
Automated Detection and Repair of Incompatible Uses of
Runtime Permissions in Android Apps

Malinda Dilhara
University of Moratuwa

Sri Lanka
malinda.dilhara@gmail.com

Haipeng Cai
Washington State University

Pullman, WA, USA
hcai@eecs.wsu.edu

John Jenkins
Washington State University

Pullman, WA, USA
john.jenkins@wsu.edu

ABSTRACT
The runtime permission model of Android enhances security yet
also constitutes a source of incompatibility issues that impedes
the productivity of mobile developers. This paper presents a novel
analysis that detects the incompatible permission uses in a given
app and repairs them when found, hence automatically adapting
the app to the runtime permission model. The key approach is to
check and enforce the app’s conformance to the runtime permis-
sion use protocol through static control flow analysis and bytecode
transformation. We implemented our technique as an open-source
tool, ARPDroid, and initially evaluated it on 20 incompatible and
3 compatible real-world apps, assisted by manual ground truth
and verification. Our results show that ARPDroid achieved 100%
detection accuracy, 90% repair success rate, and 91.3% overall adap-
tation success rate at an average time cost of about two minutes.

KEYWORDS
Android, runtime permission, incompatibility, detection, repair

1 INTRODUCTION
Among other means, the permission system plays a critical role
in Android security. Prior to Android 6.0 (Marshmallow), the user
of an app grants permissions that the app asks for at installation
time. Once the app is installed, it will be able to access all permit-
ted resources without further permission checking or request at
runtime [11]. The user will thus lose control of permissions until
removing or reinstalling the app. This model, referred to as sta-
tic permission mechanism, has led to standing permission related
security threats to Android users [17].

To enhance its security related to app permissions, Android
has moved from the static permission mechanism to a runtime
permission model since 6.0 (API level 23 and forward, noted as new
platforms). With the new, runtime model, users are privileged to
revoke previously granted permissions or grant permissions any
time after app installation. Meanwhile, Android apps are required
to check if permissions are still available for invoking an API that
needs the permissions at the time of the API invocation [13] and, if
not, request missing permissions before calling the API. Apps with
targetSDKversion≥23 (noted as new apps) that do not implement
these checks and requests properly will crash (at the first exercised
callsite of the API that needs permissions not granted when the API
is invoked). For Apps with targetSDKversion<23 (noted as legacy
apps), new platforms allow them to be used in a degeneratedmanner

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5712-8/18/05. . . $15.00
https://doi.org/10.1145/3197231.3197255

(i.e., as in an older platform thus losing the benefits of the enhanced
security) or crash them if the user revoked permissions required
by an invoked API at runtime. As such, both legacy and new apps
face compatibility issues that either cost security or usability, due
to Android’s move to the new permission mechanism.

Two potential solutions exist, which may mitigate these com-
patibility issues. The first is to drop the legacy apps themselves,
and develop substitutes from scratch (or possibly on top of reusable
parts from the corresponding legacy apps). Apparently, this is the
most straightforward, yet also the most costly, approach which
would cause large resource waste thus may not be practically accep-
table. Alternatively, developers could manually go through the
source code of legacy apps, check all callsites of each invoked met-
hod that is dependent on runtime permissions, and make changes
if necessary to ensure their compliance with the new permission
model (e.g., guarding each callsite with permission check and/or
request [7, 10]). This approach, however, is subject to excessive
human efforts, in addition to being error-prone.

Recently, a few tools/libraries [14–16] appeared to help app deve-
lopers in dealing with the runtime permission model when develo-
ping new apps. For example, PermissionsDispatcher [15] facilitates
the use of runtime permissions in apps by allowing developers to
implement the permission checks and requests using simple an-
notations (instead of using the checking/requesting APIs directly).
However, these tools do not address the problem ofmigrating legacy
apps to new platforms. Also, they require developers to change the
source code and rebuild the app, which largely impedes their use for
legacy app migration since the source code may not be available. (In
reality, the source code of Android apps is commonly unavailable,
except to the original app developers.)

In this paper, we propose a fully automated solution that helps
mobile developers deal with runtime permission related compati-
bility issues. Our technique detects such issues in a given app and
fixes them where they are identified, hence automatically adapting
the app to platforms featured with the runtime permission mecha-
nism. Our approach realizes the adaptation through static bytecode
analysis and transformation without accessing the source code of
the app. Also, it does not rely on any code annotations, nor does it
involve other manual efforts by developers during the adaptation.
The proposed technique focuses on checking against and repairing
incompatible uses of runtime permissions, without changing any
other aspects of the app’s semantics.

