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Abstract—Sensitivity analysis determines how a system re-
sponds to stimuli variations, which can benefit important
software-engineering tasks such as change-impact analysis. We
present SENSA, a novel dynamic-analysis technique and tool that
combines sensitivity analysis and execution differencing to esti-
mate the dependencies among statements that occur in practice.
In addition to identifying dependencies, SENSA quantifies them to
estimate how much or how likely a statement depends on another.

Quantifying dependencies helps developers prioritize and
focus their inspection of code relationships. To assess the benefits
of quantifying dependencies with SENSA, we applied it to various
statements across Java subjects to find and prioritize the potential
impacts of changing those statements. We found that SENSA
predicts the actual impacts of changes to those statements more
accurately than static and dynamic forward slicing. Our SENSA
prototype tool is freely available for download.

I. INTRODUCTION

For many software-engineering tasks, developers must
isolate the key relationships that explain the behavior of a
program. In particular, when preparing to change a program,
developers must first identify the main consequences and risks
of modifying the program locations they intend to change
before properly designing and propagating those changes.
Unfortunately, change-impact analysis techniques [1] can be
quite imprecise, which hinders their applicability and adoption.

Change-impact analyses usually work at coarse granulari-
ties, such as methods and classes (e.g., [2]–[5]). They give a
first approximation of code dependencies but do not specify
which statements in particular create those dependencies. Thus,
they can classify as impacted many unaffected methods and
classes. Moreover, these techniques can miss higher-level
structural relationships [6] and thus can be inaccurate.

At the statement level, the forward version of program
slicing [7], [8] reports all statements that might depend on
a statement or a change in it for all executions (via static
analysis) or for a set of executions (via dynamic analysis).
Slicing, however, can also be inaccurate. Static slicing can
report too many potentially-affected statements that are not
truly affected [9] whereas dynamic slicing [10], [11] gives
more compact results but can still suffer from imprecision [12],
[13] in addition to missing results.

Researchers have tried various approaches to improve the
precision of slicing by producing smaller slices (i.e., sets of af-
fected statements), such as combining static slices with runtime
data [14]–[17], relevant slicing [18], [19], and pruning slices

based on various rules [20]–[23]. However, accuracy problems
persist as many unaffected statements are still reported as
affected and truly affected statements are missed. Improving
underlying algorithms such as points-to analyses can reduce
this inaccuracy but at increasing costs for decreasing payoffs.
Yet, very-large impact sets are still produced [24], [25] by
existing techniques, which hinder impact-set inspections.

In this paper, we take a different and complementary
direction that focuses on the degree of influence of statements
in a program. Instead of trying to compute smaller sets of
affected statements, our approach separates affected statements
by likelihood (or strength) of being really affected so that
users can decide which code to inspect first, which can
greatly reduce the costs of inspecting the potentially-affected
statements. Our approach provides an under-approximation of
the semantic dependencies [26], an undecidable problem, by
finding a subset of statements definitely affected by another
statement and the frequency at which they are affected.

Static slicing, in contrast, only conservatively approximates
such dependencies. Moreover, slicing does not identify the
frequency (or strength) of dependencies—it only prescribes
a traversal order of dependencies [7]. Our new technique and
tool, called SENSA, uses dynamic analysis instead, although its
results can be compared with static slicing because it reports
unaffected statements from static slices with a score of 0.

SENSA goes beyond the work of Masri and Podgurski [12],
who measured information-flow strengths within existing ex-
ecutions. Our technique combines sensitivity analysis [27]
and execution differencing [13], [28], [29] to estimate those
frequencies or likelihoods. Sensitivity analysis is used in many
fields to measure influences among different parts of a system.
Thus, SENSA is conceptually related with mutation analy-
sis [30], fuzzing [31], and code-deletion approaches [32]–[34].
Execution differencing has been used for program merging and
debugging [13], [35]. However, to the best of our knowledge,
neither approach, alone or in combination, has been used to
measure dependencies in code and the potential impacts of
changing code on the rest of the program. Unlike [12], SENSA
focuses on candidate change locations and generates multiple
variants of existing executions for comprehensive results.

SENSA detects and quantifies the impacts that the behavior
of a statement or potential changes to it may have on the rest
of the program. SENSA inputs a program P , a test suite (or
execution set) T , and a statement c. For each test case t in T ,
SENSA repeatedly executes t, each time changing the value



computed at c and finding the differences in those executions.
For each execution, the differences show which statements
change their behavior (i.e., states or occurrences) when the
value computed at c is modified. Using this information for
all test cases in T , SENSA computes the sensitivity of each
statement s to changes in c as the frequency with which
s behaves differently. SENSA reports this frequency as the
estimated likelihood (or strength) that c impacts s at runtime.
The greater the frequency for s is, the more likely it is that s
will be impacted by the behavior of c.

Although SENSA assigns weights to all statements in a
static slice, it can be applied only to statements executed at
least once. However, SENSA typically analyzes a large number
of executions that result from modifying values at c many
times. Also, dynamic analyses in general are quite useful when
executions exist already (e.g., [2], [36]) or can be generated.
For SENSA, the goal is to answer questions on the existence
and frequency of semantic dependencies for a specific set of
runtime behaviors—those caused by the provided executions
and alternative executions derived automatically from them.

To evaluate SENSA, we empirically compared the ef-
fectiveness of SENSA and of static and dynamic forward
slicing for predictive impact analysis on various candidate
change locations across Java subjects. For each location, we
ranked statements by impact likelihood according to SENSA
and by breadth-first search as proposed by Weiser for slic-
ing [7]. Then, we estimated the effort a developer would
spend inspecting the rankings to find all statements impacted
by actual changes (bug fixes) in those locations for the same
test suite. Our results indicate with statistical confidence that
SENSA outperforms both forms of slicing at predicting actual
impacts of such changes by producing more accurate rankings
describing the real dependencies on those locations.

