
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272740254

On the Accuracy of Forward Dynamic Slicing and Its Effects on Software

Maintenance

Conference Paper · September 2014

DOI: 10.1109/SCAM.2014.23

CITATIONS

8
READS

97

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Program Dependence Analysis View project

Vision, Graphics, and Visualization View project

Raul Santelices

University of Notre Dame

34 PUBLICATIONS 934 CITATIONS

SEE PROFILE

Mark Grechanik

University of Illinois at Chicago

103 PUBLICATIONS 1,909 CITATIONS

SEE PROFILE

Haipeng Cai

Washington State University

84 PUBLICATIONS 765 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mark Grechanik on 14 January 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/272740254_On_the_Accuracy_of_Forward_Dynamic_Slicing_and_Its_Effects_on_Software_Maintenance?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/272740254_On_the_Accuracy_of_Forward_Dynamic_Slicing_and_Its_Effects_on_Software_Maintenance?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Program-Dependence-Analysis?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Vision-Graphics-and-Visualization?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raul-Santelices?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raul-Santelices?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Notre-Dame?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raul-Santelices?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark-Grechanik?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark-Grechanik?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Illinois_at_Chicago?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark-Grechanik?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haipeng-Cai?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haipeng-Cai?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Washington-State-University?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haipeng-Cai?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark-Grechanik?enrichId=rgreq-78ae2f695399f8d9805507da2cad4356-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc0MDI1NDtBUzozMTc4Mjc5NzI1NjcwNDNAMTQ1Mjc4NzUwMTcwMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

On the Accuracy of Forward Dynamic Slicing and
its Effects on Software Maintenance

Siyuan Jiang, Raul Santelices

University of Notre Dame, U.S.A.

E-mail: {sjiang1|rsanteli}@nd.edu

Mark Grechanik

University of Illinois at Chicago, U.S.A.

E-mail: drmark@uic.edu

Haipeng Cai

University of Notre Dame, U.S.A.

E-mail: hcai@nd.edu

Abstract—Dynamic slicing is a practical and popular analysis
technique used in various software-engineering tasks. Dynamic
slicing is known to be incomplete because it analyzes only a subset
of all possible executions of a program. However, it is less known
that its results may inaccurately represent the dependencies that
occur in those executions. Some researchers have identified this
problem and developed extensions such as relevant slicing, which
incorporates static information. Yet, dynamic slicing continues to
be widely used, even though the extent of its inaccuracy is not
well understood, which can affect the benefits of this analysis.
In this paper, we present an approach to assess the accuracy of

forward dynamic slices, which are used in software maintenance
and evolution tasks. Because finding all actual dependencies is
an undecidable problem, our approach instead computes bounds
of the precision and recall of forward dynamic slices. Our
approach uses sensitivity analysis and execution differencing to
find a subset of all program statements that truly depend at
runtime on another statement. Using this approach, we studied
the accuracy of many forward dynamic slices from a variety
of Java applications. Our results show that forward dynamic
slicing can have low recall—for dependencies in the analyzed
executions—and some potential imprecision. We also conducted
a case study that shows how this inaccuracy affects a software
maintenance task. To the best of our knowledge, ours is the first
work that quantifies the intrinsic limitations of dynamic slicing.

Keywords-dynamic slicing; precision and recall; sensitivity
analysis; execution differencing; software maintenance;

I. INTRODUCTION

Program slicing is a popular and widely used approach

that identifies the parts of a program that are affected by

a particular variable in some program statement (forward
slicing) or that affect a particular variable in that statement
(backward slicing) [1]–[4]. The statement-variable pair is
called the slicing criterion, and the set of statements found
by program slicing techniques is called the slice. Dynamic
slicing [2], [4], [5] is a practical variant that computes slices

for program executions [6]. Forward dynamic slicing (FDS)
obtains the statements that are affected by some slicing cri-

terion at runtime. FDS is used in software maintenance and

evolution for a variety of tasks that include change-impact

analysis [7], [8], testing [9], [10], fault localization [11],

[12], comprehension [13], error detection [14], and program

merging [15].

Statements that truly affect one another in slices are said

to semantically depend on one another [16]. Since static

program analysis is undecidable [17], slicing computes many

dependencies that cannot be instantiated at runtime. Such

spurious dependencies cause the resulting slices to be large

and difficult to use [18], [19] and imprecise [15], [20], [21].

On the bright side, static slicing is safe because it includes all
semantic dependencies and, thus, has perfect recall.
Dynamic slicing, in contrast, produces slices that are unsafe

because the analysis is based on selected executions and, thus,

many semantic dependencies may be missed. Nevertheless,

dynamic slicing is commonly used as a practical alternative

to static slicing because its results are usually smaller and

better represent the program behaviors that occur in selected,

representative executions. In this paper, we focus on FDS.
Although it is known that dynamic slicing is unsafe by

analyzing only a subset of all possible executions, it is less

known that its results may inaccurately represent the semantic
dependencies that occur in those executions (i.e., not just the
dependencies in all other possible executions). For backward
dynamic slicing, some researchers have identified this problem

and developed (backward) relevant slicing [22], [23] which
adds, statically, control decisions that could have affected the

slicing criterion. Yet, dynamic slicing continues to be widely

used, even though the extent of its inaccuracy is not well

understood, which can limit for many tasks the benefits of

using this analysis.1

Ideally, to study the accuracy of FDS, we would like to

compute directly the precision and recall of the resulting

slices in terms of dynamic semantic dependencies.2 However,
to identify dynamic semantic dependencies, even dynamic

ones, we would need to try, for every execution, all possible

replacements of the values assigned to the variables at the

slicing criterion [24]. This is impractical, if not undecidable.
To overcome this problem, in this paper, we present a

novel approach that computes safe bounds instead for the
precision and recall of forward dynamic slices. Our main

idea is to explore extensively the space of dynamic semantic

dependencies by repeatedly changing values assigned at a

slicing criterion to discover at least a subset of all dynamic

semantic dependencies and thus under-approximate that set
for that criterion. To complete the job, our approach also over-
approximates the set of semantic dependencies using a (safe)
static slicer. Naturally, the tightness of these bounds (but not

their safety) depends on the quality of these two analyses.

1We defer to future work the definition and study of forward relevant slicing
2A dynamic semantic dependence is defined similarly to static semantic

dependence [24], but constrained to the selected set of executions.

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-5304-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.23

145

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-1-4799-6148-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.23

145

Our approach uses SENSA [25], a sensitivity-analysis and

execution-differencing tool that runs programs multiple times

while modifying the slicing criterion C. Because we fix
all sources of non-determinism in our experiments (i.e., we

ensure the same execution for the same input), the statements

whose behavior change in those runs are guaranteed to be

dynamically semantically dependent on C. Using this large
dependence-space exploration within these slices, the approach

approximates from below the precision and recall of forward

dynamic slices. In the limit, making all possible changes at C
would yield the actual precision and recall.

