
SENSA: Sensitivity Analysis for Quantitative
Change-impact Prediction

Haipeng Cai, Siyuan Jiang, Ying-jie Zhang†, Yiji Zhang, and Raul Santelices
University of Notre Dame, Indiana, USA
†Tsinghua University, Beijing, China

email: {hcai|sjiang1|yzhang20|rsanteli}@nd.edu, †zhangyj1991@gmail.com

ABSTRACT
Sensitivity analysis is used in many fields to determine how dif-
ferent parts of a system respond to variations in stimuli. Software-
development tasks, such as change-impact analysis, can also benefit
from sensitivity analysis. In this paper, we present SENSA, a novel
dynamic-analysis technique and tool that uses sensitivity analysis
and execution differencing for estimating the influence of program
statements on the rest of the program. SENSA not only identi-
fies the statements that can be affected by another statement, but
also quantifies those effects. Quantifying effects in programs can
greatly increase the effectiveness of tasks such as change-impact
analysis by helping developers prioritize and focus their inspection
of those effects. Our studies on four Java subjects indicate that
SENSA can predict the impact of changes much more accurately
than the state of the art: forward slicing. The SENSA prototype
tool is freely available to the community for download.

1. INTRODUCTION
Modern software is increasingly complex and changes constantly.
Therefore, it is crucial to provide automated and effective support
to analyze the interactions among its components and, in particu-
lar, the effects of changes. Developers must understand the con-
sequences and risks of modifying each part of a software system
even before they can properly design and test their changes. Unfor-
tunately, existing techniques for analyzing the effects of code, such
as those for change-impact analysis [7], are quite imprecise, which
hinders their applicability and limits their adoption in practice.

Many change-impact analyses operate at coarse levels such as meth-
ods and classes (e.g., [20, 26]). Although these techniques pro-
vide a first approximation of the effects of changes, they do not
distinguish which particular statements play a role in those effects
and, thus, can classify as impacted many methods and classes that
are not really impacted (false positives). Moreover, these tech-
niques can miss code-level dependencies not captured by higher-
level structural relationships [36] (false negatives).

At the code level (statements), the forward version of program
slicing [16, 38] reports all statements that might be impacted by

a change in a statement for any execution (via static forward slic-
ing) or for a set of executions (via dynamic forward slicing). Slic-
ing, however, is also imprecise. Static slicing usually reports many
potentially-affected statements that are not really affected [6, 23],
whereas dynamic slicing [2,5,18] reduces the size of the results but
still produces false positives [21, 30] in addition to false negatives.

To increase the precision of slicing by reducing the size of the
resulting slices (the sets of affected statements), researchers have
tried combining static slices with execution data [13,15,19,23] and
pruning slices based on some criteria [1, 8, 33, 39]. However, those
methods still suffer from false positives and false negatives. More-
over, the number of statements reported as “affected” can still be
too large. Optimizing underlying algorithms can reduce this im-
precision [19, 22, 24] but at great costs for small payoffs.

In this paper, we take a different approach to measuring the in-
fluence of statements in programs. Instead of trying to further re-
duce the number of affected statements, our approach distinguishes
statements by likelihood of impact so that users can focus on the
most likely impacts first. Our new technique and tool, SENSA,
uses sensitivity analysis [28] and execution differencing [30,34,40]
to estimate those likelihoods. Sensitivity analysis is used in many
fields to measure relationships among different parts of a system. In
software engineering, sensitivity analysis has been used to analyze
requirements and components [14, 27] and, in a restricted way, for
mutation analysis [9, 17, 37]. Meanwhile, execution differencing
has been used for program integration and debugging. However,
neither approach, alone or combined, has been used for forward
slicing and change-impact analysis, as our new technique does.

SENSA quantifies the effect that the behavior of a statement or po-
tential changes in it may have on the rest of the program. SENSA
inputs a program P , a test suite T , and a statement c. For each
test case t in T , SENSA repeatedly executes t, each time changing
the value computed by c to a different value and finding the differ-
ences in those executions. For each execution, the differences show
which statements change their behavior (i.e., state or occurrences)
when c is modified. Using this information for all test cases in T ,
SENSA computes the sensitivity of each statement s to changes in c
as the frequency with which s behaves differently. SENSA reports
this frequency as the estimated likelihood that c affects (or impacts)
s in future runs of the program. The greater the frequency for s is,
the more likely it is that s will be impacted by the behavior of c.

To evaluate the effectiveness of SENSA for estimating the influ-
ence of statements, we empirically compared the ability of SENSA
and static and dynamic forward slicing for predicting the impacts
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of changes in those statements. For each of a number of potential
change locations in four Java subjects, we ranked all statements in
the subject by impact likelihood according to SENSA and by depen-
dence distance as originally proposed by Weiser for slicing [38].
Then, we computed the average effort a developer would spend
inspecting each ranking to find all statements impacted when ap-
plying a real change to each such location and executing the cor-
responding test suite. Our results show that, for these subjects,
SENSA outperforms both forms of slicing at predicting change im-
pacts, reducing slice-inspection efforts to small fractions.

We also performed three case studies manually on these subjects
to investigate how well SENSA and program slicing highlight the
cause-effect chains that explain how bugs actually propagate to fail-
ing points and, thus, how bug fixes can be designed. To achieve
this goal, first, we manually identified the statements that are im-
pacted by each bug and also propagate the erroneous state to a fail-
ing point. Then, we computed how well SENSA and slicing isolate
those event chains. Although we cannot make general conclusions,
we found again that SENSA was better than slicing for isolating the
specific ways in which buggy statements make a program fail.

The main benefit of this work is the greater usefulness of quantified
influences, as computed by SENSA, over simple static and dynamic
program slices. With this kind of information, developers can use
slices more effectively, especially large slices, by focusing on the
statements most likely to be affected in practice. Moreover, quanti-
fied impacts can be used not only for change-related tasks but also,
potentially, to improve other applications, such as testability analy-
sis [37], execution hijacking [35], and mutation testing [9].

The main contributions of this paper are:

• The concept of impact quantification, which, unlike slicing,
distinguishes statements by estimated likelihood of impact.

• A new technique and tool, SENSA, that estimates these like-
lihoods and is available to the public.

