
Facilitating Information Management in Integrated
Development Environments through

Visual Interface Enhancements
Haipeng Cai

Department of Computer Science and Engineering
University of Notre Dame, Indiana, USA

Email: hcai@nd.edu

Abstract—In the past decades, integrated development environ-
ments (IDEs) have been largely advanced to facilitate software
engineering tasks and improve developer productivity. Yet, with
growing information needs driven by increasing complexity in
developing modern software with demands for high quality and
reliability, developers often need to switch among multiple user
interfaces, even across different applications, in their develop-
ment process, which breaks their mental workflow thus tends to
adversely affect their work efficiency and productivity.

This paper discusses challenges faced by the current IDE design
mainly due to working context transitions imposed on developers
during their search for multiple information sources for their
development needs. It remarks the primary blockades behind
and initially explores some high-level design considerations
for overcoming such challenges in the next-generation IDEs.
Specifically, a few design enhancements on top of modern IDEs
are proposed, attempting to reduce the overheads of frequent
context switching commonly seen in the multitasking practice of
developers.

Keywords: Information need, integrated development environ-
ment, context switching, automatic recommendation, program-
ming interface, software visualization

I. INTRODUCTION

One merit with visual programming [1]–[3] is that its in-
tegrated interface empowers smooth transitions among the
workflow steps of developers—the interface provides all pro-
gramming elements (of visual forms) so that the developers
involved in the interface can easily maintain their mental
workflow models by focusing on mostly just one type of
interface (i.e., visual interfaces).

With most existing IDEs (e.g., ECLIPSE [4]), however, devel-
opers often face challenges from frequent transitions between
coding (text interface) and visual aids (graphical interface),
or even between disparate applications (and their different in-
terfaces) [5]. Since traditional (textual) programming involves
typically a demanding logic reasoning process, such transitions
and context switches can cause large inefficiency [6] in the
development process and thus even greater risks to the quality
of the resulting software.

The reason underneath is that context switching tends to inter-
rupt the overall workflow of developers [6]. More importantly,
the problem can be exacerbated by the growing information
needs for developing modern software of increasing scale and
complexity. Unfortunately, on the other hand, modern IDEs
tend to grow in the complexity of their interface in a way that,
seemingly facilitating developers to meet their needs for mul-
tiple sources of information, actually compounds the problems
with switching among increasingly more contexts.

As it stands, research on facilitating programming tasks
through interactive graphical environments exists [7], mostly
focusing on providing visual aids within IDEs. For instance,
Dragon [8] shows visual windows for program dependence,
debugging information, data structure state, memory layout,
and similar other visual gadgets during common tasks of
developers. However, this framework is limited to passively
responding to user requests—it fails to automatically push
information to developers to assist their program-analysis tasks
as if it were an integral part of the whole task pipeline. In
contrast, a more useful interactive programming environment
needs to deliver informative visual aids not only on demand
but in a proactive manner, so as to minimize context switches
during the entire development workflow.

Another challenge to today’s IDE interfaces lies at their
falling short of meeting the growing amount and variety of
information needs by developers. To finish a coding task, for
example, developers usually have to consult many informa-
tion sources that are diverse and distributed across disparate
interfaces even applications. Although modern IDEs mostly
have various supports for integrating diverse functionalities
by means of plug-ins or GUI extensions, information from
those extraneous modules often has to be passively retrieved
under the requests of developers—the multiple sources of
information are available, yet not well integrated in synergy [9]
with other elements of the IDEs such that developers can
concentrate on their ongoing tasks.

To address these specific issues, this paper preliminarily
explores several novel IDE features that could effectively assist
developers with handling multiple tasks while minimizing the

costs of context switching during their development workflow.
Specifically, three features are proposed focusing on interface
design: (1) extending the traditional coding view to include
coworker views, (2) offering automatic recommendation based
information for API usage and code examples, and (3) provid-
ing in-situ mechanism for most commonly used code-editing
related operations driven by the current task context. And two
major visualization features are proposed as well, including
(1) multiple code visualization views and (2) interactive linked
visualizations. By illustrating the needs and benefits of these
instrumental features, this paper demonstrates how the next-
generation IDEs could be designed to offer better aids to
developers in ways that improve development efficiency and
productivity.

