
Embracing Mobile App Evolution via Continuous Ecosystem
Mining and Characterization

Haipeng Cai
haipeng.cai@wsu.edu

Washington State University, Pullman

ABSTRACT
While an indicator of its vibrancy, the rapid evolution of a mobile
ecosystem also causes challenges to mobile software engineers in
developing and maintaining quality products, and to users
concerning the usability and security of resulting apps. In this
context, it is crucially important to arm mobile software engineers
with effective and practical tool support that is informed and
enabled by a comprehensive understanding of the evolutionary
dynamics of this ecosystem. Targeting Android, we envision to
build an infrastructure that is capable of systematically and
continuously mining a mobile software ecosystem. Using this
infrastructure, we then perform large-scale longitudinal
characterization studies of the ecosystem to understand its
evolutionary dynamics with a focus on the behavioral evolution
patterns of, and ecological interaction among, three ecosystem
elements: the mobile platforms, user apps built on the platforms,
and users associated with the apps (including end users and
developers). Further, the characterization results enable proactive
app quality and sustainable app security. We also report our
current progress in this effort with initial results, and discuss risks
and next steps.

CCS CONCEPTS
• Software and its engineering → Software evolution;Main-
taining software;

KEYWORDS
Android, ecosystem, vision, characterization
ACM Reference Format:
Haipeng Cai. 2020. EmbracingMobile App Evolution via Continuous Ecosys-
temMining and Characterization . In IEEE/ACM 7th International Conference
on Mobile Software Engineering and Systems (MOBILESoft ’20), October
5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3387905.3388612

1 INTRODUCTION
The holistic mobile software ecosystem, including the run-time
platform, apps, and user community, evolves rapidly to
accommodate latest hardware advances and volatile end-user
requirements. This is evidently true with Android, the
long-dominating mobile operating system. As an example, the
platform SDK of Android has experienced 28 API versions in less
than ten years [31]. Any successful software is expected to evolve
constantly [42, 43], so the rapid evolution of the Android

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05. . . $15.00
https://doi.org/10.1145/3387905.3388612

ecosystem is a potential indicator of its vibrancy. Meanwhile, this
rapid evolution also causes challenges to mobile software
engineers in developing and maintaining quality app products, and
hence challenges to users concerning the usability and security of
resulting mobile software. Two prominent examples of such
evolution-induced challenges, among many others, are the quick
deterioration of security defense tools for Android [10, 14, 16, 29]
and extensive compatibility issues with Android apps [23, 50].

To illustrate the first challenge, consider learning-based malware
detection [47], a key mobile app security defense approach to the
Android ecosystem. These detectors quickly became outdated due
to the fast evolution of both the Android platform and its user
apps. As an evidence, despite the existence of numerous Android
malware detection techniques and tools, malware in the Android
ecosystem still skyrockets with a new specimen emerging every
4.2 seconds [8].

A main reason that existing Android malware detection
techniques do not sustain well lies in their failure to account for
the evolutionary dynamics of the Android ecosystem [16].
Typically these techniques work by extracting certain sets of
features from sample apps and then training a classifier based on
the features. The evolution of Android itself and that of app
development paradigms (e.g., how malware realizes security
attacks), however, may largely impede or even render almost
unusable the classifier in identifying new samples [10]. Retraining
may not always be a solution either since new samples may not be
as soon available as needed (e.g., for recognizing zero-day
malware). For instance, a state-of-the-art malware detector,
MamaDroid [39], can sustain reasonable accuracy for only one
year—the technique degenerated to merely a random prediction
(i.e., with 50% accuracy) when working on apps over two years
newer than training samples. While not subject to exactly the
same issue (known as concept drift in machine learning [34]),
non-learning-based (e.g., signature-based) approaches are also
vulnerable to the rapid evolution of the Android
platform [13, 26, 47].

For the second challenge, consider the consequences of the
Android ecosystem evolution on app development and testing. The
Android platform evolves to harness the full potentials of
new-generation hardware capabilities of the host device, while
apps evolve to accommodate the evolution of Android platforms.
This well-justifiable symbiosis results in issues including
fragmentation and other complicated app/device compatibility
issues [32, 48] which have become immediate barriers for app
development, understanding, and testing. For example, as shown
in a recent study on app compatibility issues [23], on overall
average 15% of 62,894 sampled Android apps cannot be installed to,
and 30–50% of installed apps cannot be normally executed on, one
or more of eight Android platform versions involved in the study.