• Studies that measure and illustrate the effectiveness of SENSA
for predicting the effects and impacts of changes.

2. BACKGROUND
This section presents core concepts necessary for understanding the
rest of the paper and illustrates these concepts using the example
program of Figure 1. Program prog in this figure takes an integer
n and a floating point number s as inputs, creates a local variable
g, initializes g to the value of n, manipulates the value of s based
on the value of g, and returns the value of s.

2.1 Program Dependencies
Control and data dependences are the building blocks of program
slicing [16, 38]. A statement s1 is control dependent [11] on a
statement s2 if a branching decision taken at s2 determines whether
s1 is necessarily executed. In Figure 1, an example is statement 3,
which is control dependent on statement 2 because the decision
taken at 2 determines whether statement 3 executes or not. This
dependence is intra-procedural because both statements are in the
same procedure. Control dependences can also be inter-procedural
(across procedures) [32].

A statement s1 is data dependent [3] on a statement s2 if a vari-
able v defined (written to) at s2 is used (read) at s1 and there is
a definition-clear path in the program for v (i.e., a path that does

float prog(int n, float s) {
int g;

1: g = n;
2: if (g ≥ 1 && g ≤ 6) {
3: s = s + (7-g)*5;
4: if (g == 6)
5: s = s * 1.1;

}
else {

6: s = 0;
7: print g, " is invalid";

}
8: return s; }

Figure 1: Example program used throughout the paper.

not re-define v) from s2 to s1. For example, in Figure 1, state-
ment 8 is data dependent on statement 3 because 3 defines s, 8
uses s, and there is a path (3,4,8) that does not re-define s after 3.
Data dependencies can also be classified as intra-procedural (all
definition-use paths are in the same procedure) or inter-procedural
(some definition-use path crosses procedure boundaries). The for-
mal parameters of prog, however, are inputs—they are not data
dependent on any other statement.

2.2 Program Slicing
Program slicing [16,38], also called static slicing, determines which
statements of the program may affect or be affected by another
statement. A static forward slice (or, simply, forward slice) from
statement s is the set containing s and all statements transitively
affected by s along control and data dependences. (To avoid in-
valid inter-procedural paths, the solution by Horwitz, Reps, and
Binkley [16] can be used.) For example, the forward slice from
statement 3 in Figure 1 is the set {3,5,8}. We include statement 3
in the slice as it affects itself. Statements 5 and 8, which use s,
are in the slice because they are data dependent on the definition of
s at 3. Another example is the forward slice from statement 1 in
prog, which is {1,2,3,4,5,6,7,8}. Statement 2 uses g, so it is data
dependent on statement 1. Statements 3, 4, 5, 6, and 7 are control
dependent on statement 2, so they are also in the forward slice. Fi-
nally, statement 8 depends on g at 1 transitively because it depends
on s at 3, 5 and 6, all of which have definition-clear paths to 8.

The size of a static slice can vary according to the precision of the
analysis. For example, the point-to analysis can affect the size of a
static slice. If we use a coarse points-to analysis in which a pointer
can be any memory address, a forward slice from a statement s
that defines a pointer p would include any statement that uses or
dereferences any pointer (which may or may not point to the same
address as p) if the statement is reachable from s.

3. EXECUTION DIFFERENCING
Differential execution analysis (DEA) is designed specifically to
identify the runtime semantic dependencies [25] of statements on
changes. Semantic dependencies tell which statements are truly
affected by other statements or changes. Data and control depen-
dencies and, therefore, slicing, only provide necessary but not suf-
ficient conditions for semantic dependence. This is the main reason
for the imprecision of slicing.

Although finding semantic dependencies is an undecidable prob-
lem, DEA detects such dependencies on changes when they oc-
cur at runtime to under-approximate the set of semantic dependen-
cies in the program. Therefore, DEA cannot guarantee 100% recall
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of semantic dependencies but it achieves 100% precision. This is
much better than what dynamic slicing usually achieves [21, 30].

DEA executes a program before and after a change to collect the
execution history (including states) [30] of each execution and then
compare both executions. The execution history of a program is the
sequence of statements executed and the values computed at each
statement. The differences between two execution histories reveal
which statements had their behavior (i.e., occurrences and values)
altered by a change—the conditions for semantic dependence [25].

4. TECHNIQUE
The goal of SENSA is, for a program P and its test suite T , to
quantify the potential impacts of changing a statement s in P by
applying sensitivity analysis [28] and execution differencing [30].
In Section 4.1, we first give an overview of this new technique us-
ing an example program to illustrate it. Then, in Section 4.2, we
give a precise description of our technique including its process
and its algorithm. Finally, in Section 4.3, we describe the three
state-modification strategies that SENSA offers.

4.1 Overview
When a change is made to a program statement, DEA tells develop-
ers which other statements in the program are impacted. However,
developers first need to know the possible impacts of changing a
statement before deciding to change it and before designing and
applying a change in that location. Also, in general, developers of-
ten need to understand the influences that specific statements exert
on the rest of the program and, thus, determine their role in it.

To identify and quantify those influences, SENSA uses sensitivity
analysis on a program statement s that is a candidate for chan-
ges or whose role in the program must be measured. Based on
the test suite for the program, SENSA repeatedly runs the pro-
gram while modifying the state of statement s and identifies in
detail, using DEA, the impacted statements for each modification.
Then, SENSA computes the frequency with which each statement
is impacted—the sensitivity of those statements to s. These sensi-
tivities are estimates, based on the test suite and the modifications
made, of the strength or likelihood of each influence of s.

We use the example program prog in Figure 1 again to illustrate
how SENSA works using two test inputs: (2, 82.5) and (3, 94.7).
Suppose that a developer asks for the effect of line 1 on the rest
of prog. SENSA instruments line 1 to invoke a state modifier and
also instruments the rest of the program to collect the execution
histories that DEA needs. The developer also configures SENSA
to modify q with values in its “valid” range of [1..6]. For each test
case, SENSA first executes prog without changes to provide the
baseline execution history for DEA. Then SENSA re-executes the
test case five times—once for each other value of q in range [1..6].
Finally SENSA applies DEA to the execution histories of the base-
line and modified runs of each test case and computes the frequency
(i.e., the fraction of all executions) with which every other line was
impacted (i.e., changed its state or occurrences).