In summary, this paper highlights the context-switching issue
in the design of today’s IDEs that hinders the effectiveness of
using them, and illustrates such issue using example usage
scenarios; it discusses three interface design features that
potentially reduce developers’ overall cost of switching among
multiple contexts in search of various sources of information; it
also envisions two interactive visualization features that enable
holistic integration of multiple information in synergy so as to
reduce developers’ need of switching contexts when searching
for various information.

The rest of this paper is organized as follows. First, Section II
gives a development scenario regarding information foraging
that motivates the following programming interface design.
Then, Section III and Section IV summarize the concrete
features in the new programming environments, on interface
and visualization design, respectively. Section V discusses the
key issues pertaining to the implementation of the proposed
design features, where the strategy for empirical evaluation
is outlined with technical limitations and practical challenges
in applying the new IDEs also addressed. Finally, Section VI
recaps the paper with concluding remarks.

II. MOTIVATING EXAMPLE

During software development, programmers gain most of the
information they need from the source code they are working
on [10], [11]. Yet, they also need information beyond that [12],
such as those produced by program analysis tools, to obtain
better understanding of the software [9]. Examples of such
additional information include call graphs, dependence graphs,
and type hierarchies. While most present IDEs do provide
functionalities to help developers obtain these information,
they force developers to proactively make requests for them.
However, responding to user requests may not be sufficient in
many situations. Rather, a more effective IDE should provide
developers with a guiding interface instead of question respon-
der, as developers may not have prerequisite information for
them to initiate those requests or to do so in the most efficient
way overall. In consequence, excessive context switches ensue
when developers have to resort to other contexts or even
applications for obtaining missing information.

In a typical usage scenario, a developer wants to know
the overall design of the component-level architecture of a
software for which he just finished the coding for one of its
many packages. With a program analysis tool integrated in
the IDE he is using, the developer needs to choose a button or
menu item relevant to the functionality on the call graph of the
entire program. Further, the developer proceeds by looking for
all possible interfaces compatible for a function call of interest.
Thus the developer has to traverse the call graph and hover
mouse cursor over all relevant modules one by one.

However, without prior experiences with the very details of
this software, it is infeasible for the developer to know how to
make the preceding requests. The key issue, which is really the
main obstacle here, is the requirement for the user to recognize
which requests to make without auxiliary information from
the program analysis tool. As such, the value of the visual
aids apparently diminishes. In this case, there is a crucial
need of the developer for an IDE that incorporates interactive
program analysis tools where the transitions from graphical to
textual settings, and also the other way around, are as seamless
as possible. This work is motivated by such an observation
and the consequent requirement in the design of interactive
programming interfaces.

III. INTERFACE DESIGN

Developers spend most of their time on their code for adding
new features, making changes, debugging, and understanding
source code [10]. When doing these tasks, developers often
need also external assistances, such as automatic code com-
pletion [13], integrated in their workflow environment which
facilitate their development efficiency. To meet such needs, a
tentative framework could incorporate three interface design
features to help reduce context transitions of developers when
they are working around their code.

Figure 1 gives an overview of these design features. Aside
the traditional coding view, there are a few other coworker
views that assist with communication and collaboration tasks
typically seen in a team-development scenario; at the bottom,
the context-driven API/example view attempts to provide code
examples that are recommended based on current coding
context to assist programmers with using APIs of which usages
are not familiar to them; finally, the in-situ interface shown in
the main code view illustrates the design of porting convenient
shortcuts for code manipulations, which are mostly spread
over varying places in existing IDEs, to the current focus of
editing.

A. Context-driven API/example View

While coding, programmers often have questions about the
usage of some third-party functionalities or features [12].
And while implementing a feature, they face hard questions
concerning which functions or objects they should pick [11].
To some extent, these questions can be reduced to the needs

class A {
public int getValue() {
 Integer nCounter = B.MAX_N;
 nCounter

class B {
static int MAX_N;
 …...

int compareTo(object o);
…...
Private static final Integer x = 0;
x.compareTo(y);

Main code view Coworker view 1

Context-driven API/example view

sharing

In-situ tool shortcuts
nCounter

class C {
public static void
sortList(….) {
 …...

