
Abstracting Program Dependencies using the
Method Dependence Graph

Haipeng Cai and Raul Santelices

University of Notre Dame, Indiana, USA

email: {hcai|rsanteli}@nd.edu
Abstract—While empowering a wide range of software engi-

neering tasks, the traditional fine-grained software dependence
(TSD) model can face great scalability challenges that hinder its
applications. Many dependence abstraction approaches have been
proposed, yet most of them either target very specific clients or
model partial dependencies only, while others have not been fully
evaluated for their accuracy with respect to the TSD model, espe-
cially in approximating forward dependencies on object-oriented
programs. To fill this gap, we present a new dependence abstrac-
tion called the method dependence graph (MDG) that approxi-
mates the TSD model at method level, and compare it against
a recent TSD abstraction, called the Static-Exectue-After (SEA),
concerning forward-dependence approximation. We also evalu-
ate the cost-effectiveness of both approaches in the application
context of impact analysis. Our results show that the MDG can
approximate TSD safely, for method-level forward dependence at
least, with little loss of precision yet huge gain in efficiency; and
for the same purpose, while both are safe, the MDG can achieve
significantly higher precision than SEA at practical costs.

I. INTRODUCTION

Analyzing dependencies among program entities underlies
a wide range of software analysis and testing techniques [1].
While traditional approaches to dependence analysis offer fine-
grained results [2], they can face severe scalability challenges,
especially with modern software of growing sizes and/or in-
creasing complexity [3], [4]. On the other hand, for many
applications where results of coarser granularity suffice, com-
puting the finest-grained dependencies tends to be excessive,
ending up with low overall cost-effectiveness. One example
is impact analysis [5], where results are commonly given at
method level [6]–[8], whereas statement-level results can be
too large to fully utilize [4]. In other contexts such as program
understanding, method-level results are also more practical to
explore than are those of the finest granularity.

Driven by varying needs, different approaches have been
explored to abstract program dependencies to coarser levels
[9]–[11]. While these abstraction models have been shown to
be useful for their particular client analyses, they either capture
only partial dependencies among methods [10] or dependen-
cies among components at the levels of granularity (e.g., class
or even file level) which can be overly coarse for most tasks.
More critically, none of such approaches were designed or
fully evaluated as a general program dependence abstraction
regarding the accuracy relative to their underlying full models
(e.g., fine-grained statement-level ones) as ground truth.

In [3], a method-level dependence abstraction, called the
static-execute-after/before (SEA/SEB), was proposed to re-
place traditional software dependencies (TSD) based on the
system dependence graph (SDG) [2], [3]. This approach ap-
proximates dependencies among methods via control flows
using the interprocedural control flow graph (ICFG) and was

shown to as almost precise as static slicing based on the TSD
model while coming at low costs and perfect (100%) recall.
Later, the SEA was also applied to static impact analysis
proven more accurate than peer techniques [12] while improv-
ing regression test selection and prioritization [13] as well.

However, previous studies of the accuracy of SEA/SEB
either targeted procedural programs [3] or focused on back-
ward dependencies based on the SEB only [6]. The remaining
relevant studies addressed the accuracy of SEA-based forward
dependencies, with some indeed on object-oriented programs,
yet the accuracy of such dependencies was assessed either not
at the method level, but at class level only [14]; or relative to
ground truth not based on TSD, but on repository changes [15]
or programmer opinions [12], and in the specific application
context of impact analysis. While forward dependence analysis
is required by many dependence-based applications, including
impact analysis that SEA/SEB has been mainly applied to, the
accuracy of this abstraction with respect to TSD, for object-
oriented programs in particular, remains unknown.

In this paper, we present an alternative method-level depen-
dence abstraction called the method dependence graph (MDG).
For one thing, the MDG directly models dependencies among
all methods of a program, with detailed dependencies within
methods abstracted away, and does so in a context-insensitive
manner, thus it is more efficient than TSD [2], [11]. On
the other hand, this abstraction captures whole-program con-
trol and data dependencies, including optionally those due to
exception-driven control flows [16], thus it is more informative
than coarser models like call graphs or ICFG. With the MDG,
we attempt to not only address the above questions concern-
ing the latest peer approach SEA/SEB, but also to attain a
more cost-effectiveness dependence abstraction over existing
alternative options.

We implemented the MDG and applied it to impact anal-
ysis for Java1, which are both evaluated on five non-trivial
subject programs. We computed the accuracy of the MDG for
approximating forward dependencies in general and the cost-
effectiveness in supporting impact analysis; we also compared
the accuracy and efficiency of the MDG relative to TSD-
based forward slicing against SEA. Our results show that the
MDG can approximate TSD for perfect recall (100% recall)
and high precision (85-90% mostly) with great efficiency for
method-level forward dependencies. Our study also demon-
strated that the MDG abstraction can significantly enhance the
cost-effectiveness of impact analysis over the SEA approach.
While not a program representation like the MDG, SEA was
originally proposed as a substitute for TSD. Thus, for brevity,
we refer as SEA to both the abstraction approach based on

1Downloads are publicly available at http://nd.edu/~hcai/mdg



SEA relations and the SEA analysis itself when comparing
them to the MDG and MDG-based analysis.

In summary, the main contributions of this paper include:

• A program dependence abstraction, called the MDG,
that can approximate TSD more accurately than exist-
ing options with practical efficiency (Section III).

• An implementation of the MDG and an impact-
analysis tool based on it (Section IV-A1).

• An evaluation of the MDG that assesses its accuracy
relative to TSD-based forward slicing and its cost-
effectiveness for impact analysis over the latest peer
approach SEA (Section IV).

II. MOTIVATION AND BACKGROUND

Our work was primarily motivated by improving the cost-
effectiveness of forward dependence analysis that directly sup-
ports dependence-based impact analysis [5], [17] and other
software-evolution tasks [18]. The need for more cost-effective
impact-analysis techniques has been extensively investigated
previously (e.g., [4], [7], [19]–[21]) and stressed recently [8].