The benefit of this work is the greater effectiveness of
actively quantifying (via sensitivity analysis) dependencies on
code and changes with respect to static and dynamic slicing,
which do not address all semantic aspects of dependencies and
only distinguish them via breadth-first traversals. With this new
kind of information, developers can identify influences and
impacts more effectively by focusing on the code most likely
or most strongly affected in practice. Thus, many dependence-
based software-engineering tasks can benefit from this work.

The main contributions of this paper are:

‚ The concept of sensitivity-analysis-based dependence
quantification to prioritize statements in slices.

‚ The SENSA technique that finds these dependencies
and estimates their likelihoods via dynamic analysis.

‚ An empirical study that compares the accuracy of
SENSA and slicing for predicting change impacts.

II. BACKGROUND

This section presents core concepts on which the rest of the
paper builds and illustrates them using the example program of
Figure 1. Program prog in this figure takes an integer n and
a floating point number s as inputs, creates a local variable
g, initializes g to the value of n, manipulates the value of s
based on the value of g, and returns the value of s.

float prog(int n, float s)
{

1: int g = n;
2: if (g ě 1 && g ď 6) {
3: s = s + (7-g)*5;
4: if (g == 6)
5: s = s * 1.1;

}
else {

6: s = 0;
7: print g, " is invalid";

}
8: return s;

}
Fig. 1: Example program used throughout the paper.

A. Syntactic and Semantic Dependencies

Syntactic program dependencies [26] are derived directly
from the program’s syntax, which are classified as control or
data dependencies. A statement s1 is control dependent [37] on
a statement s2 if a branching decision at s2 determines whether
s1 necessarily executes. In Figure 1, for example, statement 3
is control dependent on statement 2 because the decision taken
at 2 determines whether statement 3 executes or not.

A statement s1 is data dependent [38] on a statement s2
if a variable v defined at s2 might be used at s1 and there
is a definition-clear path from s2 to s1 in the program for v
(i.e., a path that does not re-define v). For example, in Figure 1,
statement 8 is data dependent on statement 3 because 3 defines
s, 8 uses s, and there is a path x3,4,8y that does not re-define
s after 3. The parameters of the example prog are inputs and
thus are not data dependent on any statement.

Semantic dependencies represent the actual behaviors that
the program can exhibit, which syntactic dependencies can
only over-approximate. Informally, a statement s is seman-
tically dependent on a statement t if there is any change that
can be made to t that affects the behavior of s. For example, in
Figure 1, statement 5 is semantically dependent on statements
1, 2, 3, and 4 because they could be changed so that the
execution of 5 changes (e.g., by not executing anymore after
the change) or the state at 5 (variable s) changes. In this case,
the semantic dependencies of statement 5 coincide with its
direct and transitive syntactic dependencies.

However, in this example, if statement 1 just declares that
g is an alias of n (i.e., it is not an executable statement) and
only values of n in [1..6] are valid inputs, the condition at 2 is
always true and, thus, statement 5 is not semantically depen-
dent on 2 despite being transitively syntactically dependent on
that statement.

More formally, as defined by Podgurski and Clarke [26], a
statement s1 is semantically dependent on a statement s2 in a
program P if and only if:

1) Di P I where I is the input domain of the program,
2) Dc P C where C is the set of all possible changes to

the values or conditions computed at s2, and
3) the occurrences or states of s1 differ when P runs on

input i with and without c applied to s2.

B. Program Slicing

Program slicing [7] determines which statements in a
program may affect or be affected by another statement. Static



slicing [7], [8] identifies such statements for all possible exe-
cutions whereas dynamic slicing [11] does this for a particular
execution. (Joining the dynamic results of multiple executions
is called union slicing [39].) A (static or dynamic) forward
slice from statement s is the set containing s and all statements
directly or transitively affected by s along (static or dynamic)
control and data dependencies. Because slicing is based on
the transitive closure of syntactic dependencies, it attempts to
(over-)approximate the semantic dependencies in the program.

For example, the static forward slice from statement 3 in
Figure 1 is the set {3,5,8}. We include statement 3 in the slice
as it affects itself. Statements 5 and 8, which use s, are in
the slice because they are data dependent on the definition of
s at 3. Another example is the dynamic forward slice from
statement 1 in prog for input xn=0, s=1y, which is {1,6,7,8}.
In this case, statement 2 uses g to decide that statements 6
and 7 execute next (i.e., 6 and 7 are control dependent on 2)
and statement 8 is data dependent on 6.

C. Execution Differencing (DEA)

Differential execution analysis (DEA), or simply execution
differencing, is designed to identify the runtime semantic
dependencies [26] of statements on changes. Although finding
all semantic dependencies in a program is an undecidable
problem, DEA techniques [13], [28], [29], [35] can detect such
dependencies on changes when they occur at runtime to under-
approximate (find a subset of) the set of all semantic depen-
dencies in the program.1 DEA cannot guarantee 100% recall
of semantic dependencies, but it achieves 100% precision. This
is usually better than what dynamic slicing achieves [12], [13].

DEA executes a program before and after a change to
collect and compare the execution histories of both execu-
tions [13]. The execution history of a program is the sequence
of statements executed and, at each statement, the values com-
puted or branching decisions taken. The differences between
two execution histories reveal which statements had their
behavior (i.e., occurrences and values) altered by a change—
the conditions for semantic dependence [26].

To illustrate, consider input xn=2, s=10y for prog in
Figure 1 and a change in statement 3 to s=s. DEA first
executes prog before the change for an execution history of
x1(2), 2(true), 3(35), 4(false), 8(35)y where each element e(V )
indicates that statement e executed and computed the value
set V . DEA then runs prog after the change, obtaining the
execution history x1(2), 2(true), 3(10), 4(false), 8(10)y. Finally,
DEA compares the two histories and reports 3 and 8, whose
values changed, as the dynamic semantic dependencies on this
change in statement 3 for that input.

