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Abstract—Impact analysis as a critical step in software
evolution assists developers with decision making as regards
whether and where to apply code changes in evolving software.
Dynamic approaches to this analysis particularly focus on the
effects of potential code changes to a program with respect
to its concrete executions. Given the existence of a number
of prior approaches to dynamic impact analysis as opposed to
a lack of systematic understanding of their performance, the
first comprehensive study of the predictive accuracy of dynamic
impact analysis was conducted, comparing the performance of
representative techniques in this area against various kinds of
realized code changes. This paper reflects on the progress in
dynamic impact analysis, concerning the impact of that earlier
study on later research. We also situate dynamic impact analysis
within the current research and practice on impact analysis in
general, and envision relevant future research vectors in this area.

Index Terms—Impact analysis, accuracy, potential, vision

I. INTRODUCTION

Impact analysis is widely recognized as a key step during
software development. Extensive research has been invested in
impact analysis, mostly focusing on techniques such as novel
algorithms (e.g., [1]–[4]) with fewer targeting in-depth studies
such as comparative evaluations (e.g., [5]). In this context,
a systematic methodology to comprehensively evaluate the
predictive accuracy of impact analysis was designed, which
predicts the set of code locations (referred to as impact set) that
are potentially impacted by (any) candidate changes at given
change locations (i.e., query), with respect to the actual impact
of particular, concrete code changes (at the query locations).

The study published in 2015 [6], with a focus on dynamic
impact analysis [7] working at method level against the most
cost-effective dynamic impact analysis techniques [1], [4]
back then, revealed and examined the insufficient performance
of these techniques. Accordingly, it proposed several future
lines of research that may address the insufficiency (i.e.,
improving the accuracy of dynamic impact analysis). It also
discussed possible avenues of applying the dynamic impact
analysis techniques to develop cost-effective techniques and
tools serving various software evolution and maintenance
tasks. Concerning the work itself, it further identified different
ways to expand the comparative study for distilling further
insights into the full landscape of dynamic impact analysis
regarding its potentials and improvement strategies.

In this reflection paper, we look back at the original
contributions of the study (Section II), discuss its connections

to later research in the area (Section III) while positioning
it in current relevant research and practice (Section IV), and
elucidate the potentials of the methodology and results while
looking forward to new ideas and future impact (Section V).

II. ORIGINAL CONTRIBUTIONS

A. Problem and Motivation

While prior impact analyses are known to be imprecise
due to their conservative nature [5], [7], the imprecision
was identified mostly through empirical evaluations using
relative precision measures only (e.g., [1], [5], [8]). Very few
other analyses had their results assessed against ground-truth
impact of realized changes, yet they either used only
trivial experimental subjects [9], [10] or relied on the
knowledge about actual changes before the analysis itself
can be applied [11]–[13]. Also, impact-analysis evaluations
are mostly concerned about precision only, assuming the
safety (perfect recall) of their impact sets as a result of the
conservative nature of the analyses [1]. An exception is the
study of both precision and recall using ground truth derived
from repository changes [14], where the technique examined
is a class-level static analysis based on call-graph reachability,
whose results are thus excessively coarse.

Since developers need to apply impact analysis for
understanding the effects of potential changes, it is clearly
important to know how accurate the analysis results are
expected to be. However, as yet an empirical assessment that
systematically measures the accuracy (precision and recall)
of change-impact prediction was missing [7]. To fill this gap,
an experimental approach was designed to systematically study
the predictive accuracy of existing dynamic impact analyses
that represented the state of the art back in 2015.

B. Technical Contributions

A main design challenge to the study was to involve
as many potential change locations as possible so that the
accuracy metrics can be representative enough for reaching
a conclusive assessment of the techniques studied. There
were varied sources of changes for such a study, including
real changes made by developers in active open-source
software repositories and mechanic faults designed by other
researchers. Yet the size and availability of these changes
are limited and usually cover only a limited portion of the
software. Using sensitivity analysis [15] along with efficient
instrumentation, the approach dynamically generates a large



number of changed program versions by injecting random
modifications to all applicable code locations to complement
the other types of changes.