Using this approach, we conducted an experiment on 100

forward dynamic slices using five nontrivial Java applications

and a smaller program. We computed the bounds of precision,

recall, and accuracy (F1 score) for all those slices. Our results

indicate that, on average for these subjects, the lower and

upper bounds of precision are 84% and 100% and the lower

and upper bounds of recall are 14% and 53%, respectively.

These results suggest that the inaccuracy of FDS can be a real

problem for applications of this analysis and inform developers

and researchers on what to expect from FDS.

To demonstrate how the (in)accuracy of FDS and its effects

on client tasks can be estimated using our approach, we also

carried out a case study where we estimated the usefulness of

forward dynamic slicing for dynamic impact analysis [7].

This paper makes the following contributions:

• A conceptual analysis of the accuracy of forward dynamic

slicing (FDS) and the factors that affect that accuracy.

• An approach for computing lower and upper bounds of

precision and recall of forward dynamic slices.

• An empirical evaluation of the accuracy of FDS.

• A case study illustrating the effects of this accuracy.

II. BACKGROUND

In this section, we define semantic (undecidable) and syn-

tactic (computable) dependencies. We also show how program

slicing works and how SENSA finds semantic dependencies.

A. Semantic and Syntactic Dependencies

A program statement depends on another statement when

the behavior of the latter affects the behavior of the former.

Specifically, a statement s1 is semantically dependent on
a statement s2 if, for some execution, changing a value

computed at s2 changes the values computed at s1 or the
execution frequency of s1 [16]. For example, in Figure 1, for
input i=0, any change in the value of y computed at line 2
changes the evaluation of the condition at line 3 from true to
false, preventing the execution of line 4 and causing line 6 to
execute. Thus, lines 3, 4, and 6 semantically depend on line 2.

Syntactic (i.e., data and control) dependencies and their tran-
sitive closure, obtained via program analysis, are computable
over-approximations of semantic dependencies. Factors such
as the alias analysis used to compute these dependencies

determine the precision of these over-approximations [16]. A

statement s1 is data dependent on some other statement s2 if
s1 uses (i.e., reads from memory) a value that s2 defines (i.e.,

// test input: i = 0
void example(int i) {

1: int x = 1; // slicing criterion: line 1
2: int y = x + i;
3: if (y == x) {
4: if (x == 2)
5: print "this will not be executed.";

}
else

6: print "this will not be executed.";
7: return; }

Fig. 1. Example that illustrates the difference between syntactic (computable)
and semantic dependencies (undecidable in general).

writes to memory). We call statement s1 control dependent
on another statement s2 if the evaluation of s2 determines
whether s1 necessarily executes afterward or not.
The transitive closure of data and control dependencies

from a statement s over-approximates the set of semantic
dependencies on s. Thus, syntactic dependencies are necessary
but not sufficient conditions for semantic dependence. In other

words, a syntactic dependence among two statements does not

imply that they are semantically dependent. However, if it is

determined that two statements are semantically dependent on

each other, they are also statically syntactically dependent.
Figure 1 helps illustrates the differences between depen-

dence types. Line 2 is data dependent on line 1, and line 3

is data dependent on line 2. Thus, line 3 is transitively data

dependent on line 1. However, line 3 is not semantically depen-

dent on line 1 as no change to x in line 1 can affect evaluation
of line 3—the behavior of line 3 depends only on line 2. Also,

unlike syntactic dependencies, semantic dependencies are not

transitive as line 2 is semantically dependent on line 1, and

line 3 semantically depends on line 2, but line 3 does not

semantically depend on line 1.

B. Dynamic Semantic Dependence

A special case of semantic dependence, which is a property

of all possible executions of a program (i.e, a static notion) is
a statement s1 that is dynamically semantically dependent on a
statement s2. Such a statement s1 is dynamically semantically
dependent on s2 if, for a specific set of executions, a change
to any value computed at s2 can change the computations at
or occurrences of s1 for those executions.
If s1, however, changes its behavior only for changes in s2

for other executions, then s1 is not dynamically semantically
dependent on s2. Thus, dynamic semantic dependencies are a
subset of semantic dependencies and are those that dynamic

slicing, the subject of this paper, tries to compute.

A consequence of this dynamic definition is that a statement

s1 that does not execute for an input I can be, nonetheless,
dynamically semantically dependent on s2 if a change can be
made to s2 such that, for that input I , s1 executes. In other
words, the non-execution of s1 for that input is determined by
control-flow decisions affected by s2 at runtime.

C. Forward Dynamic Slicing (FDS)

Program slicing [1] is a fundamental technique for different

software-engineering tasks including software maintenance

146146

Program P
Slicing criterion s
Test suite T

Run P with no change
Run P with a change c1 at s
Run P with a change c2 at s

Run P with a change cn at s

...

SENSA dependencies:
a set of statements that are
dynamically semantically
dependent on s

Execution
differencing

SENSA

Fig. 2. The SENSA process for identifying dynamic semantic dependencies.
All sources of non-determinism are assumed fixed.

and evolution. Slicing identifies a set of statements that are

transitively data or control dependent on a specific statement

(for forward slicing) or on which the statement is transitively

data or control dependent (for backward slicing). Combining

forward slicing and dynamic slicing into FDS, statements are

collected that depend on a slicing criterion for a specific

execution. For multiple executions, the union of their dynamic

slices is a union slice [6]. (In this paper, we continue to use
the term dynamic slicing even for multiple executions.)
Consider applying the FDS to the code in Figure 1 with

input i = 0. Lines 1, 2, 3, and 4 are in the forward dynamic
slice of line 1 because all those lines are data dependent on

line 1 and line 4 is also control dependent on line 3. Lines 5

and 6 are not executed, and, thus, are not in the slice.

D. SENSA and Non-determinism

Using FDS, the SENSA approach identifies statements that

are affected by a slicing criterion [25]. Essentially, SENSA

performs an extensive exploration of the program execution

states by modifying values of different variables in program

statements to discover dynamic semantic dependencies. Natu-
rally, SENSA reports only a subset of such dependencies, but
this is 100% precise when applied to subjects for which all
sources of non-determinism are fixed, as in our studies.

Figure 2 shows the SENSA process. The inputs are program

P , slicing criterion (statement) s, and test suite T . Optional
inputs include the number of changes n to apply to s, the
change strategy (i.e., random or incremental), and valid value

ranges for changes. For each test in T , SENSA runs P
consecutively n+1 times. First, SENSA executes P without

changing s—the base run—and then executes P n times, each
time with a different change to the value computed at s. During
execution, SENSA collects, per test, all n+1 execution traces,
including all computed values (primitive and non-primitive)
and compares the traces to find the statements that behave

differently (different values or occurrences) from the base run.