In the example, the result is the ranking ({1,2,3,4,8}, {5}, {6,7}),
where lines 1, 2, 3, 4, and 8 are tied at the top because their states
(the values of q and/or s) change in all modified runs and, thus,
their sensitivity is 1.0. Line 5 comes next with sensitivity 0.2 as it
executes for one modification of each test case (when q changes to
6) whereas, in the baseline executions, it is not reached. Lines 6
and 7 rank at the bottom because they never execute.

In contrast, static forward slicing ranks the program statements by
dependence distance from line 1. These distances are obtained
through a breadth-first search (BFS) of the dependence graph—the
inspection order suggested originally by Weiser [38]. Thus, the re-
sult for static slicing is the ranking ({1}, {2,3,4,7}, {5,6}, {8}). For
dynamic slicing, a BFS of the dynamic dependence graph, which
is the same for both test cases, yields ranking ({1}, {2,3,4}, {8}).

To measure the predictive power of these rankings, suppose that the
developer decides to change line 1 to g = n + 2. The actual set of
impacted statements for this change and test suite is {1,2,3,4,8}—
all of them are impacted for both test cases. This is exactly the set of
statements placed at the top of the ranking by SENSA. In contrast,
static slicing predicts that statement 1 will be the most impacted,
followed by 2, 3, and 4, and then statement 8 as the least impacted.
This prediction is less accurate than that of SENSA, especially be-
cause static slicing also places the unaffected statement 7 at the
same level as 2, 3, and 4, and predicts 5 and 6 above 8.

Dynamic slicing, against intuition, performs even worse than static
slicing with respect to SENSA in this example. This approach ranks
the actually-impacted statements 4 and 8 at or near the bottom and
misses statement 5 altogether. Thus, dynamic slicing can be impre-
cise and produce false negatives for impact prediction.

Naturally, the predictions of SENSA depend on the test suite and the
modifications chosen. The quality of the predictions depends also
on which change we are making predictions for. If, for example,
n in the first test case is 5 instead of 2 and the range [0..10] is
specified instead of [1..6] to modify line 1, SENSA would produce
the ranking ({1,2,8}, {3,4,6,7}, {5}) by using 20 modified runs.
The static- and dynamic-slicing rankings remain the same.

If, in this scenario, the developer changes line 1 to g = n × 2, the
actual impact set is the entire program because, after the change,
lines 5, 6, and 7 will execute for this test suite. In this case, SENSA
still does a better job than static slicing, albeit to a lesser extent, by
including 2 and 8 at the top of the ranking and including 3, 4, 6,
and 7 in second place, whereas static slicing places 6 and 8 at or
near the end. SENSA only does worse than static slicing for line 5.
Dynamic slicing still does a poor job by missing lines 5, 6, and 7.

Note that prog is a very simple program that contains eight state-
ments only. This program does not require much effort to identify
and rank potential impacts, regardless of the approach used. In a
more realistic case, however, the differences in prediction accuracy
between SENSA and both forms of slicing can be substantial, as the
studies we present in Sections 5 and 6 strongly suggest.

4.2 Description
SENSA is a dynamic analysis that, for a statement C (e.g., a can-
didate change location) in a program P with test suite T , assigns
to each statement s in a program P a value between 0 and 1. This
value is an estimate of the “size” or frequency of the influence of C
on each s in P . Next, we present SENSA’s process and algorithm.

4.2.1 Process
Figure 2 shows the diagram of the process that SENSA follows to
quantify influences in programs. The process logically flows from
the top to the bottom of the diagram and is divided into three stages,
each one highlighted with a different background color: (1) Pre-
process, (2) Runtime, and (3) Post-process.
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Figure 2: Process used by SENSA for influence quantification.

For the first stage, on the top left, the diagram shows that SENSA
inputs a Program and a Statement, which we denote as P and C,
respectively. In this stage, an Instrumenter inserts at C in program
P a call to a Runtime module (which executes in the second stage)
and also uses DEA to instrument P to collect the execution history
of the program, including state updates [30]. The result, shown in
the diagram, is the Instrumented program.

In the second stage, SENSA inputs a Test suite, T , and runs the
program repeatedly with modifications (Run repeatedly modifying
state) of the value produced by C, for each test case t in T . SENSA
also runs the instrumented P without modifications (Normal run)
as a baseline for comparison. For the modified executions, the run-
time module uses a user-specified strategy (see Section 4.3) and
other parameters, such as a value range, to decide which value to
use as a replacement at C each time C is reached. Also, for all ex-
ecutions, the DEA instrumentation collects the Modified execution
histories and the Normal execution history per test case.

In the third and last stage, SENSA uses DEA to identify the dif-
ferences between the Modified and Normal execution histories and,
thus, the statements affected for each test case by each modification
made during the Runtime stage. In this Post-process stage, Influ-
ence quantification processes the execution history differences and
calculates the frequencies as fractions in the range [0..1]. These are
the frequencies with which the statements in P were “impacted” by
the modifications made at runtime. The result is the set Quantified
influences of statements influenced by C, including the frequencies
that quantify those influences. As part of this output, SENSA also
ranks the statements by decreasing influence.

4.2.2 Algorithm
Algorithm 1 formally describes how SENSA quantifies the influ-
ences of a statement C in a program P . The statements ranked
by SENSA are those in the forward static slice of C in P because
those are the ones that can be influenced by C. Therefore, to be-

gin with the first stage, the algorithm starts by computing this static
slice (line 1). At lines 2–5, SENSA initializes the map influence
that associates to all statements in the slice a frequency and a rank.
Initially, these two values are 0 for all statements. Then, at line 6,
SENSA instruments P to let SENSA modify at runtime the values
at C and to collect the execution histories for DEA.

For the second stage, the loop at lines 7–16 determines, for all test
cases t, how many times each statement is impacted by the modifi-
cations made by SENSA. At line 8, SENSA executes t without mod-
ifications to obtain the baseline execution history. Then, line 10
executes this same test for the number of times indicated by the
parameter given by SENSA-MODS(). Each time, SENSA modifies
the value or branching decision at C with a different value.