Another key element of the study methodology was
to create the ground truth for each impact set M
computed by the technique under study. Given a potential
change location C, finding all program entities that are
semantically dependent [16] on C can give such ground truth.
While computing the full set of semantic dependencies is
undecidable, for the experiment purpose, using the semantic
dependencies with respect to the same set of executions as
used by the evaluated impact analysis for producing M can be
justifiably utilized as the ground truth against M . To compute
the semantic dependencies, execution differencing [11], [12]
was used between the program versions before and after actual
changes are applied.

A framework realizing this methodology was implemented,
and used for assessing two representative contemporary
techniques (PI/EAS [1], [4]) on eight Java projects, of
which most are real-world systems, and a large scale and
multiple types of concrete code changes. The framework
can be utilized for assessing the predictive accuracy of
other types of dynamic impact analysis as well (e.g.,
non-dependence-based analysis). Moreover, the framework’s
component used for dynamically generating large sets of
program versions can have even broader range of applications
(e.g., mutation analysis).

C. Main Empirical Findings

The empirical results confirmed the imprecision of studied
techniques while also disclosing the low recall with respect to
the real impact based on semantic dependencies. Specifically,
the results for both artificial (automatically generated) and
real (repository) changes showed that the most cost-effective
dynamic impact analysis known by then was surprisingly
inaccurate with an average precision of 38-50% and average
recall of 50-56% in most cases. In comparison, the accuracy
of the studied techniques was generally lower against the
real changes than against artificial changes; when applied
to fewer subjects and only artificial changes, these techniques
had 47-52% and 56-87% recall according to a preliminary
version of this study [17]. The in-depth investigation further
suggested that methods in the resulting impact sets were more
likely to be actually impacted when they executed sooner
after the execution of the changed locations. In all, this
comprehensive study offered insights on the effectiveness of
the most cost-effective dynamic impact analyses back then.
Thus, we expected the results to motivate future development
of more accurate dynamic impact analyses.

III. OVERVIEW OF CITING RESEARCH

After the publication of the original study, later research
that cited the paper can be categorized into two classes: (1)
relevant research—those that referred to it as a representative
dynamic impact analysis technique when proposing techniques
immediately on or closely related to impact analysis but did

not attempt to improve the accuracy of impact analysis, and
(2) improving research—those that were motivated to actually
develop a more precise impact analysis technique.

A. Relevant Research

In [18], the authors developed a novel change impact
analysis solution that combines multiple information retrieval
(IR) techniques. Like other impact analysis techniques that
are not based on code dependencies, this IR-based approach
complements the dependence-based techniques targeted in our
comparative study. The paper primarily focused on exploring
a different approach to impact analysis by treating code
text as bags of words in order to apply IR techniques. The
authors compared our work as one of the state-of-the
dependence-based impact analyses, but only in terms of
the technical approach; empirically, the paper used a coupling
measure based impact analysis as its baseline to demonstrate
its merits. In addition, it highlighted the benefits of combining
multiple IR techniques over using individual techniques for
impact prediction through the empirically shown (precision
and recall) advantages of the former.

While this IR-based technique also works at method level
(as did the techniques we studied), it does not fall in the class
of dependence-based impact prediction techniques. Thus, it
did not attempt to improve the accuracy of dependence-based
techniques as we called for in our paper. On the other
hand, our recommendation for incorporating more diverse
program information in impact analysis shares the same
spirit as this citing research combining the information
produced by multiple (two) IR techniques (i.e., one based on
bags of words and another based on neural network). Although
not explicitly acknowledged so by the authors, it was possible
that our recommendations and study results have influenced
in certain ways the technical design of this later research.

