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Abstract

Software is more than just a collection of individual entities (e.g., components, statements). The
behavior of software is the result of the interactions among those entities. To analyze and improve
the functional behavior of software for software reliability and engineering tasks such as testing,
debugging, and evolution, we need dependence analysis to identify which entities affect which other
entities, and in which ways.

In this article, we briefly review classical concepts and applications of dependence analysis and
we present new directions and results on dependence quantification and abstraction, which extend
the utility of classical dependence analysis for modern software.

1 Introduction

Software defects have enormous economical and human costs for our modern society, which
increasingly depends on software. Defects can affect critical qualities of software and informa-
tion systems such as correctness, reliability, security, and safety. Developers, however, struggle
daily with market pressures, resource constraints, and increasing complexity, all of which limits
their ability to detect and fix serious software defects. Moreover, modern software evolves (i.e., it
changes constantly), which adds a new dimension of complexity to software assurance tasks. For
example, changing the type of a collection of items from a set to a list might lead to undesired
duplicate items. For another example, adding minimum-age constraints to a banking system might
prevent children from monitoring their accounts even if only parents can withdraw funds.

To ensure the reliability of a version or series of versions of the software, developers create test
suites to automate its testing. When a test case fails (e.g., the system crashes or allows unauthorized
access), developers perform debugging to identify and fix the underlying defect. This test-and-
debug process continues for each new version that is produced as the software evolves. Each such
version is, in fact, the result of a change process. Because software entities interact and affect
each other, before making any change, developers must understand the impacts and risks of their
proposed changes and take appropriate actions (e.g., adapt impacted entities, update the test suite).

These testing, debugging, and evolution tasks in real-world software are far from trivial. To
complete these tasks effectively and timely, automated support is crucial. Program-analysis tech-
niques and, in particular, dependence analysis [7], have arisen to automatically identify relation-
ships among software entities (e.g., components, methods, statements) and to reason about those
relationships. Dependence analysis underlies most white-box testing techniques [9] as well as
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(semi-)automated debugging [14] and change-impact analysis [2]. Thus, dependence analysis is
crucial for a large class of software-engineering and assurance activities.

For example, it is possible to identify the defect that causes a sensor to output an erroneous value
v because that value is computed by (i.e., is data dependent on) a statement s which, while correct,
executes when decided by (i.e., is control dependent on) a condition ¢ that compares two tempera-
ture values which are in different units, making c the source of the defect. For this example, testing
would exercise these dependencies [9] by making c lead to the execution of s, which affects the
output v whose value is not the one expected. Then, debugging traverses those dependencies back-
wards [14] from the output v until identifying c as the cause (unit mismatch). When preparing to fix
this defect and make other changes, impact analysis [2] would identify which code, such as other
computations also dependent on ¢, might be affected. Impacted code would have to be inspected
and also changed if necessary. Finally, the interactions among changes should be tested [10].

Data and control dependencies, however, do not capture all aspects of the interactions among
software entities. Remarkably, classical analyses do not indicate under which program states
a bug or change propagates its effects—they only indicate which dependencies they propagate
through [11]. Although other types of dependencies, such as structural (e.g., call graphs) and
socio-technical (e.g., developers and components) [13], are used to model relationships in software
projects at higher levels of abstraction to capture distinct information, the essential information they
convey is still whether entities depend on other entities, but not zow. Moreover, at abstract levels,
commonly-used structures such as call graphs only represent control flow rather than behavioral
dependencies: a method that calls another method might or might not affect its behavior.

To overcome these limitations of classical dependence analysis, two directions have emerged
recently which complement and enrich the information given by those analyses: information car-
ried by dependencies describing or quantifying the states in which they propagate effects [9,12,15]
and higher-level behavioral definitions of dependencies that supersede simpler control-flow rela-
tionships [4, 5]. For software evolution, the first direction identifies the exact conditions on the
program state under which a change propagates its effects through sequences of dependencies [9].
Because executing sequences of dependencies is not enough to guarantee that the effects of changes
will be observed, these conditions are needed. In this same direction, as a more scalable alternative
to computing and monitoring complex state conditions, a newer trend is to quantify dependencies
with the probabilities that the effects of bugs or changes propagate through them [12, 15].

