
Method-Level Program Dependence Abstraction
and Its Application to Impact Analysis

Haipeng Cai

Washington State University, Pullman, WA; hcai@eecs.wsu.edu

Raul Santelices
Delphix, Atlanta, GA; rasantel@gmail.com

Abstract
The traditional software dependence (TSD) model based on the system depen-
dence graph enables precise fine-grained program dependence analysis that sup-
ports a range of software analysis and testing tasks. However, this model often
faces scalability challenges that hinder its applications as it can be unnecessarily
expensive, especially for client analyses where coarser results suffice.

This paper revisits the static-execute-after (SEA), the most recent TSD ab-
straction approach, for its accuracy in approximating method-level forward de-
pendencies relative to the TSD model. It also presents an alternative approach
called the method dependence graph (MDG), compares its accuracy against the
SEA, and explores applications of the dependence abstraction in the context of
dependence-based impact analysis.

Unlike the SEA approach which roughly approximates dependencies via
method-level control flows only, the MDG incorporates more fine-grained
analyses of control and data dependencies to avoid being overly conservative.
Meanwhile, the MDG avoids being overly expensive by ignoring context
sensitivity in transitive interprocedural dependence computation and flow
sensitivity in computing data dependencies induced by heap objects.

Our empirical studies revealed that (1) the MDG can approximate the TSD
model safely, for method-level forward dependence at least, at much lower cost
yet with low loss of precision, (2) for the same purpose, while both are safe and
more efficient than the TSD model, the MDG can achieve higher precision than
the SEA with better efficiency, both significantly, and (3) as example applications,
the MDG can greatly enhance the cost-effectiveness of both static and dynamic
impact analysis techniques that are based on program dependence analysis.

Preprint submitted to Journal of Systems and Software September 28, 2016

mailto:hcai@eecs.wsu.edu
mailto:rasantel@gmail.com

More generally, as a program dependence representation, the MDG provides
a viable solution to many challenges that can be reduced to balancing cost and
effectiveness faced by dependence-based tasks other than impact analysis.

Keywords: Dependence analysis, dependence abstraction, method dependence
graph (MDG), impact analysis, accuracy, cost-effectiveness

1. Introduction

Program dependence analysis has long been underlying a wide range of soft-
ware analysis and testing techniques (e.g., [1, 2, 3, 4]). While traditional ap-
proaches to dependence analysis offer fine-grained results (at statement or even in-
struction level) [5, 6], they can face severe scalability and/or usability challenges,
especially with modern software of growing sizes and/or increasing complexity [7,
8], even more so when high precision is demanded with safety guarantee [9, 10].

On the other hand, for many software-engineering tasks where results of
coarser granularity suffice, computing the finest-grained dependencies tends to
be superfluous and ends up with low cost-effectiveness in particular application
contexts—in this work, a (dependence) analysis is considered cost-effective
(measured by the ratio of effectiveness to cost) if it produces effective (measured
by accuracy, or precision alone if with constantly perfect recall) results relative to
the total overhead it incurs (including analysis cost and human cost inspecting
the analysis results) [11]. One example is impact analysis [12], which analyzes
the effects of specific program components, or changes to them, on the rest of the
program to support software evolution and many other client analyses, including
regression testing [13, 14] and fault localization [15]. For such tasks as impact
analysis, results are commonly given at method level [16, 17, 18], where fine
(e.g., statement-level) results can be too large to fully utilize [8]. In other
contexts such as program understanding, method-level results are also more
practical to explore than those of the finest granularity.

Driven by varying needs, different approaches have been explored to abstract
program dependencies to coarser levels, including the program summary
graph [19] used to speed up interprocedural data-flow analysis, the
object-oriented class-member dependence graph [20], the lattice of class and
method dependence [21], the influence graph [22], that are all used for impact
analysis. and the module dependence graph [23] used for understanding and
improving software structure. While these abstractions have been shown useful
for their particular client analyses, they either capture only partial dependencies

2

among methods [22, 20] or dependencies at levels of classes [21] even files [23],
which can be overly coarse for many dependence-based tasks. More critically,
most such approaches were not designed or fully evaluated as a general program
dependence abstraction with respect to their accuracy (both precision and recall)
against that of the original full model they approximate as ground truth.

Initially intended to replace traditional software dependencies (TSD) that are
based on the system dependence graph (SDG) [6, 7], a method-level dependence
abstraction, called the static-execute-after/before (SEA/SEB) [7], has been pro-
posed recently. It abstracts dependencies among methods based on the inter-
procedural control flow graph (ICFG) and was reported to have little loss of
precision with no loss of (100%) recall relative to static slicing based on the TSD
model (i.e., the SDG). Later, the SEA was applied to static impact analysis shown
more accurate than peer techniques [24] and capable of improving regression test
selection and prioritization [14].

However, previous studies on the accuracy of SEA/SEB either exclusively
targeted procedural programs [7], or focused on backward dependencies based on
the SEB (against backward slicing on top of the SDG) only [18]. The remaining
relevant studies addressed the accuracy of SEA-based forward dependencies, with
some indeed using object-oriented programs and compared to forward slicing on
the TSD model, yet the accuracy of such dependencies was assessed either not at
the method level, but at class level only [25], or not relative to ground truth based
on the TSD model, but those based on repository changes [13, 14] or programmer
opinions [24], and only in the specific application context of impact analysis.

While forward dependence analysis is required by many dependence-based
applications, including static impact analysis that the SEA/SEB has been mainly
applied to, the accuracy of this abstraction with respect to the TSD model, for for-
ward dependencies and object-oriented programs in particular, remains unknown.
In addition, it has not yet been explored whether and, if possible, how such
program dependence abstractions would improve dynamic analysis, especially
hybrid ones that utilize both static dependence and execution data of programs,
such as hybrid dynamic impact analysis [26, 27, 28].

In this paper, we present and study an alternative method-level dependence
abstraction using a program representation called the method dependence graph
(MDG). In comparison to the SDG-based TSD models which represent a program
in terms of the data and control dependencies among all of its statements, an MDG
serves also as a general graphical program representation, but models those depen-
dencies at method level instead. The method-level dependencies could be simply
obtained from a TSD model by lifting statements in the SDG up to corresponding

3

(enclosing) methods. Yet, our MDG model represents these dependencies directly
with statement-level details within methods (i.e. intraprocedural dependencies)
abstracted away and, more importantly, does so with much less computation than
constructing the SDG would require. The MDG computes transitive interprocedu-
ral dependencies in a context-insensitive manner with flow sensitivity dismissed
for heap-object-induced data dependencies too. Thus, it is more efficient than
TSD models [6, 29]. On the other hand, this abstraction captures whole-program
control and data dependencies, including those due to exception-driven control
flows [30], thus it is more informative than coarser models like call graphs or
ICFG. With the MDG, we attempt to not only address the above questions con-
cerning the latest peer approach SEA/SEB, but also to attain a more cost-effective
dependence abstraction over existing alternative options in general.