The technique proposed by Kabeer [19] predicts impact
of software change requests on files as well as effort
and duration required through an analogy based reasoning
method, representing a distinct approach to impact analysis.
Partush and Yahav [20] cited our work in discussing
topics on differential program analysis—in our study, the
experimentation pipeline includes an approach for producing
the ground truth through execution differential analysis. Yet
like a few other papers on presenting new impact analysis
techniques [21], [22], [22], Kabeer and Partush et al. mainly
considered our work as an impact analysis approach based on
code dependencies that works by propagating change effects
along data/control flows.

B. Improving Research

Gyori et al. [23], [24] aimed to develop a more precise
change impact analysis technique that is aware of the
semantics of code changes. The key idea is to infer equivalence
relations between variables of two program versions (the
original version and the changed one) so as to make the
dataflow-based impact analysis aware of change semantics,
and then the change-semantics-awareness leads to greater



precision than prior techniques that do not consider the
semantics. The technique differs from our work in multiple
ways: it is a static impact analysis that computes the actual
impact of realized changes at statement level—the concrete
changes are known and given to the analysis, while the
techniques we evaluated in our work were both dynamic
impact analysis that predicts potential impact of any possible
changes at the given query locations at method level—the
concrete changes were not known nor available to the analysis.

Despite these differences, this later research fits
technically with our vision about future work that we
discussed in the original journal paper. First, this research
focuses on precision improvement of static impact analysis.
Our study strongly revealed surprising imprecision of dynamic
impact analysis, which is generally expected to be precise
with respect to the underlying executions analyzed, while
static impact analysis is expected to be generally less
precise than dynamic approaches. Second, this research
presents a dataflow-based impact analysis, where fine-grained
(statement-level) data flow analysis forms a basis of the greater
analysis precision than prior approaches that either only
produce very-coarse (e.g., class-level) impact sets or do not
consider data flow facts (e.g., dependencies). In our study, we
also motivated the evaluation to target method-level techniques
by the excessive level of imprecision of techniques working
at overly coarse levels (e.g., class or package)—meanwhile,
we did not address statement-level impact analysis because
of efficiency concerns of those techniques and that most prior
(representative) techniques worked at method level. Third, we
identified incorporating fine-grained program dependencies as
a major direction for future precision improvement in dynamic
impact analysis. On the other hand, this later research did not
explicitly cite our work as a motivating study for improving
impact analysis precision; instead, they referred to our work as
one of the representative previous impact analysis techniques
based on detailed data and control flow analysis [24], [25].

In [26], the authors aimed to reduce the rate of
false positives in (hence improve the precision of)
change-impact prediction, by leveraging data-sharing and
calling dependencies among code entities. In addition,
the research attempts to understand how varied kinds of
dependencies affect the effectiveness of change impact
prediction. This citing paper falls exactly in the same category
of impact analysis approaches as the techniques we studied in
our earlier work—predicting potential, rather than computing
actual, impact sets of code changes. Although like the work
by Gyori et al., this paper targets a static, instead of dynamic,
approach to impact analysis, the proposed technique reasons
about actual impact based on code (data/control) dependencies.
The main rationale behind its precision improvement is to
incorporate these program dependencies, consistent with
what we discussed in our paper about the strategies
for improving dynamic impact prediction accuracy. In
particular, we pointed out that the low precision of the studied
techniques (PI/EAS) was very likely to be the result of
insufficient use of program dependence information—PI/EAS

only considers (method-level) control flows and computes
impact sets based on execution order between methods.
This citing research found that data dependencies are
complementary to calling (control) dependencies in improving
the precision of impact prediction.

Our earlier suggestion on incorporating more program
dependence information is probably echoed most strongly
in the later research conducted by Malhotra et al. [27].
The authors proposed to combine multiple types of
dependencies—symbol dependencies, temporal dependencies,
and include dependencies—in addition to the conventional
types of (i.e., data and control) dependencies in order to
improve the accuracy of their static impact prediction. They
further demonstrated the significant contribution of the three
newly introduced classes of dependencies to the precision
improvement. Like the other two accuracy-improving research,
this paper also cited our work as a different type of prior
approach to impact analysis, instead of explicitly using our
study results to motivate their effort for improving the
accuracy. A plausible reason is that all these three improving
techniques are static approaches, while our study reported the
precision insufficiency with dynamic impact analysis.