A. Impact Analysis
Impact analysis is a crucial step during software evolu-

tion [5], [18], for which a typical approach is to find the impact
set (the set of potentially impacted program entities) of points
of interest, such as those for change proposals, by analyzing
program dependencies with respect to those points. Despite of
a large body of research invested [17], today’s impact-analysis
techniques still face many challenges, most of which can be
reduced to the struggle between the cost and effectiveness of
the techniques or their results [4], [19], [21], [22].

In this context, we lately developed DIVER [7], [8], a dy-
namic impact analysis that was shown to be much more precise
than its previous alternatives with reasonable overheads. Given
a program and its test inputs, this technique first builds a de-
tailed statement-level dependence graph of the program, and
then guides, using static dependence information in that graph,
the impact computation based on method execution traces gen-
erated from the test inputs. However, during its post-processing
phase, intraprocedural dependencies carry excessive overheads
as they cannot be pruned by the execution traces of method-
level granularity (in essence, they are conservatively assumed
to be all exercised due to the lack of statement-level dynamic
data [8]). Therefore, for hybrid analysis using method-level
execution data only, intraprocedural dependencies can be ab-
stracted away.

A few approaches devoted to abstracting program depen-
dencies to method level exist [11], [23] which, however, are
as heavyweight as or even more than the TSD model [2] that
either do not scale to large programs or come with exces-
sive costs. DIVER derives method-level dependencies from
statement-level ones based on the TSD model, thus it also
suffered from certain costs that could be avoided. Therefore,
the overheads of DIVER would be reduced without losing pre-
cision, implying the increase in its overall cost-effectiveness, if
it directly models method-level dependencies to capture only
necessary information used by the dynamic analysis.

The applicability of dynamic impact analysis is constrained
by the availability, and quality, of program inputs (hence
those of the dynamic data), though. When such inputs are
not available, impact analysis would be performed using static
approaches. In the current literature, the most cost-effective

method-level static impact analysis we are aware of is based on
the SEA relations among methods [13]. Such analyses input a
program and a query (a method for which impacts are queried),
and add all methods that possibly statically execute after the
query into its impact set as the output. Yet, intuitively this
approach can be very imprecise because of its highly conser-
vative nature, as discussed below.

B. The Static Execute After (SEA)
The static-execute-after relation is defined as the union of

call, return-into, and sequentially follow relations, all consid-
ered transitively [14]. For SEA computation, the analysis first
creates the ICFG of the input program and then keeps entry and
call-site nodes with the rest removed, followed by shrinking
strongly connected components of the remaining graph into
single nodes. Unfortunately, as a dependence abstraction of the
TSD model, the SEA has not yet been fully evaluated against
TSD-based ground truth for forward-dependence approxima-
tion, against widely used object-oriented software in particular
(only differences between forward and backward dependence
sets based on SEA/SEB were reported in [6], yet still limited
to procedural programs).

However, to inform developers about the reliability of re-
sults given by SEA-based impact analysis techniques, it is im-
portant to access SEA’s accuracy in approximating forward de-
pendencies on which the impact analysis is based. In addition,
according to the definition of SEA, such impact analysis iden-
tifies dependencies among methods based on their connections
via control flows only. Although data and control dependencies
are realized through control flows at statement level, thus the
approach is expected to be safe (of 100% recall), ignoring the
analysis of them can naturally lead to false-positive dependen-
cies. And understanding the extent of such imprecision is still
an unanswered but critical question.

To see how the SEA-based impact analysis works and its
imprecision, consider the example program E of Figure 1 and
method M0 as the query. First, the query itself is trivially in-
cluded in the impact set. Then, since M0 calls M1 and M4, and
also transitively M2, M3 (both via M1), and M5 (further via M2),
the impact set of M0 is {M0, M1, M4, M2, M3, M5}. Similarly,
for every other possible query, the impact set is constantly the
entire program. However, these results are quite imprecise for
this simple program: For example, none of M1, M3, and M4
should be included in the impact set of M5 because none of
them is either data or control dependent on M5. We believe
that properly incorporating data and control dependencies in a
dependence abstraction would largely overcome such impreci-
sion with acceptably additional yet still practical overhead.

III. THE METHOD DEPENDENCE GRAPH

This section first gives a description and definition of the
MDG, and then presents the algorithms for constructing it on
a given input program. We use both graph and code examples
for illustration.

A. Overview
1) Definition: An MDG is a directed graph where each

node uniquely represents a method and each edge a method-
level data or control dependence. A method m′ is data depen-
dent on a method m if m defines a variable that m′ might
use, whereas a method m′ is control dependent on a method
m if a decision in m determines whether m′ (or part of it)
executes. In addition to traditional control dependencies due to



1public class A {
2 static int g; public int d;
3 String M1(int f, int z) {
4 int x = f + z, y = 2, h = 1;
5 if (x > y)
6 M2(x, y);
7 int r = new B().M3(h, g);
8 String s = "M3val: " + r;
9 return s;}
10 void M2(int m, int n) {
11 int w = m - d;
12 if (w > 0)
13 n = g / w;
14 boolean b = C.M5(this);
15 System.out.print(b);}}

16public class B {
17 static short t;
18 int M3(int a, int b) {
19 int j = 0;
20 t = -4;
21 if ( a < b )
22 j = b - a;
23 return j;}
24 static double M4() {
25 int x = A.g, i = 5;
26 try {
27 A.g = x / (i + t);
28 new A().M1(i, t);
29 } catch(Exception e) { }
30 return x;}}

31public class C {
32 static boolean M5(A q) {
33 long y = q.d;
34 boolean b = B.t > y;
35 q.d = -2;
36 return b;}
37 static void M0(String[] s){
38 int a = 0, b = 3;
39 A o = new A();
40 String s = o.M1(a, b);
41 double d = B.M4();
42 String u = s + d;
43 System.out.print(u);
44 }
45}

Fig. 1: The example program E used for illustration throughout this paper.

ordinary control flows, the MDG also considers those caused
by exception-driven control flows [7], [16]. As such, the MDG
aims to directly represent data and control dependencies among
methods as attempted in [11], [23] while ignoring unnecessary
statement-level details.