We implemented the MDG and applied it to both static and dynamic impact
analysis for Java1, which are all evaluated on seven non-trivial Java subject pro-
grams. We computed the accuracy of the MDG for approximating forward depen-
dencies in general and the cost-effectiveness of its specific application in static
impact analysis; we also compared the accuracy and efficiency of the MDG with
respect to the TSD as ground truth against the SEA approach. To explore how the
MDG abstraction can be applied to and benefit dynamic analysis, we developed
on top of the MDG a variant of DIVER, the most cost-effective hybrid dynamic
impact analysis in the literature [27], and compared its cost and effectiveness
against the original DIVER.

Our results show that the MDG can approximate the TSD model with perfect
recall (100%) and generally high precision (85-90% mostly) with great efficiency,
at least for forward dependencies at the method level. We also found that the MDG
appears to be a more cost-effective option than the SEA for the same purpose,
according to its significantly higher precision with better overall efficiency. The
study also reveals that, for the object-oriented programs we used at least, SEA
can be much less precise for approximating forward dependencies at method level
than previously reported at class level for object-oriented programs [25] and at
method-level for procedural programs [7, 18]. The study also demonstrated that
the MDG as a dependence abstraction model can significantly enhance the cost-
effectiveness of both the dependence-based static and dynamic impact analysis
techniques over the respective existing best alternatives. More broadly, the MDG
as a general program abstraction approach could benefit any applications that are

1Source code, documentation, and study results are available at https://chapring.github.io/mdg

4

https://chapering.github.io/mdg

based on program dependencies at method level (e.g., testing and debugging) and
that utilize the dependencies at this or even higher levels (e.g., refactoring and
performance optimizations).

In summary, the contributions of this paper are as follows:

• An approach to abstracting program dependencies to method level, called
the MDG, that can approximate traditional software dependencies more
accurately than existing options, including dependencies due to exception-
driven control flows (Section 3).

• An implementation of the MDG and two application analyses based on it, a
static impact analysis and a hybrid dynamic impact analysis (Section 4.1).

• An extensive evaluation of the MDG that assesses its accuracy relative to
TSD-based static slicing in approximating method-level forward dependen-
cies, and that demonstrates its application and benefits for both static and
dynamic analyses (Section 4).

• The first substantial empirical evidence on the accuracy of the SEA with
respect to TSD-based static slices on object-oriented software, and that of
the performance contrast between such dependence abstractions and the full
TSD model those abstractions approximate (Section 5).

2. Motivation and Background

Our work was primarily motivated by improving the cost-effectiveness of for-
ward dependence analysis that directly supports dependence-based impact anal-
ysis [12, 31], among many other software-evolution tasks [32]. The need for a
better cost-effectiveness of impact analysis has been extensively investigated in
previous studies (e.g., [17, 33, 34, 35, 36]) and recently stressed in [28]. This
section highlights the problems with existing approaches that motivate our work
as well as introduces background concepts and techniques necessary for under-
standing the rest of this paper.

An example program is also presented for illustrating purposes. In Figure 1,
program E inputs two integers a and b in its entry method M0, manipulates them
via M1 and M4 and prints the return values concatenated. M4 updates the static
variable g to be used by M2 via a call to M1. M3 and M5, invoked by M1 and M2,
include field accesses, conditionals, and arithmetics.

5

1 public class A {
2 static int g; public int d;
3 String M1(int f, int z) {
4 int x = f + z, y = 2, h = 1;
5 if (x > y)
6 M2(x, y);
7 int r = new B().M3(h, g);
8 String s = "M3val: " + r;
9 return s;}
10 void M2(int m, int n) {
11 int w = m - d;
12 if (w > 0)
13 n = g / w;
14 boolean b = C.M5(this);
15 System.out.print(b);}}
16 public class B {
17 static short t;
18 int M3(int a, int b) {
19 int j = 0;
20 t = -4;
21 if (a < b)
22 j = b - a;
23 return j;}

24 static double M4() {
25 int x = A.g, i = 5;
26 try {
27 A.g = x / (i + t);
28 new A().M1(i, t);
29 } catch(Exception e) { }
30 return x;}}
31 public class C {
32 static boolean M5(A q) {
33 long y = q.d;
34 boolean b = B.t > y;
35 q.d = -2;
36 return b;}
37 public static void
38 M0(String[] args) {
39 int a = 0, b = 3;
40 A o = new A();
41 String s = o.M1(a, b);
42 double d = B.M4();
43 String u = s + d;
44 System.out.print(u);
45 }
46 }

Figure 1: The example program E used for illustration throughout this paper.

2.1. Impact Analysis
Impact analysis is a crucial step during software evolution [12, 32], for which a

typical approach is to find the impact set (the set of potentially impacted program
entities) of points of interest, such as those for change proposals, by analyzing
program dependencies with respect to those points. Despite of many efforts in-
vested [31], today’s impact-analysis techniques still face many challenges, most
of which can be reduced to the struggle between the cost and effectiveness of
using the techniques or their results [16, 37, 38, 17, 8, 36].

In this context, a dynamic impact analysis DIVER [27, 28] was developed
and shown to be much more precise than its previous alternatives with reasonable
overheads. Given a program and its test inputs, this technique first builds a detailed
statement-level dependence graph of the program, and then guides, using static
dependence of that graph, the impact computation based on method execution
traces generated from the test inputs. However, during the post-processing phase,
intraprocedural dependencies kept in the graph carry excessive overheads as they
cannot be pruned by the execution traces of method-level granularity (in essence,
they are conservatively assumed to be all exercised due to the lack of statement-
level dynamic data [28]). Therefore, for hybrid analysis using method-level exe-
cution data only, those intraprocedural dependencies can be abstracted away.

6

A few approaches devoted to abstracting program dependencies to method
level exist [39, 29] which, however, are as heavyweight as or even more than the
TSD model [6] that either do not scale to large programs or come with exces-
sive costs. DIVER derives method-level dependencies from statement-level ones
based on the TSD model, thus it also suffers from certain costs that could be
avoided. Therefore, the overheads of DIVER would be reduced without losing
precision, implying the increase in its overall cost-effectiveness, if we directly
model method-level dependencies to capture only necessary information used by
the dynamic analysis.