The second recent direction addresses the imprecision of method-level structural dependence
analyses [1] which are based on execution orders and scales better than statement-level analyses.
Studies for the dynamic (i.e,, execution-based) form of this analysis have identified a large degree
of imprecision in these traditional techniques [5]. Consequently, a new technique was developed
which uses behavioral definitions of method-level dependencies based on data- and control-flow
analysis. Based on initial results and further ongoing research, the new technique appears to triple
the precision of classical results without significant increases in cost [4], to make method-level
dependence analysis a truly cost-effective alternative to statement-level analysis.

2 C(Classical Dependence Analysis

This section reviews core concepts of classical dependence analysis and illustrates these con-
cepts using the example program of Figure 1. In this example, program P takes a boolean z and
an integer w as inputs, initializes local variables x and y, conditionally increments x based on z,
updates y in a loop controlled by x, and finally prints the value of y. The graph on the right shows
the dependence structure of this program, as explained next.
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Figure 1. Example program and its program dependence graph (PDG).

2.1 Syntactic Dependencies

Syntactic program dependencies [7] are derived directly from the program’s syntax. These de-
pendencies are classified as control or data dependencies. A statement s; is control dependent on
a statement so if a branching decision at so determines whether s; necessarily executes. In Fig-
ure 1, for example, statement 4 is control dependent on statement 3 because the decision taken at 3
determines whether statement 4 executes or not.

A statement s; is data dependent on a statement s if a variable v defined (written) at so might be
used (read) at s and there is a definition-clear path from ss to s in the program for v (i.e., a path
that does not re-define v). For example, in Figure 1, statement 8 is data dependent on statement 7
because 7 defines y, 8 uses y, and there is a path (7,5,8) that does not re-define y after 7 in the last
iteration of the loop. Statement 8 is also data dependent on 2 because an execution might not enter
the loop (the loop re-defines y at 7).

The parameters z and w at the entry line of P are inputs and thus are not data dependent on any
statement. However, these parameters are treated as definitions of z and w. Thus, the statements 1
and 3, which use those variables, are data dependent on the entry of P.

On the right, Figure 1 shows the program dependence graph (PDG) of P. PDGs and their in-
terprocedural (all-functions) extensions depict the dependence structure of entire programs. In the
figure, the nodes are the statements of the program (1 to 8) and two special nodes: run which
represents the decision of executing the program and entry for the entry of P where the parameters
are defined. Solid edges represent control dependencies labeled with the corresponding control
decision (e.g., T or F). The solid edges T from run represent the consequences of deciding to run
P. Dashed edges represent data dependencies and are labeled with the corresponding variables.

2.2 Semantic Dependencies

Semantic dependencies represent the actual behaviors that the program can exhibit. Syntactic
dependencies, in contrast, can only (over-)approximate those behaviors because a sequence of data
and control dependencies between two statements is a necessary but not sufficient condition for
those statements to be semantically dependent. Informally, a statement s is semantically dependent
on a statement ¢ if there is any change that can be made to ¢ that affects the behavior of s.

For example, in Figure 1, the statements in the loop (5, 6, and 7) are semantically dependent
on statements 1, 2, 3, and 4 because the latter could be changed so that the execution of the loop
changes (e.g., by iterating more or fewer times) or the state of the variables computed in the loop



(x and y) changes. In this case, the semantic dependencies of the loop statements coincide with
their direct and transitive syntactic dependencies—as represented by the PDG.

However, for this same example, if w is guaranteed to be always negative (e.g., P is a function in
a larger program whose only caller passes -1 for w), the loop head (statement 5) will always behave
in the same way by evaluating to false and the loop body (statements 6 and 7) will never execute.
In that case, despite being syntactically dependent on statements 1-4, the loop statements 5—7 are
not semantically dependent on 1-4.

This case illustrates the caveats of classical dependence analysis, which in is most precise form
is based on syntactic (control and data) dependencies. Unfortunately, computing semantic depen-
dencies is an undecidable problem [7]. In between these two types of dependencies, however, there
is room for incorporating state information not captured by classical data- and control-dependence
analysis, as discussed in the next sections.

