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Abstract—We present the design and implementation of
TRACERJD, a toolkit devoted to dynamic dependence analysis
via fine-grained whole-program dependence tracing. TRACERJD
features a generic framework for efficient offline analysis of
dynamic dependencies, including those due to exception-driven
control flows. Underlying the framework is a hierarchical
trace indexing scheme by which TRACERJD maintains the
relationships among execution events at multiple levels of
granularity while capturing those events at runtime. Built on
this framework, several application tools are provided as well,
including a dynamic slicer and a performance profiler. These
example applications also demonstrate the flexibility and ease
with which a variety of client analyses can be built based on
the framework. We tested our toolkit on four Java subjects, for
which the results suggest promising efficiency of TRACER]JD for
its practical use in various dependence-based tasks.
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I. INTRODUCTION

Analyzing program dependencies is a fundamental
approach to program understanding, testing, debugging, and a
wide range of other software evolution tasks [1]. Compared to
static dependence analysis, which attempts to model program
behavior for all possible program inputs and, thus, tends to be
overly conservative, dynamic dependence analysis is usually
more precise, as it focuses on specific sets of inputs used
by developers in concrete task contexts. In a typical usage
scenario, dynamic dependence analysis finds the subset of a
program dependent on a given point of that program with
respect to the concrete set of executions used by the analysis.

Various techniques have been proposed to this date for
dynamic program dependence analysis (e.g., [2]-[5]), for
which a common approach is to collect program execution
traces such that dynamic dependence information can be later
retrieved from the traces after the execution. For that purpose,
many algorithms and tools exist, serving system diagnosis [6],
error detection [7], [8], fault localization [9]-[12], and program
understanding in general [13]-[15].

However, such solutions target either high-level system
states (e.g., [6], [7]) and/or coarse runtime conditions
(e.g., [14], [15]), which do not capture fine-grained dependence
information, or particular tasks concerning specific program
points of interest such as dynamic slicing criteria (e.g., [9],
[10], [12], [16], [17]), which do not provide common dynamic
information to support a broad range of dependence-based
applications. More general-purpose traces that could be used
for computing dynamic dependencies also exist [4], [5],
yet they either lack direct tool supports for dependence
computation or would require special compilation or runtime
environments to do so, for Java programs in particular. A
few dependence-analysis tools are available (e.g., [18], [19]),
which, however, aim at static dependence analyses only.

Therefore, in this paper, we present TRACERJD, a
fine-grained whole-program tracing tool devoted to dynamic
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dependence analysis of Java software, which runs on a standard
JVM, thus it is widely applicable to different platforms.
The core of TRACERJD consists of dedicated facilities for
tracing program states at variable level and also execution
events at method and statement levels, while featuring a
scheme of structured logging and hierarchical trace indexing
that facilitates efficient offline trace analysis. The tracing
framework of TRACERJD takes a program and its set of inputs,
performs a one-time whole-program analysis, and then logs
sufficient information that enables retrieving data and control
dependencies from traces generated at runtime, including those
that result from exception-driven control flows [20].

On top of this framework, TRACERJD comes with also two
major example application tools, a precise backward dynamic
slicer [2] and a statement-instance-level performance profiler,
that demonstrate the flexibility and ease with which various
client analyses can be built on the framework. We implemented
the toolkit in Java and applied it to several open-source
Java subjects.! Our empirical results show that TRACERJD
incurs reasonable time and space costs for the entire tracing
process and causes relatively small execution slowdowns. The
performance of the dynamic slicer also suggests promising
efficiency of client analyses of the tracing framework.

II. TRACERJD ARCHITECTURE

Figure 1 depicts the architecture of TRACERJD, which
consists of three major components that correspond to the
three TRACERJD phases: static analysis, runtime tracing,
and trace analysis. In addition, the connections among these
components show the workflow process of this tool: It
takes the input program P under analysis and its input
set (e.g., test suite) 7' for the first and second phases,
respectively, and outputs dynamic dependence information
using the dependence querying interface in the last phase, on
demand of client requests for application analyses.

The first phase (static analysis) inputs the Java bytecode
of P, instruments P with probes for fine-grained logging,
and outputs primarily the instrumented version P’ of P.
Additional outputs of this phase (auxiliary static data) include
the interprocedural control dependence graph (ICDG) of
P, a variable index, and a statement index. The static
analysis is built on the Soot framework [18], which provides
low-level bytecode parsing, intermediate representation (IR),
and manipulation. In particular, TRACERJD uses the Jimple
IR for the logging instrumentation. In the rest of this paper,
We use statement to refer to a Jimple statement unless special
notes are given. The ICDG construction step can be opted out
by users who focus on data dependence analysis only, and
generation of the two auxiliary indexes can be skipped too if
users do not need them for client analyses.