To further define the MDG, we refer to the specific target
and source points at the boundary of a node, where edges enter
and exit, as incoming ports (IPs) and outgoing ports (OPs),
respectively. That is, an IP of a method m is an exact program
point (statement) with respect to where m is dependent on
other methods, and an OP of m is the point with respect to
where other methods depend on m. Thus, the interprocedural
dependencies among methods in a program are represented by
edges connecting OPs to IPs in the MDG of that program. We
further refer to a dependence pointing to an IP of method m
as an incoming dependence of m, and a dependence leaving
an OP of m as an outgoing dependence of the method.

In contrast, intraprocedural dependencies are summarized
by edges each directly connecting an IP to an OP inside an
MDG node. We further refer to such edges as summary edges
and, accordingly, the corresponding dependencies as summary
dependencies. In other words, a summary dependence of a
method m connects an IP to an OP of m, representing that
the IP is reachable to the OP via at least one intraprocedural
dependence chain inside m. As the MDG focuses on mod-
eling method-level dependencies, it abstracts intraprocedural
dependencies using summary dependencies inside methods,
while maintaining incoming and outgoing dependencies across
methods for the interprocedural dependencies among them. For
brevity, we hereafter use edge and dependence interchangeably
in the context of the MDG as a program representation.

More concretely, an MDG node nm represents a method
m, with a tuple that consists of three elements: the method
identifier for m (e.g., method index), the list of IPs of m, and
the list of OPs of m. An MDG edge from a method m to a
method m′ connects a specific OP of m to a specific IP of m′,
expressing either a method-level data or control dependence
of m′ on m. Therefore, the MDG of a program has the same
number of nodes as that of the methods in the program, and
the number of edges equal to that of the interprocedural edges
in its corresponding (statement-level) dependence graph, plus
the number of all summary edges. Maintaining the ports in
each node and edges at the level of the port is necessary for
easily deriving more precise transitive method-level dependen-
cies on the MDG than otherwise if directly connecting among
the nodes with single edges only.

Some of the above terms, such as (incoming/outgoing)
port and dependencies, were previously used for presenting
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Fig. 2: The method dependence graph (MDG) of program E.

DIVER [7]. In comparison, instead of simply renaming ver-
tices on interprocedural dependence edges to such terms after
a detailed dependence graph was constructed through a whole-
program statement-level data and control flow analysis, as we
did in DIVER, here we define the MDG based on these terms
before constructing it, and use them to guide the construction
of the MDG. Thus, the MDG construction takes less time than
building that fine-grained dependence graph would cost.

More specifically, we find the ports explicitly without com-
puting interprocedural dependencies beforehand, but first locat-
ing the ports of each method, and then connecting them among
methods based on type matching. In addition, we compute
intraprocedural dependencies just for connecting incoming to
outgoing ports inside methods, and discard them afterward—
they are not included in the MDG.

To facilitate the description of the MDG and the design
of its application analyses (e.g., impact analysis based on the
MDG), we continue to classify interprocedural data depen-
dencies into three categories as in [7]: parameter dependence
connecting from actual parameters at a call site to formal pa-
rameters in the entry of the corresponding callee, return de-
pendence from return statements to corresponding caller sites,
and heap dependence from definitions to uses of heap variables
(i.e., dynamically-allocated variables not passed or returned
explicitly by methods).

2) Illustration: As an illustration, the MDG of the example
program E of Figure 1 is shown in Figure 2, where each
node represents a method and each edge a dependence of the
target node on the source one. Control dependencies (CDs)
are depicted in dashed edges and data dependencies (DDs) are
in solid edges. Each DD edge is annotated with the variable
associated with the dependence and its arrow is labeled with
the DD type (p for parameter, r for return, and h for heap).
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Fig. 3: Statement dependencies in M2 used to find summary
dependencies of outgoing on incoming dependencies in the
MDG. These statement-level dependencies are discarded after
analyzing the method.

Algorithm 1 : BUILDMDG(program P , exception set unhan-
dled)

1: G := empty graph // start with empty MDG of P
2: IP := OP := ∅ // maps of methods to ports

// Step 1: find ports
3: for each method m of P do
4: FINDDDPORTS(m, IP, OP)
5: FINDCDPORTS(m, IP, OP)

// Step 2: connect ports
6: for each method m of P do
7: for each DD port z ∈ OP[m] do
8: add {〈z, z′〉 | ∃m′ s.t. z′∈IP[m′]∧data dep(z,z′)} to G

9: MATCHINTERCDS(G, unhandled, m, IP, OP)
10: pdg := GETPDG(m)
11: for each port z ∈ IP[m] do
12: add {〈z, z′〉 |z′∈OP[m]∧reaches(z,z′,pdg)} to node Gm

13: return G

In this example, M2 has six incoming dependencies (five DDs
and one CD), such as the DD labeled g with arrow h caused
by the use of heap variable g defined in M4. M2 has also an
outgoing DD edge to M5 as it calls M5 with parameter this.

Figure 3 shows the original statement-level dependencies
within M2 (i.e., its program dependence graph (PDG) [24])
and the incoming and outgoing dependencies of that method,
named d1–d7 for convenience. Dotted (not dashed) edges in-
dicate the connections between method- and statement-level
dependencies. For M2 and every other method, a reachability
analysis on these connections identifies the summary depen-
dencies of outgoing dependencies on incoming dependencies.
For M2, only d1, d2, and d3 reach the outgoing dependence d7.
Thus, the summary dependencies for M2 are 〈d1, d7〉, 〈d2, d7〉
and 〈d3, d7〉. As mentioned eariler, the MDG does not keep
the PDGs but these summary dependencies only.

B. Construction of the MDG
Finding the dependencies in the MDG requires an intrapro-

cedural analysis of the statements of each method. However,
unlike statement-level graphs [2], only summaries of reach-
ing definitions, reachable uses, and control dependencies for
call sites and exit nodes are kept in memory after each in-
traprocedural analysis. The MDG construction algorithm uses
intraprocedural statement-level information for each method.
This information is discarded after analyzing each method,
once ports and summary dependencies are identified. Hence,
the algorithm does not incur the time and space overheads of
statement-level interprocedural analysis. Only the method-level
information required by the MDG is kept.