For the third stage, line 11 asks DEA for the differences between
each modified run and the baseline run. In lines 12–14, the differ-
ences found are used to increment the frequency counter for each
statement affected by the modification. Then, the loop at lines 17–
19 divides the influence counter for each statement by the total
number of modified runs performed, which normalizes this counter
to obtain its influence frequency in range [0..1].

4.3 Modification Strategies
SENSA is a generic modifier of program states at given program
locations. The technique ensures that each new value picked to
replace in a location is unique to maximize diversity while mini-
mizing bias. Whenever SENSA runs out of possible values for a
test case, it stops and moves on to the next test case.

Users can specify parameters such as the modification strategy to
use to pick each new value for a statement. The choice of values
affects the quality of the results of SENSA, so we designed three
different strategies while making it straightforward to add other
strategies in the future. The built-in modification strategies are:
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Algorithm 1 : SENSA(program P , statement C, test suite T )

// Stage 1: Pre-process
1: slice = STATICSLICE(P , C)
2: influence = ∅ // map statement→(frequency,rank)
3: for each statement s in slice do
4: influence[s] = (0, 0)
5: end for
6: P ′ = SENSA-INSTRUMENT(P , C)

// Stage 2: Runtime
7: for each test case t in T do
8: exHistBaseline = SENSA-RUNNORMAL(P ′, t)
9: for i = 1 to SENSA-MODS() do

10: exHistModified = SENSA-RUNMODIFIED(P ′, t)
// Stage 3: Post-process

11: affected = DEA-DIFF(exHistBaseline, exHistModified)
12: for each statement s in affected do
13: influence[s].frequency++
14: end for
15: end for
16: end for

// Stage 3: Post-process (continued)
17: for each statement s in influence do
18: influence[s].frequency /= SENSA-MODS()×|T |
19: end for
20: RANKBYFREQUENCY(influence)
21: return influence // frequency and rank per statement

1. Random: Picks a random value from a specified range. The
default range covers all elements of the value’s type except for
char, which only includes readable characters. For some refer-
ence types such as String, objects with random states are picked.
For all other reference types, the strategy currently picks null.1

2. Incremental: Picks a value that diverges from the original value
by increments of i (default is 1.0). For example, for value v, the
strategy picks v+i and then picks v–i, v+2i, v–2i, etc. For com-
mon non-numeric types, the same idea is used. For example, for
string foo, the strategy picks fooo, fo, foof, oo, etc.

3. Observed: First, the strategy collects all values that C computes
for the entire test suite. Then, the strategy picks iteratively from
this pool each new value to replace at C. The goal is to ensure
that the chosen values are meaningful to the program.

5. EVALUATION
To evaluate SENSA, we studied its ability to predict the impacts
of changes in typical operational conditions. We compared these
predictions with those of the state-of-the-art—static and dynamic
slicing. Our rationale is that the more closely a technique approx-
imates the actual impacts that changes will have, the more effec-
tively developers will maintain and evolve their software. To this
end, we formulated three research questions:

RQ1: How good is SENSA overall at predicting the statements
impacted by changes?

RQ2: How good are subsets of the SENSA rankings, if time con-
straints exist, at predicting impacted statements?

RQ3: How expensive is it to use SENSA?

1Instantiating objects with random states is in our future plans.

Table 1: Experimental subjects and their statistics
Subject Short description LOC Tests Changes
Schedule1 priority scheduler 301 2650 7
NanoXML XML parser 3521 214 7
XML-security encryption library 252203 92 7
JMeter performance tester 391533 79 7

The first and second questions address the benefits of SENSA over-
all and per ranking-inspection effort—when developers can only
inspect a portion of the predicted ranking in practice. The third
question targets the practicality of this technique.

5.1 Experimental Setup
We implemented SENSA in Java as an extension of our depen-
dence analysis and instrumentation toolkit DUA-FORENSICS [29].
As such, SENSA works on Java bytecode programs. The SENSA
tool is available to the public for download.2 For our experiments,
we run SENSA on a dedicated Linux desktop with a quad-core
3.10GHz Intel i5-2400 CPU and 8GB of memory.

We studied four Java programs of various types and sizes obtained
from the SIR repository [10], including test suites and changes.
Table 1 lists these subjects. Column LOC shows the size of each
subject in lines of code. Column Tests shows the number of tests
for each subject. Column Changes shows the number of changes
used for each subject. We limited this number to seven because, for
some of the subjects, this is the maximum available number. For
each subject, we picked the first seven changes that come with it.
All changes are fixes for bugs in these subjects.

The first subject, Schedule1, is part of the Siemens suite that we
translated from C to Java. This program can be considered as rep-
resentative of small software modules. NanoXML is a lean XML
parser designed for a small memory footprint. We used version v1
of this program as published on the SIR. XML-security is the XML
signature and encryption component of the Apache project. JMeter
is also an Apache application for load-testing functional behavior
and measuring the performance of software.3

5.2 Methodology
Figure 3 shows our experimental process. On the top left, the inputs
for SENSA include a program, a statement (e.g., a candidate change
location), and a test suite. SENSA quantifies the influence of the
input statement on each statement of the program for the test suite
of the program. This technique outputs those statements ranked by
decreasing influence of the input statement. For tied statements in
the ranking, the rank assigned to all of them is the average position
of these statements in the ranking. To enable a comparison of this
ranking with the rankings for slicing, the SENSA ranking includes
at the bottom, tied with influence zero, those statements in the static
forward slice not found to be affected during analysis.

On the right of the diagram, an Actual impact computation proce-
dure takes the same inputs and also a change for the input state-
ment. This procedure uses the execution-differencing technique
DEA [30] to determine the exact set of statements whose behavior

2http://nd.edu/~hcai/sensa/html
3Some subjects contain non-Java code. The analyzed subsets in
Java are 22361 LOC for XML-security and 35547 LOC for JMeter.
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Figure 3: Experimental process.

actually changes when running the test suite on the program before
and after this change.