3 Dependence Quantification

Recently, to address the limitations of classical dependence analysis, we introduced the concept
of dependence quantification [12]. This approach enriches dependencies by assigning them quan-
tities that represent properties such as likelihood or strength. Such quantities denote the relative
relevance of dependencies in programs, which help users and tools focus their attention first on the
dependencies that—likely—matter the most. Quantification has been found to effectively direct
users first to the areas most affected by a change [3] or most likely to contain bugs [15].

3.1 Example

Consider the code fragment in Figure 2 for finding tangents between circles. The forward static
slice (transitive syntactic dependencies) from c at line 2 contains lines 2—11, which suggests that
they might be affected by c. However, c at line 2 strongly affects cxc at line 3 but less strongly
affects the branching decision in that line—variations in ¢ may or may not flip the branch taken.
Therefore, because ¢ may or may not affect this decision, the remaining lines are “less affected”
than lines 2 and 3. Lines 6-11, however, also use the value of ¢, which makes them “more affected”
than lines 4 and 5 (but still less affected than lines 2 and 3).

Quantification identifies these differences among lines in the slice. This kinds of approach can
give, for example, a score of 1.0 to lines 2 and 3, 0.5 to lines 4 and 5, and an intermediate value
0.75 to the rest. The actual scores for these lines will depend on the specific technique used to
quantify the slice. We present two such techniques next.

3.2 Static Analysis

Static quantification of program slices (i.e., transitive syntactic dependencies) can be achieved
by analyzing the control- and data-flow structure of programs. The advantages of this approach to
quantification are that no execution data is required and the results represent all behaviors of the
program. The latter advantage is quite attractive for tasks like testing because, no matter how many
test cases have been created, this approach points users to behaviors not tested yet.

For this static approach to dependence quantification, we used two key insights:

1. Some data dependencies are less likely to occur than others because the conditions to reach
the target from the source of the dependence vary.



for (signl = +1; signl >= -1; signl —-= 2) {
c = (rl - signl = r2) / d;
if (c*c <= 1.0) {
h = sqgrt (d+«d - pow(rl-signl=*r2),2)) / d;
for (sign2=+1; sign2>=-1; sign2-=2) {
nx = vx % ¢ — sign2 x h * vy;
ny = vy % ¢ + sign2 x h * vx;
print x1 rl x nx;
print yl rl * ny;
print x2 signl x r2 x nx;
print y2 signl * r2 * ny; 133
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Figure 2. Excerpt from a program that computes the tangents among circles.

2. Data dependencies are more likely to propagate information than control dependencies, yet
control dependencies should not be ignored either as in classical analyses.

Using the first insight, a reachability and alias analysis of the control flow of the program have
been created. This analysis estimates the probability that the target of a dependence is reached
from its source and that both points access the same memory location. Using the second insight,
the approach performs another reachability analysis, this time on the dependence graph, that gives
a lower but non-zero score to control dependencies.

We estimate the probability that a statement a affects a statement b by computing two compo-
nents: (1) the probability that a sequence of dependencies from a to b occurs when the program
executes and (2) the probability that information flows through that sequence. We present more
details of this static approach and initial positive results in [11].

3.3 Dynamic Analysis for Quantification

Given a representative test suite, we can quantify slices via differential execution analysis [10]
and sensitivity analysis [8].

3.3.1 Differential Execution Analysis

Differential execution analysis (DEA) is designed specifically for forward slicing from changes to
identify the runtime semantic dependencies [7] of statements on changes. Semantic dependencies
tell which statements are truly affected by which other statements or changes. Although finding
semantic dependencies is an undecidable problem, DEA detects such dependencies on changes
when they occur at runtime to under-approximate the set of semantic dependencies in the program.
Therefore, DEA does not guarantee 100% recall of semantic dependencies but it achieves 100%
precision. This is much better than what dynamic slicing normally achieves [6, 10].

DEA works by executing a program before and after the change, collecting the augmented exe-
cution history [10] of each execution, and then comparing both histories. The execution history of
a program for an input is the sequence of statements executed for that input. The augmented exe-
cution history is the execution history annotated with the values read and written by each statement
occurrence. The differences between two such histories reveal which statements had their occur-
rences or values altered by a change—the conditions for semantic dependence. A formal definition
of DEA is given in [10].