We have implemented our technique as an open-source tool
ARPDroid [6] (Adaptation to Runtime Permission for anDROID).
As a preliminary evaluation of our approach, we randomly selected
23 popular, real-world Android apps from Google Play and applied
ARPDroid to each of them. Our results with respect to these bench-
marks show promising effectiveness and practical efficiency of our
technique. ARPDroid correctly detected all these benchmarks as
incompatible or not, with 100% detection accuracy. Also, ARPDroid
successfully transformed 18 out of 20 incompatible apps such that
the resulting apps work normally on a new platform of Android
(version 6.0) with respect to extensive manual inputs. The overall

https://doi.org/10.1145/3197231.3197255

Static control-flow
analysis

Original
Android app (APK)

Inputs

API-permission
mapping

Runtime permission
incompatibility detection

Incompatible?

Runtime permission
incompatibility repair

Resulting
Android app (APK)

Transformed app validation

Adaptation report

Soot for Android

Outputs

Yes

No

Adaptation

Figure 1: Overview of our approach to detecting and repairing Android app runtime permission incompatibilities.

adaptation success rate was 91.3%. The entire analysis by ARPDroid
on these benchmarks took 133 seconds on average. These results
suggest that our solution offers a promising automated support
for mobile developers to avoid permission-induced compatibility
issues, and hence help increase their app development productivity.

In sum, this paper makes the following main contributions.
• We proposed an automated solution to detecting and repai-
ring incompatible runtime permission uses in Android apps
without accessing or changing their source code.

• We developed and evaluated an open-source tool that imple-
ments our technique, and hence demonstrated the promising
effectiveness and practical scalability of our approach.

2 TECHNIQUE
We first give an overview of the workflow of our approach, and then
present the details of core technical components. We also discuss
the limitations of our approach with respect to the current design.

2.1 Overview
Figure 1 depicts the overall process flow of our approach. The
technique takes as inputs the app under analysis, as well as an API-
permission mapping which gives the list of permission-dependent
APIs along with the permissions each API depends on. The static
control flow analysis identifies the program points where permis-
sion uses need to be checked (and potentially to be repaired). This
analysis is built on the Soot framework for Android [4].

With the results of the control flow analysis, the technique deter-
mines if the given app is compatible with the runtime permission
mechanism through a dedicated detection module. If the app is
detected as compatible, the analysis will abort and simply output
the original app. If the app is detected as incompatible (i.e., contai-
ning any incompatible permission uses with respect to the runtime
permission model), the next step repairs all the incompatible per-
mission uses found by the detection module through bytecode
transformation. The transformed app is then validated as regards
to whether it is compatible. If the validation succeeds, the transfor-
med app is produced as the primary component of the technique’s
outputs. The other output is a brief adaptation report that indicates
whether the adaptation was successful or not, along with relevant
logs (e.g., error information or the list of transformed methods). In
the cases of validation failure, the original app APK is outputted.

2.2 Static Control Flow Analysis
To enable detection and repair of incompatible permission uses,
we start with a static control flow analysis which first constructs
the call graph of the input app. Due to their framework-based
and event-driven nature, call graph construction for Android apps
needs to model the lifecycle of app components (e.g., Activity and
ContentProvider) and analyze control flows induced by callbacks.
To that end, we construct a dummy mainmethod to emulate the life-
cycle and perform an iterative callback analysis as in FlowDroid [4].

Based on this call graph and the (intraprocedural) control flow
graph (CFG) of each method in the app, the static analysis conti-
nues with localizing incompatible permission uses, using the input

API-permission mapping. To identify these locations, our analysis
performs a forward traversal on the call graph (from the dummy
main method). Whenever a permission-dependent API is encoun-
tered, the analysis starts a backward traversal on the call graph
until the permission-responsible caller (PRC) of the API is reached.
We define the PRC of a method as the closest caller of the method
that is defined in the user code of the app but not in an inner class.
The PRC of an API x is thus found through a backward depth-first
search (starting from x) on the call graph. For better scalability, our
analysis only deals with the incompatibility issues in user code (i.e.,
code written by the app developer), assuming these issues exist only
in this code layer. As expected, each of the permission-dependent
APIs invoked in the app may have more than one PRC. These PRCs
essentially define the scope (search space) of the incompatibility
detection and repair that follow the static control flow analysis.

