
A Preliminary Study on Open-Source Memory
Vulnerability Detectors

Yu Nong
Washington State University, Pullman, USA

yu.nong@wsu.edu

Haipeng Cai
Washington State University, Pullman, USA

haipeng.cai@wsu.edu

Abstract—We present preliminary results of a study on
memory vulnerability detectors based on (static and/or dynamic)
program analysis. Against a public suite of 520 C/C++ programs
as benchmarks which cover 14 different vulnerability categories,
we measured the performance of five state-of-the-art detectors
in terms of effectiveness and efficiency. Our study revealed that
with respect to the particular set of benchmarks we chose: (1)
the effectiveness of these studied detectors varied widely: 66.7%
to 100% precision, 0% to 100% recall, and 0% to 100% F1
per category, indicating most of the techniques worked extremely
well on certain kinds of vulnerabilities yet quite poorly on others,
(2) these detectors were generally quite efficient: despite a few
outliers, the average (per benchmark) time costs were around
one second, (3) except for between the most and least accurate
detectors, other pairs of detectors did not have statistically
significant and large differences in accuracy in our pair-wise
statistical testing. We also share insights into the failures and
successes of these detectors obtained from our case studies.

Index Terms—Software vulnerability, detection, comparison,
code analysis, precision, recall, accuracy, efficiency

I. INTRODUCTION

The pervasive and diverse presence of software
vulnerabilities constitutes a major source of cybersecurity
threats. Such vulnerabilities are also costly and highly
consequential, having caused a loss of over 1.7 trillion dollars
just in a single year [1].

As a response, a growing number of approaches are
being developed to detect/discover software vulnerabilities,
including penetration testing [2], [3], static/dynamic code
analysis [4]–[7], and techniques based on data mining and
machine learning [8], [9]. However, there have not been
sufficient objective measurements and scientific comparisons
of these techniques, which are necessary for systematically
understanding the strengths and limitations of available
solutions hence developing more advanced countermeasures
against ever-diversifying and stealthy vulnerabilities.

Prior work on studying and/or comparing vulnerability
defense techniques exists. Yet existing such studies typically
evaluate the techniques based on how many vulnerabilities can
be found without evaluating with respect to the vulnerability
ground truth [3], [10]–[12]. As a result, the evaluation
was incomplete in that precision and recall were not both
measured. A few other studies focus on discussing detection
capabilities comparatively from technical perspectives only,
without empirical experiments or assessments [13]–[15].
In [16], the authors presented useful metrics for benchmarking
vulnerability detectors without actually performing the
benchmarking experiments. In addition, several studies

address the study/comparison of vulnerability detection
approaches particularly for web services [17] or SQL injection
vulnerabilities [18]–[20] only. Among these domain-specific
studies, [17], [19] used benchmarks with ground truth hence
quantified precision and recall, but only for commercial tools
as in [21]. Without knowing the technical details behind
tools, it is difficult to deeply investigate and explain tool
performance and the potential differences. As it stands, there
is a lack of studies evaluating and comparing open-source
vulnerability detectors, based on either static or dynamic
analysis or both, reporting complete effectiveness measures
(precision, recall, accuracy) while not limited to specific
application domains (e.g., web or database applications).

To fill this gap, we are conducting a large-scale study of
open-source vulnerability detectors, including those based on
static, dynamic, and hybrid code analysis. This paper reports
the methodology of and early findings from evaluating five
state-of-the-art detectors [22]–[26] that all focus on memory
vulnerabilities (i.e., those compromising memory safety) in
C/C++ programs. We target this scope because (1) memory
vulnerabilities represent a dominant class of vulnerabilities in
modern software, and (2) C/C++ has been by far the most
vulnerable language [27] yet also the language in which many
critical software systems are written. We have evaluated the
five chosen tools against 520 C/C++ benchmarks from a public
benchmark suite [21] which cover 14 different categories of
memory vulnerabilities, as guided by three research questions:

• RQ1: How effective are these detectors in terms of
precision, recall, and accuracy?

• RQ2: How efficient are the detectors in terms of their
cost for detecting vulnerabilities?