Evidently, well-informed Android app development and testing
strategies require an understanding of the evolutionary dynamics
of the Android ecosystem, as well as needed for sustainable app
security. We believe that a comprehensive understanding of this
kind can be achieved and maintained through continuous

https://doi.org/10.1145/3387905.3388612
https://doi.org/10.1145/3387905.3388612

Platform info

Android repository

App stores

Android markets

Search & Crawling

Preprocessing & Linking

Database

Sample apps

User community data

Raw data &
characteristics
of the ecosystem

Continuous Ecosystem Data Mining

(HBase)

Big-data processing framework (Hadoop)

U
ser com

m
unity

characterization

Systematic Evolutionary Characterization

Querying I

Proactive quality
recommendations Comprehensive

App Health
Profiling

Sustainable app
classificationUnknown/

emerging apps

Vetting
results

Practical Applications/Tools

Querying
II

Storage & Indexing

Static and dynamic code analysis

Application package analysis
Text

mining

App
characterization

Platform
characterization

Figure 1: An overview of the envisioned approach.

ecosystem mining and characterization. The results would be a
foundation for designing effective and practical tools that assist
mobile app developers with developing quality and secure apps. To
lay this foundation, we envision to create new knowledge about
the Android ecosystem’s evolutionary dynamics and, by exploiting
the knowledge gained, to build a comprehensive semantic model
of apps that measures their quality and guides the developers to
create apps of proactive and sustaining quality and security.

Next, we outline our vision (§ 2) and justifywhy it is new (§ 3).
Then, we present preliminary results on the envisioned approach
and lay out the next steps in the proposed direction, while also
discussing the risks with our approach (§ 4).

2 VISION
An overview of the envisioned approach is depicted in Figure 1.
The continuous ecosystem mining infrastructure (§ 2.1) addresses
data collection, storage, and analysis (e.g., computing app traits),
offering high-efficiency data processing and access for data users
(e.g., the evolutionary characterization study and
applications/tools) through specialized database design and
indexing scheme. Two different querying interfaces are dedicated
for accessing raw ecosystem data (Querying I) and characterization
results (Querying II). The underlying code analysis and non-code
artifact processing are highly parallel, both between individual
apps and platform versions and among the ecosystem elements.
This is enabled by a unified big-data processing framework based
on Hadoop customized for software data analytics. With these
infrastructure facilities, the characterization (§ 2.2) focuses on
empirical investigations, addressing key research questions to
which the answers will lead to knowledge about the ecosystem
evolutionary dynamics. The characterization results are then used
to develop an app health profile that provides developers with
recommendations toward proactive quality, and sustainable app
security classification (§ 2.3). Note that the infrastructure facilities
are spread out over the three technical components (marked by
dashed rectangles) in the figure to better illustrate which parts of
the infrastructure will be used where. Next, we outline the design
of each of these three key components.

2.1 Continuous Ecosystem Data Mining
To enable an evolutionary study at an ecosystem level and a large
scale, we first develop an infrastructure following a systems
approach. This infrastructure provides basic data mining facilities
that both extract app behavioral traits from multiple perspectives
and garner user community data from various sources on the web.
Efficient data harvesting and storage schemes are built in to
facilitate continuous mining, so as to enable the collection of
ecosystem data of maximal representativeness possible while the
ecosystem evolves.

We mine three complementary and closely related categories
of ecosystem data: platform (environment), apps (software), and
users (human). The Android platform and its user applications
constitute the complete Android software stack. Interacting with
the stack are two groups of users: developers who directly interact
with the platform and the end users who directly interact with app
products. The interaction between developers and users is indirectly
realized via the related apps. These three categories of data form
a comprehensive sample description of the entire ecosystem of
Android, and serve as the basis of ecosystem characterization. Since
these categories are naturally distributed over different sources (top
left of Figure 1), we need to discover the hidden links among them
in order to study the ecosystem dynamics as a whole.

We focus on the evolution of platforms as reflected in the
changing SDK/framework versions of Android. In particular, we
target the Android source repository as the primary data source,
available via the Android Open Source Project (AOSP) [3]. For
each platform version, we mine varied kinds of metadata relevant
to evolutionary dynamics, focusing on those about its SDK, API,
permission systems, and targeted device specs, etc.

