
APPATCH: Automated Adaptive Prompting Large Language Models for
Real-World Software Vulnerability Patching

Yu Nong1, Haoran Yang2, Long Cheng3, Hongxin Hu1, and Haipeng Cai1
∗

1University at Buffalo, 2Washington State University, 3Clemson University
1{yunong,hongxinh,haipengc}@buffalo.edu, 2haoran.yang2@wsu.edu, 3lcheng2@clemson.edu

Abstract
Timely and effective vulnerability patching is essential for
cybersecurity defense, for which various approaches have
been proposed yet still struggle to generate valid and cor-
rect patches for real-world vulnerabilities. In this paper, we
leverage the power and merits of pre-trained language lan-
guage models (LLMs) to enable automated vulnerability
patching using no test input/exploit evidence and without
model training/fine-tuning. To elicit LLMs to effectively rea-
son about vulnerable code behaviors, which is essential for
quality patch generation, we introduce vulnerability seman-
tics reasoning and adaptive prompting on LLMs and instanti-
ate the methodology as APPATCH, an automated LLM-based
patching system. Our evaluation of APPATCH on 97 zero-day
vulnerabilities and 20 existing vulnerabilities demonstrates its
superior performance to both existing prompting methods and
state-of-the-art non-LLM-based techniques (by up to 28.33%
in F1 and 182.26% in recall over the best baseline). Through
APPATCH, we demonstrate what helps for LLM-based patch-
ing and how, as well as discussing what still lacks and why.

1 Introduction

Software vulnerabilities pose a constant and significant threat
to the security of modern cyberspace [15, 16] and they are
widespread [19, 27, 30–32]. With the rapid growth in the vol-
ume and sophistication of cyberattacks, which are enabled by
these vulnerabilities, timely and effective vulnerability patch-
ing has become increasingly critical [43, 52, 56]. However,
manual approaches to patching are costly [26] and struggle
to keep pace with the emergence of new vulnerabilities [25].
Thus, automated solutions are needed to help developers patch
vulnerabilities before they are exploited [18, 55].

In this context, various approaches to automated patch-
ing have been proposed [14, 18, 20, 34, 43, 54], which gener-
ally fall in two major categories: those based on code anal-
ysis and those based on deep learning (DL). Among other

∗Haipeng Cai is the corresponding author.

techniques, state-of-the-art (SOTA) code-analysis-based ap-
proaches achieve property-based repair based on access range
analysis hence enforcing given safety properties [24] or use
sanitizers to extract vulnerability-representing constraints for
symbolic-execution-based repair [20]. More recently, induc-
tive property inference along with simple templates [55] is
employed to generate vulnerability patches. However, these
techniques rely on exploits or vulnerability-triggering test
inputs, which may not always be available, especially for
emerging (e.g., zero-day) vulnerabilities. They often also re-
quire that the code to patch be compilable, which further
limits their applicability (e.g., they can not be used before the
project becomes complete).

DL-based approaches overcome these limitations and have
gained more momentum in recent years [14, 18, 52]. These
techniques leverage existing vulnerability datasets to train
a DL model that learns known vulnerability-fixing patterns,
hence the ability to repair a given vulnerability. Despite their
promises, they need sizable and quality training data with
vulnerability labels, which is not widely and diversely avail-
able [9, 39, 41]. As a result, they do not generalize well to
unseen code and often stumble on real-world vulnerabili-
ties [52]. While data augmentation helps [12, 38, 40], recent
studies show that the augmented models still suffer low accu-
racy [37, 38].

Most recently, large language models (LLMs) have
emerged as powerful tools to assist developers with coding
related tasks. LLMs overcome the lack of generalizability of
ordinary DL-based approaches and have shown promising
potential for vulnerability patching [37, 43]. However, the
SOTA LLM-based (with zero-shot) technique [43] does not
work well on real-world vulnerabilities and often generates
no patches or invalid ones [37]. The recent study [37] shows
that LLM can be significantly improved by carefully designed
prompting strategies, especially based on chain-of-thought
(CoT) [51] reasoning. Prompting is indeed attractive in that
it does not require (pre-)training or even fine-tuning, which
would not only require sizable labeled datasets but also be
infeasible to ordinary users, especially on foundation-scale

1

LLMs that may actually hold the promise for effective vulner-
ability analysis.

Despite a promising direction, vulnerability patching via
prompting LLMs faces several critical challenges as revealed
lately [37, 42, 52]. First, for automated patching, the prompt-
ing would need to be automated too. Yet it is not known
how to automatically write a prompt to an LLM for vulner-
ability patching (Challenge 1). Second, prompting tends to
include exemplars to be effective, especially if it aims to elicit
reasoning on LLMs [51] as CoT does, which is essential
for vulnerability patching—a task relying on code seman-
tics reasoning. Yet again, for an arbitrary program to patch,
how to prepare the best exemplars is unknown (Challenge
2). Third, LLMs are known to suffer from capacity (#tokens)
and context constraints, which makes it difficult to provide
necessary code context in a prompt and analyze sizable code;
yet vulnerabilities are context-sensitive and can be interproce-
dural, thus patching them often requires accommodating po-
tentially larger code contexts (Challenge 3). Moreover, LLMs
are commonly subject to hallucination and non-deterministic
responses, whereas stably generating valid and correct patches
is essential for vulnerability patching—bad patching can be
worse than not patching (Challenge 4).

In this paper, we present APPATCH, a novel, automated
Adaptive prompting methodology for LLM-based vulnera-
bility patching. Given a vulnerable program with a known
vulnerability location, APPATCH first narrows down the scope
of analysis to only the relevant subset of the program via a
step called semantics-aware scoping. This allows LLMs to
analyze a smaller code snippet that includes all the essential
information necessary for reasoning about the vulnerability-
related code behaviors, addressing Challenge 3. Then, it elic-
its the LLM to identify the vulnerability’s root cause within
the reduced scope with vulnerability semantics reasoning,
henceforth selecting exemplars that best fit the program on
the fly from a pre-mined exemplar database, an essential step
referred to as dynamic adaptive prompting, which addresses
Challenges 2. The database is built offline by mining exem-
plars from known patches. With the adaptively chosen ex-
emplars, APPATCH forms the patching prompt automatically
to generate multiple candidate patches with LLMs, address-
ing Challenge 1. To mitigate model hallucinations, APPATCH
consults an ensemble of LLMs to cross-validate the candidate
patches concerning multiple facets of patch quality—validity
(not changing functionality) and correct (fixing the vulnera-
bility), hence addressing Challenge 4.

We have implemented APPATCH as an open-source tool
based on four latest and most powerful LLMs: GPT-4, Gemini-
1.5, Claude-3.5, and Llama-3.1, and evaluated it against a
dataset with 97 zero-day (across 18 unique projects) sam-
ples and a dataset with 20 existing real-world vulnerability
samples. With APPATCH, the evaluated LLMs achieve up to
36.46% and 73.86% F1 on the two datasets while the same
LLMs with baseline prompting strategies only achieve up to

static void SplitChar(const char *str, int *argcPtr,
char ***argvPtr, char ch, Jsi_DString *dStr){

char *cp, *ep, *p, **argv;
int cnt = 1, len, i;
len = Jsi_Strlen(str);
cp = (char*)str;
while (*cp) {

if (ch)
cp = Jsi_Strchr(cp,ch);

else
while (*cp && !isspace(*cp))

cp++;
if (cp == NULL || *cp == 0)

break;
cp++;
cnt++;

}
Jsi_DSSetLength(dStr,(sizeof(char*)*(cnt+3)+sizeof(char)*(len+6)));
argv = (char**)Jsi_DSValue(dStr);
*argvPtr = argv;
*argcPtr = cnt;
p = (char*)&(argv[cnt+2]);

 argv[cnt+1] = p;
 Jsi_Strcpy(p, str);

cp = p;
……

}
char* Jsi_Strcpy(char *str1, const char *str2){

int len = strlen(str2);
char* cp = strncpy(str1, str2, len-1);
str1[len-1] = 0;
return cp;

}

.

.

.

.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

45
46
47
48
49
50
51

Data Dependency
Control Dependency

int main (int argc, char **argv){
…… ……

// Other Callers
……

Figure 1: An example vulnerable program sample where the
vulnerable statement is at line 48.

The CWE-787 vulnerability in the provided code is related to
an out-of-bounds write, which can occur when copying the string
`str` into `p` without ensuring that the destination buffer is
large enough to hold the source string . This can lead to

overflow, memory corruption, and potentially exploitable
conditions. Here is the patch to mitigate this vulnerability:

Patch: Use `Jsi_Strncpy` Instead of `Jsi_Strcpy`
Replace the `Jsi_Strcpy` function with `Jsi_Strncpy` to ensure that
no more characters are copied than the size of the destination
buffer allows. This requires knowing the maximum buffer size.

```c
2 Jsi_Strncpy(p, str, len+1); 
```

Q: Given the following code: <code in Figure 1> which has a CWE-787
vulnerability at line , please generate the patch for the
vulnerability.

Figure 2: GPT-4’s patch for the program sample in Figure 1
with standard prompting.

28.41% and 68.54% F1, respectively. APPATCH also outper-
forms SOTA traditional vulnerability patching approaches,
where they only achieve up to 17.53% and 85.00% recall
on the two datasets while APPATCH achieves 49.48% and
90.00% recall, respectively. APPATCH is also reasonably effi-
cient, taking on average 37.148-50.209 seconds to generate a
patch, and using 5,684-6,802 tokens per patch with the LLMs.

Our results suggest the practical feasibility and merits of
LLM-based vulnerability patching, via a novel methodology
(pivoted by automated adaptive prompting based on vulnera-
bility semantics reasoning) of leveraging LLMs to generate
valid and correct patches. Through APPATCH, we demon-
strated how LLMs can be helped for this challenging task;
also, by examining failure cases, we discuss how/where and
why LLMs may still fall short even with APPATCH.

2

Here is the code completions
```c

strncpy(p, str, len+1);
cp = p;
for (i = 0; i < cnt; i++) {

argv[i] = cp;
if (ch)

ep = Jsi_Strchr(cp, ch);
……

```

Q: Complete the following code after the comment:
<first 23 lines of code from Figure 1>
/*Fixed CWE-787 vulnerability*/

Figure 3: GPT-4’s patch for the sample in Figure 1 with a
state-of-the-art LLM-based approach zero-shot completion.

2 Background and Motivation

LLMs have been explored for vulnerability analysis tasks
such as vulnerability detection [36], patching [43, 47], and
secure code generation [21]. Among existing approaches to
vulnerability patching, a popular method is to use a standard
prompting strategy, which directly asks the LLMs to patch the
vulnerable code [47]. However, this method does not provide
necessary guidance to LLMs, leaving all the vulnerability
analysis reasoning process to the models. Another, SOTA
method is zero-shot code completion [43], which removes the
vulnerable code and lets LLMs complete the vulnerable parts.
However, this approach treats vulnerability patching as a sim-
ple code completion task, without code analysis/reasoning.

To show the limitations of existing LLM-based vulnerabil-
ity patching approaches, we test the two methods mentioned
above on the example in Figure 1. As shown, the example
has a CWE-787 vulnerability at line 48. The vulnerability is
caused by the possible out-of-bound write to the pointer str1
as the string str2 may be longer than the boundary of (the
memory region pointed to by) str1. Figure 2 shows GPT-4’s
output patch with standard prompting, where we directly ask
the model to patch the vulnerability with the vulnerable line
and CWE ID provided. As seen, GPT-4 seems to recognize
that the vulnerability is caused by the insufficient size of the
memory p points to at line 24 and it should ensure that the
write is not longer than p’s boundary. While the basic idea
is correct, it is also needed to find out how much memory p
should point to for patching the vulnerability. In this case,
necessary data/control dependency analysis is needed. How-
ever, GPT-4 generates the patch by changing Jsi_Strcpy to
Jsi_Strncpy and adding a write limit len+1 without analyz-
ing the code semantics. Thus, it fails to patch the vulnerability.

Figure 3 shows GPT-4’s output patch with the zero-shot
code completion method. As shown, we provide the code
up to line 23 (where the ground-truth patch is located) and
prompt the model (via a comment) to complete the remaining
code while addressing the CWE-787 vulnerability. Similar to
standard prompting, it simply completes line 24 with strncpy
and sets a write limit len+1 without analyzing the actual size
of p. Thus, it also fails to patch the vulnerability.

Based on the two examples above, it is clear that, to patch
real-world vulnerabilities effectively, even powerful LLMs
may still need to be guided step by step for necessary reason-
ing about code semantics. Therefore, we introduce APPATCH,
an automated framework that adaptively prompts LLMs for
vulnerability patching with semantics reasoning guidance. We
introduce four key design elements in APPATCH:

1. To help LLMs concentrate on the most essential parts
of a program for vulnerability patching, we introduce
semantics-aware scoping, which only provides LLMs
with code entities that capture the core vulnerable behav-
ior of the program (noted as vulnerability semantics).

2. To guide LLMs to analyze and patch vulnerabilities cor-
rectly, we arm them with vulnerability semantics rea-
soning capabilities via CoT prompting [51] that demon-
strates correct reasoning steps with a few exemplars.

3. Considering the diversity of vulnerability root causes
and patching strategies, a large-scale exemplar pool is
needed. However, manually writing the reasoning steps
for the exemplars is time-consuming. Thus, we design
an automated exemplar mining module which generates
exemplars based on existing real-world samples.

4. To provide the best-fit exemplars for a given testing sam-
ple (i.e., code to patch), we design dynamic adaptive
prompting which automatically picks exemplars based
on the vulnerability root causes of the testing sample.

3 Technical Design

Now we present our technical approach, starting with a design
overview followed by details on each component.

3.1 Overview
The overall design of APPATCH is depicted in Figure 4. We tar-
get a realistic vulnerability patching scenario with APPATCH,
in which (1) the vulnerability manifestation locations (i.e.,
vulnerable statements) and (2) the vulnerability types (i.e.,
CWE IDs) of a given program to patch are available. Prior to
the patching time, APPATCH demonstrates to LLMs correct
reasoning towards patch generation with (3) existing vulnera-
ble samples for which the ground-truth patches are known in
addition. These three constitute the inputs to APPATCH.

With these inputs, APPATCH operates in two phases. In
Phase 1: Exemplar Mining, through semantics-aware scop-
ing (1.1), it union-slices [8] each given vulnerable sample to
capture its vulnerability semantics (essential behavior of the
vulnerability, as formally defined in §3.2). Then, APPATCH
proceeds with exemplar generation (1.2), producing a pool of
exemplars each including the root cause analysis, fixing strat-
egy, and ground-truth patch. The root cause and fixing strategy
are also generated by the LLMs automatically, according to
the vulnerability semantics along with the ground-truth patch.

3

Semantics-aware scoping

Vulnerable Code
Vulnerable Statements
Ground-Truth Patches

Existing Vulnerability Samples

1.1

2.1
Vulnerable Code

Vulnerable Statements

Program to Patch
Dependency

Analysis

Vulnerability
Semantics

Computation

Vulnerability
Semantics
Reasoning

(Root Cause
Analysis)

Exemplar Generation

LLM
1.2

Root Cause Generation
LLM

Exemplar Selection Patch Generation
Dynamic Adaptive Prompting

Multi-Faceted Patch ValidationLLM LLM

LLMs
2.2

2.3

Exemplars
Root cause analysis

Fixing Strategy
Ground-Truth Patches

Patches
Root cause analysis

Fixing Strategy
Generated Patches

Phase 1: Exemplar Mining

Phase 2: LLM-Guided Causal PatchingAPPATCH Inputs

APPATCH Outputs

Exemplar Mining Workflow Patching Workflow Exemplar Mining Process Patching Process

Figure 4: An overview of APPATCH’s design, including its inputs, two main working phases, and outputs.