The procedure Ranking comparison at the bottom of the diagram
measures the effectiveness (i.e., prediction accuracy) of the SENSA
ranking by comparing this ranking with the set of actually-impacted
statements. The process makes a similar comparison, not shown in
the diagram, for the rankings obtained from breadth-first searches
of the dependence graphs for static and dynamic slicing (the traver-
sal order suggested originally by Weiser [38]).

Ranking comparison computes the effectiveness of a ranking with
respect to a set of impacted statements by determining how high
in the ranking those statements are located.4 For each impacted
statement, its rank value in the ranking represents the effort that a
developer would spend to find that statement when traversing the
ranking from the top. The more impacted statements are located
near the top of the ranking, the more effective is the ranking at iso-
lating and predicting the actual impacts that are likely to occur in
practice (after the change is made). The process computes the av-
erage rank of the impacted statements to represent their inspection
cost. The effectiveness of the ranking is the inverse of that cost.

To provide a basis of comparison of the quality of the predictions
of the techniques we studied, we also computed the inspection cost
for the ideal scenario for each change. This ideal case corresponds
to a ranking in which the top |S| statements are exactly those in
the set S of impacted statements for that change. This is the best
possible ranking for predicting all impacts of the change.

For RQ1, we computed the average inspection costs for the en-
tire rankings for SENSA, static slicing, and dynamic slicing. For
RQ2, we computed, for each ranking, the percentage of impacted
statements found in each fraction from the top of the ranking—for
fractions 1

N
to N

N
, where N is the size of the ranking. For RQ3,

we measured the time it takes to run the test suite on the original
(non-instrumented) program and on the instrumented versions of
the program for SENSA and dynamic slicing. We also collected the
times SENSA and DUA-FORENSICS take for static slicing and for
pre- and post-processing in SENSA.

4The top statement in a ranking has a rank value of 1.

Table 2: Average inspection costs for all actual impacts

Subject
Average cost for all impacts and changes (%)

Ideal Static Dynamic SENSA SENSA SENSA
case slicing slicing -Rand -Inc -Obs

Schedule1 39.4 49.3 47.8 40.2 40.2 40.2
NanoXML 7.3 27.3 22.2 9.2 9.9 -
XML-security 5.6 36.4 39.9 11.6 12.5 -
JMeter 0.2 12.5 37.7 7.7 3.0 -

It is important to note that the test suites used to compute the SENSA
rankings are the same that we used to find the actual impacts when
applying the changes. Therefore, the SENSA predictions might ap-
pear biased on the surface. However, there is a strong reason to use
the same test suite for both the technique and the “ground truth”
(the actual impacts): developers will use the same, existing test
suite to run SENSA and then to observe the actual impacts of their
changes. For that reason, we decided to use the same test suite for
both parts of the experimental process.

5.3 Results and Analysis

5.3.1 RQ1: Overall Effectiveness
Table 2 presents, for all four subjects, the average inspection costs
per subject for the seven changes in that subject for the Ideal sce-
nario (best possible ranking) and for a number of techniques. The
units are percentages of the static slice sizes, which range between
55–79% of the entire program. The techniques are Static slic-
ing, Dynamic slicing, and three versions of SENSA: SENSA-Rand,
SENSA-Inc, and SENSA-Obs for strategies Random, Incremental,
and Observed, respectively.

For some changes in NanoXML, XML-security, and JMeter,
SENSA-Obs observed only one value at the input statement for
the entire test suite. As a consequence, this strategy, by definition,
could not make any modification of that value and, thus, could not
be applied to those changes. Therefore, we omitted the average
cost result for this version of SENSA for those subjects in Table 2.

We first observe, from the Ideal case results, that the number of
statements impacted in practice by the changes in our study, as a
percentage of the total slice size, decreased with the size of the
subject—from 39.4% in Schedule1 down to 0.2% in JMeter. This
phenomenon can be explained by two factors. First, the larger sub-
jects in this study consist of a variety of loosely coupled modules
and the changes, which are thus more scattered, can only affect
smaller fractions of the program. The second factor is that, never-
theless, slicing will find connections among those modules that are
rarely, if ever, exercised at runtime. Also, aliasing in those subjects
decreases the precision of slicing. For Schedule1, however, there
is little use of pointers and most of the program executes and is
impacted for every test case and by every change. In fact, an av-
erage of 78.5% of the statements in the slices for Schedule1 were
impacted. These factors explain the much greater inspection costs
for the ideal case and all techniques in this subject.

For Schedule1, the inspection cost for all three versions of SENSA
was 40.2% on average for all changes in that subject. This cost was,
remarkably, only 0.8 percentage points greater than the ideal case.
This is a remarkable result, especially because static and dynamic
slicing did worse than the ideal case by 8.4 or more percentage
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points. Our data for individual changes (not shown in the table)
for this subject show a consistent trend in which SENSA cost no
more than 1.4 percentage points more than the ideal case. Also
for individual changes, the differences among the costs of the three
versions of SENSA were very small—less than 1% in all cases. In
consequence, for this subject, all three strategies were equally good
alternatives, and all of them were better than both types of slicing.

The average results for the changes in NanoXML show an even
greater gap in effectiveness than in Schedule1 between the two ap-
plicable versions of SENSA and static and dynamic slicing. The
worst-performing version of our technique, SENSA-Inc, cost only
2.2 percentage points more than the ideal case on average (9.9% vs.
7.3% of all statements that can possibly be affected), whereas the
breadth-first traversals for static and dynamic slicing cost at least
14.9% more than the ideal ranking.

For XML-security, the results follow the same trend as in the first
two subjects, in which SENSA provided better predictions than
both static and dynamic slicing at increasing rates. The two ap-
plicable versions of SENSA incurred an average cost of no more
than 6.9 percentage points over the ideal cost, whereas slicing cost
at least 30.8 points more than the ideal.

Remarkably, for XML-security, unlike Schedule1 and NanoXML,
dynamic slicing produced worse predictions than static slicing. This
apparently counter-intuitive result is explained by the divergence in
the paths taken by the executions before and after the actual chan-
ges. Because of these divergences, dynamic slicing actually missed
many impacted statements that were not dynamically dependent on
the input statement that are, however, statically dependent on that
statement. SENSA did not suffer from this problem because its
modifications were able to alter those paths to approximate the ef-
fects that the actual changes would have later.