SENSA offers two strategies to modify the values computed

at the slicing criterion (we use both strategies). These are

Random and Incremental. Random picks new random val-

ues, whereas Incremental picks new values by systematically

incrementing and decrementing them. For numerical types,

Incremental applies to the slicing criterion changes of +1,
-1, +2, -2, and so on. For strings, Incremental increases and
decreases their length and Unicode values. For all other non-

numerical types, only Random is applicable [25].

Consider again the example of Figure 1 with T hav-

ing one input, i=0. SENSA first runs example with-

out changes (base run) and then 20 times (default set-

ting) with changes. The base run has execution trace

〈1(1), 2(1), 3(true), 4(false), 7〉 which means that line 1
computes 1, line 2 computes 1, line 3 evaluates to true, and
so on. If SENSA changes x to 2 in line 1 in a modified run, the
trace is 〈1(2), 2(2), 3(true), 4(true), 5, 7〉. Lines 1, 2, 4, and
5 differ in occurrences or values in these traces due to this

change, so by definition they are dynamically semantically

dependent on line 1 (Section II-B).

III. ESTIMATING THE ACCURACY OF FDS

In this section, we define precision and recall for forward

dynamic slicing (FDS) as ideal metrics (undecidable) and we

show how to obtain safe bounds for them (computable).

A. Precision and Recall

Based on the definition of dynamic semantic dependence
in Section II-B, we analyze FDS using precision and recall,

which are defined by Formulas 1 and 2, respectively. In these

formulas, DSlice is the dynamic slice, TPds is the set of

true positives, and FNds is the set of false negatives. Their

relationships are depicted in the diagram in Figure 3. Positives

are all statements in the dynamic slice and negatives are all

other statements. True positives are the statements in the slice

that dynamically semantically depend on the slicing criterion

c. False positives are all other statements in the slice—those
not dynamically semantically dependent on c.
Similarly, the true negatives are all statements that are not in

the slice and are also not dynamically semantically dependent

on the slicing criterion. Finally, false negative statements

dynamically semantically depend on the slicing criterion for

the used inputs even though they were not included in the

slice. The union of false negatives and true positives is the

set of all dynamic semantic dependencies. Precision reflects

how correct FDS is when reporting dynamic semantic depen-

dencies, whereas recall reflects how many such dependencies

were correctly retrieved by dynamic slicing.

precisionDSlice =
|TPds|
|DSlice| (1)

recallDSlice =
|TPds|

|TPds ∪ FNds| (2)

Our motivation for defining precision and recall of FDS is to

understand the differences between its correctly-identified dy-

namic semantic dependencies, false dependencies, and missed

dependencies. In information retrieval, recall is the ratio of

the number of relevant items retrieved by a search divided by

the total number of existing relevant items, whereas precision

147147

�������	

����

���	
����

�������	

������	

������������

FNds TPds FPds

TNds

Fig. 3. True and false positives, and true and false negatives of a forward
dynamic slice. FNds is the set of false negatives, TPds is the set of true
positives, FPds is the set of false positives, and TNds is the set of true negatives.

is the ratio of relevant items retrieved to the total number

of items retrieved. Remember from Section II that both the

dynamic slice and the set of semantic dependencies are subsets

of the static slice. If all retrieved dependencies are in fact true

dependencies and no false dependencies are reported, precision

is 1. If all identified dependencies are false, precision is 0 and

recall is 0. If all dynamic semantic dependencies are in the

dynamic slice, then recall is 1 regardless of precision.

B. Accuracy Bounds

Figure 3 illustrates what we wish to obtain. Because com-

puting semantic dependencies is an undecidable problem, we

resort to approximations in the form of bounds. Figure 4 shows

we can obtain bounds safely by depicting the relationships
among dependencies, static and dynamic slices, and SENSA

results.3 Interestingly, a dynamic slice is neither a subset nor

a superset of the dynamic semantic dependencies because it

may include false dependencies and miss true dependencies.

Based on these relationships, we define Formulas 3, 4,

and 5 for calculating lower bounds for precision and lower

and upper bounds for recall of forward dynamic slices to

approximate Formulas 1 and 2. Computing the upper bound of

precision is impossible because proving that a statement is not

semantically dependent on another is an undecidable problem.

Thus, we always report the upper bound of precision as 100%.
No matter what dependencies are found by SENSA as a sub-

set of all semantic dependencies, this subset contains semantic

dependencies only (we fix all sources of non-determinism in

our studies). This property is important, since it guarantees

that the accuracy bounds computed by our approach are true

approximations in the limit—the actual values lie within these

bounds. Thus, any current limitations of SENSA and our
slicers would affect only the tightness of the bounds but not
the conclusions we can draw from them on FDS accuracy.

1) Lower Bound of Precision: The precision of a dynamic
slice (DSlice) is the size of the true positives set divided by

3To safely apply our approach, we ensure that the slicers report all
dependencies via external sources (e.g., files) for our study subjects.

�������	

����

���	
����

�������	

������	

������������

��
�	
������������

Fig. 4. Relationships among dynamic semantic dependencies (undecidable),
static slice (computable), dynamic slice (computable), and semantic depen-
dencies found by SENSA (computable). The static slice is safe.

the size of the dynamic slice. The intersection of the SENSA

dependencies (SensA) with the dynamic slice is shown in
Figure 4. These dependencies constitute a subset of the true

positives for a forward dynamic slice (Figure 3). Therefore,

the precision of the dynamic slice is at least the quotient of
the size of this intersection and the size of the dynamic slice:

precisionDSlice ≥ |SensA ∩DSlice|
|DSlice| (3)

2) Lower and Upper Bounds of Recall: The recall of a

dynamic slice is the size of the true positives set divided by

the size of the union of true positives and false negatives. If

the false negatives are many, the recall is small. Thus, for

our lower bound of recall, we use a lower bound of the true

positives and an upper bound of the false negatives.
As already discussed, a lower bound of the true positives

is the intersection of SensA and the dynamic slice. For the

upper bound of false negatives, any statement in the static slice
is potentially semantically dependent on the slicing criterion.

Thus, an upper bound of false negatives is the complement of

the dynamic slice within the static slice (SSlice).

recallDSlice ≥ |SensA ∩DSlice|
|SensA ∩DSlice|+ |SSlice \DSlice|

(4)

Naturally, this lower bound is subject to the precision of the

static slicer utilized. A context-insensitive slicer, for example,

would cause a larger SSlice and thus a smaller lower bound
of recall, but it would not affect the safety of the bound.
The upper bound of recall is obtained from an upper bound

of true positives and a lower bound of false negatives. The

upper bound of true positives we can use is the size of the

whole dynamic slice (finding false positives is undecidable).

