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Abstract—Data-driven approaches have proven to be promis-
ing in mobile software analysis, yet these approaches rely
on sizable and quality datasets. For Android app analysis in
particular, there have been several well-known datasets that are
widely used by the community. However, there is still a lack of
such datasets that represent the run-time behaviors of apps—
existing datasets are largely static, whereas run-time datasets
are essential for data-driven dynamic and hybrid analysis of
apps. In this paper, we present AndroCT, a large-scale dataset
on the run-time traces of function calls in 35,974 benign and
malicious Android apps from ten historical years (2010 through
2019). These call traces were produced by running each sample
app against automatically generated test inputs for ten minutes.
Moreover, each app was exercised both on an emulator and a real
device, and the traces were separately curated. AndroCT has been
used to build a novel dynamic profile of Android apps that has
enabled several effective techniques and informative empirical
studies concerning Android app security. We describe what this
dataset includes, how it was created and stored, and how it has
been used in past and would be used in the future.

Index Terms—Android apps, dataset, function calls, tracing

I. INTRODUCTION

The open nature of Android embraces framework-based app
development and supports rapid reuse-based creation of user
apps that provide ever-enriching functionalities. Meanwhile,
the openness of Android contributes to the rise of varied
challenges to developing, maintaining, and securing Android
apps. For instance, accompanying the popularity of Android
have been tremendous security threats and attacks targeting
this dominant platform, resulting in the proliferation of secu-
rity threats in the Android ecosystem [1]. Also, their peculiar
behavioral traits and programming practices lead to unique
difficulties in testing and debugging Android apps [2]–[4].

In response, researchers have developed techniques [5] for
and conducted studies [5]–[7] on Android apps to better as-
sure their quality. Among others, data-driven approaches have
gained great momentum, including learning-based app classi-
fication [8]–[10] and bug fixing based on extracting behavioral
patterns from known examples/samples [3], [11]. Essential to
these technical approaches is the availability of a sizable and
informative dataset. Such datasets can also serve as an immedi-
ate basis to empirical approaches that mine new insights about
apps. Several datasets (e.g., Malgenome [12], Drebin [13],
AMD [14], RmvDroid [15], and AndroZooOpen [16]) have
been curated and made publicly available. Especially, the
AndroZoo project [17] offers a continuous service collecting
millions of apps from a variety of sources. These efforts have

enabled a growing number of techniques and studies that
advanced our knowledge about the Android ecosystem.

Meanwhile, existing publicly available datasets on Android
apps have one or more of the following shortcomings.

• First, the majority of them are exclusively focused on
malware, as mainly motivated by the need for developing
security defense solutions (e.g., malware detection and
categorization). Thus, these datasets are not sufficient for
techniques/studies that require data on benign apps.

• Second, most of them just provide the apps themselves,
with a few others including metadata (e.g., AndroZoo,
RmvDroid), but they do not provide derived data (e.g.,
code traits of apps) that would require substantial com-
putation costs to generate. Thus, techniques/studies that
need the derived data would incur the costs repeatedly.

• Third, existing datasets are largely static (e.g., describing
the app code), including no information about the run-
time behaviors of apps. These datasets are thus not
sufficient for dynamic techniques/studies.

• Fourth, most current datasets span a relatively short range
of time—for instance, 4 years with RmvDroid, 3 years
with Malgenome, and 1 year with Drebin. Thus, these
datasets may not be sufficient for a longitudinal, evo-
lutionary study (which would need to examine datasets
spanning a much longer period of time). A few datasets,
such as AMD and AndroZoo, do span more years but
still they are static in nature.

To complement existing datasets on Android apps and
to overcome their shortcomings as stated above, this paper
presents AndroCT , a large-scale longitudinal dataset of 35,974
Android apps from ten years (2010 through 2019). In ad-
dition to reflecting an evolutionary perspective in sampling
the Android app population, our dataset includes not only
the benchmarks themselves but more importantly a major
type of data on run-time app behavioral characteristics—the
trace of calls to any functions in an app, including functions
in exception-handling constructs and those invoked through
reflection. Each app trace was generated by running the app
against randomly generated run-time inputs for ten minutes,
and was ensured to cover the majority of the app’s code.