1) Identification of Ports: For a node (method) m, the IPs
of m for DDs are the uses of variables v in m reachable from
definitions of v in other methods or recursively in m. The OPs
of m for DDs are the definitions in m that reach uses in other
methods or recursively in m. The following are the cases in
which ports for DD can be identified:

• For heap variables, including exceptions, whose defi-
nitions are OPs and whose uses are IPs

• For method calls, where actual parameters (at call
sites) are OPs and formal parameters (at method en-
tries) are IPs

• For method returns, where returned values at callees
are OPs and returned values at caller sites are IPs

The CD IPs of a method m are denoted by special locations
within m whose executions depend on external (or recursive)
decisions such as calling m or returning to m with an un-
handled exception. Those control-flow decisions are the OPs.
Concretely, CD ports are identified for these cases:

• The entries of all methods that can be invoked are IPs.
For a non-polymorphic call site (which can only call
one method), every branch and CD IP that guards it is
an OP. For a polymorphic call site (which has multiple
target methods), the call site itself is an OP because
it decides which method is called

• For an unhandled exception x thrown by a method
m, the entry points of all blocks that can handle x
(e.g., catch statements) at callers of m are IPs. The
conditions that cause the exception to be thrown (i.e.,
the branches and CD IPs that guard its throwing or
the instruction that conditionally throws it) are OPs

The cases listed for DD and CD ports set the rules for
matching ports to determine the (interprocedural) DD and CD
edges of the MDG—an OP can connect only to an IP for the
same case. Thus, an MDG edge e from m to m′ links an OP
of m (the source of e) to a compatible IP of m′ (the target of
e) according to these cases.

An MDG node represents a method, its IPs, its OPs, and
the summary dependencies that map IPs to OPs in that method.
An OP po is summary-dependent on an IP pi if there is a path
from pi to po in the (intraprocedural) statement dependence
graph of the method [24]. With this information and the MDG
edges, a client analysis such as can find which methods are
impacted by a method m by traversing the MDG from m
and all OPs of m conditioned to edges whose source OPs are
summary-dependent on the IPs that are targets of traversed
(impacted) edges.

2) Construction Algorithm: Algorithm 1 describes the pro-
cess for building an MDG. We use these helper notations: a
caller (resp. call) site crs (resp. cs) is a tuple 〈m, s〉 where
m is the caller (resp. set of callees) and s the calling state-
ment; actual params(cs) is the actual parameter list of a call
site cs and formal params(m) the formal parameter list of
m; return sites(m) is the set of return statements in m and
return type(m) the return type of m; D(rs) is the definition of
the return value in a return statement rs; U(crs.s,rs) is the use
at a caller site crs of the value returned by a return statement rs
in a method called by crs. We also denote a formal parameter
f at the entry of m as the use U(f,m) and an actual parameter
a in a call site cs as the definition D(a,cs).

The algorithm inputs program P and a set of unhandled
exceptions and outputs the MDG of P . The exception set con-



tains, by default, all possible exceptions for safety. First in the
algorithm, the DD and CD ports are identified for all methods
of P via FINDDDPORTS and FINDCDPORTS, respectively.
Next, the algorithm creates all DD edges, CD edges, and sum-
mary dependencies by connecting the ports that match (e.g.,
actual and formal parameters).

DD edges between methods are created in lines 7 and 8
by matching each DD OP z to each DD IP port z′ that may
be data dependent on z according to any of the three cases
described earlier. Specifically, for safety and efficiency, all
DDs are matched essentially based on the call graph without
considering calling contexts (i.e., ignoring context-sensitivity).
CD edges are created via MATCHINTERCDS in line 9, which
matches CD ports according to the rules for CDs listed earlier.
CDs due to exceptions are included only for exceptions in the
set unhandled.

Finally, the algorithm computes the summary dependencies
within each method (lines 10–12). For each method m, given
its PDG [24] (line 10) which contains all intraprocedural de-
pendencies, the algorithm matches each IP with every OP that
the IP can reach in that PDG. For each match, a summary
edge 〈z, z′〉 is added to the node Gm for m in G (line 12).

Algorithm 2 : FINDDDPORTS(m, IP, OP)

1: for each call site cs in m do
2: for each callee m′ of cs do
3: add {D(a, cs) | a ∈ actual params(cs)} to OP[m]
4: add {U(f,m′) | f ∈ formal params(m’)} to IP[m’]
5: if return type(m)�=void then
6: add {D(rs) | rs ∈ return sites(m)} to OP[m]
7: for each caller site crs of m do
8: add {U(crs.s,rs) | rs ∈ return sites(m)} to IP[crs.m]
9: for each heap variable definition hd in m do add hd to OP[m]

10: for each heap variable use hu in m do add hu to IP[m]

The helper Algorithm 2 shows the details for FIND-
DDPORTS. For the input method m, the algorithm first tra-
verses all call sites to find, for each call site and callee, the
definition and use of actual and formal parameters, respectively
(lines 1–4). Then, for methods that return values (line 5), the
returned values are added, as pseudo-definitions, to the OPs
of m (line 6) and the use of that value at each caller site are
added to the IPs of the caller methods (lines 7–8). Finally,
the algorithm finds and adds all definitions and uses of heap
variables in m to the corresponding OP and IP sets.

Algorithm 3 : FINDCDPORTS(m, IP, OP)

1: add the entry of m to IP[m] // the entry represents all CD
targets for callers

2: for each edge 〈h, t〉 in GETCDG(m) do
3: if t is a single-target call site then {add h to OP[m]}
4: if t unconditionally throws unhandled exception in m then
5: add h to OP[m]
6: for each multi-target call site cs in m do {add cs.s to OP[m]}
7: for each statement s in m do
8: if s catches interprocedural exception then {add s to IP[m]}
9: if s conditionally throws exception unhandled in m then

10: add s to OP[m]

The helper Algorithm 3, FINDCDPORTS, first identifies as
IP the entry point of m. This point represents the decision

to enter the method, which in a PDG is the true outcome
of the Start node [24]. Then, using the control-dependence
graph (CDG), lines 2–5 mark as OPs the decisions that guard
single-target calls and unconditional throwers of unhandled
exceptions. Those decisions can be branches, the entry of m
(target of caller dependencies), and targets of callee dependen-
cies (interprocedural exception catchers and calls to methods
that might return abnormally [25]). Then, all multi-target call
sites in m are added to the OPs of m (line 6). Lines 7–10
find the IPs that catch interprocedural exceptions and OPs that
throw exceptions conditionally (e.g., null dereferences).

