
How Accurate Is Dynamic Program Slicing?
An Empirical Approach to Compute Accuracy Bounds

Siyuan Jiang, Raul Santelices, Haipeng Cai

University of Notre Dame, U.S.A.

E-mail: {sjiang1|rsanteli|hcai}@nd.edu

Mark Grechanik

University of Illinois at Chicago, U.S.A.

E-mail: drmark@uic.edu

Abstract—Dynamic program slicing attempts to find runtime
dependencies among statements to support security, reliability,
and quality tasks such as information-flow analysis, testing, and
debugging. However, it is not known how accurately dynamic slices
identify statements that really affect each other. We propose a new
approach to estimate the accuracy of dynamic slices. We use this
approach to obtain bounds on the accuracy of multiple dynamic
slices in Java software. Early results suggest that dynamic slices
suffer from some imprecision and, more critically, can have a low
recall whose upper bound we estimate to be 60% on average.

I. INTRODUCTION

Program dependencies describe how statements affect other
statements in programs [1]. Obtaining accurate dependencies
is crucial for many tasks in security, reliability, and quality
that identify information flows and help developers understand,
test, debug, and evolve software. Program slicing [2], in its for-
ward version, is normally used to find all code statements that
depend directly or transitively on another statement. Dynamic
slicing [3], in particular, is used to find such code for concrete
executions to better describe typical program behaviors.

Despite the importance of slicing, however, no work in
the literature has assessed how accurately slices reflect real
dependencies in code. Semantic (real) dependencies were
defined more than 20 years ago [1] but no method exists to
bridge the gap between computing such dependencies (an un-
decidable problem) and their approximations found by slicing.
In consequence, we do not know how accurate, in precision and
recall, those approximations are. Yet, the accuracy of program
slices affects every technique that relies on them.

This lack of information about the accuracy in practice
of dynamic slices for modeling real dependencies in software
creates uncertainty about the effectiveness of existing appli-
cations based on such slices. This uncertainty also hinders
our ability to rely on dynamic slicing for new applications.
Moreover, without understanding all causes of inaccuracies in
slicing, further improvements to slicing are hard to achieve.

Various algorithmic improvements have been proposed and
empirically shown to reduce somewhat the size of slices and
thus, implicitly, increase their precision. However, their actual
precision remains unknown. But more critically, for dynamic
slices, the potential problem of recall has yet to be addressed.
For many parts of the code, the runtime behavior of a statement
s can decide that such code will not execute even though by
definition [1] this code is dynamically dependent on s.

To address this problem, we propose a new approach for
estimating the accuracy of dynamic forward slices. Computing
semantic dependencies is undecidable, so instead we derive

formulas for lower and upper bounds of the precision and
recall of dynamic slices based on the relationships among static
slices, dynamic slices, and the subset of semantic dependencies
found by our sensitivity-analysis tool SENSA [4]. Our results
on 50 dynamic slices indicate that precision can be at least
78%—relatively high but not perfect. The average recall, how-
ever, ranges between 25%–60%, which is inadequate for users
and tasks that need to find all or most runtime dependencies.

II. DEPENDENCIES, SLICING, AND SENSA

Dependence between two statements is a relationship such
that the behavior of one statement is subject to the behavior
of the other. Data and control dependencies [2] are commonly
used to approximate real, semantic dependencies [1] which
are not computable. If a statement reads from a variable the
value that another statement writes to it, the first statement is
data dependent on the second one. If a statement’s execution
depends directly on a branching decision at another statement,
the first statement is control dependent on the second one. A
statement s1 is semantically dependent on statement s2 if, for
some program state at s2, a change can be made to s2 that
affects the values computed at s1 or the occurrences of s1.

Program slicing [2] is an analysis technique that extracts
the parts of a program related by data and control dependencies
to a statement called the “slicing criterion”. Forward dynamic
slicing [3], in particular, finds all statements in the forward
transitive closure of the runtime data and control dependencies
on the slicing criterion for a specific set of executions.

We measure accuracy using standard definitions. The pre-
cision of a dynamic slice is the fraction of all statements in the
slice that are semantically dependent at runtime on the slicing
criterion. The recall is the fraction of all runtime semantically-
dependent statements included in the dynamic slice.

Because the data and control dependencies used to compute
slices are approximations of semantic dependencies, slicing
can be imprecise. Moreover, dynamic slicing can have imper-
fect recall not only because of dependencies that only occur in
other executions (not addressed in this work) but also because
of dependencies by omission—statements not executed which
would have executed if a change was made to the slicing
criterion c and are thus semantically dependent on c [1].

SENSA [4] is a technique that uses sensitivity analysis and
execution differencing to identify (a subset of) the statements
semantically dependent on other statements. SENSA takes a
program, a statement c, and a set of inputs, and reports the set
of statements that it finds at runtime to be semantically depen-
dent on c. To do this, SENSA runs each input multiple times.

Each time, it modifies the values computed at c and records the
states and occurrences of all other statements. By comparing
this data for different runs, SENSA finds all the statements
whose behavior changed due to those modifications. This is
a partial but decidable way to find semantic dependencies—
SENSA shows the existence of many semantic dependencies
even though it cannot prove the absence of others.