The applicability of dynamic impact analysis is constrained by the availability
of program inputs (hence the dynamic data), though. When such inputs are not
available, impact analysis would be performed with static approaches. In the
current literature, the most cost-effective method-level static impact analysis we
are aware of is based on the SEA relations among methods [13, 14]. Such analyses
input a program and a query (a method for which impacts are queried), and outputs
all methods that possibly statically execute after the query as the impact set. Yet,
intuitively this approach can be very imprecise because of its highly conservative
nature, as discussed and illustrated as follows.

2.2. The Static Execute After (SEA)
The static-execute-after (SEA) relation is defined as the union of call, return-

into, and sequentially follow relations, all considered transitively [25]. For SEA
computation, the analysis first creates the ICFG of the input program and then
keeps entry and call-site nodes with the rest removed, followed by shrinking
strongly connected components of the remaining graph into single nodes. Un-
fortunately, as a dependence abstraction of the TSD model, the SEA has not
yet been fully evaluated against TSD-based ground truth for forward-dependence
approximation, with widely used object-oriented software in particular (only dif-
ferences between forward and backward dependence sets based on the SEA/SEB
were reported in [18], yet still limited to procedural programs).

However, to inform developers about the reliability of results given by SEA-
based impact analysis techniques, it is important to access SEA’s accuracy in
approximating forward dependencies on which the impact analysis is based. In
addition, according to the definition of SEA, such impact analysis identifies de-
pendencies among methods based on their connections via control flows only.
Although data and control dependencies are realized through control flows at
statement level, thus the approach is expected to be safe, ignoring the analysis

7

of those dependencies naturally results in false-positive dependencies. Yet, under-
standing the extent of such imprecision is still an unanswered but critical question.

To see how the SEA-based impact analysis works and its imprecision, consider
the example program E of Figure 1 and method M0 as the query. First, the query
itself is trivially included in the impact set. Then, since M0 calls M1 and M4,
and also transitively M2, M3 (both via M1), and M5 (further via M2), the impact
set of M0 is {M0, M1, M4, M2, M3, M5}. Similarly, for every other possible
query, the impact set is constantly the entire program. However, these results
are quite imprecise for this simple program: For example, none of M1, M3, and
M4 should be included in the impact set of M5 because none of them is either
data or control dependent on M5. We believe that properly incorporating data and
control dependencies in a dependence abstraction would largely overcome such
imprecision with acceptably additional yet still practical overhead.

2.3. Program Dependencies
Program dependencies are classified as control or data dependencies [1]. A

statement s1 is control dependent [5] on a statement s2 if a branching decision
taken at statement s2 determines whether statement s1 is necessarily executed.
In Figure 1, for example, statement 22 is control dependent on statement 21
because the decision taken at 21 determines whether 22 executes or not. Another
example is the set of statements 11, 12, 14, and 15 which are control dependent on
statement 5, whose decision determines whether M2 is called. These dependencies
are interprocedural [40].

A statement s1 is data dependent [41] on a statement s2 if a variable v defined
(written) at s2 is used (read) at s1 and there is a definition-clear path in the program
for v (i.e., a path that does not re-define v) from s2 to s1. In Figure 1, for example,
statement 36 is data dependent on statement 34 because 34 defines b, 36 uses b,
and there is a path 〈34,35,36〉 that does not re-define b. In our work, we treat
formal parameters as defined at the entry of each procedure (function or method)
and also as data dependent on the corresponding actual parameter at each call
site for that procedure. For example, the formal parameter q at statement 32 is a
definition of q and also data dependent on the actual parameter this at 14.

3. The Method Dependence Graph

We first give an high-level description, followed by the definition, of the MDG,
and then present in detail the algorithm for constructing the MDG on a given input
program. We use both graph and code examples for illustration. This section

8

M0M0
M1M1

M2M2

M3M3 M4M4

M5M5

p

a

p b

s r

rp
p

g
j

h
p
p
i

t

g
p

x

p

y

r

x
ht

h
p h

t
r

b

this
h
d

Figure 2: The method dependence graph (MDG) of program E2.

focuses on presenting the MDG technique itself as a generic program dependence
model, with details on its use in impact analysis as an example application (main-
ly the implementation of two impact-analysis techniques based on this model)
deferred to Section 4.1.

3.1. Overview
3.1.1. Definition

An MDG is a directed graph where each node uniquely represents a method
and each edge a method-level data or control dependence. A method m′ is data
dependent on a method m if m defines a variable that m′ might use, whereas a
method m′ is control dependent on a method m if a decision in m determines
whether m′ (or part of it) executes. In addition to traditional control dependencies
due to ordinary control flows, the MDG also considers those caused by exception-
driven control flows [30, 27]. As such, the MDG aims to directly represent data
and control dependencies among methods as attempted in [39, 29] while ignoring
unnecessary statement-level details. Figure 2 gives a quick look at an example
MDG (for the example program of Figure 1), which is explained in 3.1.3.

To present the MDG, we refer to the specific target and source points at the
boundary of a node, where edges enter and exit, as incoming ports (IPs) and out-
going ports (OPs), respectively. That is, an IP of a method m is an exact program
point (statement) with respect to where m is dependent on other methods, and an
OP of m is the point with respect to where other methods depend on m. Thus,
the interprocedural dependencies among methods in a program are represented

9

by edges connecting OPs to IPs in the MDG of that program. We further refer to
a dependence pointing to an IP of method m as an incoming dependence of m,
and a dependence leaving an OP of m as an outgoing dependence of the method.

In contrast, intraprocedural dependencies are summarized by edges each di-
rectly connecting an IP to an OP inside an MDG node. We further refer to such
edges as summary edges and, accordingly, the corresponding dependencies as
summary dependencies. In other words, a summary dependence of a method m
connects an IP to an OP of m, representing that the IP is reachable to the OP
via at least one intraprocedural dependence chain inside m. As the MDG focuses
on modeling method-level dependencies, it abstracts intraprocedural dependen-
cies using summary dependencies inside methods, while maintaining incoming
and outgoing dependencies across methods for the interprocedural dependencies
among them. For brevity, we hereafter use edge and dependence interchangeably
in the context of the MDG as a program representation.