• RQ3: How do these detectors compare in terms of their
detection accuracy?

Our study revealed that, for the benchmarks used,
incorporating static analysis in vulnerability detection brought
substantial accuracy benefits, especially compared to purely
dynamic approaches, mainly because of the low recall of the
latter. Meanwhile, different detectors showed varying strengths
and limitations for different vulnerabilities: the F1 accuracy
ranged wildly from 0% to 100% for individual vulnerability
categories, and from 40.5% to 87.3% over all the benchmarks.
Also in terms of accuracy, statistically significant and large
differences were only found between the most and the least
accurate detectors. All the detectors were highly efficient,
costing less than one second on average per benchmark for

Start with the Software‐Analysis‐Benchmark
(638 positive samples, 638 negative samples)

Select 14 vulnerability categories on memory safety
(260 positive samples, 260 negative samples)

Set up each tool

Remove optimization
flags in Makefile

Remove optimization
flags in Makefile

Run the tool to analyze
each benchmark and

gather outputs
automatically by script

Runtime tool

Static tool

Compiler‐based
tool

Build the benchmark
normally

Build the benchmark
with the tool

Run each benchmark
against the tool and

gather outputs
automatically by script

Run recompiled
benchmark and gather
outputs automatically

by script

Manually check results &
compute result statistics

Perform case studies

Fig. 1: An overview of our study process flow.

vulnerability detection. We also share insights into varying
tool performance obtained from our case studies.

In sum, we contribute preliminary results for understanding
where current vulnerability defense techniques are. By
focusing on memory vulnerabilities and techniques based on
code analysis, our study complements existing peer work in
terms of scope and depth. Also, our results also shed light on
how techniques of varied nature perform differently and why.

II. METHODOLOGY

In this section, we describe the design of our study,
including benchmarks and vulnerability detectors used, study
procedure followed, and metrics and measures considered.

Overview. Figure 1 gives an overview of the process flow
of our study. We started with selecting benchmarks that are
most relevant to our study focus (i.e., memory vulnerabilities),
followed by choosing and setting up vulnerability detection
tools that are capable of detecting memory vulnerabilities.
We ensured the inclusion of both positive samples (i.e.,
benchmarks that are known to be vulnerable) and negative
samples (i.e., benchmarks that are known to be not vulnerable)
for the soundness of the study. Then, we took different
approaches for tools of different workings/configurations.

For static tools (i.e., those that are based on purely static
code analysis and detect vulnerabilities by scanning the code
of given programs without recompiling the code), we simply
ran each tool against every benchmark (which was automated
via scripts we developed) and then manually checked the
outputs of the tool to compute statistics of results (i.e.,
effectiveness and efficiency metrics). For each tool that works
via a compiler pass hence requires recompilation of given
programs (referred to as compiler-based tools), we removed

the optimization flags (in order to genuinely test the detector’s
capabilities), built each benchmark with the tool (which
performs the detection analysis during the recompilation), and
then ran the rebuilt benchmark so that the tool can produce
detection results. This process was also automated through
our dedicated scripts. The result examination and metrics
computation were done manually the same way as above.
The process for runtime tools (i.e., those that are based on
purely dynamic or hybrid analysis) is similar to that for
compiler-based tools, except for that the benchmark needed
not to be built with the tools but built normally.

After we finished all the manual results analysis and
obtained statistics on tool effectiveness and efficiency, we
performed in-depth case studies against chosen cases in
order to gain deeper understanding about the effectiveness
of the underlying vulnerability detector applied. These
understandings allow us to explain why certain tools succeeded
or failed in these cases.

Benchmarks. We used the Software-Analysis-Benchmark
suite introduced by Shiraishi et al. in [21], which includes
638 positive samples and 638 corresponding negative samples
in C/C++—each sample came with a vulnerable version
and a corresponding non-vulnerable version (i.e., with the
vulnerabilities fixed). While the authors originally curated the
benchmarks for evaluating static analysis tools, we intended
to see if and how well the vulnerabilities can be detected by
tools based on purely dynamic or hybrid analysis as well.

