
A Look Into Developer Intentions for App
Compatibility in Android

Ziyi Zhang
Washington State University, Pullman, WA

Email: ziyi.zhang2@wsu.edu

Haipeng Cai
Washington State University, Pullman, WA

Email: haipeng.cai@wsu.edu

Abstract—Android apps have become a primary domain of
software applications. However, various causes (e.g., fragmen-
tation and SDK evolution) have led to growing compatibility
issues in Android, as especially experienced by end users as these
issues causing installation/execution failures of apps. Toward
systematically understanding the compatibility issues in the
Android ecosystem, this paper looks into developers’ intentions
for achieving compatibility of apps and/or preventing potential
compatibility issues. We characterized such intentions as reflected
via relevant app attributes, in 100,925 benign and malicious apps
developed in years 2010–2017. We observed that, among many
other findings, there were always developers whose intentions
were clearly against Android’s compatibility recommendations.
Generally, malware developers’ intentions were significantly and
largely different from those of benign apps. The intentions
were also constantly evolving, gradually moving to target newer
platforms yet with years of delay, with a slower pace in malware.
The compatibility intentions, however, were not always fulfilled
as expected, despite the specific platform versions intended for.

Index Terms—Android, app developer, compatibility, installa-
tion, evolution, benign, malware, security

I. INTRODUCTION

Android has been the dominating platform for mobile
apps [1], seeing a continuous expansion of its user base over
the past few years. Part of what contributes to the vibrancy
of Android lies in its flexibilities for vendor customizations,
along with the richness of the functionalities it provides in
its framework that ease the development of apps that cover
ever-broadening domains of applications. Unfortunately, the
benefits to Android due to these flexibilities and resulting
customizations also have come with a consequence—the sub-
stantial diversification of Android devices [2] and customized
Android platforms [3] make it a difficult task for developers
to create the same apps that work for varied platforms on
diverse devices. In addition, the Android operating system and
its software development kit (SDK) also evolve rapidly [4],
[5], leading to constant changes in its application programming
interface (API) that developers rely on to build their apps. As a
result, accompanying the prosperity of the Android ecosystem
are the rising compatibility issues in Android apps [6]–[10].

When an app is not compatible with a device (e.g., due
to hardware incompatibility) or an Android platform (due
to the customization of Android or simply changes made in
a particular Android system version), the app would not be
installed successfully or not function properly. In either case,
the compatibility issue would result in low usability of the
app hence poor user experience. For developers, debugging
against these issues can also be a challenge, since it is
almost impossible to test the app against all possible Android
platforms and/or devices that the end users may have to use
for the app. If a device has compatibility issues with Android,
the Android version on the device would not have Google

Play installed, which is the primary avenue for the users to
install apps [11]. Thus, from end-users’ point of view, device
incompatibilities often do not constitute a serious issue. The
major concern is with app compatibility issues (i.e., whether
an app is compatible with the underlying Android platform).

Thus, it is important to understand compatibility issues in
Android apps. As a first step, in this paper, we set off by
looking at the human factors involved in what had led to the
existence of app incompatibilities in Android, while assessing
the presence of those issues. Several previous studies on the
compatibility issues in Android apps have been presented [4],
[5], [12]–[15], which have significantly advanced our un-
derstandings of such issues. Recent research in this domain
further offered useful tools for detecting such issues that
help developers fix incompatibilities in apps before releasing
them [15], [16]. However, these prior works mainly focus
on characterizing the program traits of apps via analyzing
their code. It remains unclear how human decisions reflected
in non-code artifacts affect the compatibility of apps. After
all, it is the developers who create the apps—it is critical
that developers make sufficient efforts for, and right decisions
about, app compatibility. Thus, it is essential to understand
developers’ intentions about compatibility concerns.