The lower bound of false negatives is the intersection of

SensA (subset of all dynamic semantic dependencies) and

the complement of the dynamic slice within the static slice.

recallDSlice ≤ |DSlice|
|DSlice|+ |SensA \DSlice| (5)

148148

TABLE I
SUBJECTS, CHARACTERISTICS, AND SLICES FOR THE STUDY

Subject Short description Java Test # Forward
LOC cases dynamic slices

Schedule1 priority scheduler 301 2,650 10
NanoXML lean XML parser 3,521 214 10
Ant build tool 19,047 112 20
BCEL bytecode library 34,839 75 20
JMeter performance tester 35,547 79 20
PDFBox PDF library 59,576 32 20

IV. EMPIRICAL EVALUATION

In this section, we present our study of the accuracy of

100 forward dynamic slices in, primarily, nontrivial Java

applications using our approach of Section III.

A. Research Questions

Our research questions are the following.

RQ1: How accurate is forward dynamic slicing?
RQ2: How does the accuracy of forward dynamic slicing

vary within a subject and across different subjects?

RQ3: Does the accuracy of a dynamic slice correlate with
factors such as the size of the slice?

B. Experimental Setup

We carried out our experiment using six open-source Java

applications described in Table I. These subjects vary in size,

functionality, and complexity. For each application, the table

shows its name, a short description, its size in non-comment

non-blank lines of Java code (LOC), the size of its test suite,

and the number of forward dynamic slices considered.

We obtained BCEL and PDFBox from the Apache project

and the rest from the SIR repository [26]. From all possible

dynamic slices across these subjects, we randomly selected ten

slices for each subject smaller than 10KLOC and twenty slices

for each other subject. We run the study on a Linux desktop

with a 3.40GHz Intel i7 CPU and 32GB of RAM.

We computed the forward dynamic union slices (see Section
II-C) using our SENSA [25] tool and the slicers in our DUA-

FORENSICS analysis system [27]. Both tools analyze Java-

bytecode programs using Soot [28], which translates bytecode

into an intermediate representation called Jimple. Henceforth,

we use Jimple instructions as the units for reporting the sizes

of slices and for computing accuracy.

To ensure the determinism of our subjects for SENSA, we

inspected their code and also run their test suites multiple times

while comparing their execution histories. Whenever we found

a difference, we located and determinized the code that caused
the difference without affecting its semantics.

C. Methodology

The experimental process consists of three steps outlined in

Figure 5. The first step is to sample slicing criteria by selecting

Jimple instructions at random that are executed by at least

one test from the corresponding test suite. The second step

is to compute the forward dynamic and static slices for each

Select a Jimple
instruction s

Select a Jimple
instruction s

Formulas 3-5Formulas 3-5

Slicing criterion s

Run SENSA on s

SENSA
Dependencies

Precision and recall bounds of ds

Static Slicer Dynamic Slicer

The forward dynamic
slice of s: ds

The static slice of s

Fig. 5. The process for computing accuracy bounds of (union) forward
dynamic slices. Given a slicing criterion s and its forward dynamic slice, run
SENSA on s to find a subset of semantic dependencies and the static slice of
s. Then, use Formulas 3–5 to obtain the bounds.

Compute the dynamic
slice of s, denoted as ds

Size of ds
>= 20

Take ds as a sample

No

Yes

A statement s

Is s
supported by

SENSA ?No

Yes

Discard s

Fig. 6. Process for deciding whether a statement s is used for our study. First,
check whether s is directly supported by SENSA (without loss of generality).
If supported, check whether the size of the forward (union) dynamic slice
from s is at least 20. If so, use s and its (union) dynamic slice for the study.

criterion and apply SENSA to it. Finally, we compute precision

and recall bounds for the (union) forward dynamic slice.

In the first step, we discarded some randomly-selected

criteria whose dynamic slices sizes were too small (less than

20 statements) and thus uninteresting or for which SENSA

does not (directly) support modifications. For example, a

conditional statement does not assign values to variables, so

there are no assigned variables for SENSA to modify (SENSA

can modify, instead, assignments of variables used in the

condition). In such cases, we continued the random selection

until finding a suitable set of slicing criteria.

The process of deciding whether a sampled statement s
matches a goal of our experiments as a slicing criterion is

shown in Figure 6. First, the process checks whether SENSA

directly supports s. If s is supported, the process computes the
forward dynamic union slice from s. In that case, if the slice is
“uninterestingly” small, s is discarded. The process continues
until reaching 100 slices for our study. This number of slices is

large enough to make our experiment comprehensive and at the

same time manageable for our analysis. For static slicing, we

used a context-insensitive static slices because they are safe
for our bounds computation and their computation is more

149149

TABLE II
SLICE SIZES FOR SUBJECTS IN JIMPLE INSTRUCTIONS

Subject Jimple Dynamic slice size Static slice
size average min. max. average size

Schedule1 512 179.6 161 189 192.4
NanoXML 4,343 636.7 22 1,297 2,433.3
Ant 22,063 950.6 101 2,656 19,209.2
BCEL 57,348 843.0 65 2,523 52,885.6
JMeter 41,488 95.7 21 208 32,449.2
PDFBox 71,645 202.0 26 989 59,934.0

scalable than context-sensitive slicing [29]. We also checked

that no external dependencies (e.g., via files) affect the results.

We used both the Random and Incremental strategies of
SENSA to identify as many semantic dependencies as possible.

For each strategy, SENSA applied 20 modified runs to each

subject (the default) [25]. To see whether more runs make

a difference, we increased the number to 50 for NanoXML
but SENSA found no more results. We limited each run to 30
minutes to avoid infinite loops caused by the SENSA changes.

The tool discards timed-outs runs and performs additional runs

to reach the required 20 modified runs per strategy.

D. Effect of Slice Sizes

A key property of a slice is its size, which may have an

effect on its accuracy. Table II shows the average size, in

Jimple lines, of the dynamic and static slices per subject. For

the dynamic slices, the table also shows the minimum and

maximum sizes. The table indicates that the average size of

the dynamic slices ranges across subjects from about 100 to

1,000 Jimple instructions, whereas the average size of the static

slices ranges from about 200 to 60,000 Jimple instructions.

Within each subject, the dynamic-slice sizes varied consid-

erably. For example, for BCEL, these sizes range between 65

and 2,523 instructions. In contrast, the static slice sizes do

not vary much within each subject. The likely reason for this

phenomenon is that the static slices are context insensitive

and that, consistently with other studies, those slices include

a large fraction of the code for each subject application [18].

E. Results and Analysis

1) RQ1: Overall Accuracy of Forward Dynamic Slicing:
Table III presents the average, minimum, maximum, and

median of the precision and recall bounds for all subjects.