'Downloads of TRACERID and all supporting materials (usage demo and
documentation) are available at http://sourceforge.net/projects/tracerjd/.
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Fig. 1: The architecture of TRACERJD, which shows the composition and workflow process of our tracing framework.

The second phase (runtime tracing) aims to collect
fine-grained dependence traces produced by the logging probes
instrumented in the first phase, by running P’ on input
set T. For efficient trace analysis, this phase features a
structured logging strategy which uses separate monitors
dedicated to method-, statement-, and variable-level execution
events to collect corresponding levels of runtime information,
followed by a hierarchical trace indexing scheme which
creates and maintains the hierarchical relationships among the
multiple-level events. The output of this phase is the execution
traces of P’ produced and compressed during runtime.

The last phase (trace analysis) starts with deserializing,
decompressing, and parsing the traces produced in the previous
phase. On top of this trace-loading layer, the dependence
querying interface consists of a group of common subroutines
that retrieve dynamic dependencies from the loaded traces to
be utilized by client analyses. An additional input to this layer
is the (optional) auxiliary static data, where more dependence
querying subroutines (extended querying interface) can be
added depending on further application needs. On top of this
trace-analysis phase is the example client analyses that are also
included in the TRACERJD toolkit, for both providing readily
usable tools and illustrating how to build various applications
atop the core tracing framework. The dynamic slicer and
performance profiler, and possible other application tools to
be created by users, are not parts of the framework itself.

ITII. STATIC ANALYSIS
The main step of the static analysis is the instrumentation
of probes for fine-grained logging, which directly effects
the feasibility and complexity of later dynamic dependence
querying, and the performance of the entire framework.

A. Logging Instrumentation

With TRACERJD, we aim at an efficient trace-based
fine-grained dynamic dependence analysis framework. To that
end, we log events at three structural levels: method, statement,
and variable. Accordingly, we instrument the input program
with three major categories of probes, each exclusively logging
events at one of the three structural levels.

Method event probes monitor method entrance and exit
events, for which three types of exit point are considered:
normal return statement, entrance of catch block (if any),
and entrance of finally block (if any); for each method,
exactly one entrance-event probe is inserted, while each exit
point is instrumented with an exit-event probe. Statement
event probes monitor the coverage events of statements,
each instrumented for one statement. Variable event probes
monitor detailed information of all variables defined or used

at a statement, each instrumented for one definition or use;
the per-variable information logged includes (1) variable index
with a sign indicating it being a definition or use, (2) object
address of array/field base (for heap variables only), and (3)
array index (for array elements only). Optionally, the variable
information includes also variable values computed at runtime.
Since the correctness of subsequent dependence retrieval
relies on the ordering of these events, the event probes must
be inserted in an order that observes the semantics of those
events at runtime. Our experience of ensuring such ordering
with respect to instrumentation is to insert the probes such that
(1) for variable events, a use event u happens always before
the event of definition that depends on w; (2) for statement
events, the coverage event happens immediately before the
statement execution; and (3) for method events, all entrance
and exit events happen immediately before method entrances
and exits, respectively. To ensure that all exit events are
captured, we wrap the entire body of each method with a
try-catch block to catch the exit events due to any uncaught
throwables [20]. Finally, no instrumentation should cause the
instrumented program to fail the JVM bytecode verifier.

B. ICDG Construction

To reduce the size of the instrumented code and simplify
the retrieval of dynamic interprocedural control dependencies
(ICDs) during trace analysis, we chose to create the ICDG in
the static-analysis phase instead of logging control-dependence
related events and then entirely rely on the traces to
recover such dependencies. Although the ICDG is static and
conservative, dynamic ICDs can be precisely retrieved later
using this ICDG with statement events from the traces.

To build the ICDG, we first create the control dependence
graph (CDG) for each method based on the exceptional control
flow graph (ExCFG) of Soot [18] and then transitively compute
ICDs among all methods from the per-method CDGs [21]. In
addition, we adapted multi-headed and multi-tailed ExCFGs
by adding virtual start and end nodes joining all head and
tail nodes, respectively. Also, for programs containing infinite
loops (e.g., service daemons) which result in tailless ExCFGs,
we treated all jumping statements for the outermost infinite
loops as exit nodes. These treatments enabled us to directly
apply existing control-dependence computation algorithms.