III. TECHNIQUE

The goal of SENSA is, for a program P and an input set
(e.g., test suite) T , to detect and quantify the effects on P
of the runtime behavior of a statement C or any changes in
C. To this end, SENSA combines sensitivity analysis [27] and
execution differencing [13].

1This is subject to all sources of non-determinism being controlled.

In this section, we first give a detailed overview of SENSA
and we discuss its applications and scope for dependence-
based software engineering. Then, we formally present this
technique including its process, and the state-modification
strategies that SENSA currently offers.

A. Overview and Example

Every statement s has a role in a program. This role is
needed, for example, when s is being considered for changes
and predictive impact analysis must be performed for s. Ide-
ally, to find the role of s, one should identify all statements that
semantically depend on s [26]. Semantic dependence considers
all possible changes to the computations performed at s for
all possible inputs to represent the effects of the behavior of s.

Unfortunately, computing semantic dependence is an un-
decidable problem. For impact analysis, DEA can tell which
statements are dynamically impacted by a change. However,
before developers can design and apply a change to a state-
ment, they first need to know the possible effects of changing
that statement.

To both identify and quantify the actual influences (the
role) of a statement s in the program for a set of executions,
SENSA uses sensitivity analysis on s. SENSA repeatedly runs
the program while modifying the values computed at statement
s and identifies in detail, using DEA, the impacted statements
for each changed value.2 Then, SENSA computes the frequency
at which each statement is impacted (i.e., the sensitivity of
those statements to s). These frequencies serve as estimates, for
the executions and modifications considered, of the likelihood
and (to some extent) the strength of the influences of s.

By design, the modifications made by SENSA are con-
strained to primitive values and strings (common objects)
computed by statements. However, all statements in a program
and their states, including heap objects, are considered by
execution differencing in SENSA. Also, to determine the
sensitivity of the program on other types of statements s, such
as one containing a method call c to a data structure, the user
can identify the statement(s) of interest in that operation that
compute the supported values that make up the data structure
and apply SENSA to that (those) statement(s) instead of c.3

We use the example program prog in Figure 1 again
to illustrate how SENSA works for inputs (2,10) and (4,20).
Suppose that a developer asks for the effects of line 1 on
the rest of prog. SENSA instruments line 1 to invoke a state
modifier and also instruments the rest of the program to collect
the execution histories that DEA needs. The developer also
configures SENSA to modify variable g in line 1 with values
in the “valid” range [1..6].

For each input I , SENSA first executes prog without
changes to provide the baseline execution history for DEA.
Then, SENSA re-executes prog on I five times—once for
each other value of g in range [1..6]. We list the execution
histories for this example and test input (2,10) on Table I.

2This process follows the definition of semantic dependence in terms of
changes to the values computed—rather than the instruction itself—at s [26].

3Naturally, SENSA can be extended in the future to modify all non-primitive
values—a ”higher-order” modification. How to make those changes useful and
valid remains to be investigated.



TABLE I: Execution histories for prog with input (2, 10)

Run Execution history
baseline x1(2), 2(true), 3(35.0), 4(false), 8(35.0)y
modified #1 x1(1), 2(true), 3(40.0), 4(false), 8(40.0)y
modified #2 x1(3), 2(true), 3(30.0), 4(false), 8(30.0)y
modified #3 x1(4), 2(true), 3(25.0), 4(false), 8(25.0)y
modified #4 x1(5), 2(true), 3(20.0), 4(false), 8(20.0)y
modified #5 x1(6), 2(true), 3(15.0), 4(true), 5(16.5), 8(16.5)y

The execution histories for the test input (4,20) are similar to
these. Finally, SENSA applies DEA to the execution histories
of the baseline and modified runs of each test case and
computes the frequency (sensitivity) (i.e., the fraction of all
executions) at which each line was impacted by having its
state or occurrences changed.

A developer can use these frequencies directly or through
a ranking of affected statements by frequency. In our example,
the resulting ranking is x{1, 3, 8}, {4, 5}, {2, 6, 7}y where
lines 1, 3, and 8 are tied at the top because their states (the
values of g and/or s) change in all modified runs and, thus,
their sensitivity is 1. Lines 4 and 5 come next with sensitivity
0.2 as line 4’s state changes in one modified run and 5 executes
for one modification on each input (when g changes to 6)
whereas 5 is not reached in the baseline executions. Lines 2,
6, and 7 rank at the bottom because 2 never changes its state
and 6 and 7 never execute.

In contrast, as defined by Weiser [7], static forward slicing
ranks statements by dependence distance from line 1. These
distances are found by a breadth-first search (BFS) of depen-
dencies from the slicing criterion [7]. Thus, the result for static
slicing is the ranking x{1}, {2, 3, 4, 7}, {5, 6, 8}y. For dynamic
slicing, a BFS of the dynamic dependence graph, which is the
same for both inputs, yields the ranking x{1}, {2, 3, 4}, {8}y.

To illustrate the usefulness of these rankings in this ex-
ample, consider their application to predictive change-impact
analysis. Suppose that the developer decides to change line 1
to g = n + 2. The actual set of impacted statements for this
change and inputs is {1, 3, 4, 5, 8}. This is exactly the set of
statements placed at the top two levels of the SENSA ranking.
In contrast, static slicing predicts statement 2 as the second
most-likely impacted statement, but that statement is not really
impacted. Static slicing also predicts statement 5 as one of the
least impacted, even though this statement is actually impacted
after making this concrete change.

