural errors in our use of the infrastructure, including
custom scripts for experimentation and data analysis. To re-
duce this risk, we tested, inspected, debugged, and manually
checked results from all phases of our process.

Another internal threat is the determinization process for
Ant, JMeter, and ArgoUML. Therefore, we inspected and
validated the determinizations by checking that they did not
affect the execution behavior or semantics of the original
programs—at least for the test suites on which our studies
are based. We compared the results of all test cases for the
determinized and the original versions of each of these subjects
and found no differences. Furthermore, to confirm that we
did not miss other sources of non-determinism, we run the
determinized programs multiple times and used MDEA to
determine any differences among them. We found no such
differences. Of course, many programs are almost impossible
to determinize but this is a limitation of the approach and not
of our studies. This limitation might affect the programs we
and other researchers and developers might study in the future.

The main external threat to our studies is the representative-
ness of the changes (bug fixes) that we used, in particular the
random modifications inserted by our system and the changes
corresponding to their fixes. Yet, these changes directly im-
plement the concept of right-hand-side function replacements
to show semantic dependencies [19], which is ultimately what
dynamic impact analysis looks for. Moreover, we studied a
very large number of those changes distributed evenly across
every subject.

Another external threat is the representativeness of our
selection of subjects with respect to software in general. The
representativeness of the test suites is also a possible threat
with respect to typical test suites found in other subjects. To
limit these threats, we chose our subjects of different sizes,
coding styles, and functionality to maximize variety in our
studies within our available resources. We also chose the
subjects based on the comprehensiveness of their test suites.



Finally, all subjects except for Schedule1 are applications and
libraries used around the world.

The main construct threat to the validity of our studies
lies in the design of our approach and the ability of random
modifications and their fixes to produce similar effects to
other changes that can be made to software. While actual
changes made by developers might be found in source-code
repositories, our design ensured that all parts of the program
were studied. (In a repository, only a few parts are changed
between two versions of a program.) More importantly, we
wanted primarily to determine the presence or absence of
inaccuracies in impact analysis which, if found, suggest similar
problems for all kinds of changes. Also, we made sure that
the modifications had a real effect, even if just local, on the
program at runtime. These (bug) fixes represent at least a
subset of all software changes that developers can make.

Also, as mentioned in Section IV-B, our changes were
constrained to the value types that SENSA currently can
change, which are primitive types and strings. Nevertheless,
the SENSA-based changes were evenly spread, covered a large
portion of each subject, and allowed our study to include most
non-trivial methods and thus include most parts a developer
who considers changing might run predictive impact analysis
on. Moreover, the seeded faults in our second study were
taken from the SIR repository and have been used in many
studies. Those faults, whose fixes we used as changes, can be
considered as representative of many real faults.

Another construct threat can be the method we used to
determine the actual impacts of changes as the ground truth.
We used execution differencing with MDEA to find, for each
test suite and change, which methods behave differently in re-
sponse to that change by identifying the underlying statement-
level impacts using DEA. The statements found by DEA, how-
ever, are only a subset of all effects that the changes may have
because the test suites might not be representative enough. To
minimize this threat, we used subjects for which reasonably-
sized test suites are provided and we studied dynamic impact
analysis constrained to those same test suites so that the same
operational profile is studied.

Finally, a conclusion threat is the appropriateness of our
statistical analysis and our data points. To minimize this threat
for our two studies, we used a non-parametric analysis [26]
that computes confidence ranges without making any assump-
tions about the distribution of the data. This is the safest way
to statistically analyze any data set. In addition, we studied the
precision and recall metrics as well as the F1 accuracy metric.
We included the quartile distributions of all the data points for
the first study. Also, for diversity of the data, we distributed
the change points evenly across each subject.

VI. RELATED WORK

Since PATHIMPACT was introduced by Law and Rother-
mel [7], dynamic impact analyses have been refined and
studied but only for their relative precision in terms of the
sizes of their impact sets and their relative efficiencies [10]–
[13]. In this paper, we estimated for the first time the actual
precision and recall of the best existing such analysis to
inform developers on their accuracy and motivate researchers
to improve them.