Next, in Phase 2: LLM-Guided Causal Patching, the
given program to patch is also scoped into vulnerability se-
mantics (2.1). Then, through dynamic adaptive prompting
(2.2), APPATCH analyzes the root cause of the given vulner-
ability with an LLM and selects similar exemplars based on
the root cause. With the chosen exemplars, candidate patches
are generated via CoT prompting on the LLM. Finally, the
generated patches are validated and refined through multiple
LLMs through a multi-faceted patch validation (2.3) process.

As a result, the validated patches are returned as the out-
puts of APPATCH. Note that while both phases rely on LLMs
for automated root cause and fixing strategy identification
using the vulnerability semantics reasoning, Phase 1 addi-
tionally feeds the ground-truth patches to the models, This
addition is essential because it is expected to help LLMs gen-
erate root cause and fixing strategy that are more likely correct
than otherwise hence serving the demonstrating (exemplar)
purposes to elicit LLMs’ similar reasoning at patching time.

3.2 Vulnerability Semantics

We introduce this core concept underlying APPATCH with
following insights. First, although a vulnerable program may
contain many lines of code, oftentimes only a relatively small
portion of those lines actually causes the vulnerability. By
focusing on this portion, which scopes the semantics of the
code that makes it vulnerable (intuitively noted as vulnerabil-
ity semantics for now) we can enable LLMs to perform more
effective vulnerability analysis. Second, mainstream LLMs
often struggle with processing and generating long texts. By
narrowing the scope to vulnerability semantics, we can also
reduce the length of the exemplars, prompts, and responses,
thereby minimizing potential distractions for the LLMs and
improving their performance. Third, vulnerability-relevant
control/data flow is what is difficult for LLMs to understand
without guidance on reasoning about the flow [44]—thus,
vulnerability semantics-based reasoning is necessary to guide
LLMs to conduct effective vulnerability patching.

Therefore, we define vulnerability semantics as the aspects
of a program’s code that contribute to its vulnerabilities. These
of course include statements where the vulnerabilities are
triggered. However, such statements alone do not cause vul-

nerabilities unless they can be exploited via external inputs.
Thus, to effectively capture vulnerability semantics, it is im-
portant to consider how these statements are influenced by
the program’s external inputs through control and data flow
dependencies. Therefore, we also include the contextual state-
ments that influence the vulnerability statements as part of
vulnerability semantics, based on the data and control flow.

Given a program P, which consists of a set S of statements,
the set of vulnerability locations Sv ⊆ S are statements where
the vulnerability manifests. The set of external inputs EI ⊆ S
consists of statements where external input data is received or
retrieved by P. This includes program input variables, returns
from external function calls that read data, and global states
modified by other functions (such as memory allocations,
file input, network input, etc.). The vulnerability semantics
V (P,Sv,EI) is defined as the union of all static backward
slices of the program P starting from any of the vulnerability
locations Sv and terminating at any of the external inputs in
EI. That is,

V (P,Sv,EI) =
⋃

ei∈EI

⋃
sv∈Sv

Slice(P,sv,ei)

where:
• Slice(P,sv,ei) is the set of all statements in the static back-

ward slice from sv to ei.

• A static backward slice from sv to ei is the subset of state-
ments in P that affect the execution at sv, tracing backward
along control and data dependencies to reach ei.

Note that the vulnerability locations and external inputs may
be in different functions. Therefore, we perform interproce-
dural backward slicing to capture the vulnerability semantics
comprehensively. In this way, V (P,Sv,EI) represents the set
of all statements in P that are relevant to the flow of data
and control from any of the external inputs EI to any of the
vulnerability locations Sv.

As an example, Figure 1 illustrates a partial representation
of vulnerability semantics. We start from a vulnerable state-
ment (sv) at line 48 and conduct union slicing to the program
input based on data and control dependencies (marked with
red and orange arrows). As a result, the statements marked
as yellow are the contexts of the vulnerable statement. The
vulnerable statement (marked in red), the external input (in

4

Algorithm 1: Semantics-Aware Scoping
Input: P: input program, Sv: vulnerable statements
Output: V (P,Sv,EI): vulnerability semantics (code representation)

1 Function SemanticsAwareScoping(P,Sv,EI)
2 sdg← ExtractSDG(P); // Construct SDG for the program P

3 EI ← IdentifyExternalInputs(P); // Identify external inputs

4 V ← InitializeSlice(); // Initialize an empty set

5 foreach ei in EI do
6 foreach sv in Sv do
7 BSei← ComputeBackwardSlice(sdg,sv,ei); // Backward slice

starting from a vulnerable location sv until reaching an external input ei
8 V ← V ∪BSei; // Unionize the above backward slice

9 return V ;

purple), and its contextual statements constitute (the code
representation of) the vulnerability semantics for the sample.

3.3 Exemplar Mining (Phase 1)
3.3.1 Semantics-Aware Scoping (Step 1.1)

In this step, APPATCH extracts the essential code that repre-
sents the vulnerability semantics from each of the existing
vulnerable code samples. To that end, it first analyzes the sam-
ple and constructs its system dependence graph (SDG) [23]
through an interprocedural dependence analysis. An SDG is
a representation that combines both data dependencies and
control dependencies of a program; thus, it is essential in com-
puting the vulnerability semantics of a program. As shown in
Algorithm 1, the vulnerability semantics computation begins
this process by building the SDG (line 2). Then, we perform a
simple static analysis to realize IdentifyExternalInputs
(line 3). We first curate a set of external functions that may
produce external inputs or cause side effects to program states
(e.g., malloc, socket_recv, scanf). Then, it traverses the pro-
gram’s control flow graph (CFG), identifying each callsite of
any of these external functions. To be more comprehensive, it
also considers the definition sites of program’s input variables
as an external input (we simply treat the program entry point
as the joint entity of those definition sites).

As the main loop begins, we compute the interprocedural
backward slice from each of the vulnerable statements sv to
each of the external input ei (lines 5-8), via another static anal-
ysis based on the SDG just constructed. It traverses the sdg
from sv, identifies backward dependencies transitively until
ei is reached (which has no further backward dependence).
Finally, we compute the union slice [8] for all external inputs
in EI (line 8) and return it as the (code representation of the)
vulnerability semantics (line 9).

3.3.2 Exemplar Generation (Step 1.2)

With the vulnerability semantics computed in Step 1.1, Step
1.2 generates the exemplars from the given existing vulner-
able samples. Since our dynamic adaptive prompting lever-
ages CoT prompting which guides LLMs to generate quality

patches with appropriate intermediate reasoning, we divide
the overall reasoning process into three high-level steps: (1)
vulnerability semantics reasoning (as root cause analysis), (2)
fixing strategy identification, and (3) patch generation. How-
ever, it is difficult to write the reasoning for each collected
sample manually. Therefore, we leverage LLMs to automati-
cally generate the exemplars. Since we have the ground-truth
patches in the given existing samples, we prompt the LLMs
to generate (1) with the following template:

Q: Given the following code slice Vexem, which has a vul-
nerability among <CWE-IDs> and lines Sv, the patch is
<ground-truth patch>. Starting with the external inputs:
<EI identified>, reason about the vulnerable behavior step
by step until the vulnerability is determined.

Since the code slice V is interprocedural across the whole
program, it is likely to contain a large number of code state-
ments [10], making it difficult for LLMs to process. Therefore,
the EI identified are only part of the full set of EI identified in
Algorithm 1 that reach any of the patch locations. Then, the
code slice provided to LLMs Vexem only contains the paths
between any of such identified EI subset and any of the vul-
nerable statements. This helps LLMs concentrate on the most
essential parts of the program for vulnerability patching.

In this template (as well as the one for dynamic adaptive
prompting’s root cause generation), we leverage vulnerability-
semantics-guided reasoning, which is described as "Starting
with the external inputs, reason about the vulnerable behavior
step by step until the vulnerability is determined". Although
this is simple, it significantly helps LLMs analyze the vulner-
ability root cause comprehensively and effectively. Figures 5
and 9 show the comparison between the root cause analysis
with and without vulnerability-semantics-guided reasoning.
Without such reasoning, the output misses many details for
the vulnerability causes, which make the analysis inaccurate.

The key insight underlying our automated exemplar gener-
ation is that, with the ground-truth patches provided, LLMs
are capable of generating the correct reasoning steps which
are helpful to guide themselves to generate patches given new
samples to patch. To corroborate this hypothesis, we conduct
a preliminary experiment on the real-world samples from our
collected dataset (see §5.1). Based on our manual inspection
on the generated exemplars by GPT-4, 92.98% of the reason-
ing are correct, indicating that using LLMs to automatically
generate exemplars is effective. These exemplars compose
the quality exemplar pool for the dynamic adaptive prompting
step (Step 2.2) to select exemplars from.

3.4 LLM-Guided Causal Patching (Phase 2)
3.4.1 Semantics-Aware Scoping (Step 2.1)

In Phase 2, given a testing sample that contains vulnerable
code and its vulnerability location, APPATCH again computes
the vulnerability semantics with the semantics-aware scop-

5

ing module. The process is the same as the one in Step 1.1:
we construct the SDG from the source code, then get the
vulnerability semantics via Algorithm 1.

3.4.2 Dynamic Adaptive Prompting (Step 2.2)

With the vulnerability semantics computed in Step 2.1, we
perform dynamic adaptive prompting to guide the LLMs
to generate patches. The overall algorithm of this dynamic
adaptive prompting step is shown in Algorithm 2. APPATCH
leverages a progressive prompting strategy which prompts
the LLMs to generate the root cause, select exemplars, and
generate the patch in separated prompts. This is to (1) guide
the LLMs to generate the patches step by step and (2) allow
LLMs to obtain the information and exemplars on demand.

Algorithm 2: Dynamic Adaptive Prompting
Input: vul_slice: vulnerable slice, exemplars: mined exemplars
Output: cand_patches: candidate patches

1 Function DynPrompting(vul_slice, exemplars)
2 cause← GenCause(vul_slice) // Generate root cause of the slice

3 chosen_exemplars← [] // Initialize an empty list

4 foreach exemplar in Exemplars do
5 exemplar_cause← GetExemCause(exemplar) // Extract cause

6 comp_ans← CompareCause(cause, exemplar_cause)
7 if comp_ans is Yes then
8 chosen_exemplars.insert(exemplar) // Add similar exemplars

9 if SizeOf(chosen_exemplars)≥8 then
10 break // Break when the exemplars are enough

11 cand_patches←GenPatch(chosen_exemplars, vul_slice)
12 return cand_patches;

13 Function GenCause(vul_slice)
14 cause_slice←GetVulFuncSlice(vul_slice) // Get vulnerable function slice

15 LLMAns← GenCauseByLLM(cause_slice) // Get response from LLMs

16 while HasExpandDemand(LLMAns) do
17 cause_slice← cause_slice ∪ GetDemandedFuncSlice(LLMAns)
18 LLMAns← GenCauseByLLM(cause_slice)

19 return LLMAns

Root Cause Generation. We again leverage vulnerability
semantics reasoning to generate root cause analysis: given
the vulnerability semantics computed (i.e., the union slice
noted as Vcause), the CWE IDs, and the vulnerable statements
Sv, APPATCH first prompts the LLMs to generate the root
cause (i.e., the natural-language description of the vulnerabil-
ity semantics reasoning steps). We prompt the LLM with the
following template:

Q: Given the following code slice: Vcause which
has a vulnerability among <CWE-IDs> and lines:
Sv. Starting with the external inputs: <EI identi-
fied>, reason about the vulnerable behavior step by
step until the vulnerability is determined. If you en-
counter uncertainty due to a lack of function definitions,
please tell the functions needed with the format {"con-
text_funcs":[func_1,func_2,CALLER_of_func...]} where
"CALLER_of_func" is a placeholder for the caller of the
given functions.

In the prompt above, we start from the slice of the function
involving the vulnerable statements (line 14 in Algorithm 2)
and expand the slice on LLMs’ demand. Note that the EI
identified are only the part of EI identified in Algorithm I that
are relevant to the functions the LLM asked for so far. The
rationale is that LLMs usually have input token limitation
and thus we cannot input the whole projects into the models.
Even if the models are capable of accepting more tokens, the
irrelevant functions would distract the LLMs in analyzing
the vulnerabilities. Therefore, we only provide the part of the
slice that involves the functions that the LLM asks for. This
progressive prompting scheme, similar to LLift [28], is es-
sential for APPATCH to achieve interprocedural vulnerability
analysis and patching.

The algorithm for generating the root cause is shown in
Algorithm 2 lines 13-19. Given the vulnerability code slice
which may contain a large number of functions and state-
ments, we start with the part of the slice only involving the
functions that contain the vulnerability manifestation state-
ments (line 14). Then, we iteratively query LLMs with the
prompt template given earlier until the LLMs do not ask for
additional functions (lines 15-18). The final root cause analy-
sis is then returned to the main routine (DynPrompting) for
dynamic adaptive prompting.

Exemplar Selection. After generating the root cause anal-
ysis for the testing sample, we select appropriate exemplars
to prompt the LLMs to generate the patches. As shown in
Algorithm 2, an empty list, chosen_exemplars, is initialized
to store exemplars that closely match the root cause (line 3).
The selection process iterates through the set of pre-mined
exemplars and gets the vulnerability root causes from them
(lines 4-5). To select the exemplars, we prompt the LLMs to
compare the root cause analysis result of the testing sample
and each exemplar sample (line 6) with the following prompt:

Q: Are the following two root causes similar?
<exemplar_sample_root_cause>
<testing_sample_root_cause>
Please simply answer yes or no.

Considering that the complexity is O(mn) where m is the
number of exemplar samples and n is that of testing samples,
we let LLMs directly answer yes or no to save resources.

Figure 6 shows parts of the exemplar selection process for
the example in Figure 1. Once the used LLM answers yes,
the root cause analysis, fixing strategy, and the ground-truth
patch of that exemplar sample will be used as the exemplar
to prompt the LLMs to patch the testing sample (lines 7-8).
We follow the original CoT work [51] and only select up to 8
exemplars for each testing sample.

Patch Generation. Once the exemplars are selected,
APPATCH prompts the LLMs to generate the patch (line 11)
with the following template:

6

A: Let's analyze the provided code to identify how this vulnerability manifests:
1. **Initialization and Loop Setup**:

- `cp` is initialized to point to the input string `str`.
- A `while` loop iterates over `str` until a null character is encountered, indicating the end of the string.

2. **Character Search and Increment**:
- Inside the loop, `cp` is set to the location of character `ch` in `str` using `Jsi_Strchr(cp, ch)`. If `ch` is not found, `cp` would be set to `NULL`.
- The inner `while` loop increments `cp` until a space character is found or the end of the string is reached. This loop intended to skip over non-space characters following `ch`.

3. **End of String Check**:
- After the inner loop, there's a check if `cp` is `NULL` or points to a null character. If true, the loop breaks, ending the parsing.

4. **Pointer Increment and Count**:
- `cp` is incremented to move past the found character or space, and `cnt` is incremented to count the number of segments or tokens.