These positive samples covered 51 categories of
vulnerabilities (e.g., static/dynamic buffer overrun, stack
overflow, data overflow, etc.), out of which we chosen
14 categories that are most relevant to memory safety.
Accordingly, we obtained 260 positive samples and the 260
associated negative samples. These 520 C/C++ programs
formed the benchmark suite actually used in our study. Each
benchmark came with the vulnerability ground truth, which
enabled our effectiveness computation.

Tool/detector selection. For our study, we chose five
code-analysis-based vulnerability detectors as follows.

• ADDRESSSANITIZER [24] is a memory error detector
for C/C++ programs. It consists of a compiler
instrumentation module based on LLVM [28] and a
run-time library that replaces the malloc function.

• VALGRIND [22] is dynamic binary instrumentation
framework. In this study, we used Memcheck, one of
the tools built on top of the framework, which detects
memory errors.

• MEMORYSANITIZER [25] is a vulnerability detector
that can detect uninitialized memory reads in C/C++
programs. It provides a subset of the functionalities of
VALGRIND/Memcheck but with higher efficiency.

• CBMC [26] is a bounded model checker that detects
memory-safety vulnerabilities in C/C++ programs,
checking against array bounds, use of pointers, and
memory-related undefined behaviors, etc.

• DRMEMORY [23] is a memory monitoring tool that

identifies memory-related programming errors, such as
accesses of uninitialized or unaddressable memory,
double frees, memory leaks, and so on.

We chose these tools among others for two reasons. First,
we wanted to cover different categories of code analysis
approaches underlying the detection techniques, including
those based on purely static analysis (CBMC), purely dynamic
analysis (VALGRIND, DRMEMORY, MEMORYSANITIZER),
and hybrid analysis combining static and dynamic analyses
(ADDRESSSANITIZER). In addition, we intended to include
at least one state-of-the-art, representative technique in each
category. We selected more (three) dynamic approaches
because, among the techniques we surveyed, most of those
for which we can find publicly available tools were dynamic.
Beyond approaches mainly based on code analysis, software
vulnerability detection has also been addressed through data
mining [8], [9] and machine learning [8] methods.

Metrics and measures. We considered two classes
of metrics/measures for our study: effectiveness (i.e.,
performance) and efficiency (i.e., cost). For the effectiveness
metric, we measured the precision, recall, and F1-measure
as the accuracy metric. We computed these effectiveness
measures both for each of the 14 vulnerability categories and
for all the 520 benchmarks as a whole. For the efficiency
metric, we measured the analysis time cost of each detector
against each benchmark.

To compute the precision and recall, we examined the output
of each detector against each benchmark, so as to manually
identify true/false positives/negatives according to the ground
truth available for the benchmark. Any vulnerabilities reported
in a negative (normal) sample were counted as a false
positive, and the sample was counted as a true negative if
no vulnerabilities were reported with it. Any vulnerabilities
reported in a positive (vulnerable) sample were counted as a
true positive, and the sample was counted as a false negative
if no vulnerabilities were reported with it. Once we obtained
a precision and recall measure, the corresponding F1-measure
was computed as 2*precision*recall/(precision+recall).

To compare effectiveness among these chosen detectors,
we performed two statistical testing procedures concerning
the F1 accuracy of each pair of tools: hypothesis testing to
assess the statistical significance of the F1 difference between
the pair, and effect size measurement to assess the size of
the difference. In particular, we used the paired Wilcoxon
signed-rank tests [29] to assess the significance (p value)
at the 0.95 confidence level (i.e., α = .05), and computed
Cliff‘s Delta [30] (in a paired setting with α = .05) as effect
size. In both analyses, the two groups compared were the
per-vulnerability-category F1 values across the 14 categories
between each pair of tools. We chose these analyses as they are
non-parametric hence make no assumption about the normality
of the distribution of underlying data points. Given a Cliff’s
Delta value d, we interpret the effect size as follows [31]:
effect size is negligible if |d|≤0.147, small if 0.147<|d|≤0.33,
medium if 0.33<|d|≤0.474, and large if |d|>0.474.