It is well known that Android apps, especially malicious
ones, can exhibit different behaviors across different run-
time environments (e.g., emulators versus real devices)—
for instance, anti-dynamic-analysis malware can hide their
malicious/suspicious behaviors when they detect that they are



running on an emulator. Considering these differences and
the research value of enabling deep understanding of such
differences, we further collected call traces of each app on
both an emulator and a real Android device with the same
Android platform version, for the same length of time and
same run-time input coverage criteria. The entire AndroCT
dataset took over 12,000 net machine-hours to produce on
high-performance servers with large memory. AndroCT also
includes two reasonably balanced subsets: one for 18,277
benign apps and the other for 17,697 malicious apps.

While typically only the original/raw datasets are necessary
and derived data should be computed on demand, we aim to
share our app execution traces as a dedicated kind of dataset
in order to save the time that would be incurred by a purely
dynamic or hybrid technique/study that needs these derived
data. By doing so, our vision is that this dataset would boost
the research on dynamic or hybrid technical and empirical
app analysis. Not only is our dataset useful for developing
data-driven approaches to app testing, debugging, and security
analysis, it also opens doors for knowledge discovery about
app run-time behaviors through empirical studies.

A peculiar merit of AndroCT lies in its inclusion of both
emulator-based and real-device-based collections of dynamic
call traces of a large number of apps—not only can each col-
lection serve respective needs (e.g., emulator-based dynamic
malware detection versus on-device real-time malware detec-
tion), the differences between these two collections are highly
valuable for anti-dynamic-analysis malware defense research.
For instance, a learning-based approach can developed using
AndroCT to detect whether an app has evasive behaviors.
Although function calls do not give the full spectrum of
an app’s run-time profile, they do provide a useful way to
understand and model app behaviors.

Another value of our dataset comes from its longitudinal
construct. AndroCT contains the call traces of apps from ten
different years, a span of a non-trivial length to suffice for
studying any of the above-mentioned app behavioral traits and
security properties in an evolutionary perspective. In particular,
both the differences between malware and benign apps, and
those between emulator-driven and real-device-driven calling
relationships in apps, may form the basis of various insights
into sensitive, malicious, and evasive behaviors of apps.

The originality of AndroCT is three-fold. First, the entire
dataset has never been used before. Relevant prior works only
used part of the datasets, corresponding to the apps of years
2010 through 2017, and used that part in one way—through a
particular behavioral profile defined by a specific set of metrics
of the function call traces. Second, the entire dataset has never
been comprehensively described and documented as in An-
droCT , especially in terms of the inclusion of both emulator-
and real-device-based traces. Third, we are not aware of any
prior open dataset focusing on dynamic, derived data of apps
based on function call traces, despite the presence of a number
of benchmark suites and static datasets. To the best of our
knowledge, AndroCT represents the first longitudinal Android
app dataset on the dynamic call traces of both benign and

TABLE I
DATA SOURCES AND STATISTICS

Benign apps Malware
Year #apps source #apps source
2010 1,530 AndroZoo 2,029 AndroZoo
2011 2,019 AndroZoo 2,431 AndroZoo
2012 2,053 AndroZoo 2,225 AndroZoo
2013 1,748 AndroZoo 1,230 Virusshare
2014 3,127 AndroZoo 1,493 Virusshare
2015 1,333 AndroZoo 1,667 Virusshare
2016 1,548 AndroZoo 2,171 Virusshare
2017 2,093 GooglePlay 1,935 AndroZoo
2018 1,465 GooglePlay 1,410 AndroZoo
2019 1,361 GooglePlay 1,106 AndroZoo
2010–2019 (total) 18,277 17,697

malicious apps for as long as ten years. The AndroCT dataset
has already been made publicly accessible at