5. **Memory Allocation and Pointer Setup**:
- `argv` is assigned the value from `Jsi_DSValue(dStr)`. This function is not defined in the provided code, so its behavior is unknown. We assume it returns a pointer to some
allocated memory intended to store pointers to tokens.
- `p` is set to point to an offset from `argv`, specifically `&(argv[cnt+2])`. This seems intended to point to a location right after the space allocated for `argv` pointers.

6. **String Copy**:
- `Jsi_Strcpy(p, str)` copies the entire input string `str` to the location pointed to by `p`.
Vulnerability Analysis:
- The critical issue arises at the line `p = (char*)&(argv[cnt+2]);`. Here, `p` is calculated based on `cnt`, which is incremented for each token found in `str`. However, there's no
check to ensure that this calculation does not exceed the memory initially allocated for `argv`. If `cnt` becomes large enough, `p` could point beyond the allocated memory for
`argv`, leading to an out-of-bounds write when `Jsi_Strcpy(p, str)` is executed.

Q: Given the following code slice
<Code slice of function Jsi_Strcpy marked in Figure 1>
which has a CWE-787 vulnerability at line 24. Starting with input, reason about the vulnerable behavior step by step until the vulnerability is determined. If you encounter uncertainty
due to a lack of function definitions, please tell the functions needed with the format {"context_funcs":[func_1,func_2,CALLER_of_func...]} where"CALLER_of_func" is a
placeholder for the caller of the given functions.
A: {"context_funcs":[CALLER_of_ Jsi_Strcpy...]}
Q: Given the following code slice
<Code slice of function Jsi_Strcpy and SplitChar marked in Figure 1>
which has a CWE-787 vulnerability at line 24. Starting with input, reason about the vulnerable behavior step by step until the vulnerability is determined. If you encounter uncertainty …

Figure 5: Root cause analysis generated by GPT-4 with vulnerability semantics reasoning for the sample in Figure 1.

Q: Does the following two vulnerabilities share similar root causes? Please
simply answer yes or no without explanation
// root cause of a
"""
- 1: Validate `num`:
- `num` is obtained from `hello->getOfferNum()`

- 2: Array Size and Indexing:
- The size of the `offered` array is fixed at `max_offered + 1`.
- The loop iterates `num` times

Potential Vulnerability:
- The vulnerability arises if `num` exceeds `max_offered + 1`, which results

in writing past the end of the `offered` array.
// root cause of the testing sample
"""
1. **Initialization and Loop Setup**:
- `cp` is initialized to point to the input string `str`…
....
6. **String Copy**:
- `Jsi_Strcpy(p, str)` copies the entire input string `str` to the location pointed
to by `p`.
Vulnerability Analysis:
- The critical issue arises at the line `p = (char*)&(argv[cnt+2]);`. Here, `p`
is calculated based on `cnt`, which is incremented for each token found in
`str`. However, there's no check to ensure that this calculation does not
exceed the memory initially allocated for `argv`. If `cnt` becomes large
enough, `p` could point beyond the allocated memory for `argv`, leading to
an out-of-bounds write when `Jsi_Strcpy(p, str)` is executed.
"""
A: Yes // The is selected for prompting
Q: Does the following two vulnerabilities share similar root causes? Please
simply answer yes or no without explanation
// root cause of a
"""
1. **Understanding the Code:**

- The function `rfcomm_get_dev_list` takes a user-space pointer `arg` as
an argument.
 …

- Memory is allocated using `kmalloc`.
2. **Identifying the Vulnerability:**
- If the allocated memory is not properly initialized, it can lead to undefined
behavior when the memory is accessed, potentially leading to security
vulnerabilities such as information leakage or use of uninitialized data."""
// root cause of the testing sample
// Same as above
A: No // The is NOT selected for prompting

Figure 6: Exemplar selection by GPT-4 for the sample in
Figure 1.

<selected exemplars>
Q: Given the following code slice: Vcause which has a vul-
nerability among <CWE-IDs> and lines: Sv, please gener-
ate five possible patches for the vulnerability.
A: Step 1. <root cause analysis>

In this prompt, we first provide the selected exemplars
where each exemplar includes its vulnerability semantics
(union slice), CWE-IDs, vulnerable statements, as well as the
root cause analysis, the fixing strategy, and the ground-truth
patch. This is to guide the LLMs to patch the testing sample
with a similar, complete workflow. Then, we provide the test-

// Selected Exemplar 1
Q: Given the following code slice: <slice code>
which has a CWE-787 vulnerability at line <vulnerable line>, please
generate five possible patches for the vulnerability.
A:
Step 1. <Root cause analysis for the selected >
Step 2. <Fixing Strategy for the selected >
Step 3. <Patch of the selected >
// Selected Exemplar 2
……
// Selected Exemplar 8
// Testing sample from Figure 1
Q: Given the following code slice: <Slice in Figure 5>
which has a CWE-787 vulnerability at line 24, please generate five
possible patches for the vulnerability.
Step 1. Root Cause Analysis: ...
Step 2. Fixing Strategy: To fix this vulnerability, the code should
check sufficient space before copying.
Step 3. Patch Generation:
```
< Jsi_Strcpy(p, str);
---
> if ((char*)p - Jsi_DSValue(dStr) + Jsi_Strlen(str) < 
Jsi_DSLength(dStr)) {
> Jsi_Strcpy(p, str);
> } else {
> // Handle error: not enough space
> }
```
…… // Other four candidate patches.

Figure 7: GPT-4’s patch for the sample in Figure 1 with
APPATCH.

ing sample’s vulnerability semantics slice (Vcause) used for
the final root cause generation, CWE-IDs, and the vulnera-
ble statements (Sv) with the same format as the exemplars.
We also prompt the LLMs to generate more than one candi-
date patch so that the recall can be improved and developers
have more choices to select appropriate patches from. To
avoid repeated output, we also add the root cause generated
in the previous step for the LLMs to follow through. With the
dynamically selected exemplars, the LLMs are expected to
generate quality patches.

3.4.3 Multi-Faceted Patch Validation (Step 2.3)

After generating the candidate patches, we further leverage
multi-faceted (i.e., fixing vulnerability and preserving func-
tionality) patch validation to reduce incorrect patches which
are not useful for developers. Considering that the same LLM
may not be effective for validating the generated patches by
itself, we leverage the ensemble method to conduct the vali-
dation. Therefore, multiple effective LLMs for vulnerability
patching are used for the validation.

7

Algorithm 3: Multi-Faceted Patch Validation
Input: cand_patches: candatate patches, llms: LLMs used for validation
Output: valid_patches: validated patches

1 Function PatchValidation(cand_patches, llms)
2 valid_patches gets cand_patches
3 foreach cand_patch in cand_patches do
4 retain← False
5 foreach llm in llms do
6 val_ans← ValPatchLLM(cand_patch, llm) // Validate the patch

with an LLM

7 if val_ans is Yes then
8 retain←True // Remove the patch if all the LLMs think it is invalid

9 if retain is False then
10 valid_patches.remove(cand_patch)

11 return valid_patches

Q: Given the following code slice: <vulnerability
semantics slice in Figure 5> which has a CWE-787 vulner-
ability at line 24, please validate whether the following patch fixes the vulnerability while
keeping the functionality: <patch>. Please simply answer yes or no.
```
< Jsi_Strcpy(p, str);
---
> if ((char*)p - Jsi_DSValue(dStr) + Jsi_Strlen(str) < Jsi_DSLength(dStr)) {
> Jsi_Strcpy(p, str);
> } else {
> // Handle error: not enough space
> }
```

A: Yes // By GPT-4 A: yes // By Gemini A: Yes // By Claude3 A: Yes // By Llama3

Figure 8: Multi-faceted patch validation for the sample in
Figure 1.

Algorithm 3 shows the workflow for the validation. It ini-
tializes by considering all candidate patches as potentially
valid (line 2). It then enters a nested loop where each candi-
date patch is evaluated independently against each LLM to
ascertain its validity (lines 3-4). Within the inner loop, each
patch undergoes a validation check by an individual LLM,
which determines if the patch is effective (line 5). Each LLM
evaluates whether each generated patch fixes the vulnerability
correctly with the following prompt:

Q: Given the following code slice: Vcause which has a vul-
nerability among <CWE-IDs> and lines: Sv. Please val-
idate whether the following patch fixes the vulnerability
while keeping the functionality: <patch>. Please simply
answer yes or no.

In the prompt, we also ask the LLMs whether the patch
keeps the functionality to avoid valid but incorrect patches.

Figure 8 shows the multi-faceted patch validation prompts
and answers for the example in Figure 1. If any LLM approves
the patch, a flag (retain) is set to True, indicating that the patch
should be retained in the list of valid patches (lines 6-8). If
after evaluation by all the LLMs, a patch is not validated by
any (i.e., the retain flag remains False), it is removed from the
list of valid patches (lines 9-10). This step ensures that only
those patches that have been validated by at least one LLM
are kept. The algorithm concludes by returning the refined list
of validated patches, which have passed through this rigorous
validation process (line 11). We use such an approach rather

Table 1: LLMs used in our study
Model Version #Params Max #Tokens Vendor Release date Cutoff Date

Gemini-1.5 gemini-1.5-pro 50T 30,720 Google May 2024 Nov. 2023
Claude-3.5 claude-3.5-sonnet 70B 200,000 Anthropic Jun. 2024 Apr. 2024

GPT-4 gpt-4-turbo 175B+ 128,000 OpenAI May 2024 Oct. 2023
Llama-3.1 llama-3.1-70b 70B 4,096 Meta July 2024 Dec. 2023

than majority voting because APPATCH aims to improve the
recall while keeping the precision, which is more practically
valuable than otherwise for real-world developers. Majority
voting may improve the precision but reduce the recall, which
is less helpful for real-world patching.

4 Implementation

To support the generation of interprocedural vulnerability se-
mantics, we use Joern [53] to construct the SDG of the given
vulnerable program under patching. In this work, since we
evaluate APPATCH on a number of C code samples without
compiling them, we chose Joern which is a powerful tool
designed for scalable code analysis without requiring com-
pilability of the input code. Specifically, we first obtain the
PDG (which includes the control and data dependencies) for
each function (which Joern immediately provides). Then, we
leverage the call graph also provided by Joern to conduct
the interprocedural dependence analysis hence building the
SDG. With the SDG, we extract the interprocedural back-
ward slice from the vulnerable statements. In this work, we
reuse the script from SySeVR [33] to quickly query the con-
trol flow nodes for the respective statements and find the
in-degree edges and nodes. Based on this, we further imple-
ment the semantics-aware scoping algorithm, as shown in
Algorithm 1. The extracted vulnerability semantics slices are
stored as sliced source code text for LLMs to use.

5 Evaluation

We evaluate APPATCH via four research questions (RQs):
• RQ1: How effective is APPATCH for real-world vulnerabil-

ities patching?

• RQ2: How does each of the key design components of
APPATCH contribute to its overall performance?

• RQ3: How effective is APPATCH compared to existing
vulnerability patching techniques?

• RQ4: How efficient is APPATCH for patch generation?
We first describe the LLMs, datasets and metrics used. Then,
we answer the four research questions above.
LLMs. Table 1 summarizes the four SOTA LLMs chosen
for our study to cover the latest models of a variety of sizes
and vendors. Gemini-1.5 [45] and Claude-3.5 [5] are the
latest LLMs from Google and Anthropic, respectively. We
chose their most popular powerful (Pro and Sonnet) for both
effectiveness and efficiency. GPT-4 is the latest and most

8

powerful LLM from OpenAI and we use its most power-
ful version GPT-4-Turbo. Llama3.1 [46] is an SOTA LLM
from Meta, of which we also chose to use the powerful ver-
sion llama-3.1-70b for our experiments. We chose general-
purpose LLMs instead of code-specific ones (e.g., CodeL-
lama) because the latter are less capable of code analysis.
As shown in Appendix Table 9, our preliminary experiments
revealed that APPATCH, when based on popular code-specific
LLMs (CodeLlama [2], CodeQwen 1.5 [3], and DeepSeek-
Coder-v2 [57]), achieved only 1.21%, 10.12%, and 9.09% F1
scores, respectively, significantly lower than the performance
of general-purpose LLMs when used in APPATCH as base
LLMs as shown in Table 2.
Datasets. To collect exemplar samples for Phase 1 (Exemplar
Mining), we use existing widely used vulnerability datasets
PatchDB [49] and CVEFixes [9], where PatchDB con-
tains 12073 real-world fixing samples and CVEFixes con-
tains 4,120 real-world fixing samples in C language. In this
work, we select the samples with the most popular CWEs
in C languages: CWE-787 (out-of-bound write), CWE-125
(out-of-bound read), CWE-190 (integer overflow), CWE-401
(memory leak), CWE-457 (use of uninitialized variable), and
CWE-476 (use of NULL pointer). However, some of the fixes
contain edits not relevant to vulnerabilities (e.g., code refac-
toring or adding new functionalities). Therefore, we manually
inspect each of the samples and filter out the inappropriate
samples. To be realistic, we read the vulnerability reports
and label vulnerability manifestation locations, rather than
the code changed lines in the vulnerability fixing commits.
We applied an inter-rater agreement/consensus procedure—
each author independently labeled them, followed by cross-
checking outcomes and discussions to resolve disagreements.
We also remove the overlapped samples between PatchDB
and CVEFixes, as well as confirming that there is no overlap
between the training set and the testing sets discussed below.
As a result, we collect 306 vulnerability fixing samples.

For the testing set, considering that the latest powerful
LLMs are trained on existing data, it is possible that they have
seen the samples in PatchDB and CVEFixes during the train-
ing. Thus, there may be data leakage and contamination issues
if we use the samples from PatchDB and CVEFixes as the
testing set. Therefore, we collect a Zero-Day dataset
where all the vulnerabilities were reported after the latest
cutoff date of the LLMs (04/2024 from Claude-3.5-Sonnet).
As a result, we collect 97 vulnerabilities which also cover
the same CWEs as PatchDB and CVEFixes. Among them,
21 vulnerabilities are interprocedural where the vulnerabil-
ity manifestation locations and the patching locations are
in different functions. These samples cover 18 open-source
projects including Linux Kernal, FFmpeg, etc. Appendix Ta-
ble 8 shows the detailed statistics of the dataset.

To compare APPATCH with existing vulnerability patch-
ing techniques, we also use an existing vulnerability dataset
ExtractFix [20] for comparison experiments. The sam-

ples from ExtractFix are compilable and come with test cases
that allow us to validate patches. From this dataset, we collect
20 vulnerabilities that can be reproduced, for each of which
we label the manifestation locations and the CWE IDs based
on the crash information from the test cases. Detailed statis-
tics of this dataset can be also found in Appendix Table 8. We
also addressed data leakage concerns with it in Appendix E.
Metrics. Since the dataset covers many projects and it is dif-
ficult to compile each of the samples and use the test cases to
validate the generated patches (furthermore, some of the sam-
ples do not come with test cases), we cannot automatically
validate the generated patches if they do not exactly match the
ground truths. Therefore, we manually check each generated
patch. To improve the manual evaluation and better under-
stand the generated patches, we consider four metrics: (1) if
the generated patch exactly matches the ground truth, we con-
sider it as syntactic equivalent (SynEq); (2) if the generated
patch does not exactly match the ground truth but the behavior
is the same as the ground truth, we consider it as semantically
equivalent (SemEq); (3) if the patch has different behavior
from the ground truth but still fix the vulnerability without
breaking the code functionality, we consider it as plausible;
(4) all the samples with the three metrics above are consid-
ered as correct. To better simulate the real-world patching
scenarios, we prompt the LLMs to generate up to five patches
so that developers can pick up the one most suitable to patch
the vulnerable code. To better evaluate the generated patches,
we consider three measures:

recall =
f ixed samples
#testing sample

(1)

precision =
#correct patches

#generated patches
(2)

F1 =
2× recall× precision

recall + precision
(3)

where f ixed sample means a sample where at least one of
the generated patches fix the vulnerability.