Coworker view 2sharing

Fig. 1 A new interface design that helps reduce context switches of developers between coding and getting aids, and supports
close collaborations among coworkers in software development teams.

for getting function usage information and, even further,
illustrations of that usage with example code. Active code
completion [13] via API menus already helps developers better
than using separate API browsing views, yet it may not be
sufficient as developers have to navigate through possibly
long API lists (and hover on each one to see the function
prototype or API documentation on a floating window as seen
in ECLIPSE [4]), which could potentially break their mental
model that is focused on the programming logic.

Alternatively, developers may put such assistance back into
a separate view closely connected to the main code editing
view (as shown at the bottom of Figure 1), where usage
information of relevant APIs is displayed on demand based
on the current context of object accesses or function calls.
Importantly, all relevant APIs are ranked according to their
frequency of being used recently as the default mode. Similar
solutions have actually been explored more generally from
a perspective of the information foraging theory and with
respect to software engineering tasks such as programming
and debugging [5].

A more important reason for providing the option of moving
API usage information to a separate view is the need of
combining code examples with the usage. While showing
function prototype and/or API documentation is helpful to
developers to fill in arguments, it is more beneficial to show
them code examples thereof with the usage synopsis. In
practice, programmers search code examples with respect to
unfamiliar APIs very often (e.g., via Internet searches), even
preferably over referring to API documentation.

In this regard, at least three sources of search for such code

examples can be taken into account. The first one is the
examples coming with APIs in their documentation. Another
option is searching in the current code base for relevant
examples using context similarity measurement (e.g., calling
context and/or type of the object from which the API would
be invoked). The code shown in the API/example view of
Figure 1 illustrates the result obtained from this source:
When the cursor lies immediately after the Integer object
nCounter, the view shows candidate API lists applicable
to objects of the Integer type, with ones most frequently
used recently listed at the top (compareTo here) followed
by the code example found in the current code base. Such
examples give an instant and clear demonstration on how
to use the relevant APIs. Finally, an automatic web search,
using open search engine programming interface (e.g., Google
API), can be initiated with queries for the function usage
(e.g., “strtoul C++ example”). Then relevant content can
be extracted and put back to the API/example view for
developers’ reference.

B. Coworker Views

p Another key interface design feature of the proposed frame-
work is concerned with the information needs of multiple de-
velopers collaborating in a development team. Previous studies
show that in collaborative development one of the primary
information sources for developers is their coworkers [14]. In
fact, it is very common that when developers have questions
regarding how a function or feature is implemented, they tend
to first resort to their teammate instead of software documenta-
tions [10]. To facilitate developers to take advantages of having
coworkers to consult as their information needs arise, it is

potentially rewarding to incorporate a set of coworker views
aside the main code editing view (shown on the right-hand
side of Figure 1).

The rationale of introducing these additional views is two-
fold. First, developers working in the same team can easily
share their source code in real-time when necessary. One
example case in which this sharing could be useful is when a
senior developer coaches a team member in familiarizing him
with the team project. Another example can be seen in agile
development, where one developer could quickly prototype
his function according to the ongoing implementation of a
function being written or debugged by an another developer.
As shown in Figure 1, the current developer is writing the
method getValue() for class A, with a reference to the
static variable MAX_N of class B that is being implemented by
a coworker. Having the choice of checking the implementation
of a component developed concurrently by a teammate, on
which current coding task is dependent, will save a developer’s
time seeking for the information about that component in other
more expensive ways.

Second, such views can enable close collaborations among
physically distributed teammates. For instance, a developer
who needs one of his teammates to demonstrate how to write
or debug a piece of code would readily get the help from
such views without moving to a different seat or office, or
resorting to external instant-messaging tools. Furthermore, if
screen space allows, such benefits can be even augmented
with multiple coworker views open at the same time—enabling
closer collaborations among a group of developers.

At the first glance, the above interface designs seemingly
conflict the goal of reducing context switches by developers,
because those extra views potentially end up with more context
switches. However, the overall cost of context switching will
be mostly reduced indeed as the total time developers would
spend on getting the information from these views can be
much greater without these integrated views and information.
To illustrate, consider finding the code example for an API
again. Without the automatic code reference shown within the
IDE, a developer would have to search online or consult to
other sources that are available usually in different interfaces
from the whole IDE (e.g., a different application such as
internet web browser).