Shortly after PATHIMPACT, which is based on compressed
traces, another dynamic impact analysis called COVERAGEIM-
PACT was introduced by Orso and colleagues [8], which uses
cheap information in the form of runtime coverage to obtain
impact sets. The authors of both techniques later empirically
compared the precision and efficiency of PATHIMPACT and
COVERAGEIMPACT [10] and concluded that COVERAGEIM-
PACT is considerably less precise than PATHIMPACT although
it is cheaper.

Later, the Apiwattanapong and colleagues developed the
concept of execute-after sequences (EAS) to perform PATHIM-
PACT using an execution-length-independent amount of run-
time data that was shown to be almost as cheap to obtain as the
data for COVERAGEIMPACT [11]. However, the precision of
the resulting technique, which we call PI/EAS, was evaluated
only in terms of its impact-set sizes against COVERAGEIM-
PACT. In this paper, in contrast, we evaluated the accuracy of
PI/EAS for predicting actual impacts of changes.

To improve the precision of PATHIMPACT, Breech and
colleagues conceived INFLUENCEDYNAMIC [12] which adds
influence mechanisms to PATHIMPACT. However, the evalua-
tion of INFLUENCEDYNAMIC found negligible improvements
over PATHIMPACT while no clear variant of EAS exists for
INFLUENCEDYNAMIC to reduce the cost of tracing (dependent
on execution length). Their evaluation also studied only the
relative sizes of the impact sets, unlike our studies in this paper.

Hattori and colleagues formally discussed the accuracy of
impact analysis [30]. However, instead of dynamic impact
analyses, they examined the accuracy of a class-level static
impact analysis tool introduced in that same paper based on
call-graph reachability with different depth values. In contrast,
in this paper, we studied dynamic impact analysis and we did
so at the method level, which is more informative. We also
used DEA for comparison instead of coarse repository data.

The MDEA technique we used for comparison is adapted
from execution differencing approaches such as DEA [21] and
Sieve [20]. These two approaches are descriptive impact anal-
yses because they describe the effects of changes as observed
at runtime before and after those changes have been applied.
In contrast, in this paper, we evaluated the best predictive
dynamic impact analysis known that can answer impact queries
earlier than descriptive ones—when only potential change
locations (methods) are known.

Other related dynamic impact analyses exist, such as
CHIANTI [6], which is descriptive. CHIANTI compares two
program versions and their dynamic call graphs to obtain the
set of changes between versions and map them to affected
test cases. Our studies, however, focuses on predicted impacts
on code. Yet another technique by Goradia [31] uses dynamic
impacts, but as part of an iterative process that weighs state-
ments for better dynamic backward slicing for debugging. In
all, before this paper, there have been no other accuracy studies
of predictive dynamic impact analyses [5].

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach for evaluating
dynamic impact analyses which we applied to PI/EAS in
particular, the best in the literature. Using this approach, we



performed the first study of the predictive accuracy of dy-
namic impact analyses. Concretely, we estimated the accuracy
(precision and recall) of PI/EAS for thousands of injected
changes using our SENSA tool and 28 changes made by other
researchers on Java software. The results of our studies indicate
that PI/EAS can suffer from low precision or low recall, or
both, and an even lower accuracy in most cases.

The accuracy levels observed for this dynamic impact anal-
ysis are likely to be lower than what developers would expect
and desire. The knowledge gained in this paper therefore gives
a note of caution to developers on the usefulness of dynamic
impact analysis but can also inform them on how to understand
and use the corresponding impact sets.

The results also motivate the need for new techniques
and improvements that should be sought by researchers to
provide developers with more effective alternatives that take
full advantage of the attractiveness of a dynamic approach to
impact analysis for representing impacts that occur in practice,
in contrast with the conservative results of static analyses.

Next, we will expand our studies of PI/EAS and other
predictive impact analyses to more subjects and to a greater
variety of change types, including changes made by devel-
opers as found in source-code repositories. Moreover, we are
developing a new technique for considerably improving the
precision of dynamic impact analysis without adding runtime
overhead, which usually dominates the cost, by performing
a one-time static analysis of method-level dependencies. We
believe that such an approach can overcome at least part of
the precision problem of predictive dynamic impact analysis.
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