2.3 Permission Incompatibility Detection
With the results of the static control flow analysis, our approach
detects whether the given app has permission-induced incompati-
bility issues in two steps as follows. Only when it detects the app
as possibly incompatible, will the technique proceed with repair.
The input app can be either a legacy app or a new app.
Step 1. The detection algorithm begins with parsing the manifest
file contained in the app APK [9]. If the app has a targetSDKver-
sion < 23 as declared in the manifest, the algorithm immediately
concludes with the decision that the app needs to be repaired (in
order to run on new platforms): prior to API level 23, the static
permission mechanism was enforced by Android. Otherwise, the
algorithm further checks if the app declares to use any dangerous
permissions [12] in the manifest. The rationale is two-fold: first,
Android divides all permissions into two groups, normal and dange-
rous, with normal permissions automatically granted by the system;
second, the app or its users can only possibly use, request, grant,
or revoke dangerous permissions that are declared in the manifest.
Thus, if an app does not declare any dangerous permissions in its
manifest, it is unlikely to have incompatible permission uses and
no further analysis (i.e., repair) is necessary.
Step 2. If the above step results in a positive decision (i.e., the app
is likely to be incompatible), the algorithm continues with code-
level checking against incompatible permission uses. Specifically, it
iterates over all the PRCs found by the static control flow analysis
and verifies (1) every permission-dependent API callsite in each
PRC is dominated by the true branch of a permission check (by
invoking the system method ContextCompat.checkSelfPermission),
and (2) the false branch of the check is post-dominated by permission
requests for all the permissions required by the API (by invoking
the system method ActivityCompat.requestPermissions). The app is
regarded as compatible only if both (1) and (2) are verified as true;
otherwise, the app is detected as incompatible.

Moreover, a permission-dependent API callee of a PRC is con-
sidered incompatible if the API fails the verification of (1) and/or
(2). A PRC is considered incompatible if it contains at least one
permission-dependent API callee that is incompatible.

2

ALGORITHM 1: Runtime permission incompatibility repair
Input: P - Android app for repair, M - API-permission mapping
Output: P ′ - repaired app

1 let L be the list of incompatible PRCs in P
2 foreach PRCm ∈ L do
3 let G be the CFG ofm
4 let A be the list of incompatible API callsites inm
5 foreach permission-dependent API callsite cs ∈ A do
6 Perms = M[cs .callee]
7 create an empty conditional C
8 foreach permission perm in Perms do
9 create a predicate b asserting perm is granted

10 C = C ∧ b
11 end
12 if cs is not dominated by the true branch of C on G then
13 insert C s .t . the true branch of C dominates cs
14 end
15 create a permission-requesting callsite prcs
16 if prcs is not post-dominated by C’s false branch on G then
17 insert prcs s .t . it is post-dominated by C’s false branch
18 end
19 end
20 create a permission response handler PRH w .r .t Perms
21 if PRH is not a member of the enclosing class c ofm then
22 insert PRH as a new member method of c
23 end
24 end
25 repackage the changed code to P ′ and sign it

2.4 Repairing Incompatible Permission Uses
For an app that is detected as incompatible, our technique proceeds
with an attempt to automatically repair all the incompatible uses
found during the detection, such that the resulting app can function
properly while taking advantages (e.g., the enhanced permission
security) of new platforms. The repair algorithm, as outlined in
Algorithm 1, works by enforcing the two verification rules (1) and
(2) above that our technique checks against during detection.