Because the upper bound of precision is always 100% (see

Section III-B), we omit this bound. In addition, Table IV

shows the bounds for the F1 measure of accuracy, which is
the harmonic mean of the precision p and recall r, computed
as 2×p×r/(p+ r). We obtained the lower and upper bounds
of the F1 accuracy measure per dynamic slice using the lower
and upper bounds of the precision and recall, respectively.

To illustrate, consider the results for Schedule1. The average

lower bound of precision is 91.6%, the average lower bound of

recall is 93.2%, the average upper bound of recall is 94.5%,

and the average lower and upper bounds of F1 are 92.0%

and 97.1%. All averages are over 90%, which indicates that

dynamic slicing is accurate for this subject, even though the

upper bound of recall is less than 100% indicating that at

least 5.5% of the statements that are dynamically semantically

dependent on the slicing criteria are missing from the slices.
For all 100 slices, the average lower bound of precision

is 83.6%, which suggests the overall precision of forward

dynamic slicing is generally high. However, the average upper
bound of recall is 52.8%, which means that the recall of

forward dynamic slicing can be quite deficient.
For individual subjects, the average lower bounds of preci-

sion are relatively high. For only two subjects those values are

below 80%, and the median lower bounds are all above 90%.

These values show that the majority of the studied dynamic

slices have a guaranteed high precision. However, for several
dynamic slices, the lower bounds of precision are low—as

low as 0.1%. Although the upper bound of precision is still

100% and we do not know where the real precision is within

those bounds, these low lower bounds indicate that it cannot

be guaranteed that precision is high in all cases.

2) RQ2: Variation of Dynamic Slicing Accuracy: As we
just discussed, the precision is generally high and the recall

is generally low. However, the bounds of precision and recall

vary not only across different subjects, but also within a single

subject. In addition to Table III, we provide Figures 7 and 8

for a visual breakdown of our results for precision and recall,

respectively. In Figure 7, each range of precision is denoted

by a line from its lower bound to 100% (the upper bound).

Figure 8 is formatted in the same way, but the upper bounds

in it are not all 100%. For example, out of the 10 ranges for

Schedule1 in Figure 8, six are very short and near the top and

the rest are located mostly between 80% and 90%.
The average precision and recall bounds vary across the

subjects, as Table III reveals. First, for the lower bounds of pre-

cision, the smallest two subjects (Schedule1 and NanoXML)

have bounds over 88%. For the remaining subjects, other

than JMeter, the precision lower bounds are below 81%. The

exception of JMeter shows that the size of the subject is not

the only factor that affects the precision of dynamic slicing.

Second, the differences among the average bounds of recall are

considerable. The average lower bound of recall for Schedule1

is 93.2%, for NanoXML is 31.1%, and for the rest it is less

than 6%. For the average upper bounds of recall, the numbers

vary among the larger subjects, from 36.1% in JMeter to

61.3% in Ant. Similar to the case of lower bounds, Schedule1

and NanoXML have greater upper bounds of recall.
The bounds vary not only across the subjects, but also within

each subject. Figure 7 shows that, for all subject applications

with the exception of Schedule1, there are one or more extreme

cases where the lower bounds of precision are quite low in

comparison with the other dynamic slices in the same subject.

For example, for NanoXML, the lower bound of the precision

of the seventh slice is less than 20% whereas the lower bounds

of precision for the other slices in NanoXML are greater than

90%. As the size of the subject increases, the number of

extreme cases tends to grow. In consequence, despite having an

average precision of at least 83.6%, it is possible that dynamic

slicing has a rather low precision in some cases.
As for recall, Figure 8 shows that dynamic slicing has

150150

TABLE III
PRECISION AND RECALL BOUNDS OF THE FORWARD DYNAMIC SLICES (UPPER BOUND OF PRECISION IS ALWAYS 100%)

Subject Lower bound of precision Lower bound of recall Upper bound of recall
Name Average Min Max Median Average Min Max Median Average Min Max Median
Schedule1 91.6% 82.6% 98.9% 90.7% 93.2% 78.2% 100.0% 100.0% 94.5% 83.1% 100.0% 100.0%
NanoXML 88.7% 17.4% 98.7% 97.1% 31.1% 0.2% 60.1% 40.9% 67.1% 9.7% 97.7% 91.8%
Ant 78.9% 24.7% 100.0% 90.7% 6.0% 0.1% 75.0% 0.9% 61.3% 2.0% 100.0% 65.5%
BCEL 74.0% 1.4% 100.0% 95.8% 1.8% 0.1% 8.9% 0.9% 38.0% 0.7% 99.2% 29.4%
JMeter 93.7% 60.0% 100.0% 98.9% 0.3% 0.1% 0.8% 0.2% 36.1% 2.7% 100.0% 22.4%
PDFBox 81.0% 0.1% 100.0% 97.4% 0.1% 0.0% 0.2% 0.1% 47.8% 1.2% 99.7% 57.4%
All slices: 83.6% 0.1% 100.0% 95.7% 14.1% 0.0% 100.0% 0.6% 52.8% 0.7% 100.0% 58.5%

TABLE IV
F1 ACCURACY BOUNDS OF THE FORWARD DYNAMIC SLICES

Subject Lower bound of F1 measure Upper bound of F1 measure
Name Average Min Max Median Average Min Max Median
Schedule1 92.0% 84.6% 97.9% 93.6% 97.1% 90.7% 100.0% 100.0%
NanoXML 43.1% 0.4% 74.5% 57.4% 73.0% 17.8% 98.8% 95.7%
Ant 8.4% 0.3% 85.7% 1.8% 72.1% 4.0% 100.0% 79.2%
BCEL 3.6% 0.1% 16.0% 1.7% 48.5% 1.4% 99.6% 45.4%
JMeter 6.6% 0.1% 1.6% 0.4% 44.9% 5.3% 100.0% 36.6%
PDFBox 0.2% 0.0% 0.5% 0.2% 55.6% 2.4% 99.8% 72.9%
All slices: 16.1 0.0% 97.9% 1.1% 61.2% 1.4% 100.0% 73.8%

�������� ������� �� ���� ����� ������
		 !

	" !

	# !

	$!

	% !

� !

��
��
��
��
	

��
	�
��

�

�
��

�
�	
��

��

�
���
��

Fig. 7. Precision ranges of the dynamic slices. The subjects and their slices are listed on the X axis.

TABLE V
COEFFICIENTS AND P-VALUES OF SPEARMAN RANK CORRELATION

BETWEEN ACCURACY BOUNDS AND SLICE SIZES

Lower bound Lower bound Upper bound
of precision of recall of recall

Coeff. P-val. Coeff. P-val. Coeff. P-val.
Dynamic -0.184 0.0673 0.688 2.685e-15 0.334 6.884e-04
Static 0.195 0.0514 -0.754 1.273e-19 -0.442 4.153e-06

a high recall for Schedule1 (at least 78%), For the other

subjects, however, many lower bounds of recall are near 0%.

