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ABSTRACT

Today, computing on various Android devices is pervasive. Howe-
ver, growing security vulnerabilities and attacks in the Android
ecosystem constitute various threats through user apps. Taint ana-
lysis is a common technique for defending against these threats,
yet it suffers from challenges in attaining practical simultaneous
scalability and effectiveness. This paper presents a novel approach
to fast and precise taint checking, called incremental taint analysis,
by exploiting the evolving nature of Android apps. The analysis
narrows down the search space of taint checking from an entire
app, as conventionally addressed, to the parts of the program that
are different from its previous versions. This technique improves
the overall efficiency of checking multiple versions of the app as it
evolves. We have implemented the techniques as a tool prototype,
EvoTaint, and evaluated our analysis by applying it to real-world
evolving Android apps. Our preliminary results show that the in-
cremental approach largely reduced the cost of taint analysis, by
78.6% on average, yet without sacrificing the analysis effectiveness,
relative to a representative precise taint analysis as the baseline.
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1 INTRODUCTION

One common approach to defending application security in An-
droid is taint checking [9], a technique that examines a given app
against possible exposure or leakage to external, unauthorized (even
malicious) parties of security-sensitive and/or private data of the
app user. To make its results affordable to inspect in terms of time
cost, taint analysis needs to be precise, reporting as few false alerts
as possible [15]. To minimize the risk of missing actual threats, the
analysis needs to also produce complete (or called safe) results—
capturing as many true security risks as possible [11]. An accurate
taint analysis would both be precise and report security threats
completely. However, an accurate (effective) taint analysis is known
to be highly expensive [2, 11], as the underlying rationale for identi-
fying false alerts hence removing them while producing safe results
typically involves costly modeling and reasoning about code se-
mantics and app behaviors. For example, a representative taint
analysis for Android, FlowDroid [2], can often take a few hours
to check a single app when working at its best-precision setting,
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while settings for better efficiency could result in a significant drop
in its precision. As it stands, many existing solutions suffer from
efficiency issues hence practicality challenges—they are too heavy-
weight thus unable to scale to large, real-world apps. Other existing
approaches take rapid yet rough approaches hence producing too
many false alerts. These consistently occurring false alerts may
ultimately impede the adoptability of the technique as the users
(e.g., security analysts) may not be able to afford the prohibitive
cost of inspecting the large (imprecise) results.

To overcome these challenges, we propose a novel security ana-
lysis called incremental taint analysis. Like software applications
in other domains, Android apps, malicious or benign, constantly
evolve as driven by incremental changes [18, 21]. However, exis-
ting taint analyses treat each version of an app during its evolution
as an independent program without considering the incremental
nature of app evolution, thus incurring excessive overall costs for
running the analysis on the app during its evolution. The propo-
sed incremental taint analysis exploits the fact that incremental
changes are generally small in scale, which are potentially much
cheaper to analyze relative to analyzing the entire program. Gi-
ven multiple evolving versions of an app, our analysis starts with
a whole-program taint analysis on the first version (i.e, base ver-
sion). For each evolved version of the app, the changes relative to
the base version are computed and the affected program entities
are identified through impact analysis. New taint flows due to the
change impact are then synthesized with those in the base version
to produce the final analysis results of the evolved app.

To assess the cost and effectiveness of our approach, we have
implemented the incremental taint analysis as an open-source tool,
EvoTaint (Taint analysis of Evolving apps), and applied it to 19
real-world benchmarks of varied sizes and application domains that
are chosen from Google Play based on their popularity. For each
benchmark, we obtained two historical versions that have varying
time gaps, and compared the analysis cost of EvoTaint versus Flo-
wDroid as a precise baseline technique on the evolved versions. Our
preliminary results on this particular benchmark suite revealed sig-
nificant cost-effectiveness improvement over the baseline achieved
by our analysis. On average, EvoTaint reduced the analysis cost by
78.6% on average while not penalizing the analysis accuracy at all.
Intuitively, the cost reduction is even greater when more evolving
versions of an app are involved in the incremental analysis. Given
the considerable number of evolving versions on large app stores
like Google Play, our technique provides a promising solution to
fast and precise screening of apps against security vulnerabilities.