III. RESULTS

We present major findings with respect to each of our three
research questions separately as follows.

A. RQ1: Effectiveness

Table I shows the recall, precision, and F1 accuracy (first
row) of each of the five detectors chosen (second row) against
each of the 14 vulnerability categories studied (first column).
The size of a category is the number of benchmarks of that
category used in the study: each category contains equal
numbers of positive and negative samples. The results indicate
that the detectors had mostly perfect precision, except for
ADDRESSSANITIZER and CBMC against the stack underrun
vulnerabilities. Noting that all the vulnerabilities reported by
purely dynamic analysis based tools were true positives, a
plausible explanation for the exception is that the static
analysis involved introduced imprecision for the particular
type of vulnerabilities. This confirms that stack overrun is
challenging to detect statically.

Looking at the recall, however, revealed that quite some
of the perfect-precision numbers were a result of zero
recall—where there was no true vulnerability captured, the
precision was trivially perfect. Generally, the recall was low
with these detectors for many vulnerability categories.
CBMC had relatively the highest recall, intuitively because
of the general recall advantage of static analysis. Similarly,
ADDRESSSANITIZER had the second best recall since it
incorporates a static analysis phase. With the perfect precision
in general, this led to these two tools having the highest F1
accuracy as well. The reason that dynamic analysis did not
seem to bring accuracy benefits compared to static analysis
for vulnerability detection here is probably because these
vulnerabilities were purposely curated (to be detectable) for
static analysis tools as noted earlier (where dynamic detection
is not so much needed).

Overall, the effectiveness of these detectors varied widely:
66.7% to 100% precision, 0% to 100% recall, and 0% to
100% F1 per category, indicating most of the techniques
worked extremely well on certain kinds of vulnerabilities
yet quite poorly on others. A plausible reason for this
large variation is that the detection techniques tend to focus
purposely on particular kinds of vulnerabilities—detecting
a greater variety of vulnerabilities would be much more
challenging. The bottom row of the table shows the overall
effectiveness computed by treating the entire benchmark
suite as a whole: The two detectors with static analysis,
CBMC and ADDRESSSANITIZER, achieved the highest F1
accuracy (87.3% and 77.7%, respectively). VALGRIND was
the best-performing purely dynamic tool (62.4% F1), while
MEMORYSANITIZER performed the worst (40.5% F1).

B. RQ2: Efficiency

Table II lists the per-benchmark average time costs incurred
by each of the studied detectors, for each vulnerability
category (third to sixteenth rows) and over all the 520
benchmarks (last row). The format is similar to Table I, except

TABLE I: Effectiveness of the five compared memory vulnerability detectors, per category (size in parentheses) and overall
Vulnerability Category Recall Precision F1

Valgrind DrMemory Address
Sanitizer

Memory
Sanitizer CBMC Valgrind DrMemory Address

Sanitizer
Memory
Sanitizer CBMC Valgrind DrMemory Address

Sanitizer
Memory
Sanitizer CBMC

Dynamic Buffer Overrun (64) 100% 100% 100% 3.13% 100% 100% 100% 100% 100% 100% 100% 100% 100% 6.06% 100%
Dynamic Buffer Underrun (78) 92.31% 87.18% 61.54% 94.87% 100% 100% 100% 100% 100% 100% 96.00% 93.15% 76.19% 97.37% 100%

Static Buffer Overrun (108) 3.70% 3.70% 90.74% 3.70% 100% 100% 100% 100% 100% 100% 7.14% 7.14% 95.15% 7.14% 100%
Static Buffer Underrun (26) 0% 0% 61.54% 0% 100% 100% 100% 100% 100% 100% 0% 0% 76.19% 0% 100%

Stack Overflow (14) 14.29% 0% 85.71% 85.71% 0% 100% 100% 100% 100% 100% 25.00% 0% 92.31% 92.31% 0%
Stack Underrun (14) 85.71% 85.71% 100% 14.29% 57.14% 100% 100% 77.78% 100% 66.67% 92.31% 92.31% 87.50% 25.00% 61.54%