The algorithm uses the list of incompatible PRCs (line 1) and the
callsites of incompatible APIs in each incompatible PRC (line 4) that
both resulted from the detection algorithm. For each of such callsites
(lines 5–19), the algorithm inserts a check against all the permissions
on which the API called at the callsite depends (lines 6–14) if there
was no such a check properly placed before. Each predicate (line 9) is
of form ActivityCompat.checkSelfPermission(...)==PackageManager.
PERMISSION_GRANTED. The code transformation ensures that the
original callsite will fall in the true branch of the check (i.e., the
API will be called when all of the permissions required are found
already granted). If the check fails (conditional C evaluated as false),
a call for requesting all the required permissions will be inserted
if there was no such a call properly placed before (lines 15–18).
After all incompatible APIs in a PRC are repaired, the algorithm
ensures there is a permission request response handler (onReque-
stPermissionsResult, which will be invoked by the platform when
the permission-request dialog is closed) included in the class that
encloses the PRC (lines 20–23)—in the case of this class being an
inner class, the higher level ancestor class will be used instead. At
this stage, our technique would create such handlers that simply
delegate the event handling to the superclass (i.e., invoking su-
per.onRequestPermissionsResult). Finally, the transformed app P ′ is
packaged and signed as the return result (line 25).
Repair validation. The transformed app is validated by rerunning
the detection algorithm on it. The validation passes if it is detected
as compatible. We are adding a further validation step through

dynamic analysis: running the repaired app on a new platform
against automatically generated inputs, and then analyzing the
execution log to determine the runtime permission compatibility.

2.5 Implementation and Limitations
We implemented our technique as a tool, ARPDroid, based on
Soot [3] while leveraging relevant analysis facilities (e.g., lifecycle
modeling and callback analysis) in FlowDroid [4] to build the call
graph. The API-permission mapping is generated using PScout [5].
ARPDroid provides flexible options allowing users to choose using
the detection or repair feature only. The tool has been made availa-
ble as an open-source project at

https://bitbucket.org/malindadoo/arpdroid
When required permissions are found not granted yet, currently

ARPDroid inserts code to directly request those permissions wit-
hout considering showing additional rationale to the user (by invo-
king ActivityCompat.shouldShowRequestPermissionRationale). Also,
the strategy dealing with permission request response is currently
simplified, without creating a response handler specific to the per-
missions being requested. Our current detection algorithm does not
check such handlers either, and will miss incompatible permission
uses with obfuscated APIs. A main implementation limitation lies
in the dependence of our tool on the capability of Soot and Flow-
Droid: ARPDroid would not be able to handle apps that cannot be
successfully processed by these underlying utilities (e.g., failure in
bytecode parsing and manipulation or call graph construction).

3 EVALUATION
Methodology. We applied our tool to 23 real-world Android apps
of varying sizes and functionality categories that are randomly cho-
sen from Google Play, as listed in Table 1 (the first two columns).
For each benchmark, we manually produced the ground-truth com-
patibility with respect to the runtime permission model (the third
column). The benchmark selection rationale for this preliminary
evaluation is that we intended to test our technique on 20 incom-
patible apps to assess its detection and repair capabilities; we also
wanted to check if it correctly recognizes compatible apps, for
which we intended to have 3 benchmarks for a sanity check. We
then ran ARPDroid to detect whether the app is incompatible or
not (the fourth column) and, if it was, proceeded with the incom-
patibility repair step. Each repaired app was initially validated by
running the detection algorithm again (see § 2.4).

Next, for any app produced by ARPDroid, either repaired or
simply carried over after being detected as compatible, we manually
verified whether the app is indeed compatible with the runtime
permission model. We ran the app on an Android emulator [8] that
has Android 6.0 (API level 23) installed, and then extensively navi-
gated the app with manual inputs (especially permission-dependent
operations and permission granting/revoking) to check if the app
functions normally on the new platform. If the resulting app passed
the manual verification, we considered that the adaptation for this
app succeeded and otherwise failed (the fifth column of Table 1). In
the case of successful adaptation, the repair was considered success-
ful if the original app was incompatible. Our experiments were
performed on a machine with an Intel(R) Core (TM) i5 2.00GHz
processor and 8GB DDR3 RAM. The emulator was given 4GB RAM.
Results and discussion. As shown in Table 1, for the 20 bench-
marks that are actually incompatible, ARPDroid detected them all
correctly as incompatible, and successfully repaired 18 of them. The
repair success rate was 90%. We inspected the two unsuccessful
cases and confirmed that the causes were that the underlying Soot