Our infrastructure mines large numbers of both benign and
malicious apps of various kinds (e.g., functionality categories,
malware families), including code and non-code artifacts of these
apps. Benign apps are crawled from a large variety of sources,
including alternative app stores in addition to the Google Play
Store [30]. Malicious apps are collected from previously referenced
data sources (e.g., [1, 2, 9, 37]). We also leverage web crawling to
garner malware samples (especially emerging ones) in the wild.

User community data mining concerns two human factors of
the ecosystem: (1) attributes of app developers relevant to app usage
and quality/security and (2) views of app users toward the apps they
use. In particular, we mine all currently known Android markets
(app stores), and visible online Android forums to be discovered
through web crawling (e.g., [4, 5]). From these sources, we scoop
various community data, including (1) app description and other
metadata, (2) app ratings, reviews, and discussions by end users,
and (3) reputation records, development history, and focused app
domain of the relevant developer.

To enable a principled data management scheme, we store our
ecosystem data in a distributed database, using Apache HBase
(Hadoop database) [7] in order to seamlessly integrate with the
Hadoop big-data processing framework [6] that we use for parallel
characterization. A holistic database schema is utilized for
effectively archiving the three categories of ecosystem data, and
link them through association analysis for storage efficiency (e.g.,
an app is linked to associated user and developer data as well as
the information about the platform it is supposed to run on). Both
querying interfaces (Querying I and II of Figure 1) are based on
SQL, given its high interoperability with various other languages.

In addition to mining the (raw) ecosystem data, we also build
into the infrastructure common facilities that compute various
characteristics of the data. As shown in Figure 1, we have
dedicated static and dynamic code analysis to empower the
computation of code-based characteristics, for both app and
platform characterization. Non-code artifacts are dissected
through application package analysis. We leverage recent
advances and latest utilities in textual data mining and natural
language processing (e.g., PyTorch [25] and OpenNLP [12]) to
analyze the user community data (which are mostly textual). Our
characterization analyses are designed such that they well suit the
Map-Reduce computation paradigm, in a seamless synergy with
parallel data accesses from our database (since HBase is the default

2

data storage substrate for Hadoop). These analyses are detailed
below (Section 2.2).

2.2 Systematic Evolutionary Characterization
To gain a comprehensive understanding of the evolving ecosystem,
we systematically characterize it concerning its behavioral traits
and evolutionary patterns. The characterization is systematic as
it addresses the characteristics of each of the three ecosystem
data elements individually, as well as the interactions (e.g., via
correlations) among them.

The rich user apps constitute a vital means by which the
Android system interacts with its users, thus they are the foremost
source for reasoning about the evolutionary dynamics of the entire
ecosystem. Our app characterization captures app behaviors in
three orthogonal dimensions and three complementary views. The
three dimensions were discovered from an exploratory study [21]:
structure, concerning the composition and functionality
distribution of an app and its executions with respect to the use of
different code layers: user code (UserCode), third-party libraries
(3rdLib), and the SDK (SDK); communication concerning
inter-component communication (ICC) within single apps and
across multiple apps; and sensitive access concerning the
production, consumption, and potential leakage of sensitive data
in an app and its executions. The three views were recently
investigated [22]: static code view concerning all classes and
methods appeared in the app APK, which capture how the app
code is structured; callsite view concerning the presence of
methods and their enclosing classes based on the associated
callsite covered, ignoring the frequency of each call, which capture
the diversity of class/method invocations; and instance view
concerning all instances of class/method invocations, which
capture run-time app behaviors that are reflected by call
frequencies. Finally, we consider non-code-based metrics for each
app mined from the manifest, assets, and resource files in the app
APK—for example, the distribution of permissions requested in
installation time, configuration of Intent filters for each declared
component, package naming pattern in relation to the names of
components declared (in the manifest file), repackaging indicators
(e.g., file extension and content mismatch), and obfuscation
indicators (e.g., use of native code and dynamic code loading).

Our platform characterization targets historical versions of
the Android SDK/framework. In addition to the platform
characteristics that are implicitly covered in the proposed app
characterization (e.g., calls to/from SDKs), we characterize the
design of permissions as part of the platform, as opposed to the
use of permissions in user apps. For instance, we study in each
SDK version the permission categorization and distribution over
different security-sensitivity levels, specification-wise association
between permissions and APIs, and device permissions in relation
to hardware features. We also characterize the API of each
platform version, by analyzing the distribution of APIs over
different functionality categories, API compatibility with SDK
versions, and categorization of security-sensitive APIs. We further
study across those versions the API updates, including addition,
deletion/deprecation, and signature (e.g., parameters and visibility)
changes. While permissions and APIs are essential parts of the
platform SDK, we further characterize the SDK from a code
structure perspective. Specifically, we analyze per SDK version the
properties of the SDK hierarchy at the levels of packages, classes,
and methods (e.g., the inclusion relationship between a package
and its member classes), distribution of functional features over
packages, classes, and methods, and third-party libraries used.