Dynamic slicing, perhaps against intuition, performs even
worse than static slicing in this example. The ranking for
dynamic slicing misses the actually-impacted statement 5 and
predicts statement 2, which is not really impacted, as the
second most-impacted. Note that, in the context of this paper,
a forward version of relevant slicing [18] would not perform
better either, although in general it may achieve a higher recall,
than forward dynamic slicing. In this example, the forward
relevant slice is identical to the dynamic slice.

The usefulness of SENSA depends on the executions and
modifications chosen as well as application-specific aspects
such as the actual change made to the statement analyzed by
SENSA. If, for example, the range [0,8] is used instead of
[1,6] to modify g in line 1, the sensitivity of statements 4

and 5 will be higher because they will not execute for some
of the modifications. (The sensitivity of statement 3 does not
change as it is always affected either by state changes or by not
executing when g is not in [1,6].) Also, the sensitivity for 2, 6,
and 7 will be non-zero because g can now be outside [1,6]. In
this particular case, the SENSA ranking does not change but
the frequencies change, and the developer’s assessment of the
possible impacts of line 1 might rely on those quantities.

Program prog is a very simple example that contains only
eight statements. This program does not require much effort to
identify, quantify, and rank potential impacts, regardless of the
approach used. In a realistic case, however, the differences in
prediction accuracy between SENSA and both forms of slicing
can be substantial, as our study of Section IV indicates.

B. Scope and Limitations

As a dynamic analysis, SENSA requires the existence of at
least one test case that covers the analyzed statement. However,
test suites do not always achieve 100% coverage of their
programs. Therefore, SENSA is only applicable to covered
statements or when new covering executions can be created.

As with any dynamic analysis, the results of SENSA are
also subject to the quality and representativity of the test cases
and, in particular, those covering the analyzed statement C.
The more behaviors are exercised for C, the more dependen-
cies SENSA can find and quantify, and the more representative
those behaviors are of the real usage of C, the more accurate
the quantification will be.

To ensure that any difference observed by execution dif-
ferencing is indeed caused by the values changed by SENSA,
the analyzed executions need to be deterministic. If a program
has a source of non-determinism that gets executed, it has
to be “fixed” by providing the always the same values (e.g.,
times and random numbers). We use this approach in our study
by manually determinizing our subjects. How to automatically
determinize programs or adapt execution differencing to such
cases is a matter of future work.

The quality of SENSA’s predictions is also a function of
the change strategies for the values computed at C. Intuitively,
the more modifications are made to C, the more effects of C
are reflected in the results. Therefore, the user will make these
strategies modify C and re-execute the program as many times
as it is practical according to that user’s budget.

It is important to note that, in a predictive change-impact
analysis scenario, the test suite for the subject will be used as
the input set for SENSA. Developers will use this test suite
again, perhaps with a few updates, after the changes. Thus,
the change effects that the developer will experience will be
subject to the same or similar runtime conditions as the one
exploited by SENSA for predictive change-impact analysis.
This is why we use the same test suite for SENSA and for
the ground truth later in our study.

C. Formal Presentation

SENSA is a technique that, for a statement C (e.g., a
candidate change location) in a program P with test suite T
(or, more generally, an input set) computes for each statement
s in P a relevance value between 0 and 1. These values are
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Fig. 2: The SENSA process for impact/slice quantification.

estimates of the frequencies or sizes of the influences of C
on each statement of P (or, more precisely, the static forward
slice of C). Next, we present SENSA’s process and algorithm.

Figure 2 shows the process that SENSA follows to quantify
influences in programs. The process logically flows from top
to bottom in the diagram and is divided into three stages: (1)
Pre-processing, (2) Runtime, and (3) Post-processing.

For the first stage, at the top, the diagram shows that
SENSA inputs a Program and a Statement, which we denote
P and C, respectively. In this stage, an Instrumenter inserts
at C in program P a call to a Runtime module (which
executes in the second stage) and also instruments P to collect
the execution histories of the program for DEA, including
the values written to memory [13]. (Branching decisions are
implicit in the sequences of statements in execution histories.)
The result in the diagram is the Instrumented program.

In the second stage, SENSA inputs an Input set (test
suite) T and runs the program repeatedly modifying the value
computed at C (Run repeatedly modifying state), for each test
case t in T . SENSA also runs the instrumented P without
modifications (Normal run) as a baseline for comparison. For
the modified executions, the runtime module uses a user-
specified strategy (see Section III-D) and other parameters,
such as a value range, to decide which value to use as
a replacement at C each time C is reached. Also, for all
executions, the DEA instrumentation collects the Modified
execution histories and the Normal execution history per test.

In the last stage, SENSA uses DEA to identify the differ-
ences between the Modified and Normal execution histories
and, thus, the statements affected for each test case by each
modification made during the Runtime stage. In this stage,
Influence quantification processes the execution history differ-
ences and calculates the frequencies as fractions in the range
[0,1]. These are the frequencies at which the statements in P
were affected by the modifications made at runtime. The result
is the set Quantified influences of statements influenced by
C, including the frequencies that quantify those influences. In
addition, SENSA ranks the statements by decreasing frequency.

D. Modification Strategies

SENSA is a generic modifier of program states at given
program locations. The technique ensures that each new value
picked to modify the original value in a location is different

to maximize diversity while minimizing bias. When SENSA
runs out of possible values for a test case, it stops and moves
on to the next test case.

Users can specify parameters such as the number of modifi-
cations and modification strategy to use to pick each new value
for a statement. For each slicing criterion and strategy, SENSA
performs 20 modifications by default. (We empirically found
that, at least for the subjects and changes we studied, more
modifications do not increase the cost-effectiveness of SENSA.
Also, the choice of values affects the quality of the results of
SENSA, so we designed two different (basic) strategies while
making it straightforward to add other strategies in the future.
The built-in modification strategies are:

1) Random: Picks a random value from a specified
range. The default range covers all elements of the
value’s type except for char, which only includes
readable characters. For some reference types such
as String, objects with random states are picked. For
all other reference types, the strategy currently picks
null. Instantiating objects with random states is left
for future work.