In particular, we examine the intentions of app developers
for achieving compatibility and dealing with potential app
incompatibilities. To that end, we characterized how such
intentions have changed over time as reflected in the speci-
fication of relevant attributes in app metadata (manifest), and
how such intentions have been different between benign apps
and malware, through 100,925 benign and malicious randomly
chosen app samples developed over the past eight years from
year 2010 through year 2017. Specifically, our study addressed
the following research questions, all with an evolutionary lens
concerning the comparison between benign apps and malware.
RQ1: How have Android app developers intended for
the compatibility of their apps? Our study showed per-
sistent presence of developers from any year, of benign or
malicious apps, that violated compatibility recommendations:
0.32–1.24% benign apps and 0.39–16.88% malware igno-
ring minSdkVersion which is recommended to specify, while
0.52–6.1% benign apps and 0.14–2.71% malware specifying
maxSdkVersion which is not recommended. On the other hand,
app developers increasingly intended for specific API levels
as target platforms by explicitly specifying targetSdkVersion,
with even stronger intentions seen in benign apps developers.
RQ2: How were developers’ compatibility intentions evol-
ving (for migrating to newer platforms)? We observed that
all app developers were gradually moving to newer platforms,
with a clearly slower pace by malware producers. There

1

were also considerable lags (about 4 years, and longer in
malware) in the intentions (intended platforms) from the latest
platforms available. Malware was moving slower potentially
for a broader scope of attacks. Developers also appeared to
take one to two years to start targeting new platforms, and
purposely kept supplying apps just for older platforms.
RQ3: How have developers’ compatibility intentions been
fulfilled? In general, developers did not always have their
intentions fulfilled as expected, as evidenced by the persistent
occurrence of compatibility issues. Apps with dominating
intentions in varying years generally tended to have the highest
rate of compatibility issues at installation time. We also found
that whether the intentions were fulfilled had little to do with
the particular platform versions intended for.

Our study artifacts have been made publicly available here.

II. DEVELOPERS’ COMPATIBILITY INTENTIONS

We focus on developers’ intentions relevant to app com-
patibility as reflected in their specification of three possible
attributes in an app’s manifest file (AndroidManifest.xml):
minSdkVersion, targetSdkVersion, and maxSdkVersion [17].
These attributes of an app are used by Android to decide,
in reference to an attribute of the Android system itself that
corresponds to the system version (referred to as the system’s
API level), whether the app can be installed or not.

During the build process of an app, the developer is recom-
mended [18] to specify the minimum API level required for
the app to function in the attribute minSdkVersion. When not
specified, the attribute will be taken as 1 by default. Optionally,
the developer may also specify the app’s targetSdkVersion
to indicate the target API level for the app to run on.
Usually, this attribute informs the system that the app has
been tested against the corresponding API level. When not
specified, the value of this attribute will be defaulted to that
of minSdkVersion. When an app is installed to a device of an
API level that is higher than the app’s minSdkVersion and/or
targetSdkVersion, Android will enable backward compatibility
behaviors for the app to function as expected. Despite an
option, Android does not recommend developers to specify
the maximum API level on which the app is supposed to run,
through the attribute maxSdkVersion.

Intuitively, when app is attempted to be installed to a
device, Android will reject the installation if the device’s
API level does not fall within the range of rminSdkVersion,
maxSdkVersions. Since API level 6, however, Android does not
check against maxSdkVersion during app installation, because
Android promises that new versions of the platform are fully
backward-compatible [17]. Yet, maxSdkVersion still indirectly
affects the chance of an app getting installed to a device: if
an app’s maxSdkVersion is lower than the device’s API level,
the app will not show up in the list of recommended apps
on the device’s Google Play store; or, if the app has been
installed before, it will be automatically removed from the
device when its API level is updated to be higher than the
app’s maxSdkVersion if specified.

III. METHODOLOGY

This section describes our experimental datasets (bench-
marks), experimental setup and study procedure, and metrics
and measurements of our study, for answering the three
research questions described earlier.

A. Benchmarks
TABLE I: Statistics of Study Benchmarks

App
group

number of samples from each year within 2010-2017
Total2010 2011 2012 2013 2014 2015 2016 2017

benign apps 16,724 9,871 10,901 9,635 5,257 5,368 2,421 2,261 62,438
malware 2,139 14,873 3,840 6,138 3,141 5,416 2,682 258 38,487

total number of app samples used in our study 100,925
As summarized in Table I, we used 62,438 benign and

38,487 malicious apps in our study, which were developed in
eight different years (2010 through 2017). The 2,261 benign
apps of 2017 were obtained from Google Play [19], and
all other benign apps from AndroZoo [20]. The malware of
2013 through 2016 was downloaded from VirusShare [21],
and the malware of 2010 through 2012 from AndroZoo.
Collecting malware of 2017 from publicly accessible sources
was difficult, and we managed to manually gather 258 malware
samples of that year from the wild. We determined the year
of each app according to the dex date retrieved from the app’s
APK. We discarded corrupted APKs which either cannot be
unzipped or were missing resource files (e.g., the manifest
file), and eventually had 100,925 apps for use in our study.