C. In-situ Interface Elements

Almost all IDEs today contain a main menu (usually placed
at the top) of the entire interface, followed by one or several
rows of tool shortcuts shown as buttons or icons. Although
usually those menus or shortcuts can be situated differently,
few of them is tightly incorporated into the working area
of developers where the underlying functionalities of those
tools will be applied to. For example, there has always been a
considerable “visual distance” from the code being focused on
by developers and the shortcuts to functionalities developers

need to utilize on that code. While the context switches
in such situations are not as large as those seen in cases
where developers seek coworker resources without coworker
views, such distances could be much reduced. Accordingly,
two possible interface improvements to reduce the unnecessary
distance can be investigated.

First, in-situ tool shortcuts can be added to the main code edit-
ing view. The presence of such gadgets is contingent on user
actions of marking focus on (e.g., selecting) code elements
to which the shortcuts are applicable; and the composition of
the gadgets is determined by the characteristics of the code
elements being focused on by developers. As an example,
Figure 1 shows, in the main coding view, an “in-situ tool
shortcuts” bar appears aside the object nCounter when it
is selected through double-click and the mouse cursor hovers
nearby—the gadget disappears once the selection is revoked
or the cursor moves away the focused object. This is akin to
the in-situ formatting toolbar in Microsoft Office, triggered by
double-clicking on a word.

The more important part of this design is the demand-driven
composition of the gadget. To effectively reduce perceptual
transitions within the IDE, the in-situ tool gadget should con-
tain most, if not all, shortcuts to functionalities that developers
would possibly use for the focused object. This decision can
be made in reference to developers’ common information
needs with respect to that object, based on such criteria as
the object’s type. For instance, for a function identifier in its
invocation statement, example shortcuts would be “caller list”,
“rename”, “declaration” and so on.

Second, the presence and layout of visual components should
be demand-driven. As developers usually work on multiple
tasks during their development workflow [10], they tend to
switch among multiple sources of information. Yet, they can
mostly focus on one task or information at a time only. The
IDE thus needs to optimize the size and composition of the
particular visual space that a developer has to concentrate on
for completing a specific task, while diminishing the presence
or even phasing out all visual components irrelevant to the
current task.

For example, when a developer is right in the process of
typing code, visual components, such as the top menu and
main tool bar, side panels, and bottom debugging views,
become irrelevant and thus should automatically disappear
so that the main coding view gets its maximal visual space.
Some IDEs, such as Microsoft Visual Studio, have already
incorporated similar features (e.g., dockable gadgets), yet often
just passively rely on user settings to apply those features.
Also, the overall design there does not support automatic
adaptation of interface layout and composition to user action
and workflow contexts. The dockable gadgets, for instance, can
be set to hide when mouse cursor moves away from them, but
the layout and elements of the gadgets do not automatically
accommodate developers’ information needs varying in the
development workflow. In addition, all visual components that

class A {
public int getValue() {
 Integer nCounter = B.MAX_N;
 nCounter += 2;

Code Procedure dependence graph

Method-level dependence graph

getValue M1

M2

1

2
4 3

Class-level dependence graph

C
2

C
1

AC
3

Fig. 2 Multiple linked visualizations of source code to integrate multiple code information in synergy.

are not applicable to the current developer action can phase
out from the interface and come back when they become
applicable again. In contrast, most IDEs choose to disable
those components while still leaving them in the interface
hence wasting the limited visual space of the IDE.

IV. VISUALIZATION DESIGN

When offering means to help developers obtain various in-
formation, most IDEs also implicitly force developers to
switch among different visualizations of those information,
potentially leading to expensive workflow interruptions. An
additional issue is that usually these visualizations are sep-
arated from each other, without explicit links among them,
forcing developers to maintain an extra mental model linking
those information in mind. In this context, it is reasonable to
leverage multiple linked visualizations of source code, along
with the source code itself, to facilitate the code understanding
and navigation for developers.

A. Multiple Visualizations of Source Code

Not only can information visualization greatly aid data un-
derstanding, but multiple forms of information of the same
data set could be also, or even more, helpful (e.g., [15]).
During their mental workflow for code understanding as the
primary task [10], developers can greatly benefit from multiple
visualizations of source code information besides the textual
form of the code itself.