More specifically, an MDG node nm represents a method m, with a tuple that
consists of three elements: the method identifier for m (e.g., method index), the
list of IPs of m, and the list of OPs of m. An MDG edge from a method m
to a method m′ connects a specific OP of m to a specific IP of m′, expressing
either a method-level data or control dependence of m′ on m. Therefore, the
MDG of a program has the same number of nodes as that of the methods in
the program, and the number of edges equal to that of the interprocedural edges
in its corresponding (statement-level) dependence graph, plus the number of all
summary edges. Maintaining the ports in each node and edges at port level is
necessary for easily deriving more precise transitive method-level dependencies
on the MDG than directly connecting the nodes with method-level edges only.

To facilitate the description of the MDG and the design of its application
analyses (e.g., impact analysis based on the MDG), we also classify interprocedu-
ral data dependencies into three categories: parameter dependence connecting
from actual parameters at a call site to formal parameters in the entry of the
corresponding callee, return dependence from return statements to corresponding
caller sites, and heap dependence from definitions to uses of heap variables (i.e.,
dynamically-allocated variables not passed or returned explicitly by methods).

3.1.2. Comparison
The MDG we present in this work shares some concepts and terms, such as in-

coming/outgoing port and dependencies, with the DIVER dependence graph [27],
for which the interprocedural data dependence categorization was previously used
too. Yet, there are substantial differences between these two representations. In-

10

1010
1111 1212

13131414 1515

M2d1

d2

d3
d7

d5

d6

d4

x p

y p

b r

dh

gh

this p

Figure 3: Statement-level dependencies in M2 used to find summary dependencies directly con-
necting incoming dependencies to outgoing dependencies. These intraprocedural dependencies
are discarded after the summary edges are created in the MDG.

stead of simply renaming vertices on interprocedural dependence edges of the de-
pendence graph underlying DIVER to such terms after the detailed (fine-grained)
dependence graph was constructed through a whole-program statement-level data
and control flow analysis, we define the MDG based on these terms before con-
structing it, and use them to guide the construction process. In particular, we
explicitly find the ports without computing interprocedural and intraprocedural
dependencies beforehand, but instead first locating the incoming and outgoing
ports, and then connecting them among methods; we compute intraprocedural de-
pendencies for connecting incoming to outgoing ports inside methods and discard
them afterward—they are not included in the MDG.

The DIVER dependence graph is in essence a context-insensitive system de-
pendence graph with data dependencies between heap objects computed without
flow sensitivity either, whereas the MDG focuses on modeling method-level de-
pendencies thus abstracts away statement-level details within methods. As can
be seen later in the MDG construction algorithms, the dependencies in the MDG
are computed mainly through type-based port matching (rather than by solving
flow equations iteratively to reach fixed points). Thus, the time that the MDG
construction takes is less than the time that building the fine-grained dependence
graph in DIVER would cost.

3.1.3. Illustration
As an illustration, the MDG of the example programE of Figure 1 is shown in

Figure 2, where each node represents a method and each edge a dependence of the
target node on the source one. Control dependencies (CDs) are depicted in dashed
edges and data dependencies (DDs) are in solid edges. Each DD edge is annotated
with the variable associated with the dependence and its arrow is labeled with the
DD type (p for parameter, r for return, and h for heap). In this example, M2 has

11

six incoming dependencies (five DDs and one CD), such as the DD labeled g with
arrow h caused by the use of heap variable g defined in M4. Method M2 has also
an outgoing DD edge to M5 because it calls M5 with parameter this.

Figure 3 shows the original statement-level dependencies within M2 (i.e., its
program dependence graph (PDG) [5]) and the incoming and outgoing dependen-
cies of that method, named d1–d7 for convenience. Dotted (not dashed) edges
indicate the connections between method- and statement-level dependencies. For
M2 and every other method, a reachability analysis on these connections identifies
the summary dependencies of outgoing dependencies on incoming dependencies.
For M2, only d1, d2, and d3 reach the outgoing dependence d7. Thus, the summary
dependencies for M2 are 〈d1, d7〉, 〈d2, d7〉 and 〈d3, d7〉. As mentioned earlier, the
MDG does not keep the PDGs but these summary dependencies instead.

3.2. Construction of the MDG
Finding the dependencies in the MDG requires an intraprocedural analysis of

the statements of each method. However, unlike statement-level graphs [6], only
summaries of reaching definitions, reachable uses, and control dependencies for
call sites and exit nodes are kept in memory after each intraprocedural analysis.
For the CDs, we first compute regular CDs caused by branches, polymorphic call-
s, and intraprocedural exception control-flows. For the remaining interprocedural
exception control-flows [40], we compute the CDs for the exception types not
handled by the originating methods. These exception-induced CDs are detected
using the same exception profiler as used in DIVER.

The MDG construction uses intraprocedural statement-level information for
each method. This information is discarded after analyzing each method, once
ports and summary dependencies are identified. Hence, the algorithm does not
incur the time and space overheads of statement-level interprocedural analysis.
Only necessary information for method-level dependencies is kept.

3.2.1. Identification of Ports
For a node (method) m, the IPs of m for DDs are the uses of variables v in m

reachable from definitions of v in other methods or recursively in m. The OPs of
m for DDs are the definitions in m that reach uses in other methods or recursively
in m. The following are the cases in which ports for DD can be identified:

• For heap variables, including exceptions, whose definitions are OPs and
whose uses are IPs

12

Algorithm 1 : BUILDMDG(program P , exception set unhandled)
1: G := empty graph // start with empty MDG of P
2: IP := OP := ∅ // maps of methods to incoming/outgoing ports

// Step 1: find ports
3: for each method m of P do
4: FINDDDPORTS(m, IP, OP)
5: FINDCDPORTS(m, IP, OP)

// Step 2: connect ports
6: for each method m of P do
7: for each DD port z ∈ OP[m] do
8: add {〈z, z′〉 | ∃m′ s.t. z′∈IP[m′] ∧ data dep(z,z′)} to G

9: MATCHINTERCDS(G, unhandled, m, IP, OP)
10: pdg := GETPDG(m)
11: for each port z ∈ IP[m] do
12: add {〈z, z′〉 |z′∈OP[m] ∧ reaches(z,z′,pdg)} to node Gm

13: return G

• For method calls, where actual parameters (at call sites) are OPs and formal
parameters (at method entries) are IPs

• For method returns, where returned values at callees are OPs and returned
values at caller sites are IPs

The CD IPs of a method m are denoted by special locations within m whose
executions depend on external (or recursive) decisions such as calling m or re-
turning to m with an unhandled exception. Those control-flow decisions are the
OPs. Concretely, CD ports are identified for these cases:

• The entries of all methods that can be invoked are IPs. For a
non-polymorphic call site (which can only call one method), every branch
and CD IP that guards it is an OP. For a polymorphic call site (which has
multiple target methods), the call site itself is an OP because it decides
which method is called

• For an unhandled exception x thrown by a method m, the entry points of
all blocks that can handle x (e.g., catch statements) at callers of m are IPs.
The conditions that cause the exception to be thrown (i.e., the branches and
CD IPs that guard its throwing or the instruction that conditionally throws
it) are OPs

13

The cases listed for DD and CD ports set the rules for matching ports to de-
termine the (interprocedural) DD and CD edges of the MDG—an OP can connect
only to an IP for the same case. Thus, an MDG edge e from m to m′ links an OP
of m (the source of e) to a compatible IP of m′ (the target of e) as per these cases.