Across SDKs, we study updates of packages, classes, interfaces,
methods, and annotations.

Knowing how human users are involved in the Android
ecosystem is essential for understanding its evolutionary dynamics.
Our user community characterization examines the Android
user-community dynamics in two dimensions, using information
mainly from app stores and optionally from quality online user
forums (e.g., [11]). The first is end-user dynamics, regarding the
change patterns with four informative measures: usage statistics
(e.g., number of downloads) of user apps in different functionality
categories and platform versions, distribution of end user
demographics in relation to mobile device configurations,
distribution of end user ratings of apps across functionality
categories in relation to platform versions, and end user review
quality in relation to app quality ratings and security/privacy
concerns. The second is developer dynamics, concerning how
developer characteristics change over time via three measures: the
distribution of developer demographics in relation to app
functionality categories, developer productivity (e.g., numbers of
apps released per year), and developer trustworthiness and
reputation according to the quality/security distribution of
associated apps (as per end-user ratings and reviews).

Importantly, we study the interplay among the three ecosystem
data elements via an in-depth co-evolution study. The primary aim
is to discover the co-change and association patterns across these
different data elements/modalities. Thus, our cross-cutting
characterization focuses on multivariate statistic analyses and
association (co-change pattern) mining, studying, among many
others: the safest mechanism for declaring and requesting
permissions during app installation and run time, whether
unusable Intent fields should be explicitly nullified or left
unassigned by default, which security tips are only applicable to
specific platform versions and which are more generally
applicable, the prominent security characteristics of the apps
developed by highly rated developers, etc. The main results are
actionable guidelines and recommendations for app developers.

2.3 Proactive Applications/Tools
We develop two practical applications/tools by immediately
utilizing the diverse ecosystem characteristics with respect to each
individual app and findings on evolution patterns of different app
groups (e.g., malware versus benign apps).

First, we develop a comprehensive semantic model for Android
apps, called app health profile, to describe various quality indices
about an app, along with a tool for constructing this profile. This
health profile provides a central reference for app developers to
understand potential quality issues of an app being developed, so as
to guide the developers to achieve higher app quality in a proactive
manner. The profile is comprehensive in that it includes diverse
quantitative metrics, such as those on compatibility, vulnerabilities,
usability, and predicted user rating, each considered a health index.
These indices are also ranked based on the severity (a numeric score
representing each index) of the respective quality flaw to facilitate
prioritized inspection by the developers.

Second, we explore an evolution-based methodology for
achieving sustainable app security, by developing a sustainable app
classifier that can offer competitive accuracy without constant
retraining. We show achieving high sustainability in app classifiers
as a key way to contain the current unending surge of malware in
the Android ecosystem. We first conduct a differential
characterization to identify metrics that significantly differentiate
behavioral characteristics of app groups of different security

3

categories (e.g., between benign apps and malware, or between
different malware families). The resulting metrics are then used as
features to train a classifier. We expect this evolution-informed
classifier to achieve and sustain high classification accuracy over
time, based on our prior works in this regard [17, 18, 29].

As illustrated in Figure 1, these applications/tools retrieve both
the raw ecosystem data and the ecosystem characterization results,
via dedicated database querying interfaces. Note that the lasting
relevance and validity of the health profiling and the sustainable
app security defense solution are enabled by continuous mining
and automatic updating via the proposed infrastructure. This way,
the proactive quality and sustainable security will be sustained over
time, which is a key merit of our approach.

3 EXISTING STUDIES
The need for understanding Android evolution has been recognized
in prior work, with varying focuses on the particular aspect of the
evolutionary dynamics (e.g., permission [49] and API [41]). Yet, we
are not aware of any previous systematic study that investigates the
evolutionary dynamics of a mobile software ecosystem holistically.