IV. EMPIRICAL EVALUATION

We evaluated our technique as a dependence abstraction in
general and its application to impact analysis in particular. For
that purpose, we computed the precision and recall of forward
dependence sets derived from the MDG against forward static
slices, both at method level, and compared the same measures
and efficiency against SEA. Accordingly, we seek to answer
the following three research questions:

RQ1 How accurately can the MDG and SEA abstract the full
TSD model in terms of approximating forward dependencies?

RQ2 Can the dependence abstractions (the MDG and SEA)
archive significantly better efficiency than the TSD model for
forward dependence analysis?

RQ3 Are the MDG and the static impact analysis based on it
more cost-effective than the SEA approach?

A. Experiment Setup
We briefly discuss key implementation issues and describe

the subject programs used for obtaining the following em-
pirical results. All our studies were performed consistently
on a Linux workstation with a Quad-core Intel Core i5-2400
3.10GHz processor and 8GB DDR2 RAM.

1) Implementation: We implemented the MDG, SEA, im-
pact analysis tools based on the two abstractions, and the
method-level TSD-based forward static slicer all on top of
our dependence-analysis and instrumentation system DUA-
FORENSICS [26], which is built on the Soot bytecode analysis
framework [27]. To compute control dependencies, including
those due to exception-driven control flows, we used the ex-
ceptional control flow graph (ExCFG) provided by Soot as
recently did in [7], [28] as well.

The ExCFG was also employed to create the interproce-
dural component control flow graph (ICCFG) [3], [14], on
which SEA was implemented using the on-demand algorithm
presented in [6]. For static slicing, we directly used the context-
sensitive forward static slicer as part of DUA-FORENSICS with
results lifted up to method level. Both the slicer and SEA
implementations utilized the same call graph facilities given
by Soot with the rapid type analysis applied. More details
regarding the slicer, such as points-to analysis and library-call
modeling, can be found in [26].

A static impact analysis based on the MDG was also im-
plemented, which simply gives as the impact set the transitive
closure on the MDG starting from the input query (more pre-
cisely, starting from each OP of the query, and then taking the
union of all such closures). The SEA-based impact analysis
produces as the impact set of a given query the set of all
methods that are in the SEA relation with that query.



TABLE I: STATISTICS OF EXPERIMENTAL SUBJECTS
Subject Description #LOC #Methods
Schedule1 priority scheduler 290 24
NanoXML XML parser 3,521 282
Ant Java project builder 18,830 1,863
XML-security encryption library 22,361 1,928
Jaba bytecode analyzer 37,919 3,332

2) Subject Programs: We selected five Java programs of
diverse application domains and sizes for our evaluation. Ta-
ble I lists the basic characteristics of these subject programs,
including the number of non-blank non-comment lines of Java
code (#LOC) and number of methods (#Methods) defined in
each subject. The first four subjects are all obtained from the
SIR archive [29], for which we picked the first version avail-
able of each. The Jaba program was received from its authors.

B. Experimental Methodology
This main goal of our study is to addresses the accuracy of

the MDG against both the SEA approach and the TSD model.
Since impact sets computed by the static impact analysis based
on the MDG and SEA are also the method-level forward de-
pendence sets used by the accuracy study, we simultaneously
evaluate the accuracy of these two abstraction models and the
static impact analysis techniques based on them. We also study
the efficiency of all these approaches.

For this study, we applied the MDG- and SEA-based static
impact analysis tools, and the method-level TSD-based for-
ward static slicer, to each of the five subjects. We collected
the forward dependence set (i.e., the impact set or method-
level forward slice) of every single method defined in each
subject as a query by running each of the three tools on that
query separately.

To obtain the method-level forward slice of a query from
the slicer, we computed the statement-level forward slice of
every applicable slicing criterion, and then took the union of
the enclosing methods of statements in those slices. We also
collected the CPU time elapse as the querying cost per such
query. Next, we calculated the following metrics.

First, we calculated the precision and recall of forward
dependence set produced by the MDG and SEA for each query
using the corresponding forward slice given by the static slicer
as the ground truth: The precision metric measures the percent-
age of dependencies produced by the abstraction approaches
that are true positives (i.e., included in the forward slice), while
the recall measures the percentage of dependencies in the for-
ward slice that are included in the dependence set produced by
the abstraction approaches. We report the distribution of the
entire set of data points for these two metrics per subject.

Second, we computed the forward-dependence querying
time costs of the MDG, the SEA, and the forward static slicing.
We also report the time costs of building the program repre-
sentations (i.e., ICCFG and the MDG) used by the abstraction
approaches. These two types of costs are calculated separately
to give more detailed efficiency results that users may need
for better planning their budgets: The times for abstracting
program dependencies are one-time costs in the sense that for
any queries (criteria) the abstract dependence models can be
reused in the query processing phase; while the querying time
is incurred per individual query.

Finally, we applied a non-parametric statistical test, the
Wilcoxon signed rank test [30], to assess the statistical sig-
nificance of mean difference in each of the above two metrics

between the two abstraction approaches against the method-
level static forward slicing. For the statistical test, we adopted
a confidence level of 95% with the null hypothesis for no
difference in the means. We also report the significance over
all subjects when applicable by combing the per-subject p-
values using the Fisher method [31].

C. Results and Analysis
1) Accuracy of dependence abstractions (the MDG and

SEA versus TSD): Figure 4 shows the precision results of the
two abstraction approaches, as listed on the x axis, in ap-
proximating forward dependencies relative to the TSD model,
where the y axis represents the precision. For each subject,
a separate plot characterizes all the data points we analyzed,
which consists of two boxplots each for the data from one of
the two approaches with that subject.

Each of the boxplots includes five components: the max-
imum (upper whisker), 75% quartile (top of middle box),
25% quartile (bottom of middle box), the minimum (lower
whisker), and the central dot within each middle bar indicating
the median. Surrounding each such dot is a pair of triangular
marks that represent the comparison interval of that median.
The comparison intervals within each plot together express the
statistical significance of the differences in medians among the
two groups in that plot: their medians are significantly different
at the 5% significance level if their intervals do not overlap.