A relevant proposal would be to utilize multiple visualizations
of program source code, which are interconnected underneath

the source code, to enable more effective program understand-
ing. Figure 2 illustrates the visualization design feature for the
next-generation IDEs using dependence graphs as the example
information representation of source code (there are other
forms of such information of code, such as call graphs and
type hierarchies as mentioned above). Surrounding the tradi-
tional code editing view (upper left) that provides the textual
representation of source code only, three other satellite views
show the dependence graphs of the source code at three levels
of detail, namely the (statement-level) procedure dependence
graph (PDG) [16] (upper right), method-level dependence
graph (MDG) (bottom right) [17], and class-level dependence
graph (CDG) (bottom left). Different styles of arrow lines in
the graphs illustrate different types of dependencies (e.g., solid
lines are for data dependencies and dashed lines for control
dependencies). The three dash-dotted lines across the views
illustrate the links between the source code and each of these
graphs. Given that navigating dependencies is one of the core
steps in software development tasks (e.g., maintenance and
evolution), visualizing these dependencies at multiple levels
in the IDE can greatly reduce developers’ efforts in seeking
such information for comparison purposes [18].

Optionally, these visualizations can be selectively or all added
to the IDE. A more synergetic design is to seamless syn-
thesize the four views in one. In the latter design, instead
of showing more than one or all views at the same time,
only one view is visible at a time. The motivation is that,
again, while developers can be greatly benefited from multiple
visualizations, they could utilize one of them at one time only.
The idea is to switch among these visualizations by zooming
in/out operations (shown by two wide arrows in the figure).

As with Google Maps, when developers zoom out from a
statement, they will first switch to the PDG visualization with
central points automatically set to that statement; then they
can navigate on the PDG and zoom in from any node thereof
back to the source code view. If developers continue to zoom
out when they are in the PDG visualization, they switch to the
MDG view where they can also navigate, at the method level,
and zoom in back to the lower levels of details. Switching
between MDG and CDG is similar. Alternatively, zooming
in from a method declaration while in the source code view
can directly lead the developer to the MDG visualization and,
similarly, zooming in from a class declaration in the source
code leads developers to the CDG view immediately.

B. Interactions across Linked Visualizations

The multiple visualizations of source code are also mutually
linked, since they all represent the same data (i.e., the source
code). An additional merit of the multiple linked visualizations
lies in more effective interactions. One simple example is
that selecting all lines of code of a method can be more
easily done by just selecting that method on the MDG
visualization view; selecting or deleting a whole class will see
greater benefits in similar ways. Moving code around through
interactions on the dependence graph visualizations would be
even more beneficial. For example, a developer can quickly
start writing a method by cloning an existing one by copying
the corresponding node on the MDG view. When multiple
visualizations are shown simultaneously, more interactions
can be enabled, such as moving or copying a method from
one class to another. Of course, feasible interactions on the
graphical visualizations are constrained by feasible automatic
source code level operations.

V. DISCUSSION

To demonstrate the practical benefits of the new design
features proposed in this work, a tool implementation and
an empirical study on effectiveness of those features are
both required. This section outlines major considerations for
such next steps and presents an even broader perspective on
enhancing IDE design for other software engineering tasks
than cooperative development and program comprehension as
discussed above.

A. Evaluation

While ideally a brand-new IDE would be implemented to
fully realize the design principles for the next-generation pro-
gramming interface that maximizes development productivity,
it is more realistic at this stage to start with incorporating
experimental features into existing IDEs that are being com-
monly adopted in practice. For instance, the three interface
design enhancements can be implemented as plug-ins for
ECLIPSE using the JDT Text and UI components [19]. In
particular, the context-driven API usage and code examples

can be retrieved from the local code base (i.e., the developer’s
project repositories) and results of online code-search service
(e.g., [20]) through existing web-search extensions of ECLIPSE
(e.g., [21]).

In contrast, implementation of the two visualization features
would be facilitated by using some external information-
visualization libraries, such as VTK (with Java wrapping if
necessary) [22]. On the other hand, the underlying data for
such visualizations will come from the results of relevant
program analysis such as the computation of program de-
pendencies at different levels of granularity (e.g., statement,
method, and class levels). The program analysis can be either
realized through existing relevant plug-ins if readily accessible,
or implemented on top of a third-party program-analysis
frameworks (e.g., Soot [23] for Java programs).