Invalid Memory Access
Already Freed Area (34) 82.35% 82.35% 82.35% 17.65% 58.82% 100% 100% 100% 100% 100% 90.32% 90.32% 90.32% 30.00% 74.07%

Cross Thread Stack Access (12) 0% 16.67% 0% 0% 0% 100% 100% 100% 100% 100% 0% 28.57% 0% 0% 0%
Double Release (12) 0% 0% 0% 0% 0% 100% 100% 100% 100% 100% 0% 0% 0% 0% 0%

Double Free (24) 91.67% 91.67% 91.67% 0% 100% 100% 100% 100% 100% 100% 95.65% 95.65% 95.65% 0% 100%
Free Non-Dynamically
Allocated Memory (32) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Free Null Pointer (28) 0% 0% 0% 0% 0% 100% 100% 100% 100% 100% 0% 0% 0% 0% 0%
Data Overflow (50) 0% 0% 0% 0% 60.00% 100% 100% 100% 100% 100% 0% 0% 0% 0% 75.00%

Data Underflow (24) 0% 0% 0% 0% 66.67% 100% 100% 100% 100% 100% 0% 0% 0% 0% 80.00%
All (520) 45.38% 44.62% 64.23% 25.38% 78.08% 100% 100% 98.82% 100% 99.02% 62.43% 61.70% 77.86% 40.49% 87.31%

TABLE II: Efficiency of the five compared memory vulnerability detectors, per category (size in parentheses) and overall
Vulnerability Category Positive Samples Negetive Samples

Directly Valgrind DrMemory Address
Sanitizer

Memory
Sanitizer CBMC Directly Valgrind DrMemory Address

Sanitizer
Memory
Sanitizer CBMC

Dynamic Buffer Overrun (64) <0.1ms 1,018.8ms 578.8ms 26.8ms 26.8ms 290.4ms <0.1ms 1,058.4ms 592.2ms 29.8ms 26.8ms 298.8ms
Dynamic Buffer Underrun (78) <0.1ms 1,019.2ms 575.0ms 25.6ms 30.2ms 362.6ms 0.2ms 1,052.0ms 577.2ms 29.4ms 27.2ms 343.8s

Static Buffer Overrun (108) <0.1ms 1,020.6ms 568.7ms 27.1ms 27.4ms 214.7ms <0.1ms 1,021.8ms 591.9ms 30.7ms 27.6ms 208.9s
Static Buffer Underrun (26) 2.5ms 934.1ms 506.1ms 29.8ms 27.8ms 139.4ms <0.1ms 1,019.4ms 626.1ms 30.8ms 27.2ms 139.7ms

Stack Overflow (14) <0.1ms 993.7ms 573.7ms 33.1ms 28.4ms 139.4ms <0.1ms 1,022.3ms 573.1ms 33.1ms 26.7s 2,0875.4ms
Stack Underrun (14) 0.6ms 1,022.9ms 4,948.5ms 26.9ms 30.7ms 21,775.4ms <0.1ms 1,029.7ms 669.7ms 28.0ms 28.4ms 1,187.4ms

Invalid Memory Access to
Already Freed Area (34) 0.2ms 1,023.1ms 572.0ms 26.8ms 28.1ms 366.6ms <0.1ms 1,084.9ms 575.1ms 32.0ms 27.8ms 350.1ms

Cross Thread Stack Access (12) <0.1ms 1128.6ms 614.7ms 32.0ms 30.3ms 250.0ms <0.1ms 1132.0ms 652.7ms 32.0ms 29.0ms 244.7ms
Double Release (12) <0.1ms 1,085.3ms 630.7ms 35.3ms 26.0ms 229.3ms 1.3ms 1,084.7ms 643.3ms 32.0ms 30.3ms 229.3ms

Double Free (24) 0.3ms 1,007.7ms 571.3ms 28.3ms 26.6ms 166.0ms 0.3ms 1,017.3ms 575.0ms 32.7ms 28.3ms 164.7ms
Free Non-Dynamically
Allocated Memory (32) <0.1ms 1,071.5ms 716.75ms 31.0ms 30.7ms 183.5ms <0.1ms 1,014.7ms 615.0ms 32.0ms 27.0ms 183.5ms