The main contributions of this paper are:

• We proposed a novel approach, incremental taint analysis, to
checking evolving Android apps against security vulnerabi-
lities, which leverages historical versions of apps to improve
the cost-effectiveness of taint analysis.

1

https://doi.org/10.1145/3196398.3196433


Incremental 
taint analysis

Vi (App version i) Vj (App version j)

Rvi (result for vi)

Impact 
analysis

Impacted 
entities

App evolution time

Impact-guided 
taint checking

Taint synthesis
Rvj (result for vj)

(a) (b)

…
…

…

…

start

end

each 
impacted 

entity

Figure 1: An overview of our incremental approach to taint analysis. It examines only the parts impacted by the incremental

changes (fromVi toVj , i < j) to compute taint flows to sources/sinks from each impacted entity (a), and synthesizes the solution

for Vi with the impact-guided taint checking results to obtain the solution for Vj (b).

• We developed a new, open-source tool, EvoTaint, which
implements the incremental taint analysis and evaluated it
against real-world evolving Android apps, and demonstrated
the promising benefits of the proposed approach.

2 APPROACH

Our approach aims at a significant reduction of the time cost of a
accurate (yet costly) taint analysis, so as to provide a solution that is
both efficient and effective for practical adoption. To that end, our
analysis focuses on the changes between different versions of an
evolving app and on the parts of the newer version that are affected
by the changes, instead of analyzing each version as an independent
app. In this way, the analysis cost will be amortized across multiple
versions of an app. We first give an overview of our approach and
then describe the key technical components separately.

2.1 Overview

Figure 1 depicts our incremental approach to taint analysis. In
particular, the key idea of the approach is illustrated in Figure 1
(a). Multiple versions of an evolving Android app under vetting are
considered and sensitive information flows are examined on the
basis of the analysis results of previous versions. Analysis of evolved
versions focus on program entities affected by the incremental code
changes between two versions of the same app to save analysis
cost, rather than exhaustively examining all possible paths between
any source and any sink in the evolved app.

The high-level process flow of our technique is illustrated in
Figure 1 (b). Given an earlier versionVi and a later (evolved) version
Vj of an app, a change impact analysis is first performed to compute
the set (i.e., impact set) of program entities that are impacted by the
changes introduced in Vj relative to Vi . Then, taint flows induced
by the impact set are computed through an impact-guided taint
checking algorithm. The analysis result Rvi forVi is obtained either
through a whole-program (i.e., conventional) taint analysis if it
is the base version; otherwise, without loss of generality, Rvi is
obtained through incremental taint analysis (recursively). Finally,
the impact-guided analysis result is synthesized with Rvi to derive
the full set of taint flows in Vj .

2.2 Analysis of the Original Version

Each pass of incremental taint analysis addresses two versions of an
app: the original version (e.g., Vi ) before changes are made, and the
changed/evolved version (e.g.,Vj ) that incorporated the changes. As

mentioned above, taint analysis of the original version is performed
incrementally relative to an even earlier version of the app as the
base version, if available. When the original itself is a base version,
we perform the analysis with the conventional approach: the core is
an exhaustive, pair-wise reachability analysis that tracks all possible
sensitive data flows between all predefined sources and sinks. In
particular for Android apps in this work, we use FlowDroid [2] for
the conventional whole-program taint analysis. For precise analysis
results, we adopt the default, conservative settings for flow and
context sensitivity.