Using these implementations, the proposed features can be
evaluated through user studies where professional developers
are to be asked to use both the enhanced IDE and an existing
one to perform a same set of common development tasks.
Two key elements of the user-study design will be the list of
tasks that developers would regularly perform during software
development, and the metrics that measure the usefulness of
the added features. Among others, example tasks for such
a study may include (1) developing a program according to
given specifications, which necessitates using a set of APIs
unfamiliar to the developers, (2) describing the functionalities
of a software component, which requires reading the source
code first, and (3) finding faults in a given program, which
needs debugging within the new IDE.

To gauge the effectiveness of the new features, main metrics
may include, respectively corresponding to the above example
tasks, (1) the degree of conformance of the resulting program
to the specifications, (2) the accuracy of the functional descrip-
tion, and (3) the outcome of being either success or failure in
locating the bug. In addition, the time costs of finishing these
tasks will be another key metrics as well. At least two groups
of developments, one group using the baseline IDE (without
the new features incorporated) and the other using the new
IDE, are needed to compare the effectiveness between them
so as to indirectly measure the benefits of the proposed design.
And a hypothesis testing can be used to examine the statistical
significance of the benefits, through that of the differences in
the metrics between the two groups.

B. Extensions

As suggested in the foregoing design of empirical evaluation,
developers need not only the information collected from exter-
nal sources (e.g., API usage examples) but also that extracted
from the program itself. And the latter usually comes from
the outputs of certain program-analysis techniques. In fact,
for many development tasks, such as regression testing and
debugging, the results from program analysis are needed more
often than those immediately available in existing artifacts

IDE
Component

IDE
Component

IDE
Component

…...

PROGRAM ANALYSIS PIPELINE

Workflow-driven Requirement Inference

Information-flow
Visualizations

In-situ Graphical
Interface

Developer

End Users

Program

Fig. 3 Illustration of a generalized IPAE framework (top)
working in synergy, through interactions of the developer
(middle), with an IDE that incorporates the proposed design
features and beyond (bottom).

such as source code and documentation. For instance, other
than dependence representations (graphs) as mentioned before,
such results can also include a selected subset or prioritized
ordering of a test suite to be executed from a regression test
selection or prioritization analysis, program entities potentially
impacted by an ongoing change to be inspected from an impact
analysis, and candidate code region possibly containing bugs
from a fault-localization analysis.

In a much broader sense, the proposed design features will
be part of a more general framework of interactive program
analysis environment (IPAE) that works in synergy with the
next-generation IDEs, as schematized in Figure 3. Overall,
the IPAE infrastructure is characteristic of a human-centered
design: The developer is at the center of the entire work flow
of software development, and acts both as the user of various
IDE components (at the bottom) and the IPAE, as the two
arrows on the left indicate, and as the producer of the software
being developed for which the end user (at the top) requests,
as symbolized by the two arrows on the right. The software
requirements originate from the end user, while the ultimate
output of the infrastructure feeds the developer.

Highlighted in the diagram is the three-layer hierarchy of
the IPAE infrastructure, underlaid by the program analysis
pipeline which analyzes the information flow between the
developer and the environments (i.e., IPAE and IDE) so as
to automatically trigger program analysis relevant to cur-
rent developer actions and recommend the resulting data to
developers. This automatic recommendation of information
that developers may need in their specific task scenarios
differentiates the proposed approach from existing alternatives
like the Dragon [8] and Dimple frameworks [7], which

entirely rely on user inputs to passively produce additional
information. Note that when developers need to deal with
a great amount of information in a complex development
environment, automatically recommending the most relevant
information they are most likely to access for their current
tasks can also avoid excessive context switches that would
ensue for searching those information.

Specifically, to generate these automatic recommendations,
the bottom layer of the program-analysis pipeline hosts a
workflow-driven requirement inference component. This com-
ponent monitors developer operations (e.g., running unit tests,
editing code, and debugging, etc.) and infers potential next
information needs. Utilizing history data on developer oper-
ations and decisions, the inference can be realized through
automatic reasoning and statistical learning algorithms. Then,
the prediction results are sent back to the program-analysis
pipeline, which will invoke analysis routines required for
generating the information needed next and transfer the re-
sults to the information-flow visualization and/or the in-situ
graphical interface modules above. Finally, the visualization
module renders the recommended information (if appropriate
to visualize) and push the visual representation to developers
through specific IDE components (as containers of the visual
representation); in the meanwhile, the interface module re-
sponds by creating new in-situ gadgets that offer visual aids for
developers to proceed with the current development task, and
by adjusting the IDE layout as well when necessary.