IV. POSITIONING IN CURRENT RESEARCH AND PRACTICE

More recent research on impact analysis has explored
diverse approaches beyond dependence-based solutions
in terms of the analysis scope, (non-code) information
incorporated, and (non-dependence-based) techniques utilized.
For instance, the analysis in [28] computes impact sets that
apply to system configurations in software product lines—the
impact considered is not that on code. For another example,
the technique in [29] focuses on change impact at design
time, concerning the effects of proposed modifications to
ERP entity dependencies on system design and operations of
ERP software. In [30], the authors presented an analysis that
addresses the impact of changes to software requirements,
rather than the impact of changes in code, using natural
language processing (NLP) methods. The study on impact
analysis presented in [31] targets the consequences of changes
in the body of safety evidence (i.e., artifacts concerning the
safe operations of software in a given environment) instead of
code changes. Using a recommendation system based on IR
and repository mining techniques, the approach in [28] also
targets non-code artifacts when computing impact sets.

Thus, in the holistic spectrum of impact analysis, the
techniques studied in our work represent one particular
class that (1) infers/predicts potential impact of candidate
changes based on code dependencies and (2) applies for
understanding the consequences of changes in code while
concerning only the consequences on code as well. In fact,
even within the scope of code-based impact analysis [7], a
number of techniques other than dynamic impact prediction
have been proposed. For example, descriptive impact analysis
(e.g., [11], [13]) addresses the impact of realized changes
between two program versions, as opposed to the techniques
we studied being predictive. Traceability-based approaches,



as opposed to dependence-based solutions, utilize various
forms of software artifacts, ranging from requirements
and specifications to design documents and source code,
to compute change impact by defining and tracing the
relationships among them. Most of the recently advanced
change impact analyses, including the ones discussed above,
belong to this traceability-based category.

Yet dependence-based impact analysis still represents a
major type of impact analysis approaches, especially when
the scope of analysis concerns the code artifacts. In contrast to
descriptive and non-dependence-based techniques, predictive
dependence-based impact analysis such as PI/EAS essentially
models the influences among code entities, despite concrete
changes at query locations. Thus, improving the accuracy
of predictive dependence-based impact analysis generally
resorts to the improvement in the accuracy of the underlying
dependence analysis. Accordingly, studying the predictive
accuracy of dynamic impact prediction as we did essentially
examines the accuracy of dynamic dependence analysis
with respect to how the dependencies (impact sets) guide
developers’ change decisions rather than to the ground-truth
syntactic dependencies among code entities at runtime.

Concerning practical adoption, however, industrial case
studies in the literature seem to have suggested preferences
for static approaches within the category of code-based
impact analysis techniques [32], [33], and more generally
for non-code-based approaches [28], [29], [31], [34], over
dynamic dependence-based impact analysis. While answering
why this has been the case would need a dedicated study
comparing code-based versus non-code-based approaches
as well as dependence-based versus non-dependence-based
approaches, there are three plausible reasons to consider.

First, non-code-based approaches usually directly address
change requests (typically in natural language) with respect
to software specifications by considering diverse kinds of
(non-code) artifacts (e.g., requirements, design documents,
repository commits, code comments, etc.). In contrast,
code-based approaches might be too narrow in terms of the
information sources considered (i.e., only the code as the
single type of artifact). Second, dependence-based approaches
further rely on the accuracy of underlying dependence analysis
to be practically accurate, yet for real-world, large code
bases, there tends to be a huge amount of dependencies
to sort out—even latest dependence-based impact prediction
techniques can still produce too many potentially impacted
code entities to be affordably inspected by developers. Finally,
dynamic approaches to dependence-based impact analysis
appeared to be even less adopted in practice—there have not
been published studies reporting the use of such approaches
in industry, probably because these techniques compute
potentially impacted code entities only with respect to specific
program executions. Indeed, dynamic impact analysis tends
to be more applicable in the context of its application/client
analyses than directly for making change decisions in general.
For example, it could have been more often (albeit implicitly)
used as an underlying technique for testing (e.g., for regression

test selection and prioritization) and debugging (e.g., for
iteratively applying and validating bug-fixing changes with
respect to the bug-revealing execution).