Free Null Pointer (28) <0.1ms 1,016.3ms 550.3ms 25.7ms 27.6ms 321.1ms <0.1ms 1,105.7ms 573.1ms 28.3ms 29.3ms 456.0ms
Data Overflow (50) <0.1ms 1,020.6ms 627.5ms 28.9ms 27.6ms 133.8ms <0.1ms 1,016.2ms 618.6ms 29.1ms 27.6ms 137.6ms

Data Underflow (24) 0.3ms 1,013.0ms 567.3ms 31.3ms 29.0ms 130.0ms 0.3ms 1,122.7ms 592.3ms 31.3ms 29.0ms 132.0ms

All (520) <0.1ms 1,021.3ms 702.5ms 28.2ms 28.1ms 822.4ms <0.1ms 1,047.6ms 597.8ms 30.4ms 28.2ms 829.8ms

TABLE III: Statistic significance and size of F1 accuracy
differences between each pair of the studied detectors

Pair of detectors p value effect size
VALGRIND-DRMEMORY 1 -0.071

VALGRIND-ADDRESSSANITIZER 0.281 0.071
VALGRIND-MEMORYSANITIZER 0.247 -0.143

VALGRIND-CBMC 0.236 0.214
DRMEMORY-ADDRESSSANITIZER 0.402 0
DRMEMORY-MEMORYSANITIZER 0.205 -0.214

DRMEMORY-CBMC 0.236 0.214
ADDRESSSANITIZER-MEMORYSANITIZER 0.035 -0.357

ADDRESSSANITIZER-CBMC 0.635 0.214
MEMORYSANITIZER-CBMC 0.032 0.571

for that we show the costs for positive and negative samples
separately—we intended to see if the presence/absence of
vulnerabilities was correlated with higher/lower analysis costs.
Each cost number included all relevant parts of the time
spent (e.g., recompiling the benchmark if necessary). To help
understand the run-time (slow-down) overheads incurred by
run-time tools, the table (second and eighth columns) also lists
the average original execution time per benchmark (Directly).

The numbers show that these detectors were generally
extremely fast against the benchmarks used, costing about
one second per benchmark in most cases. The reason is
likely because these benchmarks are mostly simple, short
programs—which also explains the negligible execution time
of the original programs (i.e., the Directly column). The most
costly cases (21 seconds), as highlighted in boldface, were
seen by CBMC against the stack underrun positive samples
and stack overflow negative samples. Our manual inspection
revealed that the reason was because the relevant benchmarks
include loops and recursions, which are expensive to analyze
statically. Two dynamic detectors, ADDRESSSANITIZER and
MEMORYSANITIZER, were peculiarly fast, mainly because of
the lightweight nature of their analysis when built on top of the
LLVM framework. The efficiency differences among the other

three detectors were small. Also, for any detector, there were
no significant differences in efficiency between positive and
negative samples, and there was no consistent correlation
between the efficiency and the sample being positive or
negative. On the other hand, the run-time overheads incurred
by dynamic tools were substantial in terms of slowdown (as
percentages), albeit not very much significant practically in
terms of the (small) absolute cost numbers.

C. RQ3: Comparison
The results of our two statistical analyses are shown

in Table III, where the cases with statistical significance
or large effect size are highlighted in boldface. The
numbers indicate that only CBMC was significantly more
accurate than MEMORYSANITIZER with a statistically large
difference in terms of the F1 measure. This is consistent
with the foregoing observation that CBMC had the
highest, while MEMORYSANITIZER had the lowest, accuracy
according to our effectiveness results (Table I. Between
MEMORYSANITIZER and ADDRESSSANITIZER, the accuracy
difference was significant but not large (only with a medium
effect size of 0.357): the negative sign means the accuracy
of the second was lower than that of the first in respective
pairs. In all other cases, the detectors contrasted were not
significantly different in vulnerability detection accuracy, with
respect to the benchmarks considered at least.