It should be noted that these two modules, while part of
the IPAE infrastructure, are both linked to the IDE through
particular components (e.g., panels, menus, and dialogs, etc.)
and they share the spirit of design with the visual interface
enhancements as laid out for improving the IDE itself in
previous sections. Also, in terms of implementation, the IPAE
infrastructure and the IDE can share common utilities.

C. Limitations and Challenges

The development of large-scale software systems is usually
collaborative, relying on cross-team communication and coor-
dination. While the design improvements proposed are able to
assist developers with such collaborative activities, they might
not solve all issues as possible consequences of promoting this
development paradigm. First, the cowork-view features can
help with the collaboration among a group of developments
but for groups with limited sizes only. For example, when
ten or more developers debug a large component consisting
of multiple smaller submodules in a collaborative manner, it
may not be feasible for the IDE to host ten or more coworker
views each dedicated to the operations of an individual
developer simultaneously although ideally it could do so:
The impediments due to the resulting visual clutters would
overweigh the benefit of having these coworker views, even
more so if the developers want to track some debugging
information (in additional views or gadgets) only relevant to
individual interests at the same time. In addition, when also

incorporated in the IDE, the in-situ interface needs to take
extra visual regions in the workspace too, which may further
aggravate the challenge, potentially forcing the developers to
dismiss either the in-situ feature or (at least some of) the
coworker views.

An another challenge lies in possibly negative effects of
computational costs underneath the visualizations on the work
efficiency of developers using the proposed visualization
features. Take the multiple visualizations of source code for
example, computing the dependencies at various levels of
granularity naturally incurs extra time which may not only
slow down developer tasks but also interrupt the mental
workflow of developers. The problem can be even worse when
the program under analysis is very large or highly complex
such that the corresponding dependence graphs are large and
dense, since visually manipulating such graphs is a challenging
task itself.

One possible solution is to create and visualize the depen-
dencies for code segments that the developers are currently
working on instead of for the entire program. Yet, a draw-
back of this solution is that the developers would need to
manually maintain the dependencies across multiple such code
fragments (and their dependence graphs). On the other hand,
to reduce the time overheads for computing the dependencies,
the graphs may be all built beforehand and then be retrieved
on demand (from the offline computations). However, such
a precomputation approach would impose limits on how
much and often the developers can change the source code
with respect to reusing the dependencies: Once the code is
modified, developers may need to check updated dependencies
in accordance with the updated program.

Finally, as explored in [24], it would be desirable to have cus-
tomized interface features in IDEs that are particularly useful
for specific language features. As such, some of the design
enhancements proposed here would best fit certain languages
yet may not well suit others. Apparently, designing an IDE
that equally benefits all of them would be even more difficult
than improving an IDE for one particular language. When
considering the differences between languages of disparate
programming paradigms (e.g., a domain-specific or dynamic
language versus a procedural one), the challenge potentially
augments. To help address such challenges, finding a common
ground of different IDE design features for different languages
could be an initial step: prioritizing IDE features that are less
dependent on specific language syntax or constructs (e.g., the
visualizations of source code) over those that are more so (e.g.,
the in-situ graphical interface).

VI. CONCLUSION

Today’s developers usually deal with multiple tasks simulta-
neously during their software development process, seeking
variously sources of information for interleaving tasks such
as coding, documenting, testing, and debugging. Accordingly,

modern IDEs try to incorporate an increasing number of
interface elements to provide sources meeting those multiple
information needs, yet mostly tend to reduce developers’ pro-
ductivity by imposing on them an implicit need for frequently
switching among many different contexts.

This paper thus explores in that regard and envisions several
interface and interactive visualization design features for en-
hancing today’s IDEs in a way that helps developers meet
multiple information needs more efficiently. It demonstrates
the needs and benefits of incorporating those features in next-
generation IDEs and also discusses limitations and challenges
of doing so in practice along with possible solutions. Although
these benefits need supports of empirical evidences, the discus-
sions here serve as an important preliminary step in advancing
programming interfaces and environments.