B. Experimental Setup and Procedure
In our study, we validated the compatibility of an app at

installation time by actually trying to install (the original APK
of) the app to an Android device. We collected the installation
logs, and then analyzed these logs to recognize the installation
as a success or failure, using our toolkit [22]. To understand
how developers’ compatibility intentions are related to device
API levels, we used three Android virtual devices (AVDs),
Nexus One with 2G RAM and 1G SD storage but with varying
API levels: 19, 23, and 25. We considered these three API
levels because of their top proportions in the latest market
share distribution of different Android platform versions [23].
We ran these AVDs through the Android emulator [24].

To retrieve the three app attributes that reflect developers’
compatibility intentions (Section II), we used apktool [25] to
parse the manifest data of an app. We utilized the Android
debug bridge (adb) [26] tool to install an app to a given
device (AVD). In order to examine the effects of developers’
intentions on app compatibility at installation time, we needed
to identify incompatibility-induced installation failures. Ho-
wever, installation failures, when occurred, could be due to
reasons other than compatibility issues. Thus, for each app
that failed at installation to one device, we kept trying to
install the app to different devices (with different API levels
and/or device configurations) until we found one device where
the app can be installed successfully. In general, this process
of excluding non-compatibility-induced installation failures is
time-consuming. Fortunately, for this work, we were able to
fulfill the process by only trying at most 5 devices including
the three considered in our study.

C. Measurements
To answer our research questions, we characterized deve-

lopers’ compatibility intentions by measuring the presence of
the three manifest attributes that reflect the intentions, as well
as their distribution over all possible API levels (i.e., attribute
values). We also characterized the association between device
API levels and developer intentions by looking at the most
dominating API levels targeted by apps as specified in them

2

https://www.dropbox.com/s/mysqnb08kdeqsaj/mobilesoft-artefact.zip?dl=0

TABLE II: Percentage of apps not specifying minSdkVersion
2010 2011 2012 2013 2014 2015 2016 2017 all years

benign 1.08 1.24 0.66 0.32 0.61 0.75 1.12 0.75 0.84
malware 16.88 6.40 1.04 1.69 3.02 0.92 1.12 0.39 4.24

TABLE III: Percentage of apps that specified targetSdkVersion
2010 2011 2012 2013 2014 2015 2016 2017 all years

benign 23.55 22.80 41.76 75.06 85.79 91.04 93.31 97.39 50.98
malware 4.82 16.56 25.21 43.92 46.51 74.28 76.32 89.53 36.36

TABLE IV: Percentage of apps that specified maxSdkVersion
2010 2011 2012 2013 2014 2015 2016 2017 all years

benign 1.06 0.83 0.98 0.52 1.03 2.89 3.51 6.10 1.36
malware 0.14 0.85 0.29 0.23 0.38 1.70 2.31 2.71 0.85

versus the API levels targeted by app groups that are most
prone to incompatibility-induced installation failures.

Importantly, with respect to all the above measures, we
characterized the changing patterns of developers’ compati-
bility intentions over the eight-year span we considered to
understand the respective evolutionary trends.

IV. MAIN FINDINGS

This section presents the results of our study, with a focus on
major findings with respect to each of our research questions.

A. RQ1: Overall Developer Intentions for App Compatibility

Tables II through IV summarize the general compatibility
intentions in terms of the three relevant attributes. While apps
are recommended by the Android team to explicitly specify
minSdkVersion, 0.84% and 4.24% of all the benign apps and
malware, respectively, did not follow the recommendation.
Although generally such violating apps were in decline, the
movement was slow, especially in benign apps. On the other
hand, for most of the years, malware tended to violate the
recommendation more often than benign apps. One plausible
reason is that malware generally has lower quality control than
benign apps during app production (e.g., many malware apps
are simply or even automatically built through repackaging).

Over the years, targetSdkVersion were specified increasingly
in apps, benign or malicious—the growth was largely conti-
nuous. By 2017, about 90% of apps explicitly specified this
attribute. Since it informs the platform version against which
an app has been tested, the steady growth suggests potentially
growing intentions of developers for targeting specific plat-
forms (hence more focused scope of compatibility). In absolute
terms, such intentions were always stronger with developers of
benign apps versus malware producers. This contrast implies
that malware tends to attempt to be compatible with more
Android versions, possibly for affecting more users and apps.