2) Incremental: Picks a value that diverges from the
original value by increments of i (default is 1.0). For
example, for value v, the strategy picks v+i and then
picks v–i, v+2i, v–2i, etc. For common non-numeric
types, the same idea is used. For example, for string
foo, the strategy picks fooo, fo, foof, oo, etc.

Because some modifications make a program run for a
much longer time or run forever, SENSA skips those modifica-
tions when the running time of the modified program exceeds
10 times the original program. Modifications that cause early
terminations do not need special treatment, though, because
SENSA can work the same way as with normal executions.

Completeness. Although most heap object values are not
directly supported at the moment, any supported value within
a heap object can be modified by SENSA at the location where
that value is computed. Thus, indirectly, SENSA can target any
value in memory and track its changes via differencing.

An example of a potential strategy to add is one based
on values observed in the past at C that replace the values
currently computed at C. First, the strategy would collect all
values observed at C for the test suite. Then, the strategy picks
iteratively from this pool each new value to replace at C. This
strategy would seek values that are more meaningful to the
program P because P has computed them at some point.

IV. STUDY: CHANGE-IMPACT PREDICTION

We evaluated SENSA using a specific type of changes,
fault fixes, which are commonly available for research at the
statement level, and the test suites provided with research
subjects. We compared the predictions of SENSA with those
of static and dynamic slicing using Weiser’s traversal of
slices [7].4 The rationale is that the more closely a technique
predicts the impacts that changes will actually have, the more
effectively developers will focus their efforts on identifying

4Relevant slicing [18], [19] is an option in between for comparison, but a
forward version must be developed first. We expect to do this in future work.



TABLE II: Experimental subjects and their characteristics

Subject Short description LOC Tests Changes
Schedule1 priority scheduler 301 2650 7

NanoXML XML parser 3521 214 7

XML-security encryption library 22361 92 7

Ant project builder 44862 205 7

Total: 28

and designing the changes that need to be made. Our research
questions address effectiveness and efficiency:

RQ1: How accurately does SENSA predict the actual
impacts that changes will have, compared with slicing?

RQ2: How expensive is it to use SENSA?

A. Usage Scenario

Developers predict change impacts with SENSA as follows:

1) Statement (or set) s is identified as a candidate change
location (the actual change is not yet decided)

2) SENSA quantifies and ranks the statements in the
forward static slice from s by impact likelihood

3) The developer inspects those impacts, helped by the
predicted order, and decides what to change and how

4) The developer finally designs and applies changes to
s and other impacted statements

B. Experimental Setup

We implemented SENSA in Java as an extension of
our dependence analysis and instrumentation system DUA-
FORENSICS [40]. As such, SENSA analyzes Java-bytecode
programs. The SENSA tool is available to the public for
download.5 DUA-FORENSICS also provides static and dynamic
slicing and execution differencing for computing the actual
impacts of changes. We run our study on a Linux machine
with an 8-core 3.40GHz Intel i7 CPU and 32GB of memory.

We studied four Java subjects of different types and sizes
and seven changes (fault fixes) per subject, for a total of 28
changes. Table II describes the subjects. Column LOC shows
the size of each subject in non-comment non-blank lines of
code. Column Tests and Changes show the number of tests
and changes we studied per subject, respectively.

The first subject, Schedule1, is part of the Siemens suite
translated from C to Java and is representative of small
software modules. NanoXML is a lean XML parser designed
for a small memory footprint. XML-security is the signature
and encryption component of the Apache project. Ant is a
popular build configuration tool for software projects. We
determinized these subjects where needed.

The faults for all subjects were introduced by other re-
searchers and contributed to the SIR repository [41]. For each
fault, the changed program is the fixed program, without the
fault. Each fault fix modifies, adds, or deletes one to three lines
of code. For XML-security, only seven changes are covered
by at least one test case (coverage is a minimum requirement
for dynamic analysis). Thus, for consistency, we chose the
first seven changes provided with the other SIR subjects. For
Schedule1, v7 involves two methods so we chose v8 instead.
(Future plans include studying SENSA on multiple changes.)

5http://nd.edu/„hcai/sensa/html

C. Methodology

Figure 3 shows our experimental process for SENSA. The
inputs of SENSA are a program, a statement (candidate change
location), and the test suite. SENSA quantifies the runtime
influence of the statement on the rest of the program. The
output of SENSA is the set of program statements ranked by
decreasing influence. For SENSA, we use the default setting
of 20 modifications per slicing criterion and we study each of
the two strategies (Random and Incremental) separately.

For tied statements in the ranking, the rank assigned to all
of them is the average position in the ranking of those tied
statements. To enable a comparison of this ranking with the
rankings for forward static and dynamic slicing, the SENSA
and dynamic-slicing rankings include at the bottom, tied with
score zero, all statements of the static forward slice not found
by each as affected.

To the right of the diagram, an Actual impact compu-
tation takes the same three inputs and an actual change
for the given statement. This procedure uses our execution-
differencing technique DEA [13] to determine the exact set of
statements whose behavior differs when running the test suite
on the program before and after this change.

The procedure Ranking comparison at the bottom of the
diagram measures the predictive effectiveness of the SENSA
ranking for the input statement—when the actual change is
not yet known—by comparing this ranking with the set of
actually-impacted statements after the change is designed and
applied to that statement. The experimental process makes a
similar comparison, not shown in the diagram, for the rankings
obtained from breadth-first searches (BFS) of the dependence
graphs for static and dynamic slicing. BFS is the dependence-
traversal order of slices defined by Weiser [7]. For dynamic
slicing, we join the dynamic slices for all executions that cover
the input statement. This is known as a union slice [39].