The results indicate that the MDG can approximate the
TSD-based forward dependencies with generally very high pre-
cision in most cases: for the majority of queries in all subjects,
the precision was around 90%, according to the medians, and
even low-end 25% of the queries had a precision between
45% (the lowest, with XML-security) to 98% (the highest,
with NanoXML). For NanoXML and Jaba, the precision was
over 95% for 75% of queries, and for Schedule1 it was also
as high as 90%. In these cases, we found many queries that
share the same dependence sets, possibly due to the existence
of dependence clusters as previously investigated [13]. The
worst overall precision was seen by XML-security, for which
the MDG gave a precision of no more than 85% for 75% of
its 1,928 queries. Another subject that received mostly lower
precisions than other subjects, except for the worst-case subject
XML-security, was Ant, where 25% of queries had forward
dependence sets less than 55% precise.

While the MDG did not seem to have lower precisions
for larger subjects—in fact, it performed almost as well with
the two largest subjects as with the two smallest ones—SEA
did see such trend, although not constantly. Except for the
same worst case as has been seen by the MDG (with XML-
security), both the other two largest subjects had generally
much lower precision from SEA than what the MDG gave.
Besides Schedule1 and NanoXML, for which it was as almost
precise as the MDG, SEA produced results of less than 5%
precise for 25% of queries in other three larger subjects. For
XML-security, in particular, the SEA precision did not even
reach 50% for 50% of queries.

However, with both the MDG and SEA, there were cases
in which the dependence abstraction missed almost all true-
positive forward dependencies (precision close to zero), though
much fewer seen by the MDG. We inspected certain samples of
such cases and found that in most of the resulting dependence
sets only one was true positive: the query itself. While the most
possible common reason was the conservativeness of both ab-
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Fig. 4: Precision of the MDG and SEA relative to TSD-based forward slices as the ground truth (with constantly 100% recall).

straction approaches, the fact that the MDG has a lot less such
bad cases than SEA was more probably due to their different
underlying technique in nature: the MDG models both data
and control dependencies, which tends to be less conservative
than SEA which considers roughly control flows only.

Supplementary to the bloxplots, the left three columns of
Table II gave another statistics, the means, of the precision
results. Mainly due to the existence of bad cases discussed
above, the means were dropped down considerably relative to
the numbers seen in the distribution of all data points, for both
approaches. Comparison between the MDG and SEA reveals
that both had an overall similar trend in the fluctuation of
means across the five subjects: where the MDG had relatively
lower mean precisions, did the SEA too. Nonetheless, the p-
values (the fourth column) show statistical significant differ-
ences quite strongly in the means between the two approaches,
further confirming the advantage of the MDG over SEA on
top of the significance in medians shown by the comparison
intervals on the boxplots of Figure 4.

Over the total data points of all subjects, the MDG had
a precision of 72% on average, significantly (with p close to
0) higher than the 49% precision archived by SEA. Note that
such means were largely skewed as discussed above and, thus,
in most cases, users should anticipate much higher precision
from the MDG than from SEA. Additionally, for the SEA, in
contrast to previous accuracy studies that reported very high
precision from it, at class level [14] or at method level but with
procedural programs (in C) considered only [3], our results
suggest that object-oriented programs may contain much more
method-level data and control dependencies that can not be
accurately captured by control flows only, when compared
to other cases (e.g., method-level forward dependencies on
object-oriented programs) studied before.

Recall (MDG and SEA versus TSD) Given the conser-
vative nature of both abstraction approaches and the consis-
tency that all the studied techniques were implemented on a
same source-code analysis infrastructure (call graph, points-to
analysis, and data and control flow analysis facilities, etc.),
we expected that both MDG and SEA are safe. Our results
confirmed this hypothesis: for all the data points we collected,
the recall was constantly 100% for both approximation mod-
els. Consequently, the precision numbers reported here can be
readily translated to accuracy values (e.g., for a precision p,
the F1 measure of accuracy is 2p/(1+p)). Thus, we only show
the precision in this paper for the evaluation on accuracy.

Answer to RQ1: Both the MDG and SEA can approximate
the TSD-based forward dependencies safely; the MDG can
also give high precisions in most cases, while SEA is signif-
icantly less precise in general.

2) Efficiency of dependence abstractions (MDG and SEA
versus TSD): The rest of Table II focuses on the efficiency of
the two abstraction approaches versus the TSD model, includ-
ing the time in seconds (Abstraction time) consumed by build-
ing the underlying graphs (ICCFG used by the SEA and the
MDG), the time in milliseconds taken by the three techniques
for querying forward dependence sets based on respective de-
pendence models. For the latter, the table lists the means and
standard deviations (stdev) of all data points for each subject.
The p-values shown in the ninth column report the statistical
significance of the Wilcoxon test on the mean differences in
querying costs between the two abstraction models.

In terms of the graph construction time, since the MDG as
a program representation contains much finer-grained informa-
tion than the ICCFG, the MDG approach costs always more
than the SEA, as we expected. Yet, in all cases, the costs were
at most five minutes, which should be quite affordable. Note
that the costs did not increase with subject sizes, implying that
users would not necessarily expect increasingly higher costs
for subjects of growing sizes. Intuitively, the internal logic
complexity of programs is an additional factor. Moreover, this
phase is required only once for all possible impact-set queries,
for the single program version the client analysis works with
at least. Finally, in case of larger overheads, this step could be
included as part of nightly build in practice.

Also, the querying-time results to the right of the table
show that the higher one-time costs of the MDG approach were
easily paid off: compared to SEA, the MDG costed constantly
less in terms of the mean querying time and with smaller
variations. In addition, the p-values tell that, for all individual
queries, the MDG was more efficient than SEA with strong
significance in all cases. In all, over all subjects, the mean
querying cost on the MDG is 53ms, less than half of that
incurred by SEA.