As two immediate next steps, implementation and evalua-
tion of the proposed design are outlined. In addition, an
interactive program analysis environment providing automatic
recommendations and generalizing the proposed design has
also been sketched up. Beyond what has been presented, there
are potentially more IDE design features and principles to be
probed in the future.

ACKNOWLEDGMENT

This work was partially supported by ONR Award
N000141410037 to the University of Notre Dame. The author
would also like to thank the anonymous reviewers for their
valuable comments and suggestions that helped improve this
paper over its original version.

REFERENCES

[1] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: a cognitive dimensions framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[2] R. Metoyer, B. Lee, N. Henry Riche, and M. Czerwinski, “Understand-
ing the verbal language and structure of end-user descriptions of data
visualizations,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2012, pp. 1659–1662.

[3] H. Cai, J. Chen, A. P. Auchus, and D. H. Laidlaw, “Composing dti
visualizations with end-user programming,” CoRR, vol. abs/1310.2923,
2013.

[4] “Eclipse luna,” https://eclipse.org/.

[5] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, 2013.

[6] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task
switching and interruptions,” in Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 2004, pp. 175–182.

[7] W. C. Benton and C. N. Fischer, “Interactive, scalable, declarative
program analysis: From prototype to implementation,” in Proceedings
of the 9th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, 2007, pp. 13–24.

https://eclipse.org/

[8] B. Chapman, O. Hernandez, L. Huang, T.-h. Weng, Z. Liu, L. Adhianto,
and Y. Wen, “Dragon: An open64-based interactive program analysis
tool for large applications,” in International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2003, pp. 792–
796.

[9] A. Zeller, “The future of programming environments: Integration,
synergy, and assistance,” in Future of Software Engineering. IEEE
Computer Society, 2007, pp. 316–325.

[10] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 492–501.

[11] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and Usability of Programming Languages and Tools,
2010, p. 8.

[12] ——, “Developers ask reachability questions,” in Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering,
2010, pp. 185–194.

[13] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers, “Active code
completion,” in Proceedings of the 2012 International Conference on
Software Engineering. IEEE Press, 2012, pp. 859–869.

[14] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the 29th international
conference on Software Engineering, 2007, pp. 344–353.

[15] B. Hanciles, V. Shankararaman, and J. Munoz, “Multiple representation

for understanding data structures,” Computers & Education, vol. 29,
no. 1, pp. 1–11, 1997.

[16] J. Ferrante, K. Ottenstein, and J. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, pp. 319–349, 1987.

[17] H. Cai and R. Santelices, “Abstracting Program Dependencies using the
Method Dependence Graph,” in Proceedings of International Conference
on Software Quality, Reliability, and Security (QRS), 2015.

[18] A. J. Ko, H. H. Aung, B. Myers et al., “Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective
maintenance tasks,” in Proceedings of 27th International Conference on
Software Engineering, 2005, pp. 126–135.

[19] “Eclipse java development tools,” https://eclipse.org/jdt/.

[20] “Source code search engine,” https://searchcode.com/.

[21] “Eclipse web search,” http://marketplace.eclipse.org/content/web-search.

[22] “Eclipse web search,” http://www.vtk.org/Wiki/VTK/Java Wrapping.

[23] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “Soot - a java bytecode
optimization framework,” in Cetus Users and Compiler Infrastructure
Workshop, Oct. 2011.

[24] P. Charles, R. M. Fuhrer, S. M. Sutton, Jr., E. Duesterwald, and
J. Vinju, “Accelerating the creation of customized, language-specific
ides in eclipse,” in Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications,
2009, pp. 191–206.

https://eclipse.org/jdt/
https://searchcode.com/
http://marketplace.eclipse.org/content/web-search
http://www.vtk.org/Wiki/VTK/Java_Wrapping

	Introduction
	Motivating Example
	Interface Design
	Context-driven API/example View
	Coworker Views
	In-situ Interface Elements

	Visualization Design
	Multiple Visualizations of Source Code
	Interactions across Linked Visualizations

	Discussion
	Evaluation
	Extensions
	Limitations and Challenges

	Conclusion
	References