https://zenodo.org/record/4470320#.YBEtnehKhPY

II. THE AndroCT DATASET

The AndroCT dataset includes derived data for at least one
thousand apps, malicious or benign, from each of ten past
years. The statistics on the apps and sources from where the
apps were originally obtained are outlined in Table I. AndroCT
does not include these apps (e.g., their APKs) themselves for
two reasons. The first is the large space cost of these apps
combined and the storage limit with the free, public online
data repositories. The second is that in our dataset the APK
name of each app is given, according to which all of the apps
can be readily downloaded from respective sources. As shown,
the benign apps of years 2017 through 2019 were downloaded
from the Google Play Store [18] and the malware of years
2013 through 2016 was obtained from VirusShare [19]; other
apps were all from AndroZoo [17]. The noticeable variations
among the sizes of yearly datasets (with the minimum of 1,106
and maximum of 3,127) were a result of applying our app
selection criterion as detailed in Section III.

The derived data in AndroCT consists of two collections of
function call traces. Each collection is composed of 35,974
trace files each corresponding to the trace of function calls
in a 10-min continuous exploration of one of the 35,974 apps
summarized in Table I. The only difference between these two
collections is that one was produced on an Android emulator
while the other on a real Android device (smartphone).

For each app, the execution trace in either collection,
as stored in a text file, contains a number of textual line
each representing a function call in the format of “f ->g"
where f is the caller and g is the callee. Both f and g are
full-qualified method signatures, prefixed by the full class
path of respective methods while including each parameter
and return data type if any. An real example line of call
trace is “<info.universalmetadata.android.apps.novel
reader.VoidLayout: void onCreate(android.os.Bund

le)> -> <android.view.Cont extThemeWrapper:

android.content.res.Resources getResources()>".
Note that the function call traces that we curated in An-

droCT were all whole-app traces, meaning that we profiled
invocations of all methods in the app—for methods whose
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definition cannot be found from the app’s APK, they were
profiled only as callees. In terms of the scope of tracing,
these methods cover all of the three code layers of an Android
app—user code, Android SDK, and third-party libraries, and
they may be defined in an app component of any of the
four standard types: Activity, Service, BroadcastReceiver, and
ContentProvider. In terms of the invocation mechanism of the
calls, these methods include both those called explicitly (i.e.,
with explicit references to the call targets) and those that are
the targets of reflective calls, and they may be called through
normal or exceptional control flows.

Especially, when a callee is an inter-component commu-
nication (ICC) API, the trace contains the value of each ICC
Intent field, immediately after the line about the call itself. For
non-ICC calls, currently AndroCT does not trace the return
values or the values of arguments at a callsite. The reason
that we chose to profile more details only for ICC calls was
that without these Intent details it would be hard to link the
communicating components. Establishing these links would be
essential for whole-app dynamic analysis [20].

Since we have apps in both malware and benign-app classes
and across ten years, while in two separate collections, An-
droCT includes 2*10*2=40 subdatasets. In our data package,
each of these 40 subdatasets is stored as one zip file (.tar.gz),
with the file name explicitly indicating of which year and in
which security category (malware/benign) the underlying
apps are. Moreover, for the collection generated on the real
device, the name is further prefixed by the word “real".

III. DATA COLLECTION AND CONSTRUCTION

We describe how we collected the apps (as summarized in
Table I) and how the AndroCT dataset was constructed (i.e.,
how the function call trace was curated for each app).

A. App Collection

As it alone provides both benign and malicous apps of
different years from various origins, we took AndroZoo as
the main source of apps. To further diversify the data sources
for better sample representativeness, we considered Virusshare
and Google Play as two alternative data sources as well.