While specifying maxSdkVersion is not recommended, there
were apps (albeit accounting for relatively small portions)
that violated this recommendation in any year. Notably, over
time, there were increasing percentages of apps doing so,
with more frequent violations seen in benign apps, suggesting
that developers tended to ignore the recommendation. This
is likely attributed to the fact that Android does not check
maxSdkVersion during app installation since API 6.

For the two app groups in each of Tables II through IV, we
computed the significance (via a paired Wilcoxon signed-rank
test [27]) and effect size (via Cliff‘s Delta [28]) of the differen-
ces in benign and malware developers’ compatibility intentions
across the eight years. Both analyses are non-parametric and
were both conducted with α=.05. We found that the differences

4

4

4

4
4 4 4 4

4

4

4

4
4

4 4
4

3

3
3 3 3 3 3 3

3

3
3

3 3
3 3 3

7

7

7

7

7
7

7 7

7

7

7

7

7

7 7

7

8
8

8

8

8

8

8 8

8
8

8

8

8

8
8

8

9 9
9

9

9

9

9

9

9 9 9 9 9

9
9

9

10 10 10
10

10

10

10

10

10 10 10 10 10

10
10

10

14 14 14 14
14

14

14

14

14 14 14 14 14

14
14

14

15 15 15 15 15
15

15

15

15 15 15 15 15 15 15

15

16 16 16 16 16 16
16

16

16 16 16 16 16 16 16 16

5

5

5

5
5 5 5 5

5

5

5
5

5

5 5
5

11 11 11
11

11

11

11

11

11 11 11 11 11

11

11

11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

benign malware

4

4
4 4 4 4 4 4

4

4 4 4 4 4 4 4

5

5

5
5 5 5 5 5

5

5
5

5

5
5 5 5

7

7

7
7

7 7 7 7

7

7

7

7

7

7 7 7

8

8

8

8

8 8 8 8

8

8

8

8

8

8 8
8

9

9

9

9

9 9 9 9

9 9

9

9

9

9 9

9

10

10

10

10

10
10 10 10

10
10

10

10

10

10 10

10

11

11

11

11

11
11 11 11

11

11

11

11

11

11 11

11

14
14

14

14

14
14

14 14

14

14

14

14

14

14 14

14

15 15

15

15

15

15
15 15

15

15

15

15

15

15
15

15

16 16
16

16

16

16
16 16

16

16
16

16

16

16
16

16

17 17 17

17

17

17

17
17

17

17 17 17

17

17
17

17

23 23 23 23 23
23

23

23

23 23 23 23 23 23 23

23

18 18 18

18

18

18

18
18

18
18 18 18

18

18
18

18

19 19 19 19

19

19

19

19

19
19 19 19 19

19
19

19

22 22 22 22 22

22

22

22

22 22 22 22 22
22

22

22

21 21 21 21 21

21

21

21

21 21 21 21 21

21
21

21

25 25 25 25 25 25 25

25

25 25 25 25 25 25 25
25

24 24 24 24 24 24 24

24

24 24 24 24 24 24 24

24

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

benign malware

4 4 4 4 4 4 4 4

4

4 4 4 4 4 4 4

8

8
8 8 8 8 8 8

8

8

8

8 8
8 8 8

9

9

9 9 9 9 9 9

9

9

9

9 9

9 9 9

10

10

10

10 10 10 10 10

10

10

10 10
10

10 10 10

14

14

14

14
14 14 14 14

14 14

14

14

14

14 14 14

15

15

15

15
15 15 15 15

15 15

15

15

15

15
15

15

16
16

16

16

16 16 16 16

16 16

16

16

16

16
16

16

18
18

18

18

18

18

18

18

18 18

18

18

18

18
18 18

22 22 22 22 22
22

22
22

22 22 22 22 22

22 22
22

20 20 20 20 20

20

20

20

20 20
20

20 20

20 20
20

17
17

17

17

17 17 17 17

17 17

17

17

17

17
17

17

19
19

19
19

19

19

19

19

19 19

19

19 19

19 19
19

7

7
7 7 7 7 7 7

7

7
7 7

7 7 7 7

13

13

13

13
13 13 13 13

13
13

13

13

13

13 13 13

23 23 23 23 23 23
23

23 23 23 23 23 23 23 23 2311

11

11

11 11 11 11 11

11

11

11

11

11

11 11 11

12

12

12

12 12 12 12 12

12
12

12

12

12

12 12 12

21 21 21 21 21

21

21

21

21 21 21 21 21

21 21
21

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

benign malware

Fig. 1: Evolution of developers’ compatibility intentions in
terms of minSdkVersion (top), targetSdkVersion (middle), and
maxSdkVersion (bottom).

were significant and large: p values of 0.008, 0.016, and
effect sizes of -1, -0.75, respectively, for targetSdkVersion
and maxSdkVersion. The difference in minSdkVersion was also
non-trivial (0.051 p value and 0.63 effect size).