In sum, the only purely static detector was significantly
more accurate than the weakest purely dynamic detector.
This is again possibly a result of the fact that the benchmarks
were mainly designed for evaluating static analysis tools [21].

D. Case Studies

We have finished 13 of our case studies for understanding
the reasons behind the successes and failures of particular

detectors against particular categories of vulnerabilities. From
these case studies, we found that generally dynamic tools had
better performance on heap and stack vulnerabilities while
static tools performed better against vulnerabilities due to
syntactic coding errors. Due to space limit, we only elaborate
on one case below, which examines why VALGRIND had poor
recall on our static buffer overrun benchmarks.

1 void first ()
2 {
3 char buf[5];
4 buf[5] = 1; /*Tool should detect this line as error*/
5
6 }
7 void second ()
8 {
9 int buf[5];
10 int index;
11 index = rand();
12 buf[index] = 1; /*Tool should detect this line as error*/
13
14 }

Listing 1: Snippets of two static buffer overrun benchmarks.

Listing 1 shows part of two benchmarks in this category, of
which VALGRIND detected the vulnerability in the second but
did not in the first, although the first seems easier to detect. The
reason is because this detector, like DRMEMORY, is a purely
dynamic detector, thus it did not check the static buffer size
in code. Instead, it only checked whether the address being
visited was valid in the stack or heap. In the first benchmark,
buf[5] was still found as a valid memory block within the
stack of the program, thus the vulnerability was missed. In
the second, however, rand() returned a large number far
beyond the size of the valid stack region of the program,
thus the vulnerability was captured at runtime. Among the 52
positive samples in this category, only two were like the second
benchmark and all others like the first. Thus, only the two out
of 52 were successfully detected, hence the 3.7% recall.

IV. CONCLUSION AND FUTURE WORK

As part of an ongoing study, we evaluated five memory
vulnerability detectors against a public C/C++ benchmark
suite. We found that the static detector chosen performed
the best in terms of detection accuracy (mainly due to its
higher recall), while two dynamic detectors were faster than
others (due to the underlying framework’s efficiency). Yet
there were no statistically significant and large accuracy
differences between most of these detectors. By considering
more detectors and a much larger and more diverse set of
benchmarks (mainly real-world programs), we are expanding
our empirical study. We are also conducting more in-depth
case studies to obtain more generalizable understandings
about the reasons behind varied tool performance so as to
distill practical and actionable recommendations for future
vulnerability defense development.

V. ACKNOWLEDGMENTS

We thank the reviewers for their insightful feedback. This
work is supported in part by NSF grant CCF-1936522.

REFERENCES

[1] Tricentis, “Software fail watch: 5th edition,” Tricentis,
Tech. Rep., March 2017, https://www.tricentis.com/resources/
software-fail-watch-5th-edition/.

[2] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,”
IEEE Security & Privacy, vol. 3, no. 1, pp. 84–87, 2005.

[3] A. Austin, C. Holmgreen, and L. Williams, “A comparison of the
efficiency and effectiveness of vulnerability discovery techniques,” Info.
and Soft. Technology, vol. 55, no. 7, pp. 1279–1288, 2013.

[4] H. Kim, T.-H. Choi, S.-C. Jung, H.-C. Kim, O. Lee, and K.-G. Doh,
“Applying dataflow analysis to detecting software vulnerability,” in Intl.
Conf. on Advanced Communication Technology, 2008, pp. 255–258.

[5] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
Java applications with static analysis.” in USENIX Security Symposium,
vol. 14, 2005, pp. 18–18.

[6] W. Du and A. P. Mathur, “Vulnerability testing of software system using
fault injection,” Purdue University, Technique Report, pp. 98–02, 1998.

[7] B. Chess and J. West, “Dynamic taint propagation: Finding
vulnerabilities without attacking,” Information Security Technical
Report, vol. 13, no. 1, pp. 33–39, 2008.

[8] G. Jie, K. Xiao-Hui, and L. Qiang, “Survey on software vulnerability
analysis method based on machine learning,” in International
Conference on Data Science in Cyberspace, 2016, pp. 642–647.