For the larger subjects in particular (Ant, BCEL, JMeter, and

PDFBox), the lower bounds of recall remain below 20% and

most of them are less than 10%, while the upper bounds vary

between 10% and 100%. This trend suggests that forward

dynamic slicing can miss more semantic dependencies in

larger applications, as Table III also indicates.

3) RQ3: Correlation Between Slice Size and Accuracy: It is
also important to study factors that might influence accuracy.

Therefore, we investigated whether the dynamic slice accuracy

statistically correlates with dynamic or static slice size. To that
end, we used the Spearman test [30], which is non-parametric
(i.e. no assumptions on data distribution). Table V lists the

coefficients and P-values of the Spearman rank correlation

test. A coefficient of 1 or -1 indicates perfect correlation

whereas 0 indicates no correlation. Sub-columns Coeff. list
the coefficients and sub-columns P-val. list the P-values. Rows
Dynamic and Static show the correlation of the bounds with

the forward dynamic and static slice sizes, respectively.

The P-values of the correlations between lower bounds of

precision and dynamic and static slice sizes are 0.067 and

0.051, respectively. As they not less than 0.05, we cannot

conclude with confidence that lower bounds of precision

correlate with slice sizes. The correlation coefficients -0.184

and 0.195 suggest that the lower bound of precision tends to

decrease slightly as dynamic slice size increases and tends to

increase slightly as the static slice size increases.

For the recall bounds, the P-values are tiny, which strongly

151151

�������� ������� �� ���� ����� ������
		 !

	" !

	# !

	$!

	% !

� !
�
��
��
�
�
�	
��
�

�

��
�

��
	�
�
��

�
���
��

Fig. 8. Recall ranges of the forward dynamic slices

indicates that the bounds of recall correlate with the dynamic

and static slice sizes. The signs of the coefficients for the two

bounds indicate that recall increases when dynamic slice size

increases and decreases when static slice size increases.

These results support two intuitions about recall (or at least

its bounds): (1) larger dynamic slices capture more semantic

dependencies than smaller slices and (2) larger static slices

provide more room for false negatives to occur (see Figure 3).

F. Threats to Validity

The main threat to the validity of our study is the potential

looseness of the bounds of precision and recall. Because it

is impossible to obtain the actual precision and recall for a

slice, those values can lie anywhere within the bounds we

computed. Nevertheless, we were able to draw sound and

interesting conclusions from the bounds we obtained.

The primary cause for this threat is the uncertainty about

the extent of the results of SENSA. SENSA cannot guaran-

tee that it will find a sizable subset of dynamic semantic

dependencies. We countered this threat in three ways. First,

we chose applications with nontrivial test suites that exercise

a variety of behaviors so that SENSA can identify, at least,

the most common semantic dependencies. Second, we execute

SENSA 20 times (and tried it up to 50 times) which we

found experimentally to maximize the benefits we can obtain

from SENSA. Finally, we chose different, independent subject

applications to reduce the risk of obtaining skewed results.

An internal threat to validity is the potential existence of
errors in our implementation of the slicers and SENSA. The

possibility of major errors, however, is low because these

tools have been extensively tested and used for this and other

experiments. Another internal threat is possibility of errors

in our use of the slicers and SENSA, which we reduced by
manually checking many of the results.

The main external threat to validity is our choice of subjects,
slicing criteria, and test suites. Naturally, our results might

not reflect the accuracy of forward dynamic slices in other

subjects. To reduce this threat, we chose a variety of subjects

supported by nontrivial test suites. We also sampled a larger

// Add a new field constant to ConstantPool (cp_table),
// if it is not already in there.
public int addFieldref (String class_name,

String field_name, ...) {
... //code omitted

1: StringBuffer key = new StringBuffer();
2: key = key.append(class_name);
3: key = key.append("&"); //the slicing criterion
4: key = key.append(field_name);

... //code omitted
5: key_str = key.toString();
6: if (!cp_table.containsKey(key_str))
7: cp_table.put(key_str, new Index(ret));
8: return ret; }

Fig. 9. Code snippet from BCEL for our case study. ConstantPool is a
table of constants in a parsed class. Method addFieldref adds a field to
ConstantPool if it does not yet contain that field.

number of slices for subjects larger than 10KLOC for our

study to increase representativeness within those subjects.

A construct threat to validity is in the test of correlation
between slice sizes and accuracy. We used precision and recall

bounds to approximate dynamic slice accuracy, although the

correlation between bounds and slice sizes might not repre-
sent the correlation between actual accuracy and slice sizes.
However, correlations with actual accuracy are undecidable.

For conclusion validity, we used the F1 measure for accu-
racy that regards precision and recall equally. We also sampled

slicing criteria randomly. All of this might or might not be
representative of what developers typically need or do.

V. CASE STUDY: IMPACT ANALYSIS

To illustrate how the accuracy of dynamic slicing can affect

its applications, we chose a forward dynamic slice from BCEL

for dynamic impact analysis. BCEL is an Apache library for
manipulating Java bytecode. We used a test case from its test

suite. The slicing criterion is part of the creation of a key string

for a field constant in method addFieldref, which adds a

field to the constant pool (cp_table) of a classfile. This key

string is used to check whether the parsed class already has the

field constant. The test checks the addition of annotations to a

class. It creates a HelloWorld class, adds two annotations to

the class, and checks the serialization of that class. Figure 9

152152

shows the slicing criterion (line 3) and surrounding code.

For dynamic impact analysis, we manually identified all
possible impacts of changing the slicing criterion when run-

ning this test, and compared our findings with the forward dy-

namic slice. For this test, addFieldref is called twice, which

adds java.lang.System.in and java.lang.System.out

to cp_table. Each time, the slicing criterion generates part

of the key string for the table. The two fields have the same

class name, so the strings that the slicing criterion generates

are the same. Even if the slicing criterion generated different

strings, the behavior of adding the fields would not be affected.
However, if the slicing criterion assigns null to key, the

program crashes immediately at line 4. Hence, there are

two possible impacts of changing the slicing criterion: an

immediate crash and two key changes in cp_table.

Based on our formulas of Section III-B, the lower bound

of precision and the lower and upper bounds of recall of

the dynamic slice are 100%, 2.4%, and 33.1%, respectively.

Manually, we found that the dynamic slice is 100% precise,

although almost 97% of those statements are semantically

dependent on the slicing criterion simply because key can

be assigned null—something that SENSA also finds. Also,

because the SENSA results include all statements executed

after line 3, there are no other false negatives that we could

find manually. Thus, the actual recall is only 33.1%.