Ranking comparison computes the effectiveness of a rank-
ing at predicting the actually-impacted statements by determin-
ing how high in the ranking those statements are on average.
The rank of each impacted statement represents the effort a
developer would invest to find it when traversing the ranking
from the top. The more impacted statements are located near
the top of the ranking, the more effective is the ranking at
predicting the actual impacts that will occur in practice after
making the change. We interpret the average rank of the
impacted statements as the average inspection effort.

Example. Consider again the example discussed in Sec-
tion III-A. For SENSA, lines 1, 3, and 8 are tied at the top
of the ranking with average rank (1+2+3)/3 = 2 and lines 4
and 5 are tied at average rank 4.5. SENSA does not detect
differences in lines 2, 6, and 7, which get tied at the bottom
with rank 7. If a change is actually made that impacts lines
1–4 and 8, the average inspection effort for SENSA is the
average rank of those lines divided by the static slice size,
or (2+2+2+4.5+7)/(5ˆ8) = 43.75%. For static and dynamic
slicing, the average efforts are computed similarly.

Ideal case. As a basis for comparison of the predictions of the
techniques we studied (SENSA and slicing), we computed the
inspection cost for the ideal (best) scenario for each change.
This ideal case corresponds to a ranking in which all statements
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Fig. 3: Experimental process for predictive impact analysis,
where the location is known but not the actual change, and
ground truth (actual impacts) to evaluate those predictions.

impacted by the change are placed at the top of that ranking.
No other ranking can make a better prediction.

For RQ1, we computed the average inspection costs for the
entire rankings for SENSA, static slicing, and dynamic slicing.
For RQ2, we measured the execution time of the test suite on
the program and the time each phase of SENSA takes on that
program with that test suite.

Test suite choice. By design, the test suites we use to compute
the SENSA and dynamic-slicing predictions before making
changes are the same we used to find the actual impacts (the
ground truth) after making the changes. To the casual reader,
using the same test suite to obtain both the prediction and
ground truth might seem biased. However, we chose to do
so because developers will normally use the entire test suite
of the program for SENSA before they decide their changes
and then the same (occasionally updated) test suite to observe
the actual impacts after defining and applying those changes.
Therefore, using the same test suite before and after is not only
appropriate, but necessary for evaluation.

D. Results and Analysis

1) RQ1: Effectiveness: Table III presents the average in-
spection efforts per subject (seven changes each) and the
average effort and standard deviation for all 28 changes. The
units are percentages of the static slice sizes, which comprised
up to 63% of the entire subject, on average for all changes
in that subject. For the Ideal case, the effort is an absolute
value representing the minimum possible effort—the best
possible prediction. For each of Static slicing, Dynamic slicing,
and SENSA with Random (SENSA-Rand) and Incremental
(SENSA-Inc) strategies, the table shows the average effort
required to find all actual impacts in their respective rankings,
as explained in Section IV-C.

For example, for XML-security, the best position on aver-
age in the ranking for all statements impacted by the changes
is 5% of the static forward slice. On top of this, static and
dynamic slicing add 26.94% and 40.37% average inspection
effort, respectively, for a total of 31.94% and 45.37%. These
extra efforts can be seen as the imprecision of those techniques.
In contrast, SENSA-Rand and SENSA-Inc impose 8.15% and
16.49% extra effort, respectively, over the ideal case. This is
considerably less than both forms of slicing.

Analysis. The Ideal case results indicate that the number
of statements impacted in practice by the changes in our study,

TABLE III: Average inspection efforts

Subject
Ideal Average effort
(best) Static Dynamic SENSA SENSA

case slicing slicing Rand Inc
Schedule1 47.90 50.14 48.34 48.01 48.01

NanoXML 8.84 22.71 27.09 20.27 22.37

XML-security 5.00 31.94 45.37 13.15 21.49

Ant 3.21 39.16 41.55 29.84 23.76

average 16.24 35.99 40.59 27.82 28.91
standard dev. 19.36 13.22 13.08 19.20 20.59

p-value w.r.t. static slicing: 0.0098 0.0237

as a percentage of the total slice size, decreased with the size
of the subject from 47.90% in Schedule1 down to 5% or less in
the largest subjects. This phenomenon can be explained by two
factors. First, the larger subjects contain many loosely coupled
modules and the changes, which are thus more scattered, can
only affect smaller fractions of the program. The second factor
is that static slicing will find connections among those modules
that are rarely, if ever, exercised at runtime. For Schedule1,
however, slicing is more precise and most of the program
executes and is affected by the changes. In fact, an average
of 97.8% of the statements in the slices for Schedule1 were
impacted. These factors explain the large inspection efforts
needed by all techniques for this subject.

Remarkably, for all subjects but Schedule1, dynamic slicing
produced worse predictions than static slicing. This counterin-
tuitive result is explained by the divergence of paths taken by
executions before and after the changes. Because of these di-
vergences, dynamic slicing missed many impacted statements
that were not dynamically dependent on the slicing criterion
before the change but became dynamically dependent after
the change. SENSA did not suffer so much from this problem
because its modifications altered some paths to approximate
the effects that any change could have.

For Schedule1, the inspection effort for both versions of
SENSA was, on average, 0.11% more than the ideal, which is
very close to the best possible result. For this subject, dynamic
slicing also did well at predicting change impacts with only
0.44% extra effort, whereas static slicing was the worst pre-
dictor with 2.24% extra effort. Considering the high minimum
effort for this small subject, however, these differences in effort
are rather small in absolute terms.