For space efficiency, we store the ICDG using bitvectors to
encode the connections among ICD sources and targets, which
are serialized to a disk file as are the traces. Finally, the two
mappings (index files), from integers (as indexes) to method
signatures and statement texts, respectively, are serialized to
separate files as the auxiliary static data. These indexes are
used in traces mainly for efficiency reasons.



IV. RUNTIME TRACING
To facilitate dynamic dependence querying during trace
analysis, we build a hierarchical storage of traces at runtime
with a structured logging strategy.

A. Structured Logging

Besides the specific order of event-logging probes
considered during the instrumentation, additional steps need
be taken in runtime monitors of those events to ensure correct
ordering of all monitored events in the traces. To that end, we
assign a unique timestamp to each event using a global time
counter that starts from one and increases by one on each event
occurrence. Then, we use dedicated runtime monitors to log
events at the three structural levels as described before.

This logging strategy works by catching the three types
of events with the corresponding event probes instrumented
during static analysis. The rationale is that the inclusion
relations among methods, statements, and variables drive those
probes to log corresponding events in a structured manner,
which directly supports the generation of hierarchical traces.

B. Hierarchical Trace Indexing

Hierarchical traces are produced from the structured
logging with necessary communications among the separate
monitors. Additional data structures are used to support such
communications, including variables that keep track of method
contexts (for statement events) and statement contexts (for
variable events), and the global time counter.

The trace hierarchy realizes the aforementioned inclusion
relations in the traces in that (1) statement traces are nested
within the traces of their enclosing method events (preceded
by the entrance and succeeded by the exit), and (2) variable
traces are nested within the traces of their hosting statement
events (preceded by the coverage event of the hosting statement
and succeeded by that of the immediate next statement).
A hierarchical global mapping then enables the hierarchical
indexing of the traces: (1) all statement traces nested within the
events of a method are indexed by that method; (2) all variable
traces nested within the coverage events of two consecutively
executed statements are indexed by the first statement.

The major benefit of the hierarchical trace storage and
indexing lies in the quick retrieval of those inclusion relations
to be leveraged by trace analysis for efficient dependence
querying and other relevant applications. To save space costs,
traces are compressed, using the legacy GZipIOStream APIs
in the Java SDK, before serialized to disk files.

V. TRACE ANALYSIS

The first step in the trace-analysis phase is to load (and
decompress) both traces and the auxiliary static data. By
default, ICDG is loaded to support querying of both data and
control dependencies from the traces, as are the method and
statement indexes. At the core of this phase is the dependence
querying interface built as part of the tracing framework.
Through the dependence querying subroutines of this layer,
client analyses can focus on application needs without dealing
with low-level details about the execution traces.

The built-in querying interface focuses on querying data,
and control if opted, dependencies. Specifically, the present
interface includes subroutines for querying: (1) method
activations (instances of entrance-exit event pairs) of a method
and all instances of a statement, (2) all uses and definitions
of a variable, at a statement instance, or within a method

activation, (3) the last definition of a use and the nearest use
of a definition, (4) the last control dependence of a statement
instance, and (5) all uses of a definition and all definitions of
a use. Other helper subroutines used for looking up method-,
statement-, and variable-level dynamic information are also
included. Based on the hierarchical trace structure and indexing
created in the runtime, these and extended subroutines are, or
can be, developed with great ease, mostly just traversing along
the trace hierarchy to look up and collect, or even directly
access, needed information. Figure 7 shows a screenshot of
running some of these subroutines on an example program.

VI. APPLICATIONS
On top of the dependence querying layer of the core tracing
framework, various applications can be built. We describe here
two major examples of such applications contained in the
present TRACERJD toolkit.

A. Dynamic Slicing

Dynamic slicing is a typical form of fine-grained dynamic
dependence analysis. Particularly, we developed a backward
dynamic slicer (closest to the NPwoC algorithm in [2]) on
the basis of TRACERJD. Given a statement s, this client
analysis computes precise backward dynamic slices of all
variables used at s for all instances of s, and then gives
the union of all such slices as the eventual slice of s.
Alternatively, dynamic slice for a specific variable with respect
to a particular statement instance can be directly obtained as
well. The implementation was straightforward when using the
dependence analysis subroutines offered by TRACERJD for
querying last definitions and last control dependencies.