It seems unlikely, however, that a developer would change

line 3 to assign null to key. If we discard that possible change

in our investigation, we find that the execution does not change
except for values in cp_table. To investigate the accuracy

of the dynamic slice in that practical case, we made SENSA

ignore this potential change and obtained 3%, 0.1%, and 100%

for the lower bound of precision and the lower and upper

bounds of recall, respectively. Manually, we found that in this

case the precision is actually 3% because all statements not

found by SENSA as dependent are, in fact, false positives. An

example of a false positive is line 6: although key_str is

transitively data dependent on line 3, its outcome for this test

is always true and cannot change. In contrast, we found no

false negatives for this scenario, so the recall is 100%.

This case study shows that the inaccuracy of dynamic
slicing can have serious effects on impact analysis.

VI. RELATED WORK

Researchers have addressed the size of slices and practi-

cality of slicing methods [18], [31]–[35] and the relationship

between syntactic and semantic aspects of dependence anal-

ysis [33], [36]–[38]. That line of work assesses the relative

precision of slicing techniques by comparing the sizes of

the resulting slices whenever it is appropriate for safe slices.

However, such approaches do not measure the actual accuracy
of slices. Therefore, the approach we presented in this paper

is complementary to the size-based comparison methods.

Empirical studies of program have already been performed

to compare typical differences in the sizes of slices produced

by different techniques. Binkley et al. [18] studied static

program slicing by computing slices of all possible slicing

criteria in 43 programs. The study considers five factors in

slicing techniques that affect the resulting slice sizes, such as

whether a program slicer takes calling context into account.

Another study conducted by Binkley et al. [32] addresses

the performance of slicing by comparing six optimization

techniques in terms of memory usage and computation time.

To address shortcomings of (backward) dynamic slicing

in particular, researchers have proposed unions of dynamic

slices [6] (which we used in this paper and simply call

“dynamic slices”), relevant slices [22], [23] which incorporate

potential dependencies on predicates that could have affected
the slicing criterion, and statement-deletion based methods

such as critical slicing [39] and observation-based slicing [40].

In this paper, we decided to study the more commonly-used,

traditional form of (union) dynamic slicing.

For other kinds of program slicing that are not based on

statement slicing [33], [35], empirical studies also use slice

size as the only metric of slice precision. Androutsopoulos

et al. [35] carried out an empirical study of dependences

in extended finite state machines. In this study, slice sizes

are used to demonstrate the properties of dependencies in

the studied models. Binkley et al. [33] studied slices based

on concept-slicing criteria. Such criteria, which are generated

by a technique called concept assignment [41]. Similar to

this paper, that work analyzed six subjects to describe the

relationship between slicing criteria and slice size. Unlike our

work, it did not analyze the bounds of precision and recall.

Regarding slicing and semantics, Mastroeni et al. [36]

construct a dependence graph where a dependence can be

defined using abstract semantics. In their framework, slices

can be computed in terms of abstract semantic dependencies.

Other research has also focused on semantics in slicing [38].

That work is purely theoretical and relates the formal concept

of semantics to imperative languages by proving the semantic

correctness of slicing algorithms in Weiser’s framework.

VII. CONCLUSION AND FUTURE WORK

Forward dynamic slicing is used in many software-

engineering tasks. In this paper, we presented a novel approach

to estimate the accuracy of forward dynamic slices by com-

puting bounds for their precision and recall using sensitivity

analysis and static slicing. We experimented with 100 forward

dynamic slices primarily from nontrivial Java applications.

Our results show that forward dynamic slicing suffers from

low recall of dynamic semantic dependencies and some impre-

cision. In particular, almost two thirds of the studied forward

dynamic slices miss 68% or more semantic dependencies. In

addition, we conducted a case study that illustrates how the

imprecision of forward dynamic slicing can affect software

maintenance in practice. To the best of our knowledge, ours is

the first work that quantifies the limitations of dynamic slicing.

In summary, our results and analysis strongly indicate that

the accuracy of dynamic slicing is quite insufficient. Accuracy

varies not only across different slicing criteria in the same

subject but also across different subjects.

153153

Future improvements of our approach include extending

SENSA to avoid indirectly analyzing conditional statements.

With this and other enhancements to SENSA, we will get

better bounds of accuracy. We will also incorporate a context-

sensitive static slicer to further improve those bounds.

Our future research on dynamic-slice accuracy will include

three tasks. First, we will use manual inspection to classify

statements not reported by SENSA as semantically dependent.

Although it is impractical to perform this task for all such

statements, random samples of those statements would be

analyzed by human participants to estimate tighter bounds

statistically. Second, we will analyze the accuracy of other

types of slicing, such as relevant slicing [22], [23], and

critical slicing [39]. Finally, we will further investigate how the

inaccuracy of dynamic slices affects the use of those slices in

software-maintenance tasks by conducting more case studies.

ACKNOWLEDGEMENTS

This work was partially supported by ONR Award

N000141410037 to the University of Notre Dame.

REFERENCES

[1] M. Weiser, “Program slicing,” IEEE Trans. on Softw. Eng., vol. 10, no. 4,
pp. 352–357, 1984.

[2] B. Korel and J. Laski, “Dynamic Program Slicing,” Information Pro-
cessing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[3] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing Using
Dependence Graphs,” ACM Trans. on Program Languages and Systems,
12(1):26-60, Jan. 1990.

[4] H. Agrawal and J. R. Horgan, “Dynamic Program Slicing,” in Proc.
of ACM Conf. on Programming Language Design and Implementation,
Jun. 1990, pp. 246–256.

[5] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, A. Kiss, and B. Korel,
“Theoretical Foundations of Dynamic Program Slicing,” Theoretical
Computer Science, vol. 360, no. 1–3, pp. 23–41, Aug. 2006.

[6] A. Beszedes, C. Farago, Z. Mihaly Szabo, J. Csirik, and T. Gyimothy,
“Union slices for program maintenance,” in Software Maintenance,
2002. Proceedings. Int’l Conf. on, 2002, pp. 12–21.

[7] A. Orso, T. Apiwattanapong, J. B. Law, G. Rothermel, and M. J. Harrold,
“An empirical comparison of dynamic impact analysis algorithms,” in
Proc. of IEEE/ACM Int’l Conf. on Softw. Eng., May 2004, pp. 491–500.

[8] S. Lehnert, “A review of software change impact analysis,” Ilmenau
University of Technology, Tech. Rep, 2011.

[9] M. Biczó, K. Pócza, I. Forgács, and Z. Porkoláb, “A new concept of
effective regression test generation in a c++ specific environment.” Acta
Cybern., vol. 18, no. 3, pp. 481–501, 2008.

[10] D. Qi, A. Roychoudhury, and Z. Liang, “Test generation to expose
changes in evolving programs,” in Proc. of IEEE/ACM Int’l Conf. on
Automated Software Engineering, Sep. 2010, pp. 397–406.