3.3.2 Sensitivity Analysis

DEA can be used to quantify static forward slices when the change is known—for post-change
impact analysis. To do this, a DEA-based quantification technique can execute the program repeat-
edly with and without the change for many inputs and find, for each statement, the frequency with
which it is impacted by the change. If the inputs are sufficiently representative of the program’s
behavior, we can use these frequencies as the quantities for the statements in a slice.

More generally, however, the specifics of a change might not be known when a user asks for
the impacts of modifying a statement or when the slicing task does not involve a change (e.g.,
debugging, information-flow analysis). For such situations, we created SENSA, a new sensitivity-
analysis technique and tool for slice quantification and other applications [3]. Sensitivity analysis
is used in many fields to determine how modifications to some aspect of a system (e.g., an input)
affect other aspects of that system (e.g., the outputs) [8].

We designed SENSA as a generic modifier of program states at given locations, such as changes
or failing points. SENSA inputs a program P, a test suite 7", and a statement c. For each test case ¢
in T', SENSA executes ¢ repeatedly, replaces each time the value(s) computed by ¢ with a different
value, and uses DEA to find which statements were affected by these modifications. With this
information for all test cases in T, SENSA computes the sensitivity of each statement s in P to the
behavior of ¢ by measuring the frequency with which s is affected by c. These frequencies are the
degree of dependence on statement c of all statements s in P, given T'.

For a forward static slice from statement c in program P, SENSA uses 7' to quantify the depen-
dence on c of the statements in that slice. For a backward static slice from s, SENSA can be used
in a similar fashion to quantify the dependence of s on selected statements ¢ from that slice.

SENSA is highly configurable. In addition to parameters such as the number of times to re-run
each test case with a different modification (the default is 20), SENSA lets users choose among
built-in modification strategies for picking new values for ¢ at runtime. Furthermore, users can
add their own strategies. SENSA ensures that each new value picked for c is unique, to maximize
diversity while minimizing bias. Whenever a strategy runs out of possible values for a test case,
SENSA stops and moves on to the next test case. SENSA offers two modification strategies from
which the user can choose:

1. Random: A random value is picked within a specified range. By default, the range covers all
elements of the value’s type except for char, for which only readable characters are picked.
For some reference types such as String, objects with random states are picked. For all other
reference types, the strategy currently picks null.

2. Incremental: A value is picked that diverges from the original value by increments of ¢ (the
default is 1.0). For example, for a value v, the strategy first picks v + ¢ and then picks v — 1,
v + 24, v — 21, etc. For common non-numeric types, the same idea is used. For example, for
string foo, the strategy picks fooo, fo, foof, oo, etc.

3.3.3 Empirical Results

To assess the effectiveness of SENSA, we implemented it to analyze Java-bytecode programs and
applied it to the task of predicting change impacts at various program locations. The scenario is
early change-impact analysis, in which users query for the potential impacts of changing a location
without necessarily knowing the details of the change yet.

For this study, we chose four Java subjects for which many test cases and changes (bug fixes)
are provided for research studies. Table 1 in columns 14 lists these subjects along with their sizes,



Table 1. Average inspection efforts using predictions of slicing and SENSA

Subject Lines | Test | Changes || Ideal Average effort
name of code | cases studied || (best) Static | Dynamic || SENSA | SENSA
case || slicing slicing Rand Inc
Schedulel 301 | 2650 7 || 47.90 50.14 48.34 48.01 48.01
NanoXML 3521 214 7 8.84 22.71 27.09 20.27 22.37
XML-security | 22361 92 7 5.00 31.94 45.37 13.15 21.49
Ant 44862 205 7 3.21 39.16 41.55 29.84 23.76
average: || 16.24 35.99 40.59 27.82 28.91
standard deviation: || 19.36 13.22 13.08 19.20 20.59
p-value w.r.t. static slicing: | 0.0098 | 0.0237

test suites and changes used. We compared the results of SENSA for this task with those of the
two main techniques from classical dependence analysis: static slicing (code-based) and dynamic
(execution-based) slicing.

We first applied SENSA and static forward slicing to the locations of the changes to reproduce
the scenario in which users query for the consequences that changing those locations would have.
Then, for each result of SENSA, we ranked the statements from greatest to lowest score. For
comparison, we also ranked the static and dynamic slices using Weiser’s approach [14] by visiting
statements breadth-first from the change location and sorting them by increasing visit depth. For
tied statements in a ranking, we used as their rank the average of their positions in that ranking.