Our dynamic slicer provides an alternative to existing
such tools for Java [16], [17], yet is not subjected to
platform constraints as the one in [16]. More important, as we
mentioned earlier, existing similar tools are usually designed
for particular tasks only, thus they require considerable amount
of efforts to be applied to other related applications. For
example, revising the backward dynamic slicer JavaSlicer [17]
to compute forward dynamic slices would need redo more than
half of its current implementation (as we confirmed with its
lead developer). In contrast, implementing a forward dynamic
slicer on TRACERJD becomes much easier if using the
trace-analysis interface for querying dependencies forwardly.
Following this way, we are developing such a forward slicer.

B. Performance Profiling

Beyond dependence analysis, TRACERJD can also be
employed for other types of tasks given slight extensions.
By recording the time elapsed between two consecutive
statement events, we have built a statement-instance-level
performance profiler that measures the execution time of
specified statements. This was easily done by just adding
a couple more computation steps in the statement-event
monitor of TRACERJD, where the runtime tracing component
offers an option for logging such additional data. Then, in
the trace-analysis phase, performance statistics are computed
from the per-statement-instance execution time. Some other
statement-level, or method-level, profiling tool can be readily
created too. For example, a statement coverage reporter can
just collect all executed statements and then compute the
coverage using the auxiliary statement index generated in the
static-analysis phase (to get the total statements). In fact, this
reporter has already been included in the TRACERJID toolkit.



VII. EMPIRICAL STUDY

We tested our toolkit on four Java programs with test suites
obtained from SIR [22], and used the first version of each,
on a Linux workstation with a Quad-core Intel Core i5-2400
3.10GHz processor and 8GB DDR2 RAM. Table I summarizes
the characteristics of these subjects in its left four columns,
including the number of non-comment non-blank lines of code
(LOC) and number of inputs (7ests).

TABLE I: EXPERIMENTAL SUBJECTS AND SLICE RESULTS

Subject Description LOC | Tests || #Slices Sl?:: :lz e slicli\ﬁ;ag me

Schedulel priority scheduler 290 | 2,650 10 45% 0.8s

NanoXML XML parser 3,521| 214 10 8% 0.3s

XML-security || Encryption library |22,361 92 10 3% 8.1s

JMeter Performance gauge | 35,547 79 10 2% 10s
A. Efficiency

For each subject, we measured the time and space costs
of each TRACERJD phase separately. Figure 2 shows that
TRACERJD costs about 5 minutes at most for the studied
subjects, with expectedly higher costs incurred with larger
subjects. Also, the space costs by the auxiliary static data
produced during static analysis are quite small, no more than
2.1MB for any subject, as shown in Figure 3. As the space cost
of the instrumentation step, the bytecode size growth depicted
in Figure 4 shows that mostly the instrumented programs are
about two to three times larger than the original ones.

The runtime performance was gauged through the
execution slowdowns of the instrumented programs. As can be
seen in Figure 5, the execution tracing of TRACERJD causes
a slowdown rate of 10 to 13 in most cases (versus a factor of
19 slowdown reported in [10] which performs online dynamic
dependence analysis). The space costs by execution traces are
generally small, according to the trace sizes shown in Figure 6.
The largest trace size was seen by Schedulel, which has far
larger number of inputs utilized than the other three subjects.

As an example of the efficiency of client analyses, the last
two columns of Table I show the performance of the backward
dynamic slicer built atop TRACERIJD, for 10 randomly selected
inputs and slicing criteria for each subject. The slicing time
means (last column) show that the dynamic slices were
computed efficiently, with mostly larger subjects incurring
longer time. The average slice sizes (the fifth column),
expressed as the percentage of the number of statements in
slices over the total statements in the subject, show that the
dynamic slices computed were not trivial.

In all, our empirical results, at least for the four non-trivial
subjects of different types and sizes, show that the performance
of TRACERJD and its application analyses seems to be
reasonable for practical uses, although we cannot generalize
this conclusion based on results of this small-scale study.

B. Limitations

While the results above are promising, the subjects and
inputs used here may not be representative of all those
in practice. Since the framework performs whole-program
instrumentation and fine-grained tracing, for programs with
inputs that lead to very long executions, TRACERJD can face
efficiency challenges, especially in the runtime phase and
probably in trace-analysis phase as well. Another limitation
of TRACERJD is that its current implementation does
not fully support concurrent (e.g., multi-threaded) program
executions: Each thread or process needs be traced separately,

and dependencies among threads or processes may not be
accurately retrieved from concurrent-execution traces.