An MDG node represents a method, its IPs, its OPs, and the summary depen-
dencies that map IPs to OPs in that method. An OP po is summary-dependent on
an IP pi if there is a path from pi to po in the (intraprocedural) statement depen-
dence graph of the method [5]. With this information and the MDG edges, a client
analysis such as dynamic dependence-based impact analysis (DDIA) [28, 11] can
find which methods are impacted by a method m by traversing the MDG from m
and all OPs ofm conditioned to edges whose source OPs are summary-dependent
on the IPs that are targets of traversed (impacted) edges.

3.2.2. Construction Algorithm

The main algorithm
Algorithm 1 describes the process for building an MDG. We use these helper
notations: a caller (call) site crs (cs) is a tuple 〈m, s〉 where m is the caller (set
of callees) and s the calling statement; actual params(cs) is the actual parameter
list of a call site cs and formal params(m) the formal parameter list of m; re-
turn sites(m) is the set of return statements in m and return type(m) the return
type of m; D(rs) is the definition of the return value in a return statement rs;
U(crs.s,rs) is the use at a caller site crs of the value returned by a return statement
rs in a method called by crs. We also denote a formal parameter f at the entry of
m as the use U(f,m) and an actual parameter a in a call site cs as definition D(a,cs).

The algorithm inputs program P and a set of unhandled exceptions and outputs
the MDG of P . The exception set contains, by default and for static-analysis
clients, all possible exceptions for safety; for dynamic-analysis clients, as men-
tioned earlier, the exception profiler identifies a potentially-smaller set for effi-
ciency while staying safe, using the execution sets utilized by that client analysis.
First in the algorithm, the DD and CD ports are identified for all methods of P via
FINDDDPORTS and FINDCDPORTS, respectively. Next, the algorithm creates
all DD edges, CD edges, and summary dependencies by connecting the ports that
match (e.g., actual and formal parameters).

DD edges between methods are created in lines 7 and 8 by matching each DD
OP z to each DD IP port z′ that may be data dependent on z according to any of
the three cases described earlier. Specifically, for safety and efficiency, all DDs are
matched essentially based on the call graph without considering calling contexts

14

Algorithm 2 : FINDDDPORTS(m, IP, OP)
1: for each call site cs in m do
2: for each callee m′ of cs do
3: add {D(a, cs) | a ∈ actual params(cs)} to OP[m]
4: add {U(f,m′) | f ∈ formal params(m’)} to IP[m’]
5: if return type(m)6=void then
6: add {D(rs) | rs ∈ return sites(m)} to OP[m]
7: for each caller site crs of m do
8: add {U(crs.s,rs) | rs ∈ return sites(m)} to IP[crs.m]
9: for each heap variable definition hd in m do add hd to OP[m]

10: for each heap variable use hu in m do add hu to IP[m]

(i.e., ignoring context-sensitivity). CD edges are created via MATCHINTERCDS

in line 9, which matches CD ports according to the rules for CDs listed earlier.
CDs due to exceptions are included only for exceptions in the set unhandled.

Finally, the algorithm computes the summary dependencies within each
method (lines 10–12). For each method m, given its PDG [5] (line 10) which
contains all intraprocedural dependencies, the algorithm matches each IP with
every OP that the IP can reach in that PDG. For each match, a summary edge
〈z, z′〉 is added to the node Gm for m in MDG G (line 12).
Collecting ports
The helper Algorithm 2 shows the details for FINDDDPORTS. For the input
method m, the algorithm first traverses all call sites to find, for each call site
and callee, the definition and use of actual and formal parameters, respectively
(lines 1–4). Then, for methods that return values (line 5), the returned values are
added, as pseudo-definitions, to the OPs of m (line 6) and the use of that value
at each caller site are added to the IPs of the caller methods (lines 7–8). Finally,
the algorithm finds and adds all definitions and uses of heap variables in m to the
corresponding OP and IP sets.

The helper Algorithm 3, FINDCDPORTS, first identifies as IP the entry point
of m. This point represents the decision to enter the method, which in a PDG
is the true outcome of the Start node [5]. Then, using the control-dependence
graph (CDG), lines 2–5 mark as OPs the decisions that guard single-target calls
and unconditional throwers of unhandled exceptions. Those decisions can be
branches, the entry of m (target of caller dependencies), and targets of callee
dependencies (interprocedural exception catchers and calls to methods that might
return abnormally [40]). Then, all multi-target call sites inm are added to the OPs

15

Algorithm 3 : FINDCDPORTS(m, IP, OP)
1: add entry of m to IP[m] // entry represents all CD targets for callers
2: for each edge 〈h, t〉 in GETCDG(m) do
3: if t is a single-target call site then {add h to OP[m]}
4: if t unconditionally throws unhandled exception in m then
5: add h to OP[m]
6: for each multi-target call site cs in m do {add cs.s to OP[m]}
7: for each statement s in m do
8: if s catches interprocedural exception then {add s to IP[m]}
9: if s conditionally throws exception unhandled in m then

10: add s to OP[m]

of m (line 6). Lines 7–10 find the IPs that catch interprocedural exceptions and
OPs that throw exceptions conditionally (e.g., null dereferences).