2.3 Impact Analysis

The key to the efficiency enhancement with incremental taint ana-
lysis is to avoid the redundant computation for program entities
of the original app that are not affected by the changes during the
evolution. We thus perform a dependence-based change impact
analysis [5] to compute the impacted entities. Further, the impact
analysis is performed at method level [7], which trades precision
for efficiency. In consequence, false positives in the impact set (i.e.,
methods that are actually not impacted but reported so) lead to
extra costs in the impact-guided taint checking (which could be
avoided through a more precise impact analysis). However, our
method-level abstraction does not sacrifice the safety of the re-
sulting impact set, thus the accuracy of the taint checking is not
affected. Also, the extra costs can be counteracted (at least par-
tially) by the cost savings in impact analysis (resulted from the
method-level approximation).

More specifically for Android apps, our impact analysis first
computes the code changes through app differencing between the
original and evolved app versions, and then computes the impact set
of the changes. To obtain the method-level code changes (i.e., chan-
ged methods), all methods of both app versions are traversed and
contrasted, resulting in the lists of methods added, modified, and
deleted during the evolution (i.e., the change set). For the impact-set
computation step, we exploit our method-level impact analysis [7],
which builds the method dependence graph [6] and obtains the
impact set through (method-level) forward slicing on the graph.
Specifically, the impact sets of modified and deleted methods are
computed from the original app while the impact sets of the added
methods have to be computed from the evolved app (since the ori-
ginal app does not include those methods). Accordingly, the impact
analysis produces the impact sets of the three types of changes
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ALGORITHM 1: Impact-Guided Taint Checking
Input: Vorд - original app, Vevo - evolved app
Output: R - map from change type to affected taint flows

1 let I be the map from change type to impact set for Vorд and Vevo
2 let Gorд be the call graph of Vorд
3 let Gevo be the call graph of Vevo
4 foreach change type t ∈ {A, M, D } do

5 foreach methodm ∈ I[t ] do
6 G = Gorд
7 if t==A then

8 G = Gevo
9 end

10 identify the set S of sources backward-reachable fromm on G
11 identify the set T of sinks forward-reachable fromm on G
12 S [t ]=S [t ]∪S
13 T [t ]=T [t ]∪T
14 end

15 R[t ] = getDataFlowPaths(S [t ], T [t ], Vevo )
16 end

separately: addition (A), modification (M), and deletion (D). The
changed methods themselves are also considered impacted.

2.4 Impact-Guided Taint Checking

With the change impact set obtained, our incremental taint checking
aims to compute the influence of the changes on the taint analysis
result of the original app version. Since precise taint checking
addresses the (data-flow) reachability from sources to sinks that are
specified beforehand, the key to our impact-guided taint analysis
lies in reducing the scope of sources and sinks by identifying those
that are (indirectly) affected by the changes.

Algorithm 1 shows the impact-guided taint checking algorithm
in pseudo code. The algorithm takes the two app versionsVorд and
Vevo and computes the taint flows associated with the three types
of changes. The change type is used to retrieve the corresponding
impact set from the results of impact analysis as described above
(line 1). The call graph for both app versions are constructed (lines
2–3) for identifying affected sources and sinks in the following loop
(lines 4–16), through backward and forward traversal (lines 10–11)
on the appropriate call graph, respectively. In particular, for impact
sets of M and D changes, the call graph of Vorд is used for the
reachability analysis (line 6), while for impact sets ofA changes, the
call graph ofVevo is used (lines 7–9) since those impacted methods
(e.g., the methods added toVevo ) are not all included inVorд . After
the sources and sinks affected by changes of type t , the algorithm
computes the data-flow reachability from any of the sources to any
of the sinks inVevo , by invoking a subroutine getDataFlowPaths
(line 15) which essentially performs the conventional taint analysis
with respect to the given lists of sources and sinks. The algorithm
produces the taint flow paths associated with the three change
types as the output.