5.1 RQ1: Effectiveness

Table 2 shows the effectiveness of APPATCH against the
two testing datasets. We notice that APPATCH achieves the
best overall effectiveness for vulnerability patching. With
APPATCH, GPT-4, Gemini-1.5, Claude-3.5, and Llama-3.1
achieve 33.30%, 20.44%, 36.46%, and 24.28% F1 for the cor-
rectness metric on our collected Zero-Day dataset, which is
the best among other prompting approaches. On the existing
ExtractFix dataset, APPATCH again achieves the best among
other prompting approaches, with 68.41%, 42.90%, 73.86%,
and 64.20% F1 for the correctness metric, respectively. The
overall effectiveness on ExtractFix dataset is higher, indicat-
ing the challenges on Zero-Day vulnerability patching.

9

Table 2: Effectiveness of APPATCH

Model Approach

Zero-Day Dataset ExtractFix Dataset
SynEq SemEq Plausible Correct SynEq SemEq Plausible Correct

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

GPT-4

APPATCH 6.19% 1.64% 2.59% 26.80% 14.48% 18.80% 25.77% 12.84% 17.14% 39.18% 28.96% 33.30% 5.00% 2.30% 3.15% 75.00% 42.53% 54.28% 40.00% 10.34% 16.44% 90.00% 55.17% 68.41%
No Validation 7.22% 1.46% 2.42% 28.87% 13.10% 18.02% 28.87% 11.02% 15.95% 44.33% 25.57% 32.43% 5.00% 1.98% 2.84% 80.00% 41.58% 54.72% 45.00% 9.90% 16.23% 90.00% 53.47% 67.08%
No Slicing 3.09% 0.61% 1.02% 28.87% 8.98% 13.70% 21.65% 9.80% 13.49% 39.18% 19.39% 25.94% 10.00% 1.98% 3.31% 65.00% 41.58% 50.72% 30.00% 11.88% 17.02% 80.00% 55.45% 65.50%
Random Exemplars 5.15% 1.02% 1.71% 31.96% 11.48% 16.89% 23.71% 6.97% 10.77% 44.33% 19.47% 27.05% 10.00% 1.98% 3.31% 75.00% 35.64% 48.32% 50.00% 17.82% 26.28% 80.00% 55.45% 65.50%
Manual Exemplars 3.09% 1.03% 1.54% 28.87% 11.11% 16.05% 17.53% 5.97% 8.90% 42.27% 18.11% 25.35% 5.00% 0.99% 1.65% 70.00% 39.60% 50.59% 35.00% 11.88% 17.74% 85.00% 52.48% 64.89%
Direct Reasoning 3.09% 0.62% 1.03% 22.68% 8.28% 12.13% 19.59% 6.83% 10.13% 36.08% 15.73% 21.91% 5.00% 0.99% 1.65% 75.00% 43.56% 55.11% 30.00% 6.93% 11.26% 80.00% 51.49% 62.65%
Standard Prompting 3.09% 0.62% 1.03% 18.56% 7.19% 10.36% 17.53% 6.78% 9.77% 30.93% 14.58% 19.82% 5.00% 0.99% 1.65% 65.00% 40.59% 49.98% 30.00% 9.90% 14.89% 65.00% 51.49% 57.46%
Zero-shot Completion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 12.37% 6.78% 8.76% 12.37% 6.78% 8.76% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 15.00% 3.96% 6.27% 15.00% 3.96% 6.27%

Gemini-1.5

APPATCH 2.06% 0.56% 0.88% 9.28% 6.16% 7.41% 21.64% 9.80% 13.49% 26.80% 16.53% 20.44% 0.00% 0.00% 0.00% 35.00% 18.68% 24.20% 30.00% 16.48% 21.28% 50.00% 35.16% 42.90%
No Validation 2.06% 0.55% 0.87% 9.28% 6.32% 7.52% 21.64% 9.61% 13.31% 26.80% 16.48% 20.41% 0.00% 0.00% 0.00% 35.00% 17.46% 23.30% 30.00% 15.87% 20.76% 50.00% 33.33% 40.00%
No Slicing 0.00% 0.00% 0.00% 10.31% 5.08% 6.81% 18.56% 10.56% 13.69% 24.74% 15.93% 19.38% 0.00% 0.00% 0.00% 20.00% 15.94% 17.74% 35.00% 18.84% 24.50% 40.00% 34.78% 37.21%
Random Exemplars 1.03% 0.34% 0.51% 12.37% 5.82% 7.92% 15.46% 8.56% 11.02% 24.74% 14.72% 18.46% 5.00% 1.09% 1.79% 35.00% 17.39% 23.24% 25.00% 10.87% 15.15% 45.00% 29.35% 35.53%
Manual Exemplars 2.06% 0.68% 1.03% 9.28% 4.11% 5.70% 17.52% 10.96% 13.48% 22.68% 15.75% 18.59% 0.00% 0.00% 0.00% 25.00% 13.79% 17.78% 30.00% 14.94% 19.95% 45.00% 28.74% 35.07%
Direct Reasoning 1.03% 0.29% 0.46% 8.25% 3.24% 4.66% 20.61% 8.85% 12.39% 25.77% 12.38% 16.73% 0.00% 0.00% 0.00% 45.00% 30.21% 36.15% 10.00% 3.13% 4.76% 45.00% 33.33% 38.30%
Standard Prompting 1.03% 0.26% 0.41% 11.34% 4.10% 6.03% 18.56% 6.92% 10.08% 25.77% 11.28% 15.69% 0.00% 0.00% 0.00% 20.00% 12.87% 15.66% 30.00% 12.87% 18.01% 45.00% 25.74% 32.75%
Zero-shot Completion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.09% 1.21% 1.74% 3.09% 1.21% 1.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 20.00% 8.24% 11.67% 20.00% 8.24% 11.67%

Claude-3.5

APPATCH 4.12% 0.92% 1.51% 37.11% 17.32% 23.62% 22.68% 10.62% 14.47% 49.48% 28.87% 36.46% 10.00% 2.04% 3.39% 80.00% 44.90% 57.52% 45.00% 18.37% 26.09% 85.00% 65.31% 73.86%
No Validation 5.15% 1.07% 1.78% 37.11% 16.52% 22.87% 22.68% 10.09% 13.96% 50.52% 27.68% 35.77% 10.00% 1.98% 3.31% 80.00% 44.55% 57.23% 45.00% 17.82% 25.53% 85.00% 64.36% 73.25%
No Slicing 3.09% 0.63% 1.05% 27.84% 12.47% 17.23% 27.84% 10.57% 15.32% 41.24% 23.68% 30.08% 10.00% 1.98% 3.31% 65.00% 44.55% 52.87% 30.00% 7.92% 12.53% 80.00% 54.46% 64.80%
Random Exemplars 1.03% 0.21% 0.34% 28.87% 15.11% 19.84% 17.53% 6.83% 9.83% 41.24% 22.15% 28.82% 5.00% 0.99% 1.65% 75.00% 43.56% 55.11% 45.00% 16.83% 24.50% 90.00% 61.39% 72.99%
Manual Exemplars 2.06% 0.42% 0.69% 29.90% 13.13% 18.24% 21.65% 8.13% 11.82% 41.24% 21.67% 28.41% 5.00% 0.99% 1.65% 80.00% 46.53% 58.84% 40.00% 9.90% 15.87% 85.00% 57.43% 68.54%
Direct Reasoning 2.06% 0.49% 0.80% 23.71% 14.32% 17.86% 17.53% 7.65% 10.66% 37.11% 22.47% 27.99% 5.00% 0.99% 1.65% 75.00% 52.48% 61.75% 35.00% 15.84% 21.81% 75.00% 69.31% 72.04%
Standard Prompting 2.06% 0.43% 0.72% 24.74% 12.61% 16.70% 14.43% 6.09% 8.56% 28.87% 19.13% 23.01% 15.00% 2.97% 4.96% 55.00% 40.59% 46.71% 25.00% 12.87% 16.99% 65.00% 56.44% 60.42%
Zero-shot Completion 0.00% 0.00% 0.00% 4.12% 1.12% 1.76% 15.46% 8.28% 10.78% 18.56% 9.40% 12.48% 0.00% 0.00% 0.00% 5.00% 3.49% 4.11% 30.00% 17.44% 22.06% 30.00% 20.93% 24.66%

Llama-3.1

APPATCH 1.03% 0.27% 0.42% 21.65% 9.55% 13.25% 18.56% 8.75% 11.89% 35.05% 18.57% 24.28% 5.00% 1.03% 1.71% 70.00% 44.33% 54.28% 20.00% 8.25% 11.68% 80.00% 53.61% 64.20%
No Validation 1.03% 0.22% 0.36% 22.68% 9.41% 13.30% 20.62% 8.09% 11.62% 38.14% 17.72% 24.20% 5.00% 0.99% 1.65% 70.00% 42.57% 52.95% 20.00% 7.92% 11.35% 80.00% 51.49% 62.65%
No Slicing 2.06% 0.49% 0.79% 20.62% 9.09% 12.62% 11.34% 4.67% 6.61% 28.87% 14.25% 19.08% 0.00% 0.00% 0.00% 70.00% 29.70% 41.71% 30.00% 10.89% 15.98% 75.00% 40.59% 52.68%
Random Exemplars 1.03% 0.22% 0.37% 15.46% 6.52% 9.17% 9.28% 4.49% 6.06% 23.71% 11.24% 15.25% 5.00% 0.99% 1.65% 65.00% 39.60% 49.22% 10.00% 2.97% 4.58% 75.00% 43.56% 55.11%
Manual Exemplars 3.09% 0.74% 1.19% 19.59% 11.30% 14.33% 11.34% 4.67% 6.61% 29.90% 16.71% 21.44% 5.00% 0.99% 1.65% 70.00% 34.65% 46.36% 30.00% 11.88% 17.02% 85.00% 47.52% 60.96%
Direct Reasoning 4.12% 0.83% 1.39% 15.46% 7.71% 10.29% 17.52% 6.45% 9.44% 31.95% 15.00% 20.41% 0.00% 0.00% 0.00% 70.00% 48.51% 57.31% 30.00% 5.94% 9.92% 70.00% 54.46% 61.26%
Standard Prompting 3.09% 0.63% 1.05% 14.43% 7.34% 9.73% 14.43% 5.87% 8.35% 24.74% 13.84% 17.75% 0.00% 0.00% 0.00% 60.00% 40.59% 48.43% 15.00% 5.94% 8.51% 65.00% 46.53% 54.24%
Zero-shot Completion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.28% 4.17% 5.75% 9.28% 4.17% 5.75% 0.00% 0.00% 0.00% 5.00% 1.98% 2.84% 5.00% 2.97% 3.73% 5.00% 4.95% 4.98%

In terms of recall, Claude-3.5 achieves the best with 49.48%
on the Zero-Day dataset and GPT-4 acheives the best with
90.00% on the ExtractFix dataset. GPT-4 achieves the best
precision 28.96% on the Zero-Day dataset and Claude-3.5
achieves the best precision 65.31% on the ExtractFix dataset.
In terms of different metrics, Claude-3.5 has 37.11% and
80.00% recall on semantics equivalent against the Zero-
Day and ExtractFix datasets, respectively. This indicates that
APPATCH generates patches close to developers’ patches.

APPATCH is effective for vulnerability patching, with up
to 36.46% and 73.86% F1 on the Zero-Day and ExtractFix
dataset, respectively, showing its practical potential.

Table 3: Effectiveness of APPATCH against the interprocedu-
ral samples from the Zero-Day dataset

Approach Model Correct Model Correct
Recall Prec F1 Recall Prec F1

APPATCH

GPT-4

38.10% 26.67% 31.37%

Claude-3.5

47.62% 25.93% 33.57%
No Validation 38.10% 25.23% 30.35% 47.62% 25.23% 32.98%
No Slicing 33.33% 18.18% 23.53% 38.10% 21.78% 27.72%
Random Exemplars 33.33% 15.32% 20.99% 47.62% 19.82% 27.99%
Manual Exemplars 38.10% 17.27% 23.77% 42.86% 18.92% 26.25%
Direct Reasoning 38.10% 13.51% 19.95% 42.86% 19.81% 27.10%
Standard Prompting 19.05% 6.60% 9.81% 14.29% 6.86% 9.27%
Zero-shot Completion 9.52% 4.72% 6.31% 14.29% 5.94% 8.39%
APPATCH

Gemini-1.5

28.57% 14.14% 18.91%

Llama-3.1

38.10% 17.65% 24.12%
No Validation 28.57% 13.34% 18.18% 38.10% 14.41% 20.91%
No Slicing 23.81% 12.37% 16.28% 14.29% 23.08% 17.65%
Random Exemplars 23.81% 11.46% 15.47% 23.81% 10.89% 14.95%
Manual Exemplars 23.81% 11.11% 15.15% 19.05% 15.38% 17.02%
Direct Reasoning 23.81% 7.62% 11.54% 28.57% 10.81% 15.68%
Standard Prompting 4.76% 1.10% 1.79% 9.52% 3.13% 4.71%
Zero-shot Completion 0.00% 0.00% 0.00% 9.52% 2.70% 4.21%

5.2 RQ2: Contributions of Components
As shown in Table 2, we then examine the contributions of
the APPATCH components with the ablated prompting ap-
proaches. The numbers marked in red are the best F1 scores
achieved by the ablated prompting approaches. One of the ab-
lated versions, “Manual Exemplars”, corresponds to our prior
work [37], which is also an LLM-based patching baseline.

When we remove the multi-faceted patch validation, as
shown in the "no validation", we notice that the precision
drops and thus the F1 becomes lower, with 20.41%–35.77%

F1 on the Zero-Day dataset and 40.00%–73.25% F1 on the
ExtractFix dataset, indicating that the multi-faceted patch
validation is useful to improve the precision.

We then examine the contribution of semantics-aware scop-
ing. In this ablation study, instead of using the vulnerability
semantics slice, we directly input the whole source code sam-
ple into the LLMs for analysis. As shown in rows “No slicing”,
without the vulnerability semantics slicing, the recall, preci-
sion, and F1 drop significantly compared with APPATCH, with
19.08%–30.08% F1 on the Zero-Day dataset and 37.21%–
65.50% F1 on the ExtractFix dataset. The reason is that,
without slicing, the code not relevant to vulnerabilities is also
inputted into the LLMs, thus distracting the analysis and im-
pact the accuracy of the root cause analysis. To prove this, we
examine the correct rates of the reasoning on the testing sam-
ples. As Table 10 shows, vulnerability semantics reasoning
achieves higher accuracy if we have vulnerability semantics
scoping/slicing. This indicates the importance of inputting
core vulnerability semantics for analysis.