To compare the predictive power of the rankings given by SENSA and slicing, we applied the
changes, one at a time, to the corresponding location in its subject. Then, for each change, we
used DEA on the unchanged and changed subject to find the statements actually impacted when
running all test cases for that subject. Using these actual impacts, we calculated how closely each
ranking predicted those impacts. For each ranking and each impacted statement found by DEA, we
determined the percentage of the static slice that would have to be traversed, in the ranking’s order,
to reach that statement. We call this percentage the cost of finding an actually-impacted statement
using that ranking. Then, we computed the average cost of finding all actual impacts for each
ranking—the lower this cost is, the better the technique that produced that ranking is at predicting
impacts. Also, to assess how close to the best possible result each ranking was, we created the
ideal ranking by placing all actually-impacted statements at the top of that ideal ranking.

The last five columns of Table 1 present the average cost, for each subject and the seven changes
in that subject, of the following rankings: the ideal ranking, the static and dynamic slicing rankings
(using Weiser’s traversal), and the rankings for SENSA and its strategies Rand (Random) and Inc
(Incremental).

The ideal (best possible) costs in Table 1 reveal that, on average, most of the statements in
Schedulel were actually impacted, in contrast with the other three subjects, for which low numbers
of statements were impacted. Overall, for static and dynamic slicing, the prediction costs ranged
between 23-50% with average 36% and 41%, respectively, whereas the two strategies of SENSA
were much closer to the ideal predictions at 13—48% and averages of 28% and 29%, respectively.

In all, SENSA seems much better overall than classical slicing (Weiser’s traversal) at predicting
actual impacts. A non-parametric (i.e., no data distribution assumptions) Wilcoxon signed-rank
test gives p-values below 0.05, as shown at the bottom of Table 1, which indicate that the superiority
of SENSA over slicing for predicting impacts is statistically significant.



MO, M1, M2, M5, M2; M1; M3, M1, MO; M4, M4; M0O; x
(Subscript e for entry event and ¢ for returned-into event; entry method MO; exit event X)

Figure 3. Example execution trace of a program with six methods M0-M5.

4 Method-level Dependencies
4.1 Problem

For scalability of dependence analysis, it is often desirable to switch the granularity of an anal-
ysis from the statement level to the method level. Although important information can be missed
by doing so, the analysis can provide a higher-level picture of larger software systems.

Unfortunately, at the method and coarser levels, classical analyses use simple structural de-
pendencies such as method calls. For example, a method m called by a method m’, directly or
transitively, is considered as dependent on /. This can be quite imprecise. In fact, we found in re-
cent studies that classical method-level dynamic impact analyses such as PATHIMPACT [1] can be
too imprecise [5] with large numbers of false positives. The reason is that, at its core, PATHIMPACT
simply marks as impacted by a method m all methods called or returned into after m executes.

Figure 3 shows an example execution trace where the e and 7 subscripts for a method represent
the entry and return-into events for that method. When queried for the impact set of M2, in addition
to M2 itself, PATHIMPACT first finds M5, M3, and M4 as impacted because they were entered after
M2 was entered and then finds MO and M1 because they returned after M2 was entered (i.e., parts
of them executed after parts or all of M2). Thus, the resulting dynamic impact set of M2 is {MO,
M1, M2, M3, M4, M5} for this trace. For multiple traces, the results are unioned.

4.2 Solution

Reaching a method m/ after a method m at runtime is a necessary condition for m to impact m/,
but not all such methods m/’ necessarily depend on m. To fix this problem, we recently proposed a
technique called DIVER [4] which builds first a method-level dependence graph of the program—
based on statement-level dependencies—which is then used to prune execution traces to find which
methods really depend on m. For a reasonable cost, these method-level dependencies can be much
more precise for impact analysis than simple call information.