2.5 Taint Synthesis

The taint analysis result for the evolved app Vevo is obtained by
synthesizing the resultRorд for the base versionVorд with the result
R of the impact-guided taint checking (i.e., output of Algorithm 1).
Specifically,Rorд = getDataFlowPaths(Sf ull ,Tf ull ,Vorд), where
Sf ull and Tf ull are the full lists of all possible sources and sinks
considered, respectively. Then taint synthesis works in three steps.
First, flow paths in Rorд that pass through any method in the three

impact sets are removed from Rorд . Second, flows paths in R[D]
that pass through any deleted method in the change set are remo-
ved from R[D]. Third, remaining flow paths in Rorд and R[D] are
merged with all paths in R[A] and R[D] to produce the full set of
taint flow paths in Vevo .

2.6 Implementation and Limitations

We implemented our technique as a tool, EvoTaint, based on
Soot [13] and FlowDroid [2]. In particular, the conventional taint
analysis routine (getDataFlowPaths) is immediately built on Flo-
wDroid. We also preceded our impact analysis with a preprocessing
step which deobfuscates all apps under analysis. Since many real-
world Android apps are obfuscated, which impedes both the app
differencing and impact-guided taint checking in our technique, this
is a necessary engineering step in a practical tool. To deobfuscate
an app, we used two state-of-the-art Android deobfuscators, Sim-
plify [10] and DeGuard [4] (as the primary and secondary options,
respectively). Thus, our current implementation will not work on
apps that either cannot be analyzed by Soot/FlowDroid or cannot
be deobfuscated with the two underlying tools (a more advanced
deobfuscator can be plugged in to replace them). EvoTaint has
been made available as an open-source project at

https://bitbucket.org/sabatu/iterative-taint-analysis
Our technique currently achieves efficiency enhancement in the

incremental taint analysis primarily by reducing the sources and
sinks to be applied to a conventional taint analysis (line 15 of Al-
gorithm 1). Directly computing affected taint flows via data flow
analysis would avoid invoking the getDataFlowPaths routine,
which may further speed up the incremental taint analysis. Also, it
should be noted that the cost-effectiveness of EvoTaint is constrai-
ned by the number of flow paths affected by the changes between
the versions under analysis. In the case of this number being very
large, the cost of incremental analysis may not be paid off.

3 EVALUATION

Experimental setup. For evaluating our incremental taint ana-
lysis, we applied EvoTaint to 19 popular Android apps obtained
from the Google Play store. For each of these benchmarks, we do-
wnloaded two historical versions, and treated the earlier version as
the base/original app while the later version serves as the evolved
app. We aimed to answer the following two questions: (1) does our
proposed analysis achieve better efficiency over conventional taint
analysis and, if it does, by how much? (2) does our analysis achieve
the same accuracy in taint checking as the conventional approach?

Accordingly, we measured the time cost of EvoTaint versus
FlowDroid as the baseline on the evolved version of each bench-
mark, since both approaches share the same analysis cost on the
base versions. On the evolved versions, FlowDroid treats each as
an independent app and performs a whole-program taint analysis,
while EvoTaint performs the incremental taint analysis proposed.
Thus, we only compared the costs for the evolved versions. More
specifically, we computed the percentage cost reduction achieved
by EvoTaint relative to the cost of FlowDroid on each benchmark.
For the same reason, we only compared the resulting taint flow
paths in the evolved versions as produced by the two tools.
Efficiency improvement. Figure 2 depicts the percentages of cost
reduction obtained by our approach on the 19 benchmarks (listed
on the x axis). The height of each bar in the chart represents the
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Figure 2: Cost reduction (y axis) achieved by our incremental taint analysis with EvoTaint relative to the conventional appro-

ach with FlowDroid on the evolved versions of our benchmarks (x axis).

percentage of total analysis cost on the evolved version by which
EvoTaint reduced over the baseline. For instance, on the Trivia
Crack app, EvoTaint reduced the cost of conventional taint analy-
sis by about 80%. EvoTaint costs included those for deobfuscation.