To examine the usefulness of dynamic adaptive prompting,
we conduct experiments with randomly selected exemplars
rather than selecting exemplars based on the root causes of
the vulnerabilities. Note that we still keep the CWEs of the ex-
emplars the same as the testing sample. As shown in the rows
“Random Exemplars”, we notice that the F1 scores drop dra-
matically compared with APPATCH.The exemplars selected
for prompting have promising fixing strategies which help
LLMs patch the vulnerability correctly, while they may pick
up incorrect fixing strategies to patch with random exemplars.
This indicates the importance and effectiveness of dynamic
prompting for vulnerability patching.

As the exemplars in our exemplar pool are generated by
LLMs, to examine whether these LLM-generated exemplars
are better than human curated exemplars, we also manu-
ally write exemplars following the same reasoning steps. As
shown in rows “Manual Exemplars”, the overall effectiveness

10

drops significantly, indicating the effectiveness of adaptive
prompting for our LLM-based vulnerability patching design.

A: Root Cause Analysis: Looking at the given vulnerable code line and its
context, the CWE-787 (out-of-bounds write) vulnerability exists in the code
because the `Jsi_Strcpy` function is used to copy the contents of `str` to the
memory location pointed to by `p`, which is calculated as `&(argv[cnt+2])`. If
the value of `cnt` is such that `cnt+2` exceeds the allocated memory for `argv`,
then writing to `p` using `Jsi_Strcpy` can lead to an out-of-bounds write
vulnerability, which is CWE-787.

Q: Given the following code slice
<Code slice marked in Figure 1>
which has a CWE-787 vulnerability at line 24, please analyze the root cause of
the vulnerability. If you encounter uncertainty due to a lack of function
definitions, please tell the functions needed with the format {"context_funcs":
[func_1,func_2,CALLER_of_func...]} where"CALLER_of_func" is a
placeholder for the caller of the given functions.
A: {"context_funcs":[CALLER_of_ Jsi_Strcpy...]}
Q: Given the following code slice
<Code slice of function Jsi_Strcpy and SplitChar marked in Figure 1>
 which has a CWE-787 vulnerability at line 24, please analyze the root cause of
the vulnerability. If you encounter uncertainty …

Figure 9: Root cause analysis generated by GPT-4 without
vulnerability semantics reasoning for the sample in Figure 1.

To show the effectiveness of vulnerability semantics rea-
soning, we simply prompt the LLMs to generate root causes,
as shown in Figure 9. As shown in the row “Direct Reason-
ing”, the overall effectiveness drops significantly compared
to APPATCH. The reason is that the accuracy of root cause
analysis is lower than vulnerability semantics reasoning, as
shown in Table 10. This indicates that guiding LLMs for
vulnerability semantics reasoning is effective for improving
vulnerability analysis and patching.

To show the patching effectiveness of the LLMs without
any specific prompting design, we directly ask the LLMs to
patch the given vulnerabilities. As shown in row “Standard
Prompting”, we notice that the standard prompting have much
lower effectiveness compared with APPATCH, achieving only
up to 23.01% F1 on the Zero-Day dataset and 60.42% F1 on
the ExtractFix dataset even with the state-of-the-art LLMs.

Recently, Pearce et al. [43] approaches the LLM-based vul-
nerability repair problem through zero-shot code completion,
which removes the vulnerable code in the program and lets
the LLMs fill the vulnerable parts so as to fix the vulnerabil-
ity. We use their best template s2 for comparison. As shown
in the Row “zero-shot completion”, this approach has the
lowest effectiveness, with up to 12.48% F1 on our Zero-Day
dataset and 24.66% F1 on the ExtractFix dataset, indicating
that only providing prior code without further information is
insufficient for LLMs to fix the vulnerabilities.

Each component in APPATCH substantially contributes to
its effectiveness, justifying its overall design.

We further evaluate APPATCH’s effectiveness on interpro-
cedural vulnerabilities using the 21 interprocedural samples
from the Zero-Day dataset. Table 3 shows the correctness
results (the complete results are in Appendix Table 12). Sim-
ilarly, the numbers marked in red are the best F1 scores
achieved by the ablated prompting approaches. Compared

Table 4: Comparison to existing techniques in terms of recall
ExtractFix Dataset Zero-Day Dataset

Technique SynEq SemEq Plausible Correct SynEq SemEq Plausible Correct
APPATCH 5% 75% 40% 90% 4.12% 37.11% 22.68% 49.48%
VulRepair 10% 25% 0% 35% 2.06% 15.46% 1.03% 17.53%
Getafix 20% 5% 0% 25% 5.15% 0.00% 1.03% 6.19%
ExtractFix 20% 35% 30% 85% - - - -
VulnFix 20% 10% 15% 45% - - - -

to the overall results on the complete Zero-Day dataset,
APPATCH and its ablated versions show a modest decrease in
performance (e.g., APPATCH’s F1 score with GPT-4 decreases
from 33.30% to 31.37%).

In contrast, the baseline approaches—Standard Prompt-
ing and Zero-Shot Completion—exhibit a substantial decline
in effectiveness (e.g., Claude-3.5 with standard prompting
and zero-shot completion decrease from 23.01% and 12.48%
to 9.81% and 6.31%, respectively). Note that for Standard
Prompting, we provide all the functions covered by the com-
puted vulnerability semantics. For zero-shot completion, we
directly provide functions with the ground-truth patch loca-
tion as it can only work in such a setting. These already benefit
the two baselines but they still fall short with these interpro-
cedural samples. This deterioration can be attributed to the
absence of interprocedural analysis in these approaches which
adversely affects the LLMs’ performance.

While APPATCH has a slight performance drop on exclu-
sively interprocedural vulnerabilities, baseline approaches
show a dramatic decline. This highlights the effectiveness
merits of interprocedural analysis in APPATCH.

5.3 RQ3: Comparison to Existing Techniques
To compare the effectiveness of APPATCH to existing vulnera-
bility patching techniques, we select four state-of-the-art non-
LLM-based tools which cover different technical categories,
as shown in Table 4, where the red numbers indicate the best
recall achieved by the baselines. VulRepair [18] is a DL-based
vulnerability repair technique which fine-tunes a pre-trained
programming language model CodeT5 [50] to repair vulnera-
bilities. Getafix [7] is a data-driven pattern-based vulnerability
repair technique which learns vulnerability patching patterns
from existing samples. ExtractFix [20] is a traditional vul-
nerability patching technique which leverages test cases and
constraints to fix the vulnerabilities. VulnFix [55] is a SOTA
vulnerability patching technique based on inductive inference.

As ExtractFix and VulnFix require compilable projects
and test cases which are difficult to build on our Zero-Day
dataset, we first use the ExtractFix dataset for comparison.
As ExtractFix and VulnFix generate many patches for test-
ing, we only compare the recall metric in this RQ. For Vul-
Repair and Getafix which are learning-based, we use our
PatchDB+CVEFixes training set to re-train their models.

As shown in Table 4, on the ExtractFix dataset, APPATCH
with the best LLM (GPT-4) achieves the best recall (90%)

11

compared with the baseline techniques. Note that the recall
sum of syntactic equivalent, semantically equivalent, and plau-
sible may be over recall on correct because there are multiple
patches generated for each testing sample. ExtractFix achieves
85% recall because it leverages the test cases and constraints
for patching. Without such information, other baseline tech-
niques only achieve 25%-45% recall.

Note that the ExtractFix dataset is released in 2021, which
is possible to cause the data leakage issue as it is before the
cutoff date of the used LLMs. Thus, we test the LLMs whether
they know the related information and patches given the meta
data. The results show that they either do not know or give
wrong answers, indicating that the data leakage issue is not
serious. Detailed results can be found in Appendix E.

We further evaluate the baselines on the Zero-Day dataset.
Since these samples are not compilable, we limit our com-
parison to VulRepair and Getafix as the other two (VulnFix
and ExtractFix) both require that the input code is compilable.
As shown in Table 4, APPATCH significantly outperforms
both baselines, achieving a recall of 49.48% compared to
VulRepair’s 17.53% and Getafix’s 6.19%. This highlights
APPATCH’s superior effectiveness in patching.

Compared to traditional techniques, APPATCH is effective
in vulnerability patching without extra information.

5.4 RQ4: Efficiency

We evaluate the efficiency of APPATCH in terms of time cost
and token usage. Table 5 shows the time cost and token us-
age of APPATCH per sample on each LLM. After mining the
exemplars, each sample takes between 37.148 seconds and
50.209 seconds to generate a patch, including the time for se-
lecting the exemplars and generating the candidate patches. In
this process, the input/context token usage ranges from 5,684
to 6,802 per sample, and the generated token usage ranges
from 584 to 886. We notice that Claude-3.5 and GPT-4 take
more tokens while Gemini-1.5 and Llama-3.1 take less. The
reason is that the former two models tend to generate more
tokens when generating the exemplars and patches. Based
on the rate of each model’s API, patching each sample costs
between 0.2 and 8 cents. However, Gemini-1.5 provides a
free version if the usage is not large and Llama-3.1 supports
deploying locally. If so, the two models are free.

APPATCH is efficient for vulnerability patching in terms of
both time and money cost.

6 Discussion

We further discuss the advantages of APPATCH that enable
its greater effectiveness, as well as why and how it fails on

Table 5: Time and token cost of APPATCH per sample
Model Time cost Contexts Tokens Generated Tokens Price
GPT-4 40.169s 6290 647 $0.0823

Claude-3.5 50.209s 6802 886 $0.0336
Gemini-1.5 37.148s 5684 584 $0.0026
Llama-3.1 46.598s 5749 591 $0.0203

some samples, its tool usability, its current limitations, and
the extensibility of APPATCH.

6.1 Why APPATCH Works

There are several advantages of APPATCH for vulnerability
patching. The first advantage is contributed by the semantics-
aware scoping. As Figure 1 shows, without semantics-aware
scoping, the code to be analyzed and patched includes many
statements not relevant to the vulnerabilities. In this case,
the LLMs are distracted and thus are more difficult to gener-
ate correct root cause and patches. In comparison, resulting
from our semantics-aware scoping, the slice analyzed and
patched by LLMs only includes the core code fragment for
vulnerability analysis and patching. This not only helps LLMs
concentrate on the vulnerability semantics which is the most
important parts for patching, but also makes the data and con-
trol flow clearer than the original code. For example, in the
original code, the variable cnt at line 22 is 6 lines away from
its last definition at line 16. However, in the vulnerability
semantics slice, it is only two lines away, which makes LLMs
easier to find the data dependencies for vulnerability patching.

Figures 2, 3 and 7 show the generated analysis and
patch by GPT-4 with standard prompting, zero-shot com-
pletion and APPATCH, where the standard prompting and
zero-shot completion fail to patch the vulnerability correctly
while APPATCH succeeds. We notice that in APPATCH with
semantics-aware scoping, GPT-4 is able to capture more data
flow information for variables p, cnt, and dStr, while the
GPT-4 with standard prompting and zero-shot code comple-
tion only analyze and patch the code based on the vulnerable
line itself. This indicates that semantics-aware scoping helps
LLMs better work on the data dependency analysis, which is
important for effective vulnerability patching.

The second advantage of APPATCH is that it prompts dy-
namically based on the testing samples rather than using ran-
dom or fixed prompts. This allows LLMs to leverage a large
amount of existing real-world vulnerability data with few-
shot learning, while avoiding LLM fine-tuning which incurs
high costs of time and money. Because of the token limitation
and the disadvantage of LLMs for long-text process, it is not
feasible to input all the exemplars for few-shot learning. In
contrast, the dynamic adaptive prompting with CoT guides
LLMs to analyze the vulnerabilities in depth rather than ana-
lyzing them superficially. As Figures 2, 3 and 7 show, GPT-4
with APPATCH conducts in-depth analysis for the root cause
of the vulnerability, while GPT-4 with standard prompting

12

Table 6: Accuracy of CodeQL detection, localization, classifi-
cation, and the three combined against the Zero-Day dataset

Scenario Detection Localization Classification Combined
Fully Automated 87.62% 59.79% 69.07% 55.67%
Realistic 87.62% 72.16% 83.50% 68.04%

Table 7: End-to-end results against the Zero-Day dataset

Scenario Model Approach Correct
Recall Prec F1

Fully Automated
Claude-3.5

APPATCH 34.02% 18.36% 23.85%
Manual Exemplars 22.68% 11.33% 15.11%
Standard Prompting 16.49% 11.15% 13.30%
Zero-shot Completion 15.46% 9.04% 11.41%

VulRepair - 16.49% 9.18% 11.79%
Getafix - 6.19% 5.70% 5.93%

Realistic
Claude-3.5

APPATCH 41.24% 20.40% 27.29%
Manual Exemplars 25.77% 11.38% 15.79%
Standard Prompting 24.74% 16.16% 19.55%
Zero-shot Completion 15.46% 9.04% 11.41%

VulRepair - 16.49% 9.18% 11.79%
Getafix - 6.19% 5.70% 5.93%

and zero-shot completion cannot. The exemplars from dy-
namic adaptive prompting guide GPT-4 to find the size and
boundary of the pointer p, which significantly helps generate
the patch correctly.

Notably, the ability of LLMs to automatically generate the
vulnerability semantics reasoning steps (i.e., the natural lan-
guage representation of vulnerability semantics) is key to the
automation in Step 1.2. Also, since the reasoning essentially
dissects the vulnerable behavior of the code, they immediately
serve as root cause analysis. Importantly, using functional-
ity semantics instead would help the LLMs understand the
functional behaviors of the code, hence not helping much the
models with understanding the vulnerability root cause hence
guiding their patch generation, as we extensively validated.

The third advantage is that APPATCH conducts multi-
faceted patch validation strategy to remove the unusable
patches. As shown in Table 2, with multi-facted patch valida-
tion, the precision is improved significantly without impact-
ing the recall. This improves the F1 and effectively reduces
the load of developers for selecting appropriate patches, thus
shows the practicability of APPATCH.

6.2 Usability of APPATCH

In this work, we assume that the vulnerabilities under patch-
ing are pre-detected with correct CWE and location infor-
mation. However, such information may not be always avail-
able. In this case, APPATCH may need to collaborate with
other vulnerability analyzers (that provide the information) to
work in practice. Thus, to demonstrate that our formulation of
APPATCH is realistic and showcase its usability, we evaluate
its performance when fed with such information produced
from upstream detection/localization and classification tools,
a setting referred to as end-to-end integration, against our
Zero-Day dataset on the best-performing LLM Claude-3.5.

We consider two integration scenarios for a comprehensive
evaluation. The first is a fully automated workflow in which
both information from the upstream tools is directly fed to
APPATCH as its inputs without human intervention. The sec-
ond is a scenario in which the outputs of those tools are first
inspected, verified, and calibrated if necessary, and the vali-
dated/calibrated location and CWE information is then fed
to APPATCH. In a typical, realistic vulnerability management
workflow, developers would inspect and calibrate the outputs
of automated (vulnerability localization and classification)
tools before proceeding with patching using those outputs,
for many reasons (e.g., accuracy/trust issues—since no auto-
mated tools are perfect and they can produce false positives
and suffer false negatives, among other considerations [4]).
Thus, we refer to the second as the realistic scenario.

For the upstream tooling, we chose CodeQL [1] as it is an
industry-grade security analyzer widely used on real-world
projects. Also, as it serves detection/localization and classi-
fication purposes at the same time, users need just one tool
instead of multiple to provide both inputs to APPATCH. For
CodeQL to work specifically for a given project, users of-
ten customize the query packs based on the project infor-
mation [1]. We also followed this common practice for the
projects evaluated. Notably, our query-pack customization
did not assume any knowledge about the ground-truth results
(i.e., detection/localization/classification outcomes), avoid-
ing biases and keeping the realism of the end-to-end integra-
tion setting. We extended the memory manipulation function
set in the query packs so that the project’s custom memory-
management APIs (e.g., kmalloc, kfree) can be scanned as
well—which any ordinary user would be able to do as well for
a given project to scan. For the realistic scenario involving de-
veloper inspection, we had a graduate student with 3-year rele-
vant experience simulate the realistic human-intervention step
between vulnerability localization/classification and patching,
who inspected and calibrated CodeQL outputs.