VIII. CONCLUSION

We presented a generic tracing toolkit TRACERJD devoted
to fine-grained dynamic dependence analysis, which is a
fundamental technique used in many software analysis and
evolution tasks. The entire toolkit comes with several
application tools that can be readily used and that demonstrate
how client analyses can be flexibly built on the core tracing
framework, while the framework itself can be utilized to
develop a variety of applications, especially dependence-based
ones. Our empirical results show that TRACERJD incurs
reasonable overheads for tracing and client analyses, thus it can
be practically useful. The immediate next step for TRACERJD
is to build its full support for concurrent program executions.
We also plan to optimize the core tracing framework to deal
with large and long-running programs more efficiently. Finally,
it would be also of interest to extend the framework for partial
tracing—instrumenting to trace selective parts of the program
or execution segments. TRACERJD is open source, so it can
be used for research purposes as well.
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Fig. 2: Static analysis time costs of TRACERJD for the
four subjects listed on the x-axis, where the y-axis indicates
the computation time in seconds of the entire static-analysis
phase. For example, the static analysis took 15.1 seconds on
NanoXML. The data shows that the static analysis time that
TRACERJD incurs tends to grow with the subject size, yet the
largest such cost is about 5 minutes only. Note that for one
program version, this cost needs be incurred only once for all
possible runtime inputs and dependence queries subsequently.
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Fig. 5: Runtime overheads of TRACERJD for the four
subjects shown on the x-axis, where the y-axis represents the
factors of slowdown of the instrumented programs compared
to the original ones. For example, the execution time of
the instrumented code is 12 times that of the original for
Schedulel. JMeter had a very small slowdown possibly due to
its test inputs leading to short executions (i.e., having relatively
low coverage), which can also be seen from its small trace size
compared to the other three subjects (see Figure 6).
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size in MB. For example, the auxiliary data generated for
XML-security is 1.2MB, including the ICDG, statement index,
and variable index. The result suggests that TRACERJD tends
to incur higher space costs for larger programs, similar to the
trend in the static analysis time costs above. Yet, the costs here
are almost all negligible for today’s storage resources.
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Fig. 4: Bytecode size growth caused by TRACERJD during
the static-analysis phase for the four subjects shown on the
x-axis, where the y-axis shows the factor of growth per subject
before and after instrumentation. For example, the bytecode
size of XML-security grows to 3.2 times the original program
bytecode size after TRACERJD instrumentation. As expected,
mostly the larger programs came with higher such growth.

Fig. 6: Sizes of trace data produced during the runtime-tracing
phase of TRACERIJD for the four subjects listed on the z-axis,
where the y-axis represents the total trace sizes in MB.
For example, the size of all execution traces generated for
NanoXML (for its totally 214 inputs) is 36.1MB.

##44# Testing result from input no. 89

=========== Method Activation Querying Test ==========

All activations of method Id=2, name=<ScheduleClass: void _main(ja
enter at ts=3 and exit at ts=328

=========== Last Definition Querying Test ==========
last def of var varid=-73,vname=$r7,ts=635840 at 102"1 :
varid=73, vname=$r7,t5=635839 at 101 ts=7

=========== All Uses of Definition Querying Test ==========

uses of the def of var varid=76,vname=r4,ts=635847 at 105°1 :
varid=-76, vname=r4&AP%1@scanFloat, ts=637131 at 154 ts=695
varid=-76,vname=r4, ts=637135 at 155 ts=696
varid=-76,vname=r4&AP%sl@scanFloat, ts=637824 at 154 ts=1023
varid=-76,vname=r4,ts=637828 at 155 ts=1024
varid=-76, vname=r4&AP%sl@scanfloat, ts=637981 at 159 ts=1096
varid=-76,vname=r4,ts=637999 at 168 ts=1102

=========== [ast (D Querying Test ==========
last cd of 18371:
statement 181 ts=689

=========== ALl (D Targets Querying Test ==========
CD targets of 173"1:

statement 174 ts=639
Fig. 7: A screenshot of running sample dynamic dependence
querying subroutines on an example program (Schedulel) with
respect to its one input, including subroutines querying method
activations, the last definition of a use, all uses of a definition,
the last control dependence of a statement instance, and all
control dependents of a statement instance.



	Introduction
	TracerJD Architecture
	Static Analysis
	Logging Instrumentation
	ICDG Construction

	Runtime Tracing
	Structured Logging
	Hierarchical Trace Indexing

	Trace Analysis
	Applications
	Dynamic Slicing
	Performance Profiling

	Empirical Study
	Efficiency
	Limitations

	Conclusion
	Acknowledgments
	References