Overall, the cost reduction ranged from 50% to over 98%, for
a mean efficiency improvement percentage of 78.6%—on average,
EvoTaint only took 20% of the cost incurred by the baseline. In
many individual cases (e.g., Youtube, Google Drive, TurboTax,
Zillow, Fishdom, and Choices), our incremental analysis drasti-
cally improved the baseline analysis efficiency by over 90%. These
numbers revealed that our incremental approach can greatly re-
duce the cost of taint analysis for Android apps by leveraging the
incremental nature of code changes during app evolution.
Effectiveness (accuracy). Given that our goal is to improve the
efficiency of taint analysis without sacrificing the analysis effecti-
veness, it is essential that the taint analysis results produced by our
approach were as accurate as the results produced by the baseline
approach. We thus checked the taint flow paths as the outputs of
EvoTaint versus FlowDroid on the evolved version of each ben-
chmark. For each of the 19 apps, EvoTaint produced the same
set of paths as FlowDroid did. Thus, both tools achieved the same
accuracy of taint checking consistently on our benchmark suite.

In sum, our preliminary results show that the incremental taint
analysis we proposed improved the efficiency of taint checking
over the conventional, whole-program analysis approach, without
sacrificing analysis effectiveness. Therefore, our approach appeared
to have considerably higher cost-effectiveness than the conventional
taint analysis for Android apps whose earlier versions are available
and have been analyzed before.

4 RELATEDWORK

Historically, incremental information-flow analysis has been de-
monstrated or employed to address efficiency challenges in a va-
riety of software engineering tasks, such as data flow computa-
tion [17], program testing [3], parallelization [19], change-impact
analysis [12, 14], and maintenance tasks [16]. Yet, it has not been
as widely used for security defense in general [20], and has not yet
been utilized for code-based security analysis such as taint checking,
a particular form of information flow analysis. Given the large num-
bers of sources and sinks involved, conventional approaches [2, 11]
to taint analysis can suffer from excessive costs when analyzing

evolving apps as they do not consider/exploit the incremental na-
ture of app evolution. In contrast, our incremental approach to taint
checking takes advantage of that nature to drastically improve the
efficiency of precise taint analysis.

Reviser [1] updates interprocedural data-flow facts for incre-
mental code changes, yet it remains unclear how it can be utilized
for speeding up taint analysis for evolving Android apps. On the
other hand, incorporating the incremental data-flow analysis in
our approach could potentially further enhance its efficiency while
maintaining the taint-checking accuracy.

Cheetah [8] aims to decrease the time needed for taint analysis
of Android apps, a goal shared by our incremental taint analysis.
Cheetah took a different approach based on just-in-time static ana-
lysis, which leverages the current development context (e.g., code
edit points) to compute results of different complexity with varied
priority in an integrated development environment. The goal of
Cheetah is to reduce the interruption introduced by the use of a
static analysis tool during code development through an interactive
paradigm of program analysis. Thus, Cheetah suits the scenarios in
which developers would like to be notified of vulnerable informa-
tion flows in an app being developed during the coding process. In
contrast, our incremental taint analysis offers a solution to quickly
discovering vulnerable information flows in finished apps during
their evolutionary production.

5 CONCLUSION

We have presented a novel approach to performing taint analysis
of evolving apps, called incremental taint analysis, for enhanced
cost-effectiveness over the conventional, whole-program analysis
approach. Our technique leverages the historical versions of An-
droid apps and the taint analysis results on them to largely reduce
the cost of taint checking for the evolved versions, by avoiding
recomputation for code entities that are not changed nor impacted
by the changes. Our preliminary results on 19 real-world popularly
used evolving Android apps show that our approach can reduce the
conventional precise taint analysis cost by 78.6% on average and in
many cases up to over 90%, yet without sacrificing the analysis accu-
racy. As a result, our approach offers significant cost-effectiveness
for vetting Android apps during their evolution. We have made
available online EvoTaint, our open-source tool implementation
of the incremental taint analysis. As future work, we plan to ex-
tend our analysis to apps that share similar code-flow paths, but
originate from completely dissimilar repositories.
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