Compared to the cost of the full TSD model (the last four
columns), however, both abstraction models appeared to be
much cheaper. For the two smallest subjects, querying the
method-level forward dependencies was 100x faster on the
two abstraction models than on the full TSD model; for other
subjects, the speedup over TSD was almost 1000x. As an



TABLE II: PRECISION MEANS OF THE MDG VERSUS THE SEA AND TIME COSTS OF BOTH RELATIVE TO FORWARD SLICING

Subject
Mean precision Abstraction time (s) Forward dependence querying time (ms): mean (stdev)

SEA MDG p-value ICCFG MDG SEA MDG p-value Slicing
Schedule1 0.81 0.94 2.35E-02 3 4 6 (3) 4 (2) 0.39E-02 124 (194)

NanoXML 0.77 0.88 2.04E-09 4 9 9 (12) 3 (4) 7.95074E-07 1,267 (3,095)

Ant 0.55 0.72 7.79E-79 17 130 64 (62) 45 (43) 1.09677E-08 34,896 (74,210)

XML-security 0.40 0.67 4.64E-83 22 77 50 (67) 43 (34) 4.47922E-16 24,092 (46,601)

Jaba 0.58 0.84 1.96E-33 28 302 213 (201) 121 (221) 3.58023E-10 444,188 (801,631)

Overall 0.49 0.72 6.86E-195 14.8 104.4 131.4 (294.1) 53.3 (66.7) 1.95E-35 55,737.9 (241,084.9)

example, the huge variations of the TSD querying costs sug-
gest that, in some cases, a single query can take as long as a
few hours, as we experienced in experimentation. Between the
two abstraction approaches, on average over all queries, SEA
costs 1.47% of the per-query time incurred by the TSD-based
forward slicing, in contrast to 0.44% by the MDG.

Answer to RQ2: Both the MDG and SEA are reasonably
efficient, and much (100–1000x) cheaper than the TSD model
for querying method-level forward dependencies.

3) Cost-effectiveness for static impact analysis (MDG ver-
sus SEA): From the foregoing comparisons, it has been seen
that the MDG as a TSD approximation approach is generally
much more precise than the SEA alternative, for approximating
forward dependencies at least. The numbers in Table II also
suggest that the MDG provides significantly faster dependence-
set querying than SEA too. In addition, for the cases we stud-
ied, both approaches were confirmed to be safe, always giving
perfect recall relative to the fine-grained TSD-based forward
static slicing.

Note that the forward-dependence sets studied above can
also be regarded as impact sets from the perspective of static
impact analysis. Therefore, taken together, the advantages in
the precision and querying efficiency of the MDG over the
SEA implies that, besides the graph building overhead which
is a one-time cost and mostly quite practical, the MDG-based
static impact analysis is potentially more cost-effective than
the SEA-based analysis.

Answer to RQ3: The MDG incurs expectedly larger one-
time cost than the SEA, which is still affordable; otherwise,
the MDG tends to be significantly more cost-effective than
the SEA for static impact analysis.

D. Threats to Validity
The main internal threat to the validity of our results is

the possibility of implementation errors in the tools used for
our study (the analyses based on the MDG and SEA, and the
forward static slicer). However, the underlying infrastructures,
Soot and DUA-FORENSICS, have both been tested, improved,
and matured for many years. To reduce errors in the code
written on top of these frameworks, we manually checked and
verified the correctness of our implementations using both the
example program and two subjects Schedule1 and NanoXML
for randomly sampled queries. An additional internal threat is
the possibility of errors in our experimental and data-analysis
scripts. To minimize this risk, we tested and debugged those
scripts and checked their functionalities against the require-
ments of our experimental methodology.

Another internal threat is the risk of misguiding the exper-
iments with inaccurate ground truth obtained from the static
slicer. However, this threat has been mitigated in several ways.
First, the slicer, as part of DUA-FORENSICS, has been used

and stabilized along with the entire framework over seven
years. Second, most of the core facilities that could affect
the accuracy of this slicer are directly adopted or extended
from the Soot framework, which is a static-analysis platform
widely used by many researchers. Finally, since those core
facilities are shared by our implementation of the slicer, the
MDG, and SEA, possible biases, if any, in the results derived
from comparing among these tools have been greatly reduced.

The main external threat to the validity of out study is
our selection of study subjects. This set of five Java subjects
does not necessarily represent all types of programs used in
real-world scenarios. To address this threat, we picked our
subjects such that they were as diverse as possible in size,
application domain, coding style, and complexity. Also, the
subjects we used in our study have been extensively used by
many researchers before. Another external threat is that the
forward slicing algorithm we used in our study may not be the
optimal one in terms of precision and efficiency, thus using
a more sophisticated slicer would possibly lead to different
study results. Similarly, while the SEA algorithm we adopted
is the latest one we are aware of that processes one query at
a time, which is justified for comparing per-query processing
time costs between the two abstraction approaches, different
efficiency contrasts may be obtained if comparing the total
time of processing all possible queries of a program at once
(using the batch SEA-computation algorithm in [6]).

The main construct threat lies in our experimental design.
Without any additional knowledge, we gave the same weight
to the forward dependence sets (impact sets) of every method
(query). However, in practice, developers may find some meth-
ods more important than others and, thus, the reported preci-
sion results might not exactly represent the actual results that
developers would experience. To address this potential con-
cern, we adopted the same experimentation procedure when
obtaining the dependence sets from the two approaches (the
MDG and SEA) we compared.

Finally, a conclusion threat to validity is the appropriate-
ness of our statistical analyses. To reduce this threat, we used
a non-parametric hypothesis testing which makes no assump-
tions about the distribution of underlying data points (e.g.,
normality). Additionally, we collected and analyzed data points
for all methods as queries in each subject in order to avoid
relevant biases.

V. RELATED WORK

We address two major categories of previous work related
to ours: dependence abstraction and impact analysis.

A. Program Dependence Abstraction
Most existing dependence-abstraction approaches were de-

signed for specific applications, and also mostly did not di-
rectly model or subsume complete method-level (data and
control) dependencies. For instance, the program summary
graph [9] was originally developed to speed up interprocedural



data-flow analysis, which is similar to the data dependence
abstraction part of the MDG but is built based on program
call structure only and, thus, can be not only imprecise but also
unsafe from the perspective of approximating a full program
dependence model.