APPATCH’s end-to-end performance results in both scenar-
ios are in Table 7 (with further details in Appendix Table 13).
To contextualize these results, Table 6 gives the upstream tool
performance, which is largely consistent with what earlier
studies found on CodeQL [13]. Note that CodeQL may re-
port multiple locations and CWEs for one sample, similar to
other vulnerability localization techniques [17, 22, 35]. There-
fore, we follow their evaluation approach and report top-10
accuracy for localization and classification where the ranking
is based on the security severity [6]. As shown, APPATCH
worked reasonably well in these end-to-end settings, with
expected accuracy drops versus when perfect vulnerability
location and CWE information is used (Table 2). These gaps
can be justified by inaccuracies of the upstream results with-
/without human inspection. APPATCH also outperforms the
baseline approaches, demonstrating its merits and superior
practical performance. With more advanced upstream tools
to provide more accurate vulnerability locations and CWEs,

13

and users with more expertise (e.g., developers of the project
under patching), these performance could be even better.

6.3 How and Why APPATCH Fails
We conduct case studies on the all the failure cases of
APPATCH on the Zero-Day dataset to investigate the symp-
toms of them. There are several major symptom groups.
• Incorrect Vulnerability Identification. The most com-

mon symptom is incorrect vulnerability identification, with
35.69% of the symptoms. This category includes cases
where the initial analysis misidentified the type or nature
of the vulnerability. For example, as shown in Figure 10
the actual issue is related to a missing condition check for
the debug event code type, not an out-of-bounds write as
initially assumed.

• Insufficient or incorrect code modification. Another com-
mon issue was insufficient or incorrect code modification
(31.23% of symptoms). For example, as shown in Figure 11,
the patch focuses on local buffer handling while the actual
fix require dynamic memory allocation and more compre-
hensive input validation.
These symptoms show how APPATCH fails to patch some

samples. We further identified three main root causes:
• Misunderstanding the actual vulnerabilities. The most

common root cause for failed patching is that the LLMs
misunderstand the actual vulnerabilities, with 41.33% of
the root causes. This usually causes incorrect vulnerability
identification, as shown in Figure 10.

• Inadequate analysis of code context and dependencies.
Another common root cause for failed patching is inade-
quate analysis of code context and dependencies (25.21%
of root causes). This usually causes insufficient or incorrect
code modification, as shown in Figure 11.

• Failure to consider all edge cases or scenarios. This cate-
gory covers situations where the patch didn’t account for
all possible scenarios or edge cases, with 10.21% of the
root causes. For example, in one sample, the LLM incor-
rectly handles special characters in shell quoting and fails to
address all cases of characters requiring special treatment,
particularly those needing quoting rather than escaping.

6.4 Limitations
There are several factors that may limit APPATCH in practice.
The first limitation is that the root cause analysis may not be
accurate at the testing phase. If the vulnerability root cause
analysis is incorrect, the direction of patching is misled and
the generated patches are less likely to be correct. The sec-
ond limitation is that we only collect 306+76+20 patching
samples for evaluation, because collecting these samples re-
quire manual works to label. Yet we still cannot ensure these
samples are compilable and come with test cases.

For the first limitation, APPATCH mitigates it by using
the state-of-the-art and most powerful LLMs to generate the
patches. We exclude the LLMs that are not capable of con-
ducting logical analysis, such as Falcon [58], StarCoder [29],
and GPT-NeoX [11]. All the selected LLMs in this work have
the capability of analyzing the code logically. For the second
limitation, we collected as many as samples as we can so that
they can cover more CWEs, vulnerable code patterns, and
patching strategies/patterns.

Indeed, the two limitations can be attributed to the vul-
nerability datasets we use. In an ideal vulnerability patching
scenario, the exploits should be provided and the dynamic
tracing of the vulnerability should be available. However,
the used datasets, PatchDB and CVEFixes, only provide the
raw information of the vulnerabilities (e.g., versions, patches,
source code) without further information. Considering that re-
producing the vulnerabilities based on the CVE reports is very
time-consuming, it is difficult for us to build a dataset with
hundreds of compilable and vulnerability-reproducable code
samples in a short time. At the same time, existing vulnera-
bility datasets coming with compilable code and test cases
are relatively small, such as the ExtractFix dataset [20] which
only has 30 samples. Therefore, future works should try to
build larger compilable vulnerability datasets so that rigorous
static and dynamic analysis can be feasible.

6.5 Extensibility
A common concern for the practicability of APPATCH is
whether it can be extended to other CWEs and languages.
While the current implementation and the evaluation are
based on C language with six common CWEs, the design
of APPATCH is language/CWE agnostic and is extendable
to other CWEs and languages. To extend APPATCH to other
CWEs, users can add exemplar samples of other CWEs to gen-
erate the respective exemplars. The samples with more CWEs
can be also found in the PatchDB and CVEFixes datasets.
To extend APPATCH to other languages, users can set up a
code analyzer that is able to construct SDGs and then fol-
low Algorithm 1 to extract the vulnerability semantics slices.
Meanwhile, our used code analyzer, Joern, also supports more
than ten languages, including the most popular languages such
as Java, Python, C#, and Go.

6.6 LLMs for Automated Patching
Beyond the merits of APPATCH itself, our work also reveals
several insights for future automated patching with LLMs.

The first is that prompting design matters for effective vul-
nerability patching. Based on our evaluation, simply asking
LLMs to patch vulnerabilities work poorly because of the lack
of guidance. While vulnerability patching by the SOTA ap-
proach [43] shows its potential when LLMs started surging, it
performs poorly even with the latest and most powerful LLMs.

14

This indicates that the prompts for vulnerability patching need
to be specifically designed with comprehensive guidance.

The second insight is that LLM-based vulnerability patch-
ing still needs traditional code analysis to complement. The
main reason is that LLMs usually have token limitation so that
we cannot input a large amount of code into the model. Even
if some of the models support more tokens, the long input and
output text may also distract the model from concentrating the
important parts for patching because of the limitation of their
base structure-Transformer [48]. Therefore, extracting the im-
portant code slices by traditional code analysis techniques is
promising for LLM-based vulnerability patching.

The third insight is that dynamically prompting LLMs adap-
tively is necessary for few-shot learning-based vulnerability
patching. The reason is that, because of the token limitation of
LLMs, it is difficult to input all the samples covering different
vulnerability root causes and patching strategies. The exem-
plars used for few-shot learning should be based on testing
samples to achieve better effectiveness.

Meanwhile, we choose to use LLMs as they are, without
pre-training and fine-tuning. The main reason is that the cost
of LLMs also matters. If we choose to pre-train our own
LLMs, the training data, hardware usage, and time cost would
be considerable. Only big companies such as OpenAI and
Google have enough resource to pre-train LLMs. Currently,
most of the powerful LLMs are commercial, thus it is difficult
to access these LLMs directly for fine-tuning. Although some
provide APIs for fine-tuning, the models are usually old (e.g.,
GPT-3.5) and the price is expensive considering the amount
of data for fine-tuning. Therefore, prompting LLMs would be
more feasible than pre-training and fine-tuning.

7 Related Work

Recent research has focused on example-based approaches
to vulnerability detection and repair, demonstrating the ef-
fectiveness of learning from past vulnerabilities and their
corresponding fixes. Ma et al. [34] presented VuRLE, a sys-
tem that utilizes machine learning to automatically detect and
repair vulnerabilities by learning from examples. Similarly,
Zhang et al. [54] developed a similar approach for Java.

Deep learning techniques have also shown significant
promise in automating the vulnerability detection and repair
process. Chen et al. [14] explored neural transfer learning for
repairing vulnerabilities in C code. VulRepair, a T5-based
automated software vulnerability repair tool, is presented by
Fu et al. [18]. This approach shows significant improvements
in the accuracy and efficiency of vulnerability repair.

Program analysis and language models offer powerful tech-
niques for understanding and fixing software vulnerabilities
by analyzing code semantics and employing complicated mod-
els. Gao et al. [20] proposed a novel method that goes beyond
conventional testing by extracting crash constraints to guide

program vulnerability repair. Lastly, Pearce et al. [43] exam-
ined the application of LLM for zero-shot vulnerability repair.
Their study highlights the potential of LLMs to fix vulnerabil-
ities without extensive task-specific training, leveraging the
models’ ability to generalize from a vast amount of data.

8 Conclusion

We propose APPATCH, an automated vulnerability patch-
ing framework that features dynamic adaptive prompting
on LLMs to elicit their effective reasoning for vulnerabil-
ity root-cause analysis hence quality patch generation. We
have demonstrated, on four latest LLMs, that APPATCH sub-
stantially outperforms both existing prompting approaches
and state-of-the-art non-LLM-based patching techniques.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
effective guidance and constructive comments. For this work,
Yu Nong, Haoran Yang, and Haipeng Cai were supported
by Army Research Office (ARO) under Grant No. W911NF-
21-1-002, National Science Foundation (NSF) under Grant
No. CCF-2146233 and CCF-2505223, and Office of Naval
Research (ONR) under Grant No. N000142212111; Long
Cheng was supported by NSF under Grant No. 2239605 and
2228616; and Hongxin Hu was supported by NSF under Grant
No. 2228617, 2120369, and 2129164.

Ethics Considerations

Our research is focused on the development and evaluation
of methods for patching software vulnerabilities, which com-
plies with the ethical guidelines outlined by the USENIX
Security’25 conference. Specifically, we have ensured that
our study adheres to principles concerning the responsible
handling of security research.

Our study focuses on generating and testing patches for
vulnerabilities in software systems. While we evaluate our
technique mainly in a zero-day setting (i.e., using the vulner-
abilities that are zero-days to the LLMs which have a cutoff
date before the disclosure time of these vulnerabilities), the
vulnerabilities have already been disclosed (as CVEs) publicly
by the time of our paper writing. Thus, our research itself does
not cause harm or risks related to vulnerability disclosure, nor
raising any new security threats. Nevertheless, throughout our
research process, we have taken care to avoid any actions that
could result in unintended harm, such as exposing systems
or users to new security risks. We have ensured that all vul-
nerability data utilized is anonymized and does not contain
any identifiable information about individuals or organiza-
tions. Besides, we have not conducted any experiments on
production systems that could impact real-world users, hence
avoiding any potential disruption or harm.

15

Open Science

We fully support the new open science policy of USENIX
Security’25, which requires research results to be publicly ac-
cessible or for researchers to provide a valid explanation if this
is not possible. To align with this policy, we commit to openly
sharing all artifacts generated from our research, including
the codebase, datasets, and experimental results, through a
publicly accessible repository. The source code and documen-
tation of APPATCH as well as our experimental results have
been made available at https://zenodo.org/records/14741018.

In summary, our work aligns with both the ethical guide-
lines and open science policy of USENIX Security’25. We
are committed to conducting research that not only adheres
to high ethical standards but also promotes openness and
community engagement in advancing cybersecurity research.

References

[1] CodeQL documentation. https://codeql.github.com/
docs/, 2021.

[2] Introducing Code Llama, A state-of-the-art large language
model for coding. https://ai.meta.com/blog/code-
llama-large-language-model-coding/, 2023.

[3] Code with CodeQwen1.5. https://qwenlm.github.io/
blog/codeqwen1.5/, 2024.

[4] A fool with a tool is still a fool. https://dwheeler.com/
flawfinder/, 2024.

[5] Meet claude. https://www.anthropic.com/claude, 2024.

[6] Metadata for CodeQL queries. https://
codeql.github.com/docs/writing-codeql-queries/
metadata-for-codeql-queries/, 2024.

[7] Johannes Bader, Andrew Scott, Michael Pradel, and Satish
Chandra. Getafix: Learning to fix bugs automatically. OOP-
SLA, 3:1–27, 2019.

[8] Árpád Beszédes, Csaba Faragó, Z Mihaly Szabo, János Csirik,
and Tibor Gyimóthy. Union slices for program maintenance.
In ICSM, pages 12–21, 2002.

[9] Guru Bhandari, Amara Naseer, and Leon Moonen. CVEfixes:
Automated collection of vulnerabilities and their fixes from
open-source software. In PROMISE, pages 30–39, 2021.

[10] David Binkley, Nicolas Gold, and Mark Harman. An empirical
study of static program slice size. TOSEM, 16(2):8–es, 2007.

[11] Sidney Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Connor Leahy,
Kyle McDonell, Jason Phang, et al. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceedings of Big-
Science Episode# 5–Workshop on Challenges & Perspectives
in Creating Large Language Models, pages 95–136, 2022.

[12] Haipeng Cai, Yu Nong, Yuzhe Ou, and Feng Chen. Generating
vulnerable code via learning-based program transformations.
In AI Embedded Assurance for Cyber Systems, pages 123–138.
Springer, 2023.

[13] Wachiraphan Charoenwet, Patanamon Thongtanunam, Van-
Thuan Pham, and Christoph Treude. An empirical study of
static analysis tools for secure code review. In ISSTA, pages
691–703, 2024.

[14] Zimin Chen, Steve Kommrusch, and Martin Monperrus. Neural
transfer learning for repairing security vulnerabilities in C code.
TSE, 49(1):147–165, 2022.

[15] Ericsson. Software vulnerability: Impact & ways
to avoid it. https://www.ericsson.com/en/security/
vulnerability-management, 2023.

[16] Forbes Technology Council. Zero-day vulnerabili-
ties: 17 consequences and complications. https:
//www.forbes.com/councils/forbestechcouncil/2023/
05/26/zero-day-vulnerabilities-17-consequences-
and-complications, 2023.

[17] Michael Fu and Chakkrit Tantithamthavorn. LineVul: A
Transformer-based line-level vulnerability prediction. In MSR,
pages 608–620, 2022.

[18] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van
Nguyen, and Dinh Phung. VulRepair: A T5-based automated
software vulnerability repair. In ESEC/FSE, pages 935–947,
2022.

[19] Xiaoqin Fu and Haipeng Cai. FlowDist: Multi-staged
refinement-based dynamic information flow analysis for dis-
tributed software systems. In USENIX Security Symposium,
pages 2093–2110, 2021.

[20] Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei Xiong,
and Abhik Roychoudhury. Beyond tests: Program vulnerability
repair via crash constraint extraction. TOSEM, 30(2):1–27,
2021.

[21] Jingxuan He and Martin Vechev. Large language models for
code: Security hardening and adversarial testing. In CCS, pages
1865–1879, 2023.

[22] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar.
LineVD: Statement-level vulnerability detection using graph
neural networks. In MSR, pages 596–607, 2022.

[23] Susan Horwitz, Thomas Reps, and David Binkley. Interproce-
dural slicing using dependence graphs. TOPLAS, 12(1):26–60,
1990.

[24] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. Using
safety properties to generate vulnerability patches. In S&P,
pages 539–554, 2019.

[25] Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, An-
drea De Lucia, and Fabio Palomba. The secret life of software
vulnerabilities: A large-scale empirical study. TSE, 49(1):44–
63, 2022.