Existing characterizations for mobile software have addressed
resource usage [28], battery consumption [27], code reuse [44], and
ICC robustness [38] in Android. Yet they did not study the evolution
of these characteristics over time. Few prior research involves the
evolution of Android for a relatively short term [36, 41, 51] or targets
a single particular scope, such as API [35] and permission [49].
Researchers have studied the evolution of apps in terms of the
presence of anti-patterns [33], by looking into a few thousands of
versions of a hundred of sample apps. The study was restricted to
static code (syntactic) traits, like other studies being static also. In
addition, previous works mostly focused on malware only (e.g., [45,
51]) and/or coarse characteristics [40, 46].

In contrast, our vision is to examine a comprehensive set of
app characteristics, including code features, non-code artifacts,
and run-time behaviors. Moreover, our study covers two other
integral elements of the holistic ecosystem: platforms and user
community. These elements have not yet been studied in relation
to app characteristics.

4 CURRENT RESULTS AND NEXT STEPS
We have developed a toolkit for systematic app characterization [19,
20]. Using this toolkit, we sampled at least 1,000 benign apps and
malware from each of eight past years, and characterized their
behavioral evolution in terms of the proposed structure metrics on
code layer interaction in the instance view [15]. Figure 2 depicts part
of the results from this preliminary study, which revealed several
interesting patterns of app evolution. First, both benign apps and
malware had decreasing calls within user code and increasing calls
within the SDK, with more abrupt changes seen in malware. Second,
over time, malware almost constantly had most of its calls to SDK
launched from various third-party libraries, while most of the calls
targeting SDK in benign apps were launched from the same code
layer. Third, generally the evolution of malware was much less
predictable than that of benign apps.

These results have immediate implications for app quality. Steady
drop in user-code involvement in app executions indicates the
promise of prioritizing user code in app testing and security defense,
assuming that the framework itself is secure and less defective. This
strategymay be increasingly justifiable given the increasing portion
of app executions being carried out through calls within the SDK
and shrinking interaction between user code and libraries. Using
the app characterization results, we have developed a prioritized

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015 2016 2017

UserCode‐>UserCode

UserCode‐>3rdLib

UserCode‐>SDK

3rdLib‐>UserCode

3rdLib‐>3rdLib

3rdLib‐>SDK

SDK‐>UserCode

SDK‐>3rdLib

SDK‐>SDK

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015 2016 2017

UserCode‐>UserCode

UserCode‐>3rdLib

UserCode‐>SDK

3rdLib‐>UserCode

3rdLib‐>3rdLib

3rdLib‐>SDK

SDK‐>UserCode

SDK‐>3rdLib

SDK‐>SDK

Figure 2: Example preliminary results on our app evolution
characterization: cross-code-layer calling relationship dis-
tribution (𝑦 axis) of benign apps (top) versus that ofmalware
(bottom) over eight historical years (𝑥 axis).

security analysis for inter-app communication risk analysis using a
big-data processing framework, and demonstrated the usefulness of
these results for sustainable app security by developing a malware
detector based on the differential characteristics between malware
and benign apps [17, 18].

Our immediate next step is to implement the utilities needed for
platform and user community characterization, reusing relevant
static and dynamic code analysis tools developed for the app
characterization. We will then perform respective characterization
studies and cross-cutting characterization as outlined earlier, and
based on the empirical findings and observations distill practical
and actionable recommendations (e.g., general coding guidelines,
configuration rules, and testing caveats for app development and
maintenance). We will also enhance the tool for health profile
construction for a given app, by integrating our prior work on
computing some of the health indices (e.g., incompatibility
detection and repair [24]). By incorporating platform and user
community characterization results, we expect to enhance our
sustainable app security classification approach, on top of the
current, preliminary technique based on app characteristics only.
Finally, we envision our approach to be deployed as a service to
perform continuous mining and characterization of the Android
ecosystem in an autonomous manner.

There are several sources of risks with our approach. First, in
addition to known challenges (e.g., scalability, precision) to app
analysis needed for app characterization, our ecosystem mining
infrastructure may suffer from scarcity of data sources (e.g.,
developer data and app reviews) and inaccuracy (e.g.,
incompleteness) of data crawling. Second, for characterizations, a
main risk lies in the possible insufficient capabilities of underlying
(e.g., text mining, natural language processing) techniques, which
would result in unreliable results. Finally, although our preliminary
results showed its merits, our approach might not generalize well
into the future of the ecosystem evolution (e.g., the patterns we
observed in the studied history may not continue to hold beyond).