Particularly targeting impact analysis, several abstract de-
pendence models were proposed, such as the lattice of class
and method dependence [32] and the influence graph [10].
These abstractions consider only partial dependencies: The
former only captures structural dependencies among classes,
methods, and class fields that are directly derived from
objected-oriented features, such as class-method memberships
and class inheritance, and method-call relations; the latter mod-
els only data dependencies among methods in an overly con-
servative manner while ignoring analysis of intraprocedural
dependencies, which has been shown to be highly imprecise
(precision close to a transitive closure on the ICFG) [10]. The
RWSets tool in [33] abstracts data dependencies via field reads
and writes but ignores control and other data dependencies.

A few other approaches explicitly attempted to model
method-level dependencies. One example is the abstract sys-
tem dependence graph (ASDG) [11], which is built by first
creating the entire SDG and then simplifying statement-level
edges thereof. In [23], an extended TSD model is described to
generalize the definitions of interprocedural dependencies, di-
rectly at both statement and procedure levels. Directly derived
from or developed atop the SDG [2], these models are at least
as heavyweight as the underlying TSD model itself.

The SEA/SEB abstraction [3] to which we compared the
MDG is developed on the simplified ICFG (called ICCFG) in
order to capture method execution orders statically, which is
motivated by the dynamic version of such orders proposed
in [19]. Developed also for interprocedural data-flow algo-
rithms, the program super graph [34] connects per-procedure
control-flow graphs with call and return edges, similar to the
ICFG but enclosing calling contexts as well. The context-
sensitive CFG in [35] is proposed to visualize CFGs for
program comprehension, which also simplifies each intrapro-
cedural CFG as by the SEA/SEB.

In contrast to the above approaches, the MDG we proposed
directly models method-level dependencies that explicitly in-
clude both data and control dependencies. However, compared
to the TSD model, the MDG dismisses expensive interpro-
cedural data-flow analysis with context-sensitivity ignored as
well, which makes it conservative yet enables it to be relatively
lightweight. The summary edges in the MDG are also different
from those of the same name used in the SDG and ASDG:
Those edges were used to help represent calling contexts in the
SDG and transitive data-flow across procedures in the ASDG;
we use such edges to abstract reachability from incoming to
outgoing dependencies within each method.

On the other hand, it is worth noting that this work is
constrained to examining dependence abstractions with respect
to the TSD model, while, as previous work revealed and stud-
ied [11], [14], hidden dependencies that cannot be captured
by TSD also exist, especially in object-oriented software. And
other researchers have shown that the SEA approach can help
discover those dependencies [14]. Therefore, it would be also
of interest to investigate in that regard using the MDG and in
comparison to the SEA/SEB.

When developing the MDG, we reused some terms, such as
the port and data-dependence classification, from DIVER [7].

In contrast, the MDG is more compact than the dependence
graph used by DIVER. In addition, unlike the MDG which
is intended for a general lightweight TSD approximation (al-
though initially motivated by our work on impact analysis), the
dependence graph used by DIVER targets a specific application
of static dependencies in hybrid dynamic impact analysis.

B. Impact Analysis
Static impact analysis provides impact sets for all possible

program inputs. At method level, a main approach to such anal-
ysis is to find methods that are directly or transitively depen-
dent on the given query. In comparison to the SEA-based im-
pact analysis that requires a reachability algorithm [12], [13], a
static impact analysis based on the MDG simply computes the
transitive closure from the query. The MDG-based impact anal-
ysis also gives more information regarding how, in addition to
whether, impacts propagate across methods (through the ports
and edges between them), thus it tends to better support impact
inspection and understanding, than the SEA-based approach.

Static program slicing has been directly used for static
impact analysis, but it was shown to have challenges from
overly large results and/or prohibitive costs [4]. Many other
static approaches exist, which utilize various types of program
information, such as code structure and version repository [12],
[17]. Our static impact analysis based on the MDG utilizes
method-level dependencies to offer an efficient approach with
a precision comparable to fine-grained static slicing.

A large body of other impact-analysis techniques has been
developed but is descriptive [5], [17], such as SIEVE [36],
CHIANTI [37], and the impact analysis based on static slicing
and symbolic execution [38]. These approaches require prior
knowledge about actual changes made across two program
versions. In contrast, the impact analysis we focused on in
this paper is predictive, which inputs a single program version
without knowing the actual changes, thus it gives prediction of
possible impacts based on information from the single version
of the program rather than describing the impacts of those
known changes. Finally, in contrast to dynamic impact analysis
(e.g., [7], [8]) which relies on the availability and quality of
program inputs, the MDG and MDG-based impact analysis are
static, thus they do not use or depend on those inputs.

VI. CONCLUSIONS AND FUTURE WORK

Despite of a number of dependence abstractions proposed
to approximate the fine-grained and heavyweight TSD model,
only few of them intended for a safe and efficient general ap-
proximation. A recent one of such abstractions, the SEA/SEB,
has been developed, yet it remains unclear how accurately this
approach can approximate forward dependencies for object-
oriented software. Also, our intuition and initial application of
the SEA/SEB suggest that it may not be sufficiently accurate
for that approximation.

Motivated by our work on impact analysis, we developed
an alternative dependence abstraction, the MDG, which di-
rectly models method-level dependencies while giving more
information than the SEA/SEB. For forward dependence ap-
proximation, we evaluated the accuracy and efficiency of the
MDG against the SEA using fine-grained static forward slices
uplifted to method level as the ground truth. We also imple-
mented an impact analysis tool based on the MDG and evalu-
ated its cost and effectiveness against the SEA-based alterna-
tive. We showed that the MDG is safe and highly precise, not
only relative to the TSD but also strongly significantly more



precise than the SEA. Our results also suggest that the MDG
can largely improve the cost-effectiveness of impact analysis
over the SEA-based analysis.

There are considerable potentials of the MDG for other
dependence-based applications, such as program comprehen-
sion, testing, and fault cause-effect understanding, which we
plan to explore next. While our study results demonstrated that
the MDG can be a better option for the TSD approximation,
this work shows that advantage for forward dependencies and
at method level only. Thus, future study may consider address-
ing backward dependencies and at other levels of granularity.
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