[9] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACM Computing Surveys (CSUR), vol. 50, no. 4, p. 56, 2017.

[10] A. Austin and L. Williams, “One technique is not enough: A comparison
of vulnerability discovery techniques,” in Intl’ Symposium on Empirical
Software Engineering and Measurement, 2011, pp. 97–106.

[11] D. Pozza, R. Sisto, L. Durante, and A. Valenzano, “Comparing lexical
analysis tools for buffer overflow detection in network software,” in Intl’
Conf. on Communication Systems Soft. & Middleware, 2006, pp. 1–7.

[12] N. Antunes and M. Vieira, “Comparing the effectiveness of penetration
testing and static code analysis on the detection of SQL injection
vulnerabilities in web services,” in Pacific Rim International Symposium
on Dependable Computing, 2009, pp. 301–306.

[13] P. Li and B. Cui, “A comparative study on software vulnerability
static analysis techniques and tools,” in International Conference on
Information Theory and Information Security, 2010, pp. 521–524.

[14] R. Amankwah, P. K. Kudjo, and S. Y. Antwi, “Evaluation of software
vulnerability detection methods and tools: A review,” Intl’ Journal of
Computers and Applications, vol. 169, no. 8, pp. 22–27, 2017.

[15] P. Silberman and R. Johnson, “A comparison of buffer overflow
prevention implementations and weaknesses,” IDEFENSE, August, 2004.

[16] N. Antunes and M. Vieira, “On the metrics for benchmarking
vulnerability detection tools,” in DSN, 2015, pp. 505–516.

[17] ——, “Benchmarking vulnerability detection tools for web services,” in
International Conference on Web Services, 2010, pp. 203–210.

[18] A. Tajpour and M. J. zade Shooshtari, “Evaluation of SQL injection
detection and prevention techniques,” in Intl’ Conf. on Computational
Intelligence, Communication Systems and Networks, 2010, pp. 216–221.

[19] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web
vulnerability scanning tools for SQL injection and XSS attacks,” in
Pacific Rim Intl’ Symp. on dependable computing, 2007, pp. 365–372.

[20] A. Tajpour, M. Massrum, and M. Z. Heydari, “Comparison of SQL
injection detection and prevention techniques,” in Intl’ Conf. on
Education Technology and Computer, vol. 5, 2010, pp. V5–174.

[21] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” in International Symposium on Software
Reliability Engineering Workshops, 2015, pp. 12–15.

[22] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in PLDI, 2007, pp. 89–100.

[23] D. Bruening and Q. Zhao, “Practical memory checking with Dr.
Memory,” in CGO, 2011, pp. 213–223.

[24] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in USENIX Annual
Technical Conference, 2012, pp. 309–318.

[25] E. Stepanov and K. Serebryany, “MemorySanitizer: fast detector of
uninitialized memory use in C++,” in CGO, 2015, pp. 46–55.

[26] D. Kroening and M. Tautschnig, “CBMC–C bounded model checker,”
in TACAS, 2014, pp. 389–391.

[27] A. Rasool, “Which is the most vulnerable programming
language?” https://www.digitalinformationworld.com/2019/03/
searching-for-the-most-secure-programming-language.html, 2019.

[28] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, p. 75.

[29] R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, Probability and
Statistics for Engineers and Scientists. Prentice Hall, 2011.

[30] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 1996.

[31] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine,
“Exploring methods for evaluating group differences on the NSSE and
other surveys: Are the t-test and cohen’s d indices the most appropriate
choices,” in annual meeting of the Southern Association for Institutional
Research. Citeseer, 2006, pp. 1–51.

https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.digitalinformationworld.com/2019/03/searching-for-the-most-secure-programming-language.html
https://www.digitalinformationworld.com/2019/03/searching-for-the-most-secure-programming-language.html

	Introduction
	Methodology
	Results
	RQ1: Effectiveness
	RQ2: Efficiency
	RQ3: Comparison
	Case Studies

	Conclusion and Future Work
	Acknowledgments
	References