4

REFERENCES
[1] 2016. MalwareDB. http://thezoo.morirt.com/.
[2] 2017. Android Malware. https://github.com/ashishb/android-malware.
[3] 2017. Android Open Source Project. https://source.android.com/.
[4] 2017. AndroidCentral. https://www.androidcentral.com/.
[5] 2017. AndroidForums. https://androidforums.com/.
[6] 2017. Apache Hadoop. https://hadoop.apache.org//.
[7] 2017. Apache HBase. https://hbase.apache.org//.
[8] 2017. Mobile malware growth. https://www.gdatasoftware.com/blog/2017/04/

29666-malware-trends-2017.
[9] 2017. VirusShare.com. http://www.virusshare.com/.
[10] Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein, Yves

Le Traon, et al. 2016. Empirical assessment of machine learning-based malware
detectors for Android. Empirical Software Engineering 21, 1 (2016), 183–211.

[11] androidappsreview.com. 2017. Android Apps Reivew. http://www.
androidappsreview.com/.

[12] Apache. 2018. OpenNLP. https://opennlp.apache.org/.
[13] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven

Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining apps for abnormal usage
of sensitive data. In Proceedings of IEEE/ACM International Conference on Software
Engineering. 426–436.

[14] Haipeng Cai. 2020. Assessing and improving malware detection sustainability
through app evolution studies. ACM Transactions on Software Engineering and
Methodology (TOSEM) 29, 2 (2020), 1–28.

[15] Haipeng Cai, Xiaoqin Fu, and Abdelwahab Hamou-Lhadj. 2020. A Study of
Run-time Behavioral Evolution of Benign versus Malicious Apps in Android.
Information and Software Technology (2020), 106291.

[16] Haipeng Cai and John Jenkins. 2018. Towards sustainable android malware detec-
tion. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. 350–351.

[17] Haipeng Cai, Na Meng, Barbara Ryder, and Danfeng Yao. 2017. DroidCat: Unified
Dynamic Detection of Android Malware. Technical Report TR-17-01. http:
//hdl.handle.net/10919/77523.

[18] Haipeng Cai, Na Meng, Barbara Ryder, and Danfeng (Daphne) Yao. 2019.
DroidCat: Effective AndroidMalware Detection and Categorization via App-Level
Profiling. IEEE Transactions on Information Forensics and Security (TIFS) 14, 6
(2019), 1455–1470.

[19] Haipeng Cai and Barbara G Ryder. 2017. Artifacts for Dynamic Analysis of
Android Apps. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 659–659.

[20] Haipeng Cai and Barbara G Ryder. 2017. DroidFax: A toolkit for systematic
characterization of Android applications. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 643–647.

[21] Haipeng Cai and Barbara G Ryder. 2017. Understanding Android application pro-
gramming and security: A dynamic study. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 364–375.

[22] Haipeng Cai and Barbara G Ryder. 2020. A Longitudinal Study of Application
Structure and Behaviors in Android. IEEE Transactions on Software Engineering
(2020).

[23] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A large-scale study of
application incompatibilities in Android. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 216–227.

[24] Malinda Dilhara, Haipeng Cai, and John Jenkins. 2018. Automated detection
and repair of incompatible uses of runtime permissions in Android apps. In
Proceedings of the 5th International Conference on Mobile Software Engineering
and Systems. 67–71.

[25] Facebook. 2018. PyTorch. https://pytorch.org/.
[26] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur,

Mauro Conti, and Muttukrishnan Rajarajan. 2015. Android security: a survey
of issues, malware penetration, and defenses. IEEE Communications Surveys &
Tutorials 17, 2 (2015), 998–1022.

[27] Denzil Ferreira, Anind K Dey, and Vassilis Kostakos. 2011. Understanding
human-smartphone concerns: a study of battery life. In Pervasive Computing.
19–33.

[28] Denzil Ferreira, Vassilis Kostakos, Alastair R Beresford, Janne Lindqvist, and
Anind K Dey. 2015. Securacy: an empirical investigation of Android applications’
network usage, privacy and security. In Proceedings of ACMConference on Security
& Privacy in Wireless and Mobile Networks. 1–11.

[29] Xiaoqin Fu and Haipeng Cai. 2019. On the deterioration of learning-based
malware detectors for Android. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 272–273.

[30] Google. 2017. Official Android app stores. https://play.google.com/store/apps?
hl=en.

[31] Google. 2018. Android History. https://www.android.com/history/.
[32] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.