For NanoXML, the ideal average effort is much lower at
8.84%, thus impact prediction much more effective there. For
this subject, SENSA-Rand was the best variant of SENSA,
requiring 2.44% less effort on average than static slicing, while
SENSA-Inc was only slightly better than static slicing.

For XML-security, in contrast, both variants of SENSA—
especially SENSA-Rand—were considerably more effective
than static slicing, which required more than six times the ideal
effort to isolate all impacts, whereas SENSA-Rand required
less than three times the least possible effort.

For Ant, SENSA-Inc was the best variant with a consider-
able decrease of 15.4% in effort compared to static slicing.

Importantly, on average for all 28 changes, both versions
of SENSA outperformed static slicing, with SENSA-Rand
requiring 8.17% less effort than static slicing and 12.77%
less than dynamic slicing to capture the actual impacts. The
standard deviation for both variants of SENSA, however, is
greater than for both forms of slicing, which suggests that
they are less predictable than slicing.



Statistical significance. To assess how conclusive is the
advantage of both variants of SENSA over static slicing—the
best slicing type—we applied to our 28 data points a Wilcoxon
signed-rank one-tailed test [42] which makes no assumptions
about the distribution of the data. Both p-values, listed in
the last row of Table III, are less than .05, indicating that
the superiority of both types of SENSA—especially SENSA-
Rand—is statistically significant.

Conclusion. For these subjects and changes, with statistical
significance, SENSA is more effective on average than slicing
techniques at predicting the statements that are, later, truly
impacted when changes are made. These results highlight
the imprecision of static and dynamic slicing for predicting
impacts, contrary to expectations, and the need for a technique
like SENSA to better find and quantify dependencies. In all,
SENSA can save developers a substantial amount of effort for
identifying the potential consequences of changes.

2) RQ2: Computational Costs: To study the cost factor,
we collected the time it took SENSA on the 28 changes in
our experimental environment (see Section IV-B) using the
respective test suites. Table IV first shows the average time in
seconds it takes to run the entire test suite for each subject
without instrumentation (column Normal run). The next three
columns report the average time in seconds taken by each of
the three stages of SENSA per subject.

Analysis. First, the pre-processing stage (column Static
analysis) performs static slicing, which is needed by our
experiment and is also necessary to instrument the program
for SENSA, dynamic slicing, and DEA for actual impacts. As
expected, this time grows with the size and complexity of the
subject, where the two largest subjects (22-45K LOC) domi-
nate. The average costs per subject were less than 16 minutes,
which seems acceptable for an unoptimized prototype.

The runtime stage (column Instrumented run) of SENSA
repeatedly executes 20 times (the default) those test cases that
cover the candidate change location. In contrast with the first
stage, the cost of the runtime stage is proportional to the
number of test cases that cover those locations. The number of
test cases available for our subjects is inversely proportional to
the subject size (Table II), which explains the cost distribution
seen in the table.

The average costs for Instrumented run range from 6 to
79 minutes, which might or might not be acceptable for a
developer depending on the circumstances. However, it is
crucial to note that this stage can be significantly optimized
by running multiple modifications and multiple test cases in
parallel, which our prototype does not yet support but can be
easily added. Another important reduction in this cost can be
achieved by using fewer test cases.

Finally, the costs of the third stage for all subjects except
Schedule1 (for which a disproportionate total of 2650 test
cases exist) are quite small as this stage simply reads the run-
time data, computes frequencies, and ranks the semantically-
dependent statements.

As for slicing, static slicing took times similar to the
static analysis column in Table IV. Dynamic slicing, not
shown here, had much greater costs than SENSA because our

TABLE IV: Average computational costs in seconds

Subject Normal Static Instrumented Influence
name run analysis run ranking
Schedule1 186.0 6.1 4756.8 1054.1

NanoXML 15.4 16.5 773.1 10.0

XML-security 65.2 179.3 343.9 20.8

Ant 75.2 942.9 439.0 7.0

current implementation derives such slices from more costly
information [13]. It remains to be seen how an optimized
dynamic slicer compares with SENSA cost-wise.

Conclusion. The observed costs are encouraging for
SENSA for three main reasons. First, developers using our
unoptimized prototype can in many cases accept to get the
impact predictions of SENSA if those are provided within the
time budgets they can afford. Second, the cost-benefit ratio of
SENSA can be even smaller for inspecting larger impact sets,
and the overhead can be more acceptable when the impact
sets are too large to be fully inspected. Third, our prototype
is highly parallelizable. It can be significantly optimized by
parallelizing the large number of runs made by SENSA.

E. Threats to Validity

The main internal threat to the validity of our study is
the potential presence of implementation errors in SENSA for
sensitivity analysis and the underlying DUA-FORENSICS [40]
for execution differencing and slicing. Although SENSA is a
research prototype developed for this work, we have tested
and used it for more than one year already. Meanwhile, DUA-
FORENSICS has been in development for many years and has
matured considerably. Another internal threat is the possibility
of procedural errors in our use of SENSA, DUA-FORENSICS,
and related scripts in our experimental process. To reduce this
risk, we tested, manually checked, and debugged the results of
each phase of this process.

The main external threat to the validity of our study and
conclusions about SENSA is that our set of subjects, changes,
and test suites might not represent the effects of similar
changes (e.g., bug fixes) in other software. Nevertheless, we
chose our subjects to represent a variety of sizes, coding
styles, and functionality to achieve as much representativity
as possible. The SIR subjects have been used extensively in
other experiments conducted by the authors and by many other
researchers. Moreover, all subjects but Schedule1 are “real-
world” open-source programs.