[11] M. Dimitrov and H. Zhou, “Anomaly-based bug prediction, isola-
tion, and validation: an automated approach for software debugging,”
SIGARCH Comput. Archit. News, vol. 37, no. 1, pp. 61–72, Mar. 2009.

[12] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty code using
failure-inducing chops,” in Proc. of IEEE/ACM Int’l Conf. on Automated
Software Engineering, 2005, pp. 263–272.

[13] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A Systematic Survey of Program Comprehension through
Dynamic Analysis,” IEEE Trans. on Softw. Eng., vol. 35, no. 5, pp.
684–702, 2009.

[14] U. Schiffel, A. Schmitt, M. Süsskraut, and C. Fetzer, “Slice Your Bug:
Debugging Error Detection Mechanisms Using Error Injection Slicing,”
in Proc. of European Dependable Computing Conf., 2010, pp. 13–22.

[15] R. Santelices, M. J. Harrold, and A. Orso, “Precisely detecting runtime
change interactions for evolving software,” in Proc. of IEEE Int’l Conf.
on Software Testing, Verif. and Validation, Apr. 2010, pp. 429–438.

[16] A. Podgurski and L. A. Clarke, “A formal model of program de-
pendences and its implications for software testing, debugging, and
maintenance,” IEEE TSE, vol. 16, no. 9, pp. 965–979, 1990.

[17] W. Landi, “Undecidability of static analysis,” ACM Lett. Program. Lang.
Syst., vol. 1, no. 4, pp. 323–337, Dec. 1992.

[18] D. Binkley, N. Gold, and M. Harman, “An Empirical Study of Static
Program Slice Size,” ACM Trans. on Software Engineering and Method-
ology, vol. 16, no. 2, 2007.

[19] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers, “Program
Slicing with Dynamic Points-to Sets,” IEEE Trans. on Softw. Eng.,
vol. 31, no. 8, pp. 657–678, 2005.

[20] W. Masri and A. Podgurski, “Measuring the Strength of Information
Flows in Programs,” ACM Trans. on Software Engineering and Method-
ology, vol. 19, no. 2, pp. 1–33, 2009.

[21] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Depen-
dence Graph and Its Use in Optimization,” ACM Trans. on Program
Languages and Systems, 9(3):319-349, 1987.

[22] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London, “Incremental
Regression Testing,” in Proc. of IEEE Conf. on Software Maintenance,
Sep. 1993, pp. 348–357.

[23] T. Gyimóthy, A. Beszédes, and I. Forgács, “An Efficient Relevant Slicing
Method for Debugging,” in Proc. of joint European Softw. Eng. Conf.
and ACM Int’l Symp. on Found. of Softw. Eng., Sep. 1999, pp. 303–321.

[24] A. Podgurski and L. A. Clarke, “A Formal Model of Program De-
pendences and Its Implications for Software Testing, Debugging, and
Maintenance,” IEEE TSE, vol. 16, no. 9, pp. 965–979, 1990.

[25] H. Cai, S. Jiang, R. Santelices, Y.-J. Zhang, and Y. Zhang, “SENSA:
Sensitivity Analysis for Quantitative Change-impact Prediction,” in Proc.
of IEEE Int’l Working Conf. on Source Code Analysis and Manipulation,
Sep. 2014, 10pp, to appear.

[26] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled Experi-
mentation with Testing Techniques: An Infrastructure and its Potential
Impact,” Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[27] R. Santelices, Y. Zhang, H. Cai, and S. Jiang, “DUA-Forensics: A Fine-
Grained Dependence Analysis and Instrumentation Framework Based
on Soot,” in Proceeding of ACM SIGPLAN Int’l Workshop on the State
Of the Art in Java Program Analysis, Jun. 2013, pp. 13–18.

[28] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “Soot - a Java Bytecode
Optimization Framework,” in Cetus Users Workshop, Oct. 2011.

[29] M. Acharya and B. Robinson, “Practical Change Impact Analysis Based
on Static Program Slicing for Industrial Software Systems,” in Proc. of
IEEE/ACM ICSE Practice Track, May 2011, pp. 746–765.

[30] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-
Statisticians. Wiley, May 2009.

[31] X. Zhang, R. Gupta, and Y. Zhang, “Cost and precision tradeoffs
of dynamic data slicing algorithms,” ACM Trans. on Programming
Languages and Systems (TOPLAS), vol. 27, no. 4, pp. 631–661, 2005.

[32] D. Binkley, M. Harman, and J. Krinke, “Empirical study of optimization
techniques for massive slicing,” ACM Trans. on Programming Lan-
guages and Systems (TOPLAS), vol. 30, no. 1, p. 3, 2007.

[33] D. Binkley, N. Gold, M. Harman, Z. Li, and K. Mahdavi, “An empirical
study of executable concept slice size,” in Reverse Engineering, 2006.
WCRE’06. 13th Working Conf. on, Oct. 2006, pp. 103–114.

[34] D. Binkley and M. Harman, “Results from a large-scale study of
performance optimization techniques for source code analyses based
on graph reachability algorithms,” in Proc. of IEEE Int’l Workshop on
Source Code Analysis and Manipulation, Sep. 2003, pp. 203–212.

[35] K. Androutsopoulos, N. Gold, M. Harman, Z. Li, and L. Tratt, “A
theoretical and empirical study of efsm dependence,” in Proc. of IEEE
Int’l Conf. on Software Maintenance, 2009, pp. 287–296.

[36] I. Mastroeni and D. Zanardini, “Data dependencies and program slicing:
from syntax to abstract semantics,” in ACM SIGPLAN Symp. on Partial
Eval. and Semantics-based Program Manipulation, 2008, pp. 125–134.

[37] S. Sukumaran, A. Sreenivas, and R. Metta, “The dependence condition
graph: Precise conditions for dependence between program points,”
Comp. Lang., Systems & Struct., vol. 36, no. 1, pp. 96–121, 2010.

[38] S. Danicic, M. Harman, J. Howroyd, and L. Ouarbya, “A non-standard
semantics for program slicing and dependence analysis,” The J. of Logic
and Algebraic Programming, vol. 72, no. 2, pp. 191–206, 2007.

[39] R. A. DeMillo, H. Pan, and E. H. Spafford, “Critical Slicing for Software
Fault Localization,” in Proc. of ACM Int’l Symp. on Software Testing
and Analysis, Jan. 1996, pp. 121–134.

[40] D. Binkley, N. Gold, M. Harman, J. Krinke, and S. Yoo, “Observation-
Based Slicing,” RN/13/13, UCL, Dept. of Comp. Sci., Jun. 2013.

[41] N. Gold and K. Bennett, “Hypothesis-based concept assignment in
software maintenance,” in Software, IEE Proceedings- IET, vol. 149,
no. 4, 2002, pp. 103–110.

154154

View publication statsView publication stats

https://www.researchgate.net/publication/272740254