3

https://bitbucket.org/malindadoo/arpdroid

Table 1: Detection and Adaptation Effectiveness and Efficiency of Our Technique
Benchmark (package name) Size (MB) Ground truth Detected as Adaptation Total time (s)
yogi.corporationapps.telescope.bigzoomhd 2.81 incompatible incompatible succeed 123.4
photo.album.galleryvault.photogallery 2.79 incompatible incompatible succeed 137.0
com.flashlight017.app 1.13 incompatible incompatible succeed 174.8
internet.signal.speed.booster 1.52 incompatible incompatible succeed 263.6
com.softwego.applock 3.18 incompatible incompatible failed 323.6
com.huawei.netinfo3d 41.53 incompatible incompatible succeed 178.8
com.sand.airdroid 21.92 incompatible incompatible succeed 220.1
com.google.android.launcher 14.56 compatible compatible succeed 143.4
com.bloketech.lockwatch 0.23 incompatible incompatible succeed 50.3
com.jvckenwood.ao2.kenwood.musicplay 0.39 incompatible incompatible succeed 45.7
bb.andry.hack 0.91 incompatible incompatible succeed 89.8
com.jvckenwood.ao2.jvc.musicplay 0.92 incompatible incompatible succeed 61.3
com.facebook.orca 47.00 compatible compatible succeed 63.7
ur.control.television.rimote.toolss 1.22 incompatible incompatible succeed 66.9
connection.stabilizer.powersignals 1.45 incompatible incompatible succeed 104.7
com.barcode.home.nga 3.18 incompatible incomplete failed 157.8
com.aliengod.zoom 1.50 incompatible incompatible succeed 87.8
com.latestnewappzone.autoflashoncallsms 1.82 incompatible incompatible succeed 138.8
com.miragestack.secret.voice.recorder 2.31 incompatible incompatible succeed 148.9
com.piggy.myfiles 2.35 incompatible incompatible succeed 148.9
com.geekslab.screenshot 2.59 incompatible incompatible succeed 154.5
com.skype.raider 36.00 compatible compatible succeed 52.6
com.mantishrimp.salienteyeremote 4.52 incompatible incompatible succeed 122.1
overall average=8.50 Accuracy=100% success rate=91.3% average=133.0

failed to process (parse/repackage) the original app code or cras-
hed during call graph construction. The detection, however, still
(trivially) succeeded on these two apps based on their manifest files
(detection step 1). The three compatible apps were all correctly
detected (as compatible) as well. Thus, the detection algorithm wor-
ked perfectly well on these benchmarks, for a 100% precision and
100% recall (hence 100% accuracy). In total, 21 of the 23 benchmarks
were successfully adapted to (i.e., these 21 analyzed apps normally
ran on) the new platform, for an adaptation success rate of 91.3%.

The last column of the table lists the total analysis time of ARP-
Droid for each benchmark. As shown, the cost ranged from around
one minute to over five minutes, for an average of 133 seconds.
There does not seem to be a consistent correlation between the app
sizes and time costs, as expected (since the size is not a necessary
indicator of app complexity). For the successfully repaired apps, the
code transformation led to a 8.29% increase in app size on average.
Given that these numbers were obtained with our prototype im-
plementation without any performance optimization/tuning, our
approach is expected to be well scalable to real-world Android apps.

In all, our preliminary results reveal good potential of our techni-
que for practical use in terms of both effectiveness and efficiency.
On the other hand, however, considering the limited scale of our
evaluation, we could not claim that the results will surely be gene-
ralized. More extensively evaluating our tool with a much larger
and diverse set of benchmarks is a major step of future work.

4 RELATEDWORK
In [18], various Android app compatibility issues are studied, with
a focus on those issues due to the Android fragmentation problem
yet without the consideration of permission-induced incompatibili-
ties. A user study has been conducted to understand how Android

users react and adapt to the runtime permission model, and re-
vealed that users prefer the new model over the static permission
mechanism [2]. In an extended study [1], researchers confirmed
similar preferences of end users for the new permission model dri-
ven by their security and privacy concerns. Unlike our approach,
these studies do not address the need of mobile developers for more
productively using the runtime permission mechanism during app
development and maintenance.

Libraries and tools are available to facilitate mobile developers
in the transition to the runtime permission model of Android, inclu-
ding annotation-based APIs [15] and wrappers [16]. These utilities
are helpful for developers of new apps by making it easier to write
permission checking/requesting code. In comparison, our technique
addresses both the need for migrating legacy apps to new platforms
and the need for ensuring compatible permission uses in new apps,
by detecting and repairing incompatibility issues induced by run-
time permissions in both legacy and new apps.