V. VISION AND IMPACT

In retrospect, during the three years after it was published,
our study was moderately referred to by later research on
impact analysis. Importantly, the aim of the following
work was closely connected to (although not explicitly
acknowledged as motivated by) the future work we
discussed in our paper. Meanwhile, the citing research
generally all considered our work as a technical approach
to impact analysis, rather than directly referring to our
empirical findings, although our paper mainly addressed the
comparative evaluation of prior analysis techniques instead of
proposing a new technique for dynamic impact analysis.

We also noted that there has not been later work
exactly developing more precise dynamic impact analysis
or conducting comparative studies of impact analysis
techniques, except for our follow-up work on improving the
cost-effectiveness of static [35], [36] and dynamic [37]–[40]
impact prediction by utilizing diverse program information.
One plausible explanation is that dependence-based dynamic
impact analysis has been studied quite extensively with various
approaches already explored. Another reason, as mentioned
earlier, is that significant advancement in this area immediately
requires that in the underlying dependence analysis. However,
precise dynamic dependence analysis is well-known as hard
to scale to large, complex software systems, while achieving
user-perceived (i.e., from users’ perspective in particular use
scenarios) desirable precision remains a grand challenge.

Nevertheless, we believe that our work has unexploited
potentials. First, given the nature of the studied techniques,
our evaluation methodology essentially assesses the
user-perceived accuracy of forward dynamic dependencies
(at method level). Thus, it is more broadly applicable to
techniques based on forward dynamic dependence analysis,
than just to dynamic impact prediction techniques in particular.
In fact, we applied the same methodology for evaluating the
accuracy of forward dynamic slicing at statement level [41].
Second, our experiment framework features an automated
pipeline of large-scale runtime program variant generation
which simulates realistic code changes by developers, as well
as an automatic mechanism that computes dynamic change
impact using the impact analysis technique under assessment.
Flexible interfaces are provided to allow for plugging in
any impact prediction tool to be evaluated. The framework
automates results presentation and statistics computation
as well. Thus, this framework provides immediate utilities
for conducting similar other studies. Finally, our research
explored for the first time the long-standing problem about the
trustworthiness of program dependence analysis, a technique
that has been widely utilized for many software engineering
tasks. Importantly, our study revealed the gap between the
accuracy of syntactical dependencies and that perceived by



users (developers) in specific task scenarios, and provided the
first empirical evidence about the significance of this gap.

Further, according to our results, dynamic impact analysis
is not a problem that has really been solved, and there
are several emerging ideas that may help advance this
area. First, developers’ knowledge can be exploited to
improve user-perceived precision. In particular, the underlying
dependence analysis would be more precise to users if the
resulting dependencies are labeled with inspection priorities
computed with user feedback incorporated through machine
learning (e.g., reinforcement learning to use the order that
dependencies were actually explored by users for improving
future ranking of dependencies). This direction may lead to
improvements in user-perceived precision of impact prediction
based on such prioritized dependencies. Second, to make
dynamic impact analysis more attractive to practitioners, we
may offer a more friendly environment for using the technique
and demonstrate the value of the improvement in the analysis
itself (e.g., the precision) in the context of its applications.
For instance, the greater user-perceived precision would lead
to greater savings in time and effort for regression testing and
iterative debugging. Third, the resulting impact sets can be
utilized to guide the incremental approach to various analysis
tasks—given the analysis results of one program version, just
reanalyzing the changed and impacted entities when doing the
analysis of the changed version of the program.
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