For each year, we started with downloading a pool of
apps and discarded those for which we cannot meaningfully
profile their function calls (due to corrupted APK or failed
instrumentation) or cannot attain 60% or higher line coverage
of the app’s user code after running the app against test inputs
randomly generated by Monkey [21] for ten minutes. We used
these selection criteria because our focus is on the run-time
behavioral profiling of apps in terms of function calls, and 60%
coverage enforces reasonable confidence about the profile’s
representativeness of app behaviors. The Monkey tool was
used because of its industry-strength robustness and usability
as well as relative small shortage in code coverage compared
to various research prototypes for Android app testing. For all
the 35,974 apps selected eventually, the mean line coverage
per app is 74.85% (with standard deviation 11.97%). We did
not intent to curate balanced numbers of apps across years

given the uneven distribution of the total app populations over
the years. We also removed redundant apps within and across
the ten years. Further, a benign sample was removed if at
least one VirusTotal [22] tool identified it as malware, and a
malware sample was removed if less than ten of VirusTotal
tools agreed on its status of being malicious.

B. Function Call Tracing

The whole-app function calls for each apps were all traced
using DroidFax [23]. To generate the trace, the tool performed
static instrumentation purely at app level to probe for the calls
of any method, including ICC APIs, reflective calls, and calls
invoked through exceptional control flows (e.g., in a catch
or finally block). For ICC API calls, additional probes for
profiling the underlying Intent object were inserted.

For the emulator-based trace collection, each instrumented
app was then explored by Monkey for ten minutes on a Google
Nexus One emulator of 2G RAM and 1G SD storage with
the Android 6.0 installed. The execution trace was collected
at the host machine through the Logcat tool [24]. To avoid
possible interferences among the executions of different apps,
the emulator was restarted as a fresh clean environment before
tracing the next app. Further details on the instrumentation and
run-time profiling can be found in [23].

For the real-device-based trace collection, we followed
the same process as for creating the emulator-based trace
collection, reusing the same instrumented apps. The only
difference was that here we ran each app on a Samsung Galaxy
S4 smartphone with the same Android platform version, 2G
RAM, and 4G SD storage.

IV. PRIOR USE OF AndroCT

For conducting a dynamic characterization study [25], we
proposed an app behavioral profile, defined by 122 metrics
in three dimensions as described in [20]—these metrics were
immediately computed from the function call traces in An-
droCT although only 125 benign apps of a single year were
used in the study. In defining these metrics, we differentiated
function calls in different scopes (e.g., the three code layers
and four types of app components as mentioned earlier). We
also categorized callbacks, a subset of function calls, into
various categories. Moreover, we separately treated calls to
functions that are pre-defined sources and sinks, while using
various source/sink categories to define relevant metrics. The
study was later extended to include apps of years 2010 through
2017 [26], but still only benign apps were considered.

In addition, leveraging another subset of AndroCT , we have
built the same dynamic profiles but only for 136 benign apps
and 135 malware, both of a single year. From these profiles,
we discovered 70 out of the 122 metrics that best differentiated
the dynamic profiles between malware and benign apps, and
utilized these 70 metrics to develop a new dynamic Android
malware detection and categorization tool [27]. Furthermore,
we have utilized the AndroCT dataset for developing and
evaluating sustainable malware detectors [10], [28], [29]—the
longitudinal nature enabled us to assess the sustainability of
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the detector in classifying apps appeared several years after
the year of the apps used for training.

Most recently, we utilized part of AndroCT to perform
a comparative study of the behavioral differences between
malware and benign apps, in terms of the same behavioral
profile. The study also only used apps of years 2010 through
2017 [30]. To illustrate the use of AndroCT in constructing
this behavioral profile, the current data package of AndroCT
includes such profiles of apps as used in that piror paper.

V. FUTURE USE OF AndroCT

Despite the multiple prior studies that have used AndroCT ,
the entire dataset has not been utilized as a whole. In particular,
the real-device-based trace collection is largely untapped—
only the traces of benign apps of years 2010 through 2017
were used in [26]; all of the other studies only used the
emulator-based traces. More importantly, all the prior studies
represented only one application of AndroCT in terms of
dataset construction—they all just used the traces to build the
single particular behavioral profile defined by the 122 metrics
mentioned before, and none of them have used the traces
directly or in other ways (e.g., constructing a different run-
time profile of Android apps). Also, the traces of apps of years
2018 and 2019 have not yet been used in any fashion. These
instances of underuse open a range of opportunities to leverage
AndroCT for many more potentially significant research works
in the future, as exemplified below.