For the largest subject, JMeter, the results again indicate a supe-
riority of SENSA over slicing, at least for these changes and this
test suite. On average, SENSA cost 7.5 and 2.8 percentage points
than the ideal cost for the Random and Incremental strategies, re-
spectively. With respect to slicing, SENSA cost at least 4.8 and
9.4 points less, respectively. No technique, however, was able to
get close to the considerably small ideal ranking (0.2%). There are
two remarkable observations for this subject. First, dynamic slices
was much worse than static slicing—by a much greater than for
XML-security—which is, again, explained by its inability to con-
sider alternative execution paths. Second, for this subject, we ob-
served the greatest difference between the two applicable SENSA
versions, where, for the first and only time, SENSA-Inc was supe-
rior. This superiority suggests that the actual changes we studied
in JMeter had effects observable mostly in the vicinity of the val-
ues computed in the unchanged program, as SENSA-Inc simulates,
rather than at random different locations in the value range.

In sum, for RQ1 and for these subjects and changes, the results in-
dicate that SENSA is considerably better than slicing techniques at
predicting which statements will be impacted when these changes
are actually made. In particular, these results highlight the impre-
cision of both static and dynamic slicing, at least with respect to
changes. More importantly, our observations for SENSA are rem-
iniscent of similar conclusions observed for mutation analysis [4]
in which small modifications appear to be representative of faults
in general—or, as in this experiment, fault fixes. These results sug-
gest that developers who use SENSA can save a substantial amount

of effort for understanding the potential consequences of changes.

5.3.2 RQ2: Effectiveness per Inspection Effort
Because program slices are often very large, developers cannot
examine in practice all statements in each ranking produced by
SENSA or slicing. Instead, they will likely inspect a fraction of
all potential impacts and will focus on the most likely impacts
first. With this prioritization, developers can maximize the cost-
effectiveness of their inspection by analyzing as many highly-ranked
impacts as possible within their budget. To understand the effects
of such prioritization, we studied the effectiveness of each portion
of each ranking produced by the studied techniques.

Figures 4–7 show the cost-effectiveness curves for the best possible
ranking-examination order and for the studied techniques SENSA
(two or three applicable versions) and static and dynamic slicing.
For each graph, each point in the horizontal axis represents the frac-
tion of the ranking examined from the top of that ranking, whereas
the vertical axis corresponds to the percentage of actually-impacted
statements (on average for all changes in the respective subject)
found within that fraction of the ranking. Note that the result pre-
sented in Table 2 for each ranking is the average of the Y values for
that entire ranking in the corresponding graph.

The Ideal curves in these graphs provide detailed insights on how
cost-effective impact prediction techniques can aspire to be. For
all subjects but Schedule1, this curve rises sharply within the first
10% of the ranking. These curves are not straight lines because
they correspond to the average curves for all changes in per sub-
ject and, in general, the actual impacts for these changes (which
define Ideal) vary in size. Only for Schedule1, the Ideal curve is
mostly straight because all slices have almost the same size and the
impacted fractions of the slices have similar sizes.

For Schedule1, because of the high baseline (ideal) costs, all curves
are relatively close to each other. However, there are two distinctive
groups: the SENSA versions near the ideal curve and the slicing
curves below them. Interestingly, the SENSA curves overlap with
the ideal curve until about 70% of the ranking. Therefore, a user of
SENSA can find as many impacts as it is possible if the inspection
budget is 70% or less. At 70%, 90% of the impacts are predicted
by SENSA, in contrast with 70–75% for slicing. Also, SENSA-
Obs, which only applies to this subject, has virtually the same cost-
effectiveness as the two other versions of SENSA.

The results for the three other subjects, which represent more mod-
ern software than Schedule1, indicate even stronger cost-
effectiveness benefits for the two applicable SENSA versions. The
curves in Figures 5, 6, and 7 show that SENSA was not only better
than slicing overall at predicting impacts, but also that this supe-
riority is even greater in comparison for fractions of the resulting
rankings. The curves for either SENSA-Rand or SENSA-Inc, or
both, grow much faster at the beginning than those for slicing. In
other words, these results suggest that users can benefit even more
from choosing SENSA over slicing when they are on a budget.

The only case in which one of the slicing approaches seems to be
competitive with SENSA is for JMeter. For this subject, on aver-
age for all seven changes, static slicing overcomes SENSA-Rand
at about 25% of the inspection effort. However, after that point,
static slicing maintains only a small advantage over this version
of SENSA, and this difference disappears somewhere between 80–
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Figure 4: Impacted statements found versus cost for Schedule1
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Figure 5: Impacted statements found versus cost for NanoXML

90% of the inspection. More importantly, SENSA-Rand is consid-
erably better than static slicing before the 25% point, which ex-
plains the overall advantage of 4.8 percentage points for the for-
mer technique as reported in Table 2. The main highlight for this
subject, however, is SENSA-Inc, which performs better than both
techniques at all points.

In sum, for RQ2, the results indicate that, for these subjects, test
suites, and changes, SENSA makes not only better predictions than
slicing to understand the potential impacts of changes, but it is also
better by even greater amounts for discovering those impacts early
in the resulting rankings. This makes SENSA an even more attrac-
tive choice when users are on a budget, as it is likely to happen
in practice. Also, among all versions of SENSA, and despite per-
forming slightly worse overall than SENSA-Rand for NanoXML
and XML-security, SENSA-Inc seems the best choice based on its
cost-effectiveness for JMeter.

5.3.3 RQ3: Computational Costs
For RQ3, we analyze the practicality of SENSA. Table 3 shows
the time in seconds it takes to run the test suite for each subject,
without instrumentation (column Normal run), using the machine
and environment described in Section 5.1. These times help put in
perspective the analysis times taken by SENSA and slicing. Perhaps
against intuition, the longest running time is for Schedule1 because,
despite being the smallest subject, its test suite is at least an order
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Figure 6: Impacted statements found versus cost for XML-security
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Figure 7: Impacted statements found versus cost for JMeter

of magnitude larger than for the other subjects (see Table 1).