Let N be the largest number of nodes in the control flow graph, and F the
largest number of formal parameters, of any method in program P . Also, let M
be the number of methods defined in P . The largest numbers of return sites, call
sites, and heap variables of any method are all bounded by O(N) and the largest
number of caller sites of a single method is bounded by O(MN). Algorithm 2
takes O(NMF)+O(N2M)+O(N) time (for lines 1–4, lines 5–8, and lines 9–
10, respectively). Since generally F�N , the cost of this helper algorithm is
bounded by O(N2M). The three for loops in Algorithm 3 cost O(N2), O(N),
and O(N2M), respectively, thus the algorithm takes O(N2M) time too. Thus,
the first for loop (Step 1) in Algorithm 1 costs O(N2M2) time; the cost of the
second step (Step 2) is also bounded by O(N2M2) where the data dependence
checking takes O(NM) while checking the reachability on the PDG only needs
constant time with precomputed reachability results for all IPs stored in the IP
entries per method. Constructing the PDG for any method, which subsumes
the CDG of the same method, costs O(N2) time [5]. Therefore, the total time
complexity of the holistic MDG construction algorithm is (quite loosely) bounded
by O(N2M2). For each method, the information for O(N) ports needs to be
stored. The precomputed reachability results (boolean values) cost O(N2M)
space for all methods. Thus, the total space complexity is O(N2M), also a loose
upper bound. Practical time and space costs are expected to be much lower than
these worst-case bounds.

16

4. Empirical Evaluation

We evaluated our technique as a dependence abstraction in general and its
applications to both static and dynamic impact analysis techniques in particular.
For that purpose, we performed two empirical studies. In the first study, we
computed the precision and recall of forward dependence sets derived from the
MDG against forward static slices, both at method level, and compared the same
measures and efficiency against the SEA. In the second study, we built a dynamic
impact analysis based on the MDG, called MADGER, and compared its precision
and performance against DIVER.

Accordingly, we formulated the following four research questions:

• RQ1 How accurately can the MDG and SEA approximate the full TSD
model in terms of forward dependence analysis?

• RQ2 Can the dependence abstractions (MDG and SEA) archive significant-
ly better efficiency than the TSD model for forward dependence analysis?

• RQ3 Are the MDG and the static impact analysis based on it more cost-
effective than the SEA approach?

• RQ4 Does the dependence abstraction (MDG) reduce the cost without los-
ing effectiveness of a hybrid dynamic impact analysis such as DIVER?

The rest of this section presents our tool implementation, experiment setup,
and threats to the validity of our evaluation that are shared by both studies. Details
including experimental methodology and empirical results are given in Section 5
and Section 6, respectively.

4.1. Implementation
We implemented the MDG, the SEA, MADGER, and the method-level TSD-

based forward static slicer all on top of our Java analysis and instrumentation
toolkit DUA-FORENSICS [42], which is built on the Soot static analysis frame-
work [43]. To compute control dependencies, including those due to exception-
driven control flows, we used the exceptional control flow graph (ExCFG) [27, 44]
offered in the Soot framework.

The ExCFG was also employed to create the interprocedural component con-
trol flow graph (ICCFG) [25, 7], on which the SEA was implemented using the
on-demand algorithm presented in [18]. For static slicing, we used the forward
static slicer as part of DUA-FORENSICS with results lifted to method level. Both

17

Table 1: STATISTICS OF EXPERIMENTAL SUBJECTS

Subject Description #LOC #Methods
Schedule1 priority scheduler 290 24
NanoXML XML parser 3,521 282
Ant Java project builder 18,830 1,863
XML-security encryption library 22,361 1,928
JMeter performance gauge 35,547 3,054
JABA bytecode analyzer 37,919 3,332
ArgoUML UML modeling toolkit 102,400 8,856

the slicer and SEA implementations utilized the same call graph facilities given
by Soot with rapid type analysis (RTA) applied. More details regarding the slicer,
such as points-to analysis and library-call modeling, can be found in [42].

Finally, we implemented MADGER as a variant of DIVER with the statement-
level dependence graph replaced with the MDG and, for impact computation, the
reachability querying from an IP pi to an OP po within a method m replaced with
directly checking the existence of a summary edge 〈pi, po〉 of m [27]. A static
impact analysis based on the MDG was also implemented, which simply gives
as the impact set the transitive closure on the MDG starting from the input query
(more specifically, starting from each OP of the query, and then taking the union
of all such closures). The SEA-based impact analysis produces as the impact set
of a given query all methods that are in a SEA relation with that query.

4.2. Experiment Setup
We selected seven Java programs of diverse application domains and sizes for

our evaluation. Table 1 lists the basic characteristics of these subject program-
s, including the number of non-blank non-comment lines of code (#LOC) and
number of methods (#Methods) defined in each subject. The first five subjects
were all obtained from the SIR repository [45], for which we picked the first
version available of each. We received the JABA [46] program from its authors
and downloaded a revision (r3121) of ArgoUML [47] from its SVN repository.

All our experiments were performed consistently on a a Linux workstation
with a Quad-core Intel Core i5-2400 3.10GHz processor and 8GB DDR2 RAM.

4.3. Threats to Validity
The main internal threat to the validity of our results is the possibility of

having implementation errors in the tools used for our study (the analyses based

18

on the MDG and SEA, and the forward static slicer). However, the underlying
infrastructure, Soot and DUA-FORENSICS, have both been tested, improved, and
matured for many years. To reduce errors in the code written on top of these
frameworks, we manually checked and verified the correctness using both the
example program, and relatively smaller subjects Schedule1 and NanoXML for
randomly sampled queries. An additional internal threat may come from possible
errors in our experimental and data-analysis scripts. To minimize this risk, we
tested and debugged those scripts and checked their functionalities against the
requirements of our experimental methodology.

Another internal threat is the risk of misguiding the experiments with inaccu-
rate ground truth from the static slicer. However, this threat has been mitigated
in several ways. First, the slicer, as part of DUA-FORENSICS, has been used and
stabilized along with the entire framework over the years. Second, most of the
core facilities that could affect the accuracy of this slicer were directly adopted
or extended from the Soot framework, which is a widely used static-analysis
platform by many researchers. Finally, since those core facilities are shared by our
implementation of the slicer, the MDG, and the SEA, possible biases, if any, in
the results derived from comparing among these tools have been greatly reduced.

The main external threat to the validity of out study is our selection of subject
programs. This set of seven subjects does not necessarily represent all types of
programs used in real-world scenarios. To address this threat, we picked our
subjects such that they were as diverse as possible in size, application domain,
coding style, and complexity. Also, the subjects we used in our study have been
extensively used by many researchers before.

For results related to dynamic impact analysis, an additional external threat
concerns about the test suites used in the second study (Study II) in that the
test suites may not exercise all behaviors of the respective subjects. Also, many
methods were not covered by the test suites, so we could not apply the techniques
to those methods. Thus, our results were interpreted in light of the extent of the
ability of those test suites to exercise their subjects. To minimize the effect of this
threat, we chose subjects for which reasonably large and complete test suites were
provided—at least from a functional point of view. Also, most of these subjects
and test suites have been used by other researchers in their studies, and therefore
they may be seen as good benchmarks.