First, the entire dataset of AndroCT can be used to extend
the prior studies by examining the longer-span (eight- versus
ten-year) evolution of app behaviors, while looking at the
differences in app behaviors between virtual (emulator) and
real execution environments. Thus, in terms of the same
behavioral profile, we may answer questions like how do
Android apps behave differently on an emulator versus on a
real Android device?, how do benign apps behave differently
from malware on a real device?, and how do these differences
differ from those obtained on an emulator?. Each of these
questions can be further studied under an evolutionary lens.
We can also answer whether the evolutionary patterns sustain
beyond a certain span, by comparing the patterns observed in
our prior works with the patterns in the entire dataset.

Second, AndroCT can be used in ways other than en-
abling the computation of the 122 metrics used before. Many
other different metrics and measures that represent/model app
behaviors in terms of function calls can be proposed. For
example, dynamic call graphs can be constructed from the call
traces and traversing the graphs will lead to (function-level)
execution paths; then known graph and sequence metrics/mea-
sures can be computed. For another example, particular kinds
of app behaviors can be studied from the call traces by looking
at special kinds of calls (e.g., characterizing reflective calls and
exceptional handling calls). Various data mining techniques
may also be applied immediately to the traces to mine general
and special call patterns in Android apps. All in all, based on
these novel behavioral profiles, questions similar to the above-

mentioned ones can be answered to generate additional, novel
insights into the run-time behaviors of Android apps.

Third, the differences between the two collections in An-
droCT immediately enable studies of the potentially evasive
nature of app behaviors in terms of function calls and ICCs.
Since these two collections differ only in the underlying
execution environments, the differences between the same
apps intuitively reflect the existence and patterns of evasive
apps that only exhibited malicious or suspicious behaviors on
real devices but hid those behaviors in a virtual execution en-
vironment like emulators. Thus, AndroCT would help answer
security defense related questions like what are the typical
functional call and ICC patterns of evasive apps?, how have
the evasion schemes adopted by such apps evolved in terms of
function calls and ICCs?, and is malware significantly more
evasive than benign apps, or are benign apps not evasive at
all?. Using AndroCT , we can also develop learning-based de-
tectors of anti-dynamic-analysis schemes adopted in Android
apps and apps that adopt such schemes. Moreover, AndroCT
can be immediately used in evaluating different kinds of such
detectors. In particular, the longitudinal nature of AndroCT
makes it especially suitable for assessing the sustainability [10]
of learning-based detectors of evasive malware.

None of these above questions have been studied by our-
selves, nor have they been addressed by others as we are aware
of. Thus, we believe AndroCT has great potential and impact
for future relevant research.

VI. CHALLENGES, LIMITATIONS, AND IMPROVEMENT

We faced two major challenges when creating AndroCT .
The first was the high overhead of profiling a sizable set of
apps—tracing each app took 10 minutes. The second was the
difficulty of reaching the size of nearly 36,000 while applying
the selection criteria—a number of apps were discarded (e.g.,
as they cannot be instrumented, the instrumented versions did
not run, or the 10-min executions did not cover 60% or more
of the app’s code) before an app was selected.

As a result of these challenges, one limitation of AndroCT is
that the call traces only represent a limited code coverage for
each app hence may not reflect the typical run-time behaviors
of the app. Another limitation is that the current dataset only
represents one particular emulator and one real device with
one Android platform version. When applied to empirical
studies, especially those of an evolutionary view, an additional
limitation concerns the representativeness of the apps of each
year as opposed to the entire app population of that year.

There are several ways to expand and improve AndroCT .
First, the function call traces can be much enriched by
including run-time values of variables harvested during app
executions, including the return values and function arguments.
These values will enable more fine-grained modeling of app
behaviors. Second, the representativeness of app behaviors by
AndroCT can be improved by using higher-quality test inputs
(e.g., as generated by state-of-the-art fuzzing tools applicable
to Android apps). Finally, the dataset can be enlarged in size
for each year and expanded to cover more years.
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