B. RQ2: Evolution of Developers’ Compatibility Intentions

Figure 1 depicts the percentage distribution of compatibility
intentions in terms of the values of the three relevant app
attributes, in benign apps (marked by prefix B) and malware
(marked by prefix M). The basis of the distribution for each
attribute was the apps that explicitly specified the attribute
values, shown at the center of each colored bar segment.
The percentage of apps having specified an attribute value
is presented by the height of each bar segment. For example,
as shown in the top chart, over 20% of benign-2010 apps
specified minSdkVersion as 4, and over 50% specified it as 3.

Overall, apps were very conservative in specifying the mini-
mal API level to work with. For example, in benign apps, those
created in 2014 were still dominated by API level 8 (which
was released in 2010 [29]) as the minSdkVersion. By 2017, the
dominating minSdkVersion moved to 16 (released in 2012).
In general, benign-app developers intended for a backward
compatibility of 4 years or longer. Malware producers had
intentions for backward compatibility of a noticeably longer
period, up to 7 years as seen by more recent apps (e.g., even
those created in 2017 mostly specified minimal API level of
9, released in 2010). Intuitively, this can be explained by the
intention of malware producers to affect more apps in the past.

The targetSdkVersion of an app potentially indicates the
best platform version the developer wanted the app to run on.

3

TABLE V: Device API levels with most incompatible apps versus most dominating API levels in apps

API level
benign malware

2010 2011 2012 2013 2014 2015 2016 2017 2010 2011 2012 2013 2014 2015 2016 2017

of device
19 3 4 7 17 19 21 19 23 3 4 4 5 8 8 19 n/a
23 3 4 7 17 19 21 23 23 3 4 7 5 8 8 9 23
25 3 8 7 17 19 21 23 23 3 4 4 5 4 8 8 23

specified in app 3 4 7 17 19 21 23 23 3 4 7 5 8 8 8 23

Thus, this attribute reflects how developers might have wanted
to migrate to newer platforms. As expected, newer apps,
benign or malicious, were generally dominated by higher API
levels. However, compared to benign apps, malware appeared
to migrate to newer platforms noticeably slower. Also, in
both app groups, the migration was often abrupt (e.g., the
most dominating targetSdkVersion in malware jumped to 17
in year 2014 without seeing any lower levels between 10 and
16 dominating previously). Evolution of the attribute values
revealed that apps targeted platforms of one or two year older
than themselves, which is reasonable as the developers needed
to take some time to develop apps for the new platforms.

Compared to the other two attributes, maxSdkVersion saw
the greatest similarity in the value distribution between benign
apps and malware. The values of this attribute, in contrast
to the years of the apps, suggest that there were constantly
noticeable gaps between the highest API level released when
an app was created and the API level the app declared as the
maximal to work with. These gaps suggest that a few (given
that only a small portions of apps specified this attribute) apps
were created every year just for older platforms (as they will
not be shown on Google Play on newer platforms).

C. RQ3: Intention Fulfillment

Table V lists the top dominating API level specified (as tar-
getSdkVersion or, if not specified, by default as minSdkVersion)
in all of the benign/malicious apps of a specific year (the last
row) versus the API level targeted by the subset of those apps
that had the highest rate of incompatible apps at installation
time with a device API level (the third to fifth rows). For
instance, among benign-2011 apps, the group of apps that had
the highest incompatibility rate with the device of API level
25 targeted API level 8, while the top dominating API level
targeted by all benign-2011 apps as specified was 4.

The results show that, despite a few exceptions, generally
the dominating app group as divided as per targeted API
levels was also the dominating app group in terms of the
rate of incompatible apps (ranging from 5% to 25%). This
consistency was independent of (1) the specific API levels
targeted by the apps and (2) the API levels of the device the
apps were attempted to install to. In other words, there were
no one or more specific platform API levels that caused more
incompatibilities of apps than other API levels at installation
time. Thus, not only had developers’ compatibility intentions
not always been fulfilled, the fulfillment was not affected by
the particular API levels that express the intentions.