Yet another external threat is that the forward slicing algorithm we used in
our study may not be the optimal one in terms of precision and efficiency, thus
using a more sophisticated slicer would possibly lead to different study results.
Similarly, while the SEA algorithm we adopted is the latest one we are aware

19

of that processes one query at a time, which is justified for comparing per-query
processing time costs between the two abstraction approaches, different efficiency
contrasts may be obtained if comparing the total time of processing all possible
queries of a program at once (using the batch SEA-computation algorithm in [18]).

The main construct threat lies in our experimental design. Without any ad-
ditional knowledge, we gave the same weight to the forward dependence sets
(impact sets) of every method (query). However, in practice, developers may
find some methods more important than others, and thus the reported precision
results might not represent the actual results that developers would experience. To
address this potential concern, we adopted the same experimentation procedure
when obtaining the dependence sets from the two approaches we compared.

Finally, a conclusion threat to validity is the appropriateness of our statistical
analyses. To reduce this threat, we used a non-parametric hypothesis testing
which makes no assumptions about the data distribution (e.g., normality). Another
conclusion threat concerns, in dynamic impact analysis, the data points analyzed:
We applied the statistical analyses only to methods for which impact sets could
be queried (i.e., methods executed at least once). However, we computed the
results of all possible queries and reported those of covered ones per subject for
our comparative study. For static-analysis based results (e.g., the accuracy of the
MDG and SEA), we also collected data points for all methods in each subject as
queries, in order to avoid relevant biases.

5. Study I: Approximating Method-Level Forward Static Dependencies

This section presents the main study, which addresses the accuracy of the
MDG against the SEA relative to the TSD model. Since impact sets computed
by the static impact analysis based on the MDG and SEA are also the method-
level forward dependence sets used by the accuracy study, we simultaneously
evaluate the accuracy of the two abstraction models and the static impact analysis
techniques based on them. We also study the efficiency of all these approaches.
This study aims to answer the first three research questions (RQ1-RQ3).

5.1. Methodology
We applied the MDG- and SEA-based static impact analysis tools, and the

method-level TSD-based forward static slicer, to each of the seven subjects. We
collected the forward dependence set (i.e., the impact set or method-level forward
slice) of every single method defined in each subject as a query (i.e., method-level
slicing criterion) by running each of the three tools on that query separately.

20

To obtain the method-level forward slice of a query from the slicer, we com-
puted the statement-level forward slice of every applicable statement-level slicing
criterion, and then took the union of the enclosing methods of statements in those
slices. We also collected the CPU time elapse as the querying cost per such query.
Next, we calculated the following metrics.

First, we calculated the precision and recall of forward dependence set pro-
duced by the MDG and SEA for each query using the corresponding forward
slice given by the static slicer as the ground truth: The precision metric measures
the percentage of dependencies produced by the abstraction approaches that are
true positives (i.e., included in the forward slice), while the recall measures the
percentage of dependencies in the forward slice that are included in the depen-
dence set produced by the abstraction approaches. We report the distribution of
the entire set of data points for these two metrics per subject.

The ground truth for impact analysis results could also be obtained from the
actual impacts with respect to concrete changes made to the program under anal-
ysis [36, 48]. However, for code-based predictive impact analysis techniques [31]
like SEA, DIVER, the MDG-based static and dynamic impact analysis, and previ-
ous such approaches (e.g., [37, 17]), the concrete changes are not available—the
analysis only takes the program to be changed and candidate change locations.
Also, these techniques essentially report program entities that are dependent on
the given change locations as the potential impacts, corresponding to what forward
slicing would compute if taking the change locations as the slicing criteria. Thus,
it is appropriate to evaluate these impact analysis techniques using the correspond-
ing forward slices as ground truth.

Second, we computed the forward-dependence querying time costs of the
MDG, the SEA, and the forward static slicer. We report the time costs of building
the program representations (i.e., ICCFG and the MDG) used by the abstraction
approaches. These two types of costs are calculated separately to give more
detailed efficiency results that users may need for better planning their budgets:
The times for abstracting program dependencies are one-time costs in the sense
that for any queries (criteria) the abstract dependence models can be reused in the
query processing phase; while the querying time is incurred per individual query.

Finally, we applied a non-parametric statistical test, the Wilcoxon signed rank
test [49], to assess the statistical significance of mean difference in each of the
above two metrics (the accuracy and efficiency measures) between the two ab-
straction approaches against the method-level static forward slicing. For the s-
tatistical test, we adopted a confidence level of 95%, and the null hypothesis is
that there is no difference in the means between the compared techniques. Thus,

21

we regard the difference significant if the Wilcoxon p-value is less than 0.05. In
addition, we compared the static-analysis (graph construction) time costs of the
MDG against the SEA. We also report the significance over all subjects when
applicable by combing the per-subject p-values using the Fisher method [50].

5.2. Results and Analysis

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Schedule1

SEA MDG
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
NanoXML

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Ant

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
XML−security

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
JMeter

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
JABA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
ArgoUML

Figure 4: Precision of the MDG and SEA with the TSD-based static forward slices as the ground
truth (constantly 100% recall for both approaches was obtained).

5.2.1. Precision (MDG and SEA versus TSD)
Figure 4 shows the precision results of the two approaches listed on the x axis,

SEA and MDG, in approximating forward dependencies derived from the TSD
model, where the y axis represents the precision. For each subject, a separate plot
characterizes all the data points we analyzed, which consists of two boxplots each
devoted to the result of one of the two approaches with that subject.

Each of the boxplots includes five components: the maximum (upper whisker),
75% quartile (top of middle bar), 25% quartile (bottom of middle bar), the min-
imum (lower whisker), and the central dot within each middle bar indicating the
median. Surrounding each such dot is a pair of triangular marks that represent the
comparison interval of that median. The comparison intervals within each plot
together express the statistical significance of the differences in medians among
the two groups in that plot: Their medians are significantly different at the 5%
significance level if their intervals do not overlap.

The results indicate that the MDG can approximate the TSD-based forward
dependencies with generally high precisions in most cases: For the majority of
queries in all subjects, the precision was around 90%, according to the medians,
and even low-end 25% of the queries had a precision between 45% (with XML-
security the lowest) and 98% (with NanoXML the highest). For NanoXML and

22

JABA, the precision was over 95% for 75% of queries and as high as 90% for
Schedule1. In these cases, we found many queries that share the same dependence
sets, possibly due to the effects of dependence clusters [14]. The worst overall
precision was seen by XML-security, for which the MDG gave a precision of no
more than 85% for 75% of its 1,928 queries. Another subject that received mostly
lower precisions than other subjects, except the worst-case XML-security, was
Ant, where 25% of queries had results that were less than 55% precise.