The next three columns report the time in seconds taken by each
the three stages of SENSA for each subject. Each time reported
here is the average for all changes for that subject. First, the pre-
processing stage (column Static analysis) performs static slicing,
which is needed by our experiment and is also necessary to instru-
ment the program for dynamic slicing, DEA, and SENSA. As ex-
pected, this time grows with the size of the subjects. Interestingly,
despite the plenty of room for optimization of the implementation
of DUA-FORENSICS and SENSA, the static analysis for SENSA
does not consume more than an average of ten minutes.

For the second stage, as expected due to the varying ratios of sub-
ject size to test-suite size, the greatest amount of time is spent by
JMeter and the second greatest by Schedule1. In both cases, the
cost in time is approximately five minutes. For the third and last
stage, which processes the runtime data to compute the SENSA
rankings, the time costs were less than the runtime costs. This
means that, overall, no individual phase takes an unreasonable
amount of time to produce impact predictions. In the worst case,
for JMeter, the total cost is below 20 minutes.

In all, these computational-cost results are encouraging for the prac-
ticality of SENSA for three reasons. First, we believe that, in many
cases, developers can make use of the predictions of SENSA if
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Table 3: Average computational costs of techniques, in seconds
Subject Normal Static Instrumented Influence
name run analysis run ranking
Schedule1 169.0 5.4 290.6 19.8
NanoXML 13.4 13.7 35.8 1.8
XML-security 58.2 153.5 67.0 63.2
JMeter 37.5 594.6 328.3 238.9

they are provided within 20 minutes for a program such as JMe-
ter and less than 10 minutes for smaller programs. Second, the
machine and environment used in our experiment correspond to
a mid-level setup that developers typically use nowadays. Third,
many of the steps performed by our research toolset not only can
be optimized for individual operations, but can also undergo algo-
rithmic improvements. Moreover, the iterative nature of SENSA
provides opportunities for significant speed-ups via parallelization.

5.4 Threats to Validity
The main internal threat to the validity of our studies is the potential
presence of implementation errors in SENSA. SENSA is a research
prototype developed for this work. However, SENSA is built on top
of DUA-FORENSICS, whose development started in 2006 and has
matured considerably over the time. Also, this SENSA layer built
on top DUA-FORENSICS has been tested, manually examined, and
improved over more than half a year.

Another internal threat to our experiment is the possibility of pro-
cedural errors in our use of SENSA, DUA-FORENSICS, and re-
lated scripts in our experimental process. To reduce this risk, we
tested, inspected, debugged, and manually verified the results of
each phase of this process.

The main external threat to the validity of our study and conclusions
about SENSA is that we studied only a limited number and variety
of subjects and changes (bug fixes) using test suites that may not
represent all possible behaviors of those subjects. Nevertheless,
we chose these four subjects to represent a variety of sizes, coding
styles, and functionality to achieve as much representativeness as
possible of software in general. In addition, these subjects have
been used extensively in experiments conducted in the past by the
authors and/or other researchers around the world. Moreover, the
three largest subjects are real-world open-source programs.

6. CASE STUDIES
To understand in detail the comparative benefits of SENSA and slic-
ing for a more specific task, we investigated in detail how these
techniques could help a developer isolate the concrete effects of
faulty code to help understand and fix that fault. To that end, we
conducted three case studies of fault-effects analysis. When a (can-
didate) faulty statement is identified, a developer must decide how
to fix it. This decision requires understanding the effects that this
statement has on the failing point—a failed assertion, a bad output,
or the location of a crash. However, not all effects of a faulty state-
ment are necessarily erroneous. The interesting behavior of a fault
is the chain of events from that fault to the failing point.

For diversity, we performed the case studies on different subjects.
For representativeness, we picked the three largest subjects that we
already set up for our previous study: NanoXML, XML-security,
and JMeter. For each case study, we chose the first change location

(a bug to fix) provided with the subject and we identified the first
failing point (typically, the only one) where the bug is manifested.
Given the faulty statement, which a developer could identify with
a fault-localization technique, we manually identified the sequence
of all statements that propagate the fault to the failing point. We
discarded affected statements that did not participate in this prop-
agation to the failing point. All statements are Java bytecode in-
structions in a readable representation.

Given a chain of events—the set of propagating statements—and
the bug fix that is provided as a change with the subject, we com-
puted how high the chain is in the rankings computed by SENSA
and by static and dynamic slicing from the fault location. Specifi-
cally, we calculated the average rank of the statements in this chain
in each ranking to determine how well those rankings highlight the
effects of the fault that actually cause the failure. For SENSA, we
used the Incremental strategy, which performed best overall in the
study of Section 5.

Naturally, three case studies are insufficient to draw definitive con-
clusions, but, nevertheless, these cases shed light on the workings
of the three techniques that we are studying for a particular appli-
cation that requires an extensive manual effort to investigate. Next,
we present our results and analysis for these case studies.5

6.1 NanoXML
In this case for NanoXML, the fault is located in a condition for
a while loop that processes the characters of the DTD of the input
XML document. The execution of this fault by some test cases
triggers a failure by failing to completely read the input, which then
causes an unhandled exception to be thrown when parsing the next
section of the document. The bug and its propagation mechanism
are not easy to understand because the exception is thrown from
a statement located far away from the fault. After an exhaustive
inspection, we manually identified the 30 statements that constitute
the entire cause-effect sequence that causes the failure.

All 30 statements that cause the failure—and, thus, will change
with the bug fix—are placed by SENSA-Inc in the top 11.5% of
the ranking, whereas static slicing places them in the top 28.7%
and dynamic slicing puts them in the top 73.5%. Also, the average
inspection cost, computed with the method of Section 5.2, is 6.8%
for SENSA-Inc, 9.3% for static slicing, and 24.4% for dynamic slic-
ing. Similar to our findings for many changes in Section 5, dynamic
slicing was much less effective as well in this case because of the
changes in the execution path that the bug fix causes after it is ap-
plied (which singles out the statements that propagated the fault).

We also wanted to understand how well the techniques detect the
statements whose behavior changes only because their state and not
their execution occurrences. Such statements seem more likely to
be highlighted by slicing. Thus, we run the predictions for the 23
statements in this propagation chain that execute in both the buggy
and fixed versions of the program. SENSA-Inc places these state-
ments at an average rank of 5.33%, whereas static slicing puts them
at 8.05% on average and dynamic slicing predicts them at 9.30%,
also on average. All techniques showed improvements for this sub-
set of statements, especially dynamic slicing. However, dynamic
slicing still performed worse that static slicing, possibly caused by
long dynamic dependence distances to the impacted statements.