[26] Ilan Peleg. The high cost of security vulnerabilities. https://
www.forbes.com/sites/forbesbusinesscouncil/2023/
04/10/the-high-cost-of-security-vulnerabilities-
why-observability-is-the-solution, 2023.

[27] Information Technology Laboratory at NIST. National vulnera-
bility database dashboard. https://nvd.nist.gov/general/
nvd-dashboard, 2023.

16

https://zenodo.org/records/14741018
https://codeql.github.com/docs/
https://codeql.github.com/docs/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://qwenlm.github.io/blog/codeqwen1.5/
https://qwenlm.github.io/blog/codeqwen1.5/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://www.anthropic.com/claude
https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries/
https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries/
https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries/
https://www.ericsson.com/en/security/vulnerability-management
https://www.ericsson.com/en/security/vulnerability-management
https://www.forbes.com/councils/forbestechcouncil/2023/05/26/zero-day-vulnerabilities-17-consequences-and-complications
https://www.forbes.com/councils/forbestechcouncil/2023/05/26/zero-day-vulnerabilities-17-consequences-and-complications
https://www.forbes.com/councils/forbestechcouncil/2023/05/26/zero-day-vulnerabilities-17-consequences-and-complications
https://www.forbes.com/councils/forbestechcouncil/2023/05/26/zero-day-vulnerabilities-17-consequences-and-complications
https://www.forbes.com/sites/forbesbusinesscouncil /2023/04/10/the-high-cost-of-security-vulnerabilities-why- observability-is-the-solution
https://www.forbes.com/sites/forbesbusinesscouncil /2023/04/10/the-high-cost-of-security-vulnerabilities-why- observability-is-the-solution
https://www.forbes.com/sites/forbesbusinesscouncil /2023/04/10/the-high-cost-of-security-vulnerabilities-why- observability-is-the-solution
https://www.forbes.com/sites/forbesbusinesscouncil /2023/04/10/the-high-cost-of-security-vulnerabilities-why- observability-is-the-solution
https://nvd.nist.gov/general/nvd-dashboard
https://nvd.nist.gov/general/nvd-dashboard

[28] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing
static analysis for practical bug detection: An LLM-integrated
approach. OOPSLA, 8:474–499, 2024.

[29] Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis Ko-
cetkov, Chenghao Mou, Marc Marone, Christopher Akiki,
LI Jia, Jenny Chim, Qian Liu, et al. StarCoder: May the source
be with you! TMLR.

[30] Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. Poly-
Cruise: A cross-language dynamic information flow analysis.
In USENIX Security Symposium, pages 2513–2530, 2022.

[31] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo,
and Haipeng Cai. PolyFuzz: Holistic greybox fuzzing of multi-
language systems. In USENIX Security Symposium, pages
1379–1396, 2023.

[32] Wen Li, Haoran Yang, Xiapu Luo, Long Cheng, and Haipeng
Cai. PyRTFuzz: Detecting bugs in python runtimes via two-
level collaborative fuzzing. In CCS, pages 1645–1659, 2023.

[33] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and
Zhaoxuan Chen. SySeVR: A framework for using deep learn-
ing to detect software vulnerabilities. TDSC, 19(4):2244–2258,
2021.

[34] Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H
Deng. Vurle: Automatic vulnerability detection and repair by
learning from examples. In ESORICS, pages 229–246, 2017.

[35] Yisroel Mirsky, George Macon, Michael Brown, Carter Yage-
mann, Matthew Pruett, Evan Downing, Sukarno Mertoguno,
and Wenke Lee. VulChecker: Graph-based vulnerability local-
ization in source code. In USENIX Security, pages 6557–6574,
2023.

[36] David Noever. Can large language models find and fix vulner-
able software? arXiv preprint arXiv:2308.10345, 2023.

[37] Yu Nong, Mohammed Aldeen, Long Cheng, Hongxin Hu, Feng
Chen, and Haipeng Cai. Chain-of-thought prompting of large
language models for discovering and fixing software vulnera-
bilities. arXiv preprint arXiv:2402.17230, 2024.

[38] Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu
Luo, Feng Chen, and Haipeng Cai. VGX: Large-scale sample
generation for boosting learning-based software vulnerability
analyses. In ICSE, pages 1–13, 2024.

[39] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng
Cai. Generating realistic vulnerabilities via neural code editing:
An empirical study. In ESEC/FSE, pages 1097–1109, 2022.

[40] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng
Cai. VulGen: Realistic vulnerable sample generation via pat-
tern mining and deep learning. In ICSE, pages 2527–2539,
2023.

[41] Yu Nong, Rainy Sharma, Abdelwahab Hamou-Lhadj, Xiapu
Luo, and Haipeng Cai. Open science in software engineering:
A study on deep learning-based vulnerability detection. TSE,
49(4):1983–2005, 2022.

[42] Yu Nong, Haoran Yang, Long Cheng, Hongxin Hu, and
Haipeng Cai. Automated software vulnerability patching us-
ing large language models. arXiv preprint arXiv:2408.13597,
2024.

[43] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh
Karri, and Brendan Dolan-Gavitt. Examining zero-shot vul-
nerability repair with large language models. In S&P, pages
2339–2356, 2023.

[44] Moumita Das Purba, Arpita Ghosh, Benjamin J Radford, and
Bill Chu. Software vulnerability detection using large language
models. In ISSREW, pages 112–119, 2023.

[45] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu,
Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M Dai, Anja Hauth, et al. Gemini: A fam-
ily of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[46] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Am-
jad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya
Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

[47] Saad Ullah, Mingji Han, Saurabh Pujar, Hammond Pearce,
Ayse Coskun, and Gianluca Stringhini. LLMs cannot reliably
identify and reason about security vulnerabilities (yet?): A
comprehensive evaluation, framework, and benchmarks. In
S&P, pages 199–199, 2024.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

[49] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil
Jajodia. PatchDB: A large-scale security patch dataset. In
DSN, pages 149–160, 2021.

[50] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi.
CodeT5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. In EMNLP,
pages 8696–8708, 2021.

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma,
Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models.
NeurIPS, 35:24824–24837, 2022.

[52] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan
Davis, Lin Tan, Petr Babkin, and Sameena Shah. How effective
are neural networks for fixing security vulnerabilities. In ISSTA,
pages 1282–1294, 2023.

[53] Fabian Yamaguchi. A platform for robust analysis of
C/C++ code. https://joern.readthedocs.io/en/latest/
installation.html, 2022.

[54] Ying Zhang, Ya Xiao, Md Mahir Asef Kabir, Danfeng Yao, and
Na Meng. Example-based vulnerability detection and repair in
Java code. In ICPC, pages 190–201, 2022.

[55] Yuntong Zhang, Xiang Gao, Gregory J Duck, and Abhik Roy-
choudhury. Program vulnerability repair via inductive infer-
ence. In ISSTA, pages 691–702, 2022.

[56] Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo. Large lan-
guage model for vulnerability detection and repair: Literature
review and roadmap. TOSEM, 2024.

[57] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi
Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao, Shirong

17

https://joern.readthedocs.io/en/latest/installation.html
https://joern.readthedocs.io/en/latest/installation.html

Ma, et al. DeepSeek-Coder-V2: Breaking the barrier of
closed-source models in code intelligence. arXiv preprint
arXiv:2406.11931, 2024.

[58] Yoshua X ZXhang, Yann M Haxo, and Ying X Mat. Falcon
LLM: A new frontier in natural language processing. AC
Investment Research Journal, 220(44), 2023.

Appendices
A Compostion and Statistics of the Datasets

Table 8 shows the composition and statistics of the two
datasets. The Zero-Day dataset covers 18 projects and six
CWEs where the average number of patched lines is 7.87.
The ExtractFix dataset covers seven projects with the same
CWEs, while the average number of patched lines is 3.05.

B Code LLMs against the Zero-Day Dataset

Table 9 shows APPATCH effectiveness on code LLMs against
the Zero-Day dataset. For each of the models, we use its most
powerful version (with most #paramters)–CodeLlama-70b,
CodeQwen-1.5-7b, and DeepSeek-Coder-V2-236b. As shown,
the three popular used code LLMs only achieve up to 10.12%
F1 score, much lower than the general-purpose LLMs.

C Correct Reasoning Rate Comparison

Table 10 compares the performance of four language mod-
els (GPT-4, Gemini-1.5, Claude-3.5, and Llama-3.1) on the
Zero-Day dataset using three different prompting approaches.
Across all models, APPATCH’s Vulnerability Semantics Rea-
soning approach (highlighted in green) consistently achieves
the highest correct reasoning rates. The Direct Reasoning
and No Slicing approaches generally yielded lower success
rates, demonstrating the effectiveness of the Vulnerability
Semantics Reasoning method.

D More Results on Interprocedural Samples

Table 12 shows the detailed results of APPATCH against the
interprocedural samples from the Zero-Day dataest, with red
numbers indicating the best F1 scores achieved by the ab-
lated prompting approaches out of APPATCH. As shown,
Claude-3.5 and GPT-4 achieve the best F1 scores (33.57% and
31.37%) with APPATCH, outperforming the ablated versions.
Specifically, Standard Prompting and Zero-shot Completion
have the worst performance (1.79%-9.81% and 0.00%-8.39%
respectively), showing the effectiveness of APPATCH on the
interprocedural samples.

E Data Leakage Assessment

We checked ExtractFix dataset against leakage with following
LLM queries:

1. Please tell the Project, CWE-ID, and CVE description
of <CVE-ID>.

2. Please tell the CWE-ID and CVE description of <CVE-
ID> in <Project>.

3. Please tell the patch of <CVE-ID> which has a <CWE-
ID> vulnerability in <Project>.

The results are shown in Table 11. As shown, the LLMs either
do not know the answers or provide incorrect answers in most
of the cases. This indicates that the data leakage issue is not
serious. However, LLMs are largely a black box as we used
them in APPATCH, making accurate data leakage assessment
very challenging. Thus, we acknowledge that, despite our ef-
fort trying to assess the data leakage issues with this dataset,
we can not ensure that there was no leakage, nor can we claim
that our quantification of the leakage is perfectly accurate.
Instead, we took our best effort to assess the leakage, using
the queries designed above, as justified as follows. First, we
consider that there are five important pieces of the knowledge
about how a vulnerability is patched (i.e., the knowledge we
are concerned that LLM may already have, when we evaluate
APPATCH using the ExtractFix dataset which consists of pro-
gram samples for which these five pieces of information are
provided): (1) CVE ID, (2) project name, (3) CVE description,
(4) CWE ID, and (5) the patch. Then, we design three queries
that assess whether an LLM has one or more pieces of such
knowledge when given the other pieces. More specifically:

• Query 1: we provide the LLM with (1) and ask it about
(2), (3), and (4);

• Query 2: we provide the LLM with (1) and (2), and ask
it about (3) and (4);

• Query 3: we provide the LLM with (1), (2), and (4), and
ask it about (5).

As seen, with these three queries sent to the LLM in order
of Queries 1, 2, 3, we gradually provide the LLM with in-
creasingly more pieces of information, and check if the LLM
knows about the rest. This helps us check the LLM against the
data leakage with varying levels of difficulty, and put together
we believe the LLM’s responses can give us a perspective into
the data leakage issue. Nevertheless, we could not make bold
claims that these queries are the best to assess data leakage
about vulnerability patches in general. Moreover, we would
like to note the following points: (1) as a comparison, we
also test the LLMs with a well-known vulnerability CVE-
2021-44228 using the same three queries. The LLMs did
successfully answer some of five pieces of information about

18

Table 8: Composition and statistics of the datasets
Dataset Project-distribution (project:#CVEs) CWE-distribution(CWE:#CVEs) Complexity

Zero-Day
linux:73, git:2, ffmpeg:1, less:1, jasper:2, FreeRDP:3, pytorch:1, Fast-DDS:1, CWE787:17, CWE125:23, CWE190:11, average #patched lines:7.87
esp-idf:1, openssl:1, suricata:1, RedisBloom:1, tcpdump:1, sngrep:1 CWE401:11, CWE457:10, CWE476:25
jerryscript:2, mynewt-nimble:1, dcmtk:3, libhtp:1

ExtractFix coreutils:2, libjpeg:4, libxml2:2, jasper:1, libtiff:8, binutils-gdb:2, FFmpeg:1
CWE-787:6, CWE-125:7, CWE-190:5, average #patched lines:3.05
CWE-401:0, CWE-457:1, CWE-476:1

Table 9: Code LLMs with APPATCH against the Zero-Day dataset

Model
SynEq SemEq Plausible Correct

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1
CodeLlama 0.00% 0.00% 0.00% 1.03% 0.42% 0.60% 1.03% 0.43% 0.60% 2.06% 0.85% 1.20%

CodeQwen-1.5 0.00% 0.00% 0.00% 4.12% 2.03% 2.72% 15.46% 4.93% 7.47% 18.55% 6.95% 10.12%
DeepSeek-Coder-V2 2.06% 0.68% 1.02% 9.28% 3.73% 5.32% 6.19% 2.03% 3.06% 15.46% 6.44% 9.09%

Table 10: Correct reasoning rate on the Zero-Day dataset
Model Prompt Correct Rate

GPT-4
Vulnerability Semantics Reasoning 82.64%
Direct Reasoning 73.12%
No slicing 79.41%

Gemini-1.5
Vulnerability Semantics Reasoning 63.41%
Direct Reasoning 59.62%
No Slicing 51.97%

Claude-3.5
Vulnerability Semantics Reasoning 82.64%
Direct Reasoning 74.18%
No Slicing 79.41%

Llama-3.1
Vulnerability Semantics Reasoning 69.94%
Direct Reasoning 50.13%
No Slicing 64.74%

this CVE correctly, indicating that our queries are helpful to
test the data leakage. (2) note that APPATCH’s performance
evaluation is primarily based on the Zero-Day dataset, and we
have compared it with both LLM-based and non-LLM-based
baseline patching techniques on this dataset. The reason we
use the ExtractFix dataset is mainly for being able to compare
with two additional state-of-the-art baselines (ExtractFix [20]
and VulnFix [55]).

Table 11: Data leakage test results on the ExtractFix dataset
with the format “model-does-not-know%, incorrect-answer%,
correct-answer%”

Query GPT-4 Gemini-1.5 Claude-3.5 Llama-3.1
1 100%, 0%, 0% 0%, 100%, 0% 10%, 90%, 0% 25%, 70%, 5%
2 30%, 60%, 10% 5%, 85%, 10% 55%, 45%, 0% 5%, 90%, 5%
3 100%, 0%, 0% 25%, 75%, 0% 100%, 0%, 0% 70%, 30%, 0%

F More End-to-end Experiment Results

Table 13 shows the detailed end-to-end integration results
with CodeQL against the Zero-Day dataset. As shown,
APPATCH achieves 23.85% F1 with fully automated method
and 27.29% with realistic method. In contrast, the baselines
approaches and models have much less effectiveness, indicat-
ing that APPATCH can be realistically used in practice.