In particular, our results might not generalize to all kinds
of changes in software. We only studied changes that represent
bug fixes and small corrections as a first demonstration of
SENSA. These are changes commonly available for experi-
mentation [41]. Also, SENSA is currently applicable to one or
a few statements at a time but small changes are hard to find
in other sources, such as code repositories. Larger changes in
those repositories, however, could be broken down into smaller
pieces, or SENSA could be adapted for larger changes. We
intend to explore this more broadly in future work. In all,
this study highlights one of the many potential applications of
SENSA—impact analysis for bug fixes.

A construct threat can be our choice of ground truth (actual
impacts of changes) and the method to compute it. We used



execution differencing (DEA) to find, for a test suite, which
statements behave differently in response to changes in another
statement. We also determinized our subjects where needed but
without affecting their semantics. DEA, like SENSA, works at
the statement level, unlike repository-mining methods which
are coarser and possibly noisier. Also, the actual impacts found
via DEA are a subset of all impacts a change can have, so we
chose subjects for which reasonable test suites exist. Moreover,
and importantly, we used the same test suites for SENSA so
that its predictions apply to the same runtime profile.

Finally, a conclusion threat is the appropriateness of our
statistical analysis and our data points. To minimize this threat,
we used a well-known test that makes no assumptions about
the distribution of the data [42]. Another issue could be the use
of an equal number of changes per subject. For each of the
larger SIR subjects, however, seven was the largest number
of faults we could use and we deemed inadequate to study
less than seven changes in smaller subjects. Moreover, and
importantly, SENSA outperformed slicing by greater margins
for the larger subjects.

V. RELATED WORK

We previously outlined an early version of SENSA [43]
and we showed initial, promising results. In this paper, we
expanded our presentation and definition of SENSA, its pro-
cess, algorithm, and modification strategies. Moreover, we
extended our experiments from two to four subjects and
included dynamic slicing in our study.

Masri and Podgurski [12] measured information-flow
strengths within existing executions by correlating the values
of variables in those executions. SENSA, instead, directly im-
plements an under-approximation of the definition of semantic
dependence by Podgurski and Clarke [26] and analyzes many
more executions by systematically modifying existing ones.

A few other techniques discriminate among statements
within slices. Two of them [23], [44] work on dynamic
backward slices to estimate influences on outputs, but do
not consider impact influences on the entire program. These
techniques could be compared with SENSA if a backward
variant of SENSA is developed in the future. Also for backward
analysis, thin slicing [22] distinguishes statements in slices by
pruning control dependencies and pointer-based data depen-
dencies incrementally as requested by the user. Our technique,
instead, can be used to automatically estimate the influence of
statements in a static slice in a safe way, without dropping any
of them, to help users prioritize their inspections.

Program slicing was introduced as a backward analysis
for program comprehension and debugging [7]. Static forward
slicing [8] was then proposed for identifying the statements
affected by other statements, which can be used for change-
impact analysis [1]. Unfortunately, static slices are often too
big to be useful. Our work alleviates this problem by recog-
nizing that not all statements are equally relevant in a slice
and that a dynamic analysis can estimate their relevance to
improve the effectiveness of the forward slice. Other forms
of slicing have been proposed, such as dynamic slicing [11],
union slicing [39], relevant slicing [18], [19], deletion-based
slicing approaches [32]–[34], and the already mentioned thin
slicing [22], all of which produce smaller backward slices

but can miss important statements for many applications. Our
technique, in contrast, is designed for forward analysis and
does not trim statements from slices but scores them instead.

Dynamic impact analysis techniques [2], [5], [45], which
collect execution information to assess the impact of changes,
have also been investigated. These techniques, however, work
at a coarse granularity level (e.g., methods) and their results are
subject strictly to the available executions. Our technique, in
contrast, works at the statement level and analyzes the available
executions and, in addition, multiple variants of those execu-
tions to predict the impacts of changes. Also, our technique
is predictive, unlike others that are only descriptive [5], [13]
(i.e., using knowledge of changes after they are made).

Mutation testing is a specific form of sensitivity analysis
that simulates common programming errors across the entire
program [30]. Its purpose is to assess the ability of a test
suite to detect errors by producing different outputs. This
approach is related to testability-analysis approaches, such as
PIE [46], which determine the proneness of code to propagate
any errors to the output so they can be detected. A related
testing approach is fuzzing [31]. Similar to these approaches,
SENSA modifies program points to affect executions but it
focuses on points of interest to the user (e.g., candidate change
locations) and analyzes not only the influences on outputs but
also the influences on all statements.

Many fault-localization approaches (e.g., [47]), although
not directly related to SENSA, share a common aspect with our
work: they assess their effectiveness in terms of the inspection
effort for finding certain targets in the program. For fault
localization, those targets are faults, whereas in our work they
are the influences of a statement. This effort is often measured
as the percentage of the program that must be inspected to
reach those targets.

VI. CONCLUSION AND FUTURE WORK

Program slicing is a popular but imprecise analysis tech-
nique with a variety of applications. To address this im-
precision, we presented a new technique called SENSA for
finding and quantifying real dependencies within static slices.
Our studies suggest that this approach outperforms static and
dynamic forward slicing for tasks such as impact analysis.
Rather than pruning statements from slices, SENSA finds and
grades statements according to their dependence relevance.

We plan to expand our studies to subjects and changes of
other types and sizes to generalize our results and characterize
the conditions for the effectiveness of SENSA. We are also de-
veloping a visualization for quantified dependencies to improve
our understanding of the approach, to enable user studies, and
to support other researchers. Using this tool, we will study
how developers take advantage in practice of quantified slices.

Slightly farther in the future, we foresee adapting SENSA
to quantify dependencies for other key tasks, such as debug-
ging, comprehension, mutation analysis, interaction testing,
and information-flow measurement. More generally, we see
SENSA’s scores as abstractions of program states as well as
interactions among such states. These scores can be expanded
to multi-dimensional values or reduced to discrete sets, de-
pending on cost-effectiveness needs.
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