5For full details, see http://nd.edu/~hcai/sensa/casestudies
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6.2 XML-security
The bug provided with XML-security is only revealed by one of
the 92 unit tests for this subject. This unit test fails in the the buggy
version because of an assertion failure in that test due to an un-
expected result. Manually tracing the execution backwards from
that assertion to the fault location reveals that the fault caused an
incorrect signature on the input file via a complex combination of
control and data flow. The complete sequence of events for the fail-
ure trace contains more than 200 bytecode-like statements. Many
of those statements, however, belong to helper functions that, for
all practical purposes, work as atomic operations. Therefore, we
skipped those functions to obtain a more manageable and focused
cause-effect chain that be more easily identified and understood.

For the resulting chain of 55 statements, SENSA-Inc places 36 of
them in the top 1% of its ranking. A total of 86.3% of those top 1%
statements are, in fact, in the chain. In sharp contrast, for the top
4% of its ranking, static slicing only locates 9 of those statements.
The cost of inspecting the entire sequence using SENSA is 6.6% of
the slice whereas static slicing requires inspecting 33.15% of the
slice and dynamic slicing needs 17.9%.

The entire forward static slice consists of 18,926 statements. Thus,
users would cover the full sequence of events when reaching 1,255
statements in the ranking of SENSA. With static and dynamic slic-
ing, instead users would have to visit 6,274 and 3,388 statements,
respectively. Thus, for this fault, a developer can find the chain of
events that makes the assertion fail much faster than using slicing.

6.3 JMeter
For this case study, we chose again the first buggy version provided
with JMeter and we picked, from among all 79 unit tests, the test
that makes the program fail. The failing point is an assertion check
by the end of that unit test. Despite the much larger size of both the
subject and the forward slice from this fault, the fault-propagation
sequence consists of only 4 statements.

Static slicing ranks two of those statements—half of the sequence—
in the top 1% and the other two statements farther away. SENSA, in
contrast, places the entire sequence in its top 1%, making it much
easier to distinguish the effect from all other possible impacts of
the fault. The inspection of the entire failure sequence using static
slicing would require a developer to go through 2.6% of the for-
ward slice, or 848 statements. For SENSA, this cost would be only
0.1%, or 32 statements.

As we have frequently observed for dynamic slicing, for this fault,
and considering the effects of fixing it, dynamic slicing would cost
much more than SENSA and static slicing to identify the fault-
propagation sequence. In find all four statements in the sequence,
users would have to traverse 12.1% of the slice, which corresponds
to 4,094 statements. Once again, this case gives SENSA an ad-
vantage over static slicing, and especially over dynamic slicing, in
assisting with the location of the failure sequence.

7. RELATED WORK
In preliminary work [31], we described at a high level an early ver-
sion of SENSA and we showed initial, promising results for it when
compared with the predictions from breadth-first traversals of static
slices [33,38]. In this paper, we expand our presentation of SENSA,
its process, algorithm, and modification strategies. Moreover, we
expand our comprehensive study to four Java subjects, we add dy-
namic slicing to our comparisons, and we present three case studies

of cause-effects identification using SENSA on program failures.

A few other techniques discriminate among statements within slices.
Two of them [12,39] work on dynamic backward slices to estimate
influences on outputs, but do not consider impact influences on the
entire program. These techniques could be compared with SENSA
if a backward variant of SENSA is developed in the future. Also for
backward analysis, thin slicing [33] distinguish statements in slices
by pruning control dependencies and pointer-based data dependen-
cies incrementally as requested by the user. Our technique, instead,
keeps all statements from the static slice (which is a safe approach)
and automatically estimates their influence to help users prioritize
their inspections.

Program slicing was introduced as a backward analysis for program
comprehension and debugging [38]. Static forward slicing [16]
was then proposed for identifying the statements affected by other
statements, which can be used for change-impact analysis [7]. Un-
fortunately, static slices are often too big to be useful. Our work
alleviates this problem by recognizing that not all statements are
equally relevant in a slice and that a static analysis can estimate
their relevance to improve the effectiveness of the forward slice.
Other forms of slicing have been proposed, such as dynamic slic-
ing [18] and thin slicing [33], that produce smaller backward slices
but can miss important statements for many applications. Our tech-
nique, in contrast, is designed for forward slicing and does not drop
statements but scores them instead.

Dynamic impact analysis techniques [20, 26], which collect execu-
tion information to assess the impact of changes, have also been in-
vestigated. These techniques, however, work at a coarse granularity
level (e.g., methods) and their results are subject to the executions
observed. Our technique, in contrast, works at the statement level
and analyzes the program statically to predict the impacts of chan-
ges for any execution, whether those impacts have been observed
yet or not. In other words, our technique is predictive, whereas
dynamic techniques are descriptive. Yet, in general, static and dy-
namic techniques complement each other; we intend to investigate
that synergy in the future.

8. CONCLUSION AND FUTURE WORK
Program slicing is a popular but imprecise analysis technique with
a variety of applications. To address this imprecision, we presented
a new technique and tool called SENSA for quantifying statements
in slices. This quantification improves plain forward static slices by
increasing their effectiveness for change-impact and cause-effects
prediction. Rather than pruning statements from slices, SENSA
grades statements according to their relevance in a slice.

We plan to extend our studies to more subjects and changes. We are
also developing a visualization for quantified slices to improve our
understanding of the approach, to enable user studies, and to help
other researchers. Using this tool, we will study how developers
take advantage in practice of quantified slices.

Slightly farther in the future, we foresee adapting SENSA to quan-
tify slices for other important tasks, such as debugging, comprehen-
sion, mutation analysis, interaction testing, and information-flow
measurement. More generally, we see SENSA’s scores as abstrac-
tions of program states as well as interactions among such states.
These scores can be expanded to multi-dimensional values and data
structures to further annotate slices. Such values can also be sim-
plified to discrete sets as needed to improve performance.
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