2018. Understanding and detecting evolution-induced compatibility issues in
Android apps. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 167–177.

[33] Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence
Duchien. 2015. Tracking the software quality of android applications along
their evolution (t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, 236–247.

[34] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept
drift in malware classification models. In PROCEEDINGS OF THE 26TH USENIX
SECURITY SYMPOSIUM (USENIX SECURITY’17). USENIX Association, 625–642.

[35] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and fault
proneness: a threat to the success of Android apps. In Proceedings of ACM
International Symposium on the Foundations of Software Engineering. 477–487.

[36] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. 2014. Andrubis - 1,000,000
Apps Later: A View on Current Android Malware Behaviors. In Proceedings of
International Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS). 3–17.

[37] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor VanDer Veen, and Christian Platzer. 2014. Andrubis–1,000,000
apps later: A view on current Android malware behaviors. In Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), 2014 Third
International Workshop on. 3–17.

[38] Amiya K Maji, Fahad A Arshad, Saurabh Bagchi, and Jan S Rellermeyer. 2012. An
empirical study of the robustness of inter-component communication in Android.
In Proceedings of Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. 1–12.

[39] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MAMADROID: Detecting
Android Malware by Building Markov Chains of Behavioral Models. In Proceed-
ings of Network and Distributed System Security Symposium.

[40] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.
2016. A survey of app store analysis for software engineering. IEEE Transactions
on Software Engineering (2016).

[41] Tyler McDonnell, Bonnie Ray, and Miryung Kim. 2013. An empirical study of
API stability and adoption in the Android ecosystem. In Proceedings of IEEE
International Conference on Software Maintenance. 70–79.

[42] Vaclav Rajlich. 2006. Changing the paradigm of software engineering. Commun.
ACM 49, 8 (2006), 67–70.

[43] Vaclav Rajlich and Prashant Gosavi. 2004. Incremental change in object-oriented
programming. Software, IEEE 21, 4 (2004), 62–69.

[44] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Hassan.
2012. Understanding reuse in the Android market. In Proceedings of IEEE
International Conference on Program Comprehension. 113–122.

[45] Aubrey-Derrick Schmidt, Hans-Gunther Schmidt, Leonid Batyuk, Jan Hendrik
Clausen, Seyit Ahmet Camtepe, Sahin Albayrak, and Can Yildizli. 2009. Smart-
phone malware evolution revisited: Android next target?. In Proceedings of IEEE
International Conference on Malicious and Unwanted Software. 1–7.

[46] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo
Cavallaro. 2017. The evolution of Android malware and Android analysis
techniques. Comput. Surveys 49, 4 (2017), 76.

[47] Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al. 2015. Securing Android:
a survey, taxonomy, and challenges. Comput. Surveys 47, 4 (2015), 1–45.

[48] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 226–237.

[49] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012.
Permission evolution in the Android ecosystem. In Proceedings of Annual
Computer Security Applications Conference. 31–40.

[50] Ziyi Zhang and Haipeng Cai. 2019. A look into developer intentions for app
compatibility in Android. In 2019 IEEE/ACM 6th International Conference onMobile
Software Engineering and Systems (MOBILESoft). IEEE, 40–44.

[51] Yajin Zhou andXuxian Jiang. 2012. DissectingAndroidmalware: Characterization
and evolution. In Proceedings of IEEE Symposium on Security and Privacy. 95–109.

5

http://thezoo.morirt.com/
https://github.com/ashishb/android-malware
https://source.android.com/
https://www.androidcentral.com/
https://androidforums.com/
https://hadoop.apache.org//
https://hbase.apache.org//
https://www.gdatasoftware.com/blog/2017/04/29666-malware-trends-2017
https://www.gdatasoftware.com/blog/2017/04/29666-malware-trends-2017
http://www.virusshare.com/
http://www.androidappsreview.com/
http://www.androidappsreview.com/
https://opennlp.apache.org/
http://hdl.handle.net/10919/77523
http://hdl.handle.net/10919/77523
https://pytorch.org/
https://play.google.com/store/apps?hl=en
https://play.google.com/store/apps?hl=en
https://www.android.com/history/

	Abstract
	1 Introduction
	2 Vision
	2.1 Continuous Ecosystem Data Mining
	2.2 Systematic Evolutionary Characterization
	2.3 Proactive Applications/Tools

	3 Existing Studies
	4 Current Results and Next Steps
	References