DI1VER works in three phases: static analysis, runtime, and post-processing. The static-analysis
phase computes method-level data and control dependencies for the entire program. This is done
only one time, regardless of the executions to be considered for the runtime phase and the queries
for impact sets performed at post-processing. At the method level, a method m is dependent on
a method m/ if there is a statement s is m that is dependent on a statement s’ via a sequence
of one or more statement-level data and control dependencies. The runtime phase is identical to
PATHIMPACT by simply collecting the method traces. The post-processing phase, however, uses
the static dependencies to determine whether a method m that executed after m’ did so along a
dependence path from m/’ to m. If not, unlike PATHIMPACT, DIVER does not report m as impacted.

To illustrate, consider again the trace in Figure 3. It is easy to imagine a program with these
methods in which not all methods depend on each other—see [4] for an example. For such a
program and query M2, for example, DIVER traverses the trace to find which dependencies were
exercised in it after M2 and, via those dependencies, which methods depended directly or transi-
tively on any occurrence of M2. When DIVER finds M2, the impact set starts as {M2}. Then, there



Table 2. Relative precision as ratios of impact set sizes of DIVER to PATHIMPACT (PI).

] PI IS Size Di1vER IS Size | IS Size Ratio Wilcoxon
Subject mean stdev | mean stdev | mean  stdev p-value
Schedulel 18.0 1.6 12.8 47 | 711.3% 24.5% 6.65E-05
NanoXML 82.6 48.1 37.1 289 | 51.7% 33.1% 2.40E-30
XML-security || 199.8 168.4 | 45.1 68.1 | 28.8% 30.3% | 4.79E-102
Ant 159.5 1734 17.9 343 | 25.7% 33.6% || 2.94E-100
Average 166.2 164.9 322 53.1 | 30.8% 33.3% 9.29E-07

might be only one outgoing dependence from M2 in the graph—to method M5 [4]—in which case
the impact set is {M2, M5}, in contrast with PATHIMPACT which reports all six methods.

4.3 Empirical Results

Table 2 presents comparative precision results for DIVER and PATHIMPACT for the same four
subjects used in Section 3.3.3, with two statistics per subject and overall for all queries (last row)
for the corresponding data points: the mean and the standard deviation (stdev) of the impact set
sizes and ratios.

The results in the table show that, on average, the DIVER impact sets were much smaller than
for PATHIMPACT, especially for the two largest subjects. Large numbers of false positives for
PATHIMPACT were identified as such and pruned by DIVER. For example, PATHIMPACT identified
160 methods on average in its impact sets for Ant, whereas DIVER reported only 18 for a mean
ratio of 25.7%. (These values are means of ratios—not ratios of means.) Also, the large standard
deviations indicate that the impact-set sizes fluctuate greatly across queries for every subject except
Schedulel. The results suggest that DIVER is even stronger with respect to PATHIMPACT for larger
subjects, which are more representative of modern software. For the smaller subjects Schedulel
and NanoXML, DIVER provides smaller gains possibly due to the proximity and interdependence
of the few methods they contain.

We applied the Wilcoxon signed-rank one-tailed test for all queries in each subject and also for
the set of all queries in all subjects. This is a non-parametric test that makes no assumptions on the
distribution of the data. The last column in Table 2 shows the resulting p-values. For o = .05, the
null hypothesis is that DIVER is not more precise than PATHIMPACT. The p-values show strongly
that the null hypothesis is rejected and, thus, the superiority of DIVER is statistically significant for
these subjects and test suites.

In all, DIVER can safely prune 70% of the impact sets computed by PATHIMPACT, which
amounts to a precision increase by a factor of 3.33 (i.e., by 200%). Thus, method-level data and
control dependencies should replace method calls as the common practice for high-level analysis.
For more technical and empirical details on DIVER, we refer the reader to [4].

5 Conclusion

Dependence analysis for software testing, debugging, evolution, and many other tasks has a
long history [1,7, 14]. However, there are still under-explored dimensions of dependence analysis
which can significantly increase the cost-effectiveness of its applications to these tasks [3,4, 12].
This ongoing work shows that fundamental advances are still possible and necessary.

In this article, we revisited the classical concepts of data and control dependence analysis at the
statement level and structural (call) dependencies at the method and higher levels. Then, we showed



some recent advances and results on two particular dimensions—quantification and abstraction—
which considerably improve upon the results of classical analyses. Through this exposition, we
expect the reader to have gained new insights into the fundamentals and some recent advances of
this field, which underlies the description of software behavior for virtually any engineering task.
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