G More Details on Case Study Examples

1 static void event_interrupt_wq_v10(struct kfd_node *dev,
2 const uint32_t *ih_ring_entry)
4 uint16_t source_id, client_id, pasid, vmid;
8 source_id = SOC15_SOURCE_ID_FROM_IH_ENTRY(ih_ring_entry);
9 client_id = SOC15_CLIENT_ID_FROM_IH_ENTRY(ih_ring_entry);
15 if (client_id == SOC15_IH_CLIENTID_GRBM_CP ||
20 if (source_id == SOC15_INTSRC_CP_END_OF_PIPE)
22 else if (source_id == SOC15_INTSRC_SQ_INTERRUPT_MSG) {
95 } else if (source_id == SOC15_INTSRC_CP_BAD_OPCODE) {
Step 1: analyze the vulnerability in the provided code snippet, we need to understand how the `source_id` is
derived and used, particularly focusing on the condition at line 95 which is identified as having a CWE-787
(Out-of-bound write) vulnerability.
Step-by-Step Analysis:
......
Identifying the Vulnerability:
- **Potential Misinterpretation or Misuse of `source_id`**:
 - If `SOC15_SOURCE_ID_FROM_IH_ENTRY` incorrectly parses `ih_ring_entry` or if `ih_ring_entry` does not

contain the expected format or length, `source_id` might be assigned an incorrect or unexpected value.
 - An incorrect `source_id` could lead to incorrect branching in the code, potentially triggering

operations or behaviors that are not intended for the actual input.

- **Out-of-Bounds Write Concern**:
 - The specific mention of CWE-787 suggests an out-of-bounds write, which typically involves writing data

to a memory location outside the intended data structure. This could happen if:
 - The value of `source_id` is used to index or modify other data structures or arrays in a way not shown

in the snippet.
 - There is an implicit assumption about the range or validity of `source_id` that is violated due to
incorrect parsing or unexpected input.

Conclusion:
The vulnerability likely stems from either an incorrect parsing of `ih_ring_entry` leading to an invalid
`source_id`, or subsequent use of `source_id` in a manner that assumes it is within certain bounds which it
might exceed. To resolve this, one would need to:
- Ensure `SOC15_SOURCE_ID_FROM_IH_ENTRY` correctly validates the input size and indices.
- Add checks to ensure `source_id` falls within expected ranges before using it to access or modify other
data structures.
Given the analysis above, here are five possible patches to address the CWE-787 vulnerability at line 95:

Patch 1: Validate `ih_ring_entry` Size
```diff
1 static void event_interrupt_wq_v10(struct kfd_node *dev,
2                    const uint32_t *ih_ring_entry)
+3   size_t ih_ring_entry_size; // Assume this is passed or can be determined
4    uint16_t source_id, client_id, pasid, vmid;
+5   if (!ih_ring_entry || ih_ring_entry_size < EXPECTED_SIZE) {
+6     // Handle error: invalid ih_ring_entry size
+7     return;
+8   }
8    source_id = SOC15_SOURCE_ID_FROM_IH_ENTRY(ih_ring_entry);

Ground truth patch:
```
95c95,96
< } else if (source_id == SOC15_INTSRC_CP_BAD_OPCODE) {

> } else if (source_id == SOC15_INTSRC_CP_BAD_OPCODE &&
> KFD_DBG_EC_TYPE_IS_PACKET(KFD_DEBUG_CP_BAD_OP_ECODE(context_id0))) {

```

Figure 10: A failure case where the vulnerability is incorrectly
identified.

We conduct case studies on the APPATCH’s failure cases
to investigate the symptoms and root causes. As discussed in
Section 6.3, we show two examples for the failure symptoms
and root causes.

Figure 10 shows an example where the failed patching
attempt indicates that the original vulnerability was not accu-
rately identified or addressed. The symptom was incorrectly
diagnosed as an out-of-bounds write (CWE-787) related to
the ‘source_id‘ variable, leading to proposed patches that fo-
cused on validating and constraining this value. However, the
root cause appears to be a logic error or insufficient condition
checking in the original code. The actual fix involves adding
an additional condition to check if the context ID corresponds
to a specific packet type, suggesting that the vulnerability was

19



Table 12: Detailed results of APPATCH against the interprocedural samples from the Zero-Day dataset

Model Approach
Zero-Day Dataset

SynEq SemEq Plausible Correct
Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

GPT-4

APPATCH 4.76% 1.11% 1.80% 9.52% 4.44% 6.06% 38.10% 21.11% 27.17% 38.10% 26.67% 31.37%
No Validation 4.76% 0.90% 1.52% 14.29% 5.41% 7.84% 38.10% 18.92% 25.28% 38.10% 25.23% 30.35%
No Slicing 0.00% 0.00% 0.00% 9.52% 1.82% 3.05% 33.33% 16.36% 21.95% 33.33% 18.18% 23.53%
Random Exemplars 4.76% 0.90% 1.52% 9.52% 1.80% 3.03% 28.57% 12.61% 17.50% 33.33% 15.32% 20.99%
Manual Exemplars 0.00% 0.00% 0.00% 9.52% 2.73% 4.24% 33.33% 14.55% 20.25% 38.10% 17.27% 23.77%
Direct Reasoning 0.00% 0.00% 0.00% 4.76% 0.90% 1.52% 38.10% 12.61% 18.95% 38.10% 13.51% 19.95%
Standard Prompting 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 19.05% 6.60% 9.81% 19.05% 6.60% 9.81%
Zero-shot Completion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.52% 4.72% 6.31% 9.52% 4.72% 6.31%

Gemini-1.5

APPATCH 0.00% 0.00% 0.00% 9.52% 2.02% 3.33% 28.57% 12.12% 17.02% 28.57% 14.14% 18.91%
No Validation 0.00% 0.00% 0.00% 9.52% 2.02% 3.33% 28.57% 11.32% 16.22% 28.57% 13.34% 18.18%
No Slicing 0.00% 0.00% 0.00% 9.52% 2.06% 3.39% 14.28% 10.31% 11.98% 23.81% 12.37% 16.28%
Random Exemplars 0.00% 0.00% 0.00% 9.52% 2.08% 3.42% 19.05% 9.38% 12.57% 23.81% 11.46% 15.47%
Manual Exemplars 0.00% 0.00% 0.00% 9.52% 2.02% 3.33% 23.81% 9.09% 13.16% 23.81% 11.11% 15.15%
Direct Reasoning 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 23.81% 7.61% 11.54% 23.81% 7.62% 11.54%
Standard Prompting 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.76% 1.10% 1.79% 4.76% 1.10% 1.79%
Zero-shot Completion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Claude-3.5

APPATCH 4.76% 0.93% 1.55% 19.05% 3.70% 6.20% 47.62% 21.30% 29.43% 47.62% 25.93% 33.57%
No Validation 4.76% 0.90% 1.52% 19.05% 3.60% 6.06% 47.62% 20.72% 28.88% 47.62% 25.23% 32.98%
No Slicing 0.00% 0.00% 0.00% 9.52% 1.98% 3.28% 38.10% 19.80% 26.06% 38.10% 21.78% 27.72%
Random Exemplars 0.00% 0.00% 0.00% 4.76% 0.90% 1.52% 42.86% 18.92% 26.25% 47.62% 19.82% 27.99%
Manual Exemplars 0.00% 0.00% 0.00% 14.29% 2.70% 4.55% 42.86% 16.22% 23.53% 42.86% 18.92% 26.25%
Direct Reasoning 0.00% 0.00% 0.00% 9.52% 1.89% 3.15% 38.10% 17.92% 24.38% 42.86% 19.81% 27.10%
Standard Prompting 0.00% 0.00% 0.00% 4.76% 1.96% 2.78% 9.52% 4.90% 6.47% 14.29% 6.86% 9.27%
Zero-shot Completion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 14.29% 5.94% 8.39% 14.29% 5.94% 8.39%

Llama-3.1

APPATCH 0.00% 0.00% 0.00% 9.52% 2.35% 3.77% 38.10% 15.29% 21.82% 38.10% 17.65% 24.12%
No Validation 0.00% 0.00% 0.00% 9.52% 1.80% 3.03% 38.10% 12.61% 18.95% 38.10% 14.41% 20.91%
No Slicing 0.00% 0.00% 0.00% 4.76% 3.85% 4.26% 9.52% 19.23% 12.74% 14.29% 23.08% 17.65%
Random Exemplars 0.00% 0.00% 0.00% 4.76% 1.98% 2.80% 19.05% 8.91% 12.14% 23.81% 10.89% 14.95%
Manual Exemplars 0.00% 0.00% 0.00% 4.76% 2.56% 3.33% 19.05% 12.82% 15.33% 19.05% 15.38% 17.02%
Direct Reasoning 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 28.57% 10.81% 15.68% 28.57% 10.81% 15.68%
Standard Prompting 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.52% 3.13% 4.71% 9.52% 3.13% 4.71%
Zero-shot Completion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.52% 2.70% 4.21% 9.52% 2.70% 4.21%

Table 13: Detailed end-to-end results with vulnerability analyzer CodeQL against the Zero-Day dataset

Method Model Approach
Zero-Day Dataset

SynEq SemEq Plausible Correct
Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

Fully Automated
Claude-3.5

APPATCH 1.03% 0.33% 0.50% 12.37% 7.21% 9.11% 26.80% 10.82% 15.42% 34.02% 18.36% 23.85%
Manual Exemplars 1.03% 0.32% 0.49% 7.22% 5.18% 6.03% 15.46% 5.83% 8.46% 22.68% 11.33% 15.11%
Standard Prompting 0.00% 0.00% 0.00% 8.25% 5.25% 6.41% 11.34% 5.90% 7.76% 16.49% 11.15% 13.30%
Zero-shot Completion 0.00% 0.00% 0.00% 2.06% 0.78% 1.13% 14.43% 8.27% 10.51% 15.46% 9.04% 11.41%

VulRepair - 2.06% 0.47% 0.77% 13.40% 8.47% 10.38% 1.03% 0.24% 0.38% 16.49% 9.18% 11.79%
Getafix - 5.15% 5.26% 5.21% 0.00% 0.00% 0.00% 1.03% 0.44% 0.62% 6.19% 5.70% 5.93%

Realistic
Claude-3.5

APPATCH 1.03% 0.25% 0.40% 19.59% 7.71% 11.07% 29.90% 12.44% 17.57% 41.24% 20.40% 27.29%
Manual Exemplars 0.00% 0.00% 0.00% 15.46% 6.05% 8.70% 15.46% 5.33% 7.92% 25.77% 11.38% 15.79%
Standard Prompting 1.03% 0.28% 0.44% 19.59% 9.47% 12.77% 13.40% 6.41% 8.67% 24.74% 16.16% 19.55%
Zero-shot Completion 0.00% 0.00% 0.00% 2.06% 0.78% 1.13% 14.43% 8.27% 10.51% 15.46% 9.04% 11.41%

VulRepair - 2.06% 0.47% 0.77% 13.40% 8.47% 10.38% 1.03% 0.24% 0.38% 16.49% 9.18% 11.79%
Getafix - 5.15% 5.26% 5.21% 0.00% 0.00% 0.00% 1.03% 0.44% 0.62% 6.19% 5.70% 5.93%

more likely related to improper input validation or incorrect
handling of certain packet types, rather than a straightforward
buffer overflow issue.

Figure 11 shows an example where failed patching attempts
primarily focused on addressing potential issues with the
‘build_label‘ array’s initialization and usage, but they missed
the root cause of the vulnerability. The actual problem stems
from insufficient bounds checking when accessing data from
the ‘skb‘ (socket buffer) structure. The ground truth patch re-
veals that the vulnerability is caused by inadequate validation
of the ‘skb->len‘ against the expected data sizes at various
points in the function. This allows for potential out-of-bounds
reads when accessing ‘edl‘ structure members and data. The
correct fix involves adding multiple checks to ensure that the
‘skb‘ contains enough data before accessing its contents, and
dynamically allocating memory for ‘build_label‘ instead of
using a fixed-size array, which addresses both buffer overflow
and potential memory leaks.

 1 static int qca_read_fw_build_info(struct hci_dev *hdev)
 3     struct sk_buff *skb;
 4     struct edl_event_hdr *edl;
 5     char cmd, build_label[QCA_FW_BUILD_VER_LEN];
 6     int build_lbl_len, err = 0;
 8     bt_dev_dbg(hdev, "QCA read fw build info");
10     cmd = EDL_GET_BUILD_INFO_CMD;
11     skb = __hci_cmd_sync_ev(hdev, EDL_PATCH_CMD_OPCODE, EDL_PATCH_CMD_LEN, &cmd, 0, HCI_INIT_TIMEOUT);
20     edl = (struct edl_event_hdr *)(skb->data);
21     if (!edl) {
22         bt_dev_err(hdev, "QCA read fw build info with no header");
23         err = -EILSEQ;
24         goto out;
35     build_lbl_len = edl->data[0];
36     if (build_lbl_len <= QCA_FW_BUILD_VER_LEN - 1) {
37         memcpy(build_label, edl->data + 1, build_lbl_len);
38         *(build_label + build_lbl_len) = '\0';

Step 1: analyze the vulnerability in the code snippet provided, conduct the steps and identify where the CWE-125 (Out-
of-bounds Read) vulnerability might occur. The CWE-125 vulnerability typically involves reading data past the end or 
before the beginning of a buffer, which can lead to unexpected behavior or sensitive information disclosure.

### Code Analysis:
```c
1 static int qca_read_fw_build_info(struct hci_dev *hdev)
5 char cmd, build_label[QCA_FW_BUILD_VER_LEN];
```
- **Line 5**: This line declares two variables: `cmd`, a `char`, and `build_label`, an array of `char` with a length 
defined by `QCA_FW_BUILD_VER_LEN`.
### Steps to Identify Vulnerability:
......

### Conclusion:
The vulnerability likely stems from assumptions about the content and length of `build_label` without adequate 
verification. This could lead to out-of-bounds reads if the function or other parts of the program attempt to access 
data beyond the actual content of `build_label`. Proper checks and cautious handling of buffer lengths are essential 
to prevent such vulnerabilities.
Based on the analysis, here are five possible patches to address the CWE-125 vulnerability associated with the 
`build_label` buffer in the `qca_read_fw_build_info` function:

### Patch 1: Initialize the Buffer
```diff
5 char cmd, build_label[QCA_FW_BUILD_VER_LEN];

5 char cmd, build_label[QCA_FW_BUILD_VER_LEN] = {0};
```
This patch initializes the `build_label` buffer to zero, ensuring that if the buffer is read without being properly 
set elsewhere, it will not read uninitialized memory.

Ground Truth Patch:
19a21,25
>    if (skb->len < sizeof(*edl)) {
>        err = -EILSEQ;
>        goto out;
>    }

Figure 11: A failure case where the patch has insufficient or
incorrect code modification.

20


	Introduction
	Background and Motivation
	Technical Design
	Overview
	Vulnerability Semantics
	Exemplar Mining (Phase 1)
	Semantics-Aware Scoping (Step 1.1)
	Exemplar Generation (Step 1.2)

	LLM-Guided Causal Patching (Phase 2)
	Semantics-Aware Scoping (Step 2.1)
	Dynamic Adaptive Prompting (Step 2.2)
	Multi-Faceted Patch Validation (Step 2.3)


	Implementation
	Evaluation
	RQ1: Effectiveness
	RQ2: Contributions of Components
	RQ3: Comparison to Existing Techniques
	RQ4: Efficiency

	Discussion
	Why Appatch Works
	Usability of Appatch
	How and Why Appatch Fails
	Limitations
	Extensibility
	LLMs for Automated Patching

	Related Work
	Conclusion
	Appendices
	Compostion and Statistics of the Datasets
	Code LLMs against the Zero-Day Dataset
	Correct Reasoning Rate Comparison
	More Results on Interprocedural Samples
	Data Leakage Assessment
	More End-to-end Experiment Results
	More Details on Case Study Examples