III. BOUNDS OF DYNAMIC SLICES

Our approach for calculating lower and upper bounds of
precision and recall of dynamic slices works in two steps.
First, for a slicing criterion c and its corresponding dynamic
forward slice, we compute the static slice and apply SENSA
to c. Second, based on the static slice (SS), the dynamic slice
(DS), and the SENSA result (SensA), we compute the lower
and upper bounds of recall and the lower bound of precision of
DS. (The upper bound of precision is 100% as it is undecidable
to disprove semantic dependence for false positives.)

Figure 1 shows the relationships between the statement sets
SS, DS, SensA, and semantic dependencies (Sem). All sets are
subsets of SS; SensA is also a subset of Sem. All of these
sets are known except for Sem which is undecidable. TS is the
intersection of SensA and DS (true positives found by SENSA).

Dynamic
Slice

Static Slice
Semantic
dependencies

TS SENSA
dependencies

Fig. 1: Relationships between slices and SENSA results

The precision of DS is at least the fraction intersecting
SensA. Because we cannot determine semantic dependence for
the rest of DS, all statements in DS might be true positives for
100% upper bound of precision. The lower bound, however,
corresponds to the case where TS contains all true positives:

lower(precision) =
|SensA ∩DS|

|DS| (1)

The recall of DS is the fraction of Sem that DS covers. The
lowest recall occurs when all statements in SS not in DS are
semantic dependencies and the intersection of Sem and DS is
exactly TS . Thus, the lower bound of recall is:

lower(recall) =
|SensA ∩DS|

|SensA ∩DS|+ |SS \DS| (2)

On the other end of the spectrum, TS can equal DS so that
all statements in DS are semantic dependencies and, outside
DS, only the statements in SensA are semantic dependencies.
Therefore, the upper bound of recall is:

upper(recall) =
|DS|

|DS|+ |SensA \DS| (3)

TABLE I: Average bounds for precision and recall of slices.
Subject Subject Number Lower bound Lower bound Upper bound
name size of slices of precision of recall of recall
Schedule1 403 10 90.64% 93.41% 94.83%

NanoXML 3523 10 81.64% 23.95% 61.22%

Ant 19047 10 75.72% 3.16% 57.16%

BCEL 34839 10 68.07% 2.73% 29.46%

JMeter 35553 5 96.98% 0.33% 58.81%

PDFBox 59576 5 53.33% 0.04% 55.49%

Average for 50 slices: 78.25% 24.69% 59.96%

IV. RESULTS

We applied our approach to 50 dynamic forward slices on
Java subjects of up to 60K lines of code, as shown in Table I.
We randomly chose 10 slicing criteria for four subjects and 5
for the other two as these take longer to analyze in our ongoing
experiment. Each row shows the average results per subject.
The last row shows the average results for all 50 slices. We
omit the upper bound of precision which is always 100%.

The results suggest that, for Ant, BCEL, and PDFBox
(three of the largest subjects) there is no guarantee that the
precision is greater than 53%, 68%, and 76% respectively. Our
hypothesis is that the precision of dynamic slices for larger
subjects might be lower than for smaller ones. Also, finding
semantic dependencies might be harder in large subjects.

For the lower bounds of recall, a sharp decrease occurs
from Schedule1 at 93% to NanoXML at 24% and another con-
siderable decrease occurs from NanoXML to Ant at 3%. This
trend continues down the table. We think this phenomenon is
caused by increasing differences between the sizes of static
slices and dynamic slices in larger subjects.

Meanwhile. the average upper bounds of recall, which are
at most 61% and as low as 29% for all subjects but the smallest
one, strongly suggest that dynamic slices cannot be trusted to
achieve high recalls and thus provide complete results.

Naturally, we need to study many more slices, especially
on the larger subjects, to be able to generalize our conclusions.
However, our approach has already provided valuable insights.

V. CONCLUSION AND FUTURE WORK

We presented a new approach for assessing for the first time
the accuracy of dynamic forward slicing with respect to real
dependencies. Our initial results reveal some uncertainty on the
ability of dynamic slices to model the runtime dependencies
needed by important tasks in security and reliability (e.g.,
information-flow analysis and debugging). More studies on
more slices and subjects are needed to explain and charac-
terize this uncertainty and to support the design of new and
better techniques that compute dynamic dependencies. Manual
inspection and statistical methods will also be added to our
approach to narrow down the bounds obtained in this work.

REFERENCES

[1] A. Podgurski and L. A. Clarke, “A formal model of program dependences
and its implications for software testing, debugging, and maintenance,”
Software Engineering, IEEE Trans. on, vol. 16, no. 9, pp. 965–979, 1990.

[2] M. Weiser, “Program slicing,” IEEE Trans. on Softw. Eng., 10(4):352–
357, Jul. 1984.

[3] B. Korel and J. Laski, “Dynamic Program Slicing,” Information Process-
ing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[4] H. Cai, S. Jiang, Y.-J. Zhang, Y. Zhang, and R. Santelices, “SENSA: Sen-
sitivity Analysis for Quantitative Change-impact Prediction,” Technical
Report TR 2013-04, CSE, U. of Notre Dame, Mar. 2013, 11pp.