D. Threats to Validity

Our study assumed that the three app attributes actually all
reflected developers’ compatibility intentions, which can also
be reflected in app code as studied in [15]. These attributes
might also be automatically set (e.g., by default) by app build
tools (e.g., Android Studio). As limited by the availability
of samples and our ability to collect and utilize them, our

sample sets across years and benign/malware were not even
in size. The yearly samples used may not be representative of
respective populations either. Thus, our observations may not
generalize to all benign apps and malware of the studied years.
Particularly for RQ3, our findings were additionally limited to
the three devices we used— installing the apps to different
devices covering more API levels and more diverse device
configurations may lead to varied findings.

V. RELATED WORK

Compatibility issues have been attended previously, through
studies of the fragmentation problem [5], [13] and API chan-
ges [15], [16], both of which constitute the main causes of
incompatibilities. In [13], developers’ strategies for preventing
compatibility issues were studied. In our earlier work [10],
we studied a particular kind of compatibility issues—those
due to incompatible use of run-time permissions. These prior
works focus on app code traits relevant to compatibility issues,
concerning app incompatibilities that will only be exhibited at
runtime. In contrast, our study addresses human (developer)
intentions reflected in (non-code) app metadata, regarding not
only compatibility issues that affect app execution, but also
those that can fail apps earlier at installation time.

In [4], SDK evolution was characterized, during which the
API changes can cause app incompatibilities. Our study incor-
porated an evolutionary perspective as well, but we examined
how developers’ intentions for app compatibility evolved.

VI. CONCLUSION AND FUTURE WORK

We studied the compatibility intentions of Android app
developers as reflected by relevant attributes in app manifest,
by examining 100,925 benign and malicious apps created in
2010–2017. Our study addressed how developers intended
for app compatibility, how the intentions evolved in terms
of the attributes’ values changing over time, and how the
intentions have been fulfilled in terms of the achievement
of compatibility in relation to the values of those attributes.
We found that (1) malware developers had less explicit ex-
pression of compatibility intentions than did developers of
benign apps, while both app groups have seen noticeable
violations against compatibility recommendations and growing
intention for particular platform versions targeted, (2) malware
developers intended for backward compatibility of longer
periods than benign developers did (plausibly for affecting
apps more broadly), (3) in terms of developers’ intentions,
malware was migrating to newer platforms noticeably slower
than benign apps, although both app groups saw a delay of
one to two years in terms of the API levels they targeted,
(4) the compatibility intentions were not always fulfilled, at
least for app installation, benign apps or malware, and (5) how
well the intentions were fulfilled was largely independent of
the intention for specific API levels. As future work, we will
explore the symptoms and root causes of app incompatibilities
as observed, not only at installation time but also during app
executions, with respect to developers’ relevant intentions.

4

REFERENCES

[1] I. D. C. I. Research, “Android dominating mobile market,” https://www.

idc.com/promo/smartphone-market-share/os, 2018.

[2] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, and F. Feng,

“Prada: Prioritizing android devices for apps by mining large-scale usage

data,” in Proceedings of the 38th International Conference on Software

Engineering, 2016, pp. 3–13.

[3] M. Fazzini and A. Orso, “Automated cross-platform inconsistency

detection for mobile apps,” in Proceedings of the 32nd IEEE/ACM

International Conference on Automated Software Engineering, 2017, pp.

308–318.

[4] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API

stability and adoption in the Android ecosystem,” in Proceedings of

IEEE International Conference on Software Maintenance, 2013, pp. 70–

79.

[5] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:

Characterizing and detecting compatibility issues for android apps,”

in Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering, 2016, pp. 226–237.

[6] stackoverflow, “Android device compatibility is-

sues,” https://stackoverflow.com/questions/31009186/

android-device-compatibility-issues, 2018.

[7] techrepublic, “How fragmentation affects the an-

droid ecosystem,” https://www.techrepublic.com/article/

how-fragmentation-affects-the-android-ecosystem/, 2018.

[8] howtogeek, “The ultimate guide to installing incompatible android

apps from google play,” https://www.howtogeek.com/138500/

the-ultimate-guide-to-installing-incompatible-android-apps-from-google-play/,

2018.