5 CONCLUSION
We presented the technical design and implementation of ARP-
Droid, an automated solution that assists developers with correct
adoption of the runtime permissionmodel of Android. Given an app,
originally targeting new or older platforms, our analysis detects
and repairs incompatible permission uses, adapting the app to the
new permission model. Our preliminary evaluation of ARPDroid
suggests that our solution is highly accurate in detection with pro-
mising repair capability and practical scalability. The tool has been
made publicly accessible online. Both technical expansion and empi-
rical extension are immediate next steps. In particular, automating
dynamic validation of repair apps and handling permission request
responses more thoroughly are part of future work.

4

REFERENCES
[1] Panagiotis Andriotis, Shancang Li, Theodoros Spyridopoulos, and Gianluca

Stringhini. 2017. A comparative study of android usersąŕ privacy preferen-
ces under the runtime permission model. In International Conference on Human
Aspects of Information Security, Privacy, and Trust. Springer, 604–622.

[2] Panagiotis Andriotis, Martina Angela Sasse, and Gianluca Stringhini. 2016. Per-
missions snapshots: Assessing users’ adaptation to the Android runtime permis-
sion model. In IEEE International Workshop on Information Forensics and Security
(WIFS). 1–6.

[3] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2013. Instrumenting Android
and Java applications as easy as abc. In International Conference on Runtime
Verification. Springer, 364–381.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. InACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI). 259–269.

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
analyzing the Android permission specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security. 217–228.

[6] Malinda Dilhara. 2018. ARPDroid. (2018). Retrieved January 10, 2018 from
https://bitbucket.org/malindadoo/arpdroid

[7] Google. 2014. ActivityCompat. (2014). Retrieved January 10,
2018 from https://developer.android.com/reference/android/support/v4/app/
ActivityCompat.html

[8] Google. 2014. Android emulator. (2014). Retrieved January 10, 2018 from
https://developer.android.com/studio/run/emulator.html

[9] Google. 2014. App Manifest. (2014). Retrieved January 10, 2018 from https:
//developer.android.com/guide/topics/manifest/manifest-intro.html

[10] Google. 2014. ContextCompat. (2014). Retrieved January 10,
2018 from https://developer.android.com/reference/android/support/v4/content/
ContextCompat.html

[11] Google. 2014. Requesting Permissions. (2014). Retrieved January 10, 2018 from
https://developer.android.com/guide/topics/permissions/requesting.html

[12] Google. 2015. Normal Permissions for Android Applications. (2015). Retrie-
ved January 10, 2018 from https://developer.android.com/guide/topics/security/
normal-permissions.html

[13] Google. 2015. Requesting Permissions at Run Time. (2015). Retrieved January 10,
2018 from https://developer.android.com/training/permissions/requesting.html

[14] Karumi/Dexter. 2018. Android library that simplifies the process of requesting
permissions at runtime. (2018). Retrieved January 15, 2018 from https://github.
com/Karumi/Dexter

[15] S. Katafuchi. 2016. Hotchemi’s Permission Dispatcher. (2016). Retrieved January
10, 2018 from https://github.com/permissions-dispatcher/PermissionsDispatcher

[16] Daniel Lew. 2015. Android permissions library proliferation. (2015). Retrieved
January 10, 2018 from https://gist.github.com/dlew/2a21b06ee8715e0f7338

[17] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The Evolution of Android Malware and Android Analysis Techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 76.

[18] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 226–237.

5

https://bitbucket.org/malindadoo/arpdroid
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html
https://developer.android.com/studio/run/emulator.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html
https://developer.android.com/guide/topics/permissions/requesting.html
https://developer.android.com/guide/topics/security/normal-permissions.html
https://developer.android.com/guide/topics/security/normal-permissions.html
https://developer.android.com/training/permissions/requesting.html
https://github.com/Karumi/Dexter
https://github.com/Karumi/Dexter
https://github.com/permissions-dispatcher/PermissionsDispatcher
https://gist.github.com/dlew/2a21b06ee8715e0f7338

	Abstract
	1 Introduction
	2 Technique
	2.1 Overview
	2.2 Static Control Flow Analysis
	2.3 Permission Incompatibility Detection
	2.4 Repairing Incompatible Permission Uses
	2.5 Implementation and Limitations

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