[9] T. Zhang, J. Gao, J. Cheng, and T. Uehara, “Compatibility testing service

for mobile applications,” in IEEE Symposium on Service-Oriented

System Engineering (SOSE), 2015, pp. 179–186.

[10] M. Dilhara, H. Cai, and J. Jenkins, “Automated detection and repair

of incompatible uses of runtime permissions in android apps,” in

Proceedings of the 5th International Conference on Mobile Software

Engineering and Systems. ACM, 2018, pp. 67–71.

[11] Google, “Android compatibility,” https://developer.android.com/guide/

practices/compatibility.html, 2018.

[12] S. Hill, “Android Fragmentation Issue,” http://www.digitaltrends.com/

mobile/what-is-android-fragmentation-and-can-google-ever-fix-it/,

2016, accessed online 09/20/2016.

[13] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,

“Understanding Android fragmentation with topic analysis of vendor-

specific bugs,” in Proceedings of IEEE Working Conference on Reverse

Engineering, 2012, pp. 83–92.

[14] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,

R. Oliveto, and D. Poshyvanyk, “Api change and fault proneness: a threat

to the success of Android apps,” in Proceedings of ACM International
Symposium on the Foundations of Software Engineering, 2013, pp. 477–

487.

[15] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding

and detecting evolution-induced compatibility issues in android apps,”

in Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering. ACM, 2018, pp. 167–177.

[16] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating

the detection of api-related compatibility issues in android apps,” in

Proceedings of the 27th ACM SIGSOFT International Symposium on

Software Testing and Analysis. ACM, 2018, pp. 153–163.

[17] Google, “Sdk elements in androidmanifest,” https://developer.android.

com/guide/topics/manifest/uses-sdk-element.html, 2019.

[18] ——, “Android developer guide,” https://developer.android.com/guide,

2017.

[19] “Google play store,” https://play.google.com/store, 2018.

[20] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:

Collecting millions of android apps for the research community,” in

Proceedings of the 13th International Conference on Mining Software

Repositories. ACM, 2016, pp. 468–471.

[21] “Virusshare,” https://virusshare.com/, 2018.

[22] H. Cai and B. Ryder, “Droidfax: A toolkit for systematic characteriza-

tion of android applications,” in International Conference on Software

Maintenance and Evolution (ICSME), 2017, pp. 643–647.

[23] Google, “Android Developer Dashboard,” http://developer.android.com/

about/dashboards/index.html, 2018.

[24] ——, “Android emulator,” http://developer.android.com/tools/help/

emulator.html, 2015.

[25] “A tool for reverse engineering Android apk files,” https://code.google.

com/p/android-apktool/.

[26] Google, “Android debug bridge,” https://developer.android.com/studio/

command-line/adb.html.

[27] R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, Probability and

Statistics for Engineers and Scientists. Prentice Hall, Jan. 2011.

[28] N. Cliff, Ordinal methods for behavioral data analysis. Psychology

Press, 1996.

[29] Google, “Android version history,” https://en.wikipedia.org/wiki/

Android version history, 2019.

5

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://stackoverflow.com/questions/31009186/android-device-compatibility-issues
https://stackoverflow.com/questions/31009186/android-device-compatibility-issues
https://www.techrepublic.com/article/how-fragmentation-affects-the-android-ecosystem/
https://www.techrepublic.com/article/how-fragmentation-affects-the-android-ecosystem/
https://www.howtogeek.com/138500/the-ultimate-guide-to-installing-incompatible-android-apps-from-google-play/
https://www.howtogeek.com/138500/the-ultimate-guide-to-installing-incompatible-android-apps-from-google-play/
https://developer.android.com/guide/practices/compatibility.html
https://developer.android.com/guide/practices/compatibility.html
http://www.digitaltrends.com/mobile/what-is-android-fragmentation-and-can-google-ever-fix-it/
http://www.digitaltrends.com/mobile/what-is-android-fragmentation-and-can-google-ever-fix-it/
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide
https://play.google.com/store
https://virusshare.com/
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/Android_version_history

	Introduction
	Developers' Compatibility Intentions
	Methodology
	Benchmarks
	Experimental Setup and Procedure
	Measurements

	Main Findings
	RQ1: Overall Developer Intentions for App Compatibility
	RQ2: Evolution of Developers' Compatibility Intentions
	RQ3: Intention Fulfillment
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