While the MDG did not seem to have lower precisions for larger subjects—
in fact, it performed almost as well with the two largest subjects as with the two
smallest ones—the SEA did exhibit such trend, although not always. Except for
the same worst case as can be seen by the MDG (with XML-security), all the
other four largest subjects had generally much lower precisions from the SEA
than from the MDG. Besides with Schedule1 and NanoXML, for which it was as
almost precise as the MDG for the majority of queries, the SEA produced results
of less than 5% precise for 25% of queries in other five larger subjects. For XML-
security and ArgoUML, in particular, the precision did not even reach 50% for
50% of queries.

However, with both the MDG and SEA, there were cases in which the depen-
dence abstraction missed almost all true-positive forward dependencies (precision
close to zero), though much fewer seen by the MDG. We inspected random sam-
ples of such cases, where we found that mostly the results given by the abstraction
approaches were large dependence sets with only one therein was true positive:
the query itself. While the most possible reason was the conservativeness of the
two approaches, the fact that the MDG has a lot less such bad cases than the SEA
was more likely to lie in their different nature of technique: the MDG models both
data and control dependencies, which tends to be less conservative than the SEA
that considers more conservatively only control flows.

Supplementary to the boxplots, the left three columns of Table 2 gave an
another statistics, the means of the precisions. Mainly due to the existence of
bad cases discussed above, the means were dropped down considerably relative
to the numbers seen in the distribution of all data points, for both approaches.
Comparing between the MDG and SEA reveals that the SEA had an overall
similar trend in the fluctuation of means across the seven subjects: where the
MDG had relatively lower mean precisions, so did the SEA. Nonetheless, the p-
values (in the fourth column) show strongly statistically significant differences in
the means between the two approaches, further confirming the advantage of the
MDG over the SEA on top of evidences from the significance in medians shown
by the comparison intervals on the boxplots of Figure 4. To further understand the

23

advantage, we calculated the Cliff’s deltas [51] as a non-parametric measure of
the effect size of the difference between these two approaches in precision. With
α=0.05 and a paired setting, the effect sizes for our benchmark subjects were
generally beyond medium (¿=0.50, with most subjects) up to reasonably large
(0.65, with JABA). Thus, given an arbitrary query, the MDG is expected to give a
more precise forward dependence set than the SEA.

Over the total data points of all subjects, the MDG had a precision of 71%
on average, significantly (p=0) higher than that of 49% archived by the SEA.
Note that such means were largely skewed as discussed above. Nevertheless, for
the SEA, in contrast to previous accuracy studies on it that reported very high
precision, at class level [25] or at method level but with procedural programs (in
C) considered only [7], our results suggest that object-oriented programs may
contain much more method-level data and control dependencies that can not be
accurately captured by control flows only, when compared to other cases (e.g.,
method-level forward dependencies on object-oriented programs) studied before.

Recall (MDG and SEA versus TSD). Given the conservative nature of both
abstraction approaches and the consistency that all the studied techniques were
implemented on a same source-code analysis infrastructure (call graph, points-
to analysis, and data and control flow analysis facilities, etc.), we expected that
both MDG and SEA are safe. Our results confirmed this hypothesis: for all the
data points we collected, the recall was constantly 100% for both approximation
models. Consequently, the precision numbers reported here can be readily trans-
lated to accuracy values (e.g., for a precision p, the F1 measure of accuracy is
2p/(1 + p)). Thus, we only show the precision in this paper for the evaluation
on accuracy. Note that here we measured the recall with respect to method-level
dependencies rather than at statement level as in the TSD. With the MDG ab-
stracting away intraprocedural dependencies, it discards those details within each
method. Therefore, compared to the TSD, the MDG misses all intraprocedural
dependencies but potentially includes more (i.e., false-positive) interprocedural
dependencies. However, as our empirical evidences corroborated, the MDG cap-
tures all dependencies at method level that the TSD model subsumes, which is the
goal of our MDG abstraction.

Answer to RQ1: Both the MDG and SEA can approximate the TSD-based
forward dependencies safely; the MDG can also give high precision in most cases,
while the SEA is significantly less precise in general.

24

Table 2: Means of precision of the MDG versus SEA (the left six columns) and time costs of both
abstraction approaches relative to forward static slicing (the rightmost four columns).

Subject
Mean precision Abst. time (s) Forward dependence querying time (ms): mean (stdev)

SEA MDG p-value ICCFG MDG SEA MDG p-value Slicing
Schedule1 0.81 0.94 2.35E-02 3 4 6 (3) 4 (2) 0.39E-02 124 (194)
NanoXML 0.77 0.88 2.04E-09 4 9 9 (12) 3 (4) 7.95074E-07 1,267 (3,095)
Ant 0.55 0.72 7.79E-79 17 130 64 (62) 45 (43) 1.09677E-08 34,896 (74,210)
XML-security 0.40 0.67 4.64E-83 22 77 50 (67) 43 (34) 4.47922E-16 24,092 (46,601)
JMeter 0.48 0.71 7.15E-168 5 116 325 (376) 104 (87) 5.12958E-26 37,950 (72,045)
JABA 0.58 0.84 1.96E-33 28 302 213 (201) 121 (221) 3.58023E-10 444,188 (801,631)
ArgoUML 0.45 0.70 9.74E-20 24 597 501 (559) 357 (298) 0.3085361 453,822 (1,082,813)
Overall 0.49 0.71 0 14.7 176.4 183.8 (303.9) 85.1 (111.6) 1.71E-57 64,137.3 (294,000.9)

5.2.2. Efficiency (MDG and SEA versus TSD)
The rest of Table 2 focuses on the efficiency of the two abstraction approaches

and the TSD model, including the abstracting time (Abst. time) in seconds con-
sumed by building the underlying graphs (ICCFG is used by the SEA), the time in
milliseconds taken by the three techniques for querying forward dependence sets
based on respective dependence models. For the latter, the table lists the means
and standard deviations (stdev) of all data points for each subject. The p-values
shown in the ninth column report the statistical significance of the Wilcoxon test
on the mean differences in querying costs between the two approaches.

In terms of the abstracting time, since the MDG as a graph computes much
finer-grained information than the ICCFG, the MDG approach costs always more
than the SEA, as we expected. Yet, in almost all cases, this costs were quite
affordable in absolute terms. The highest cost was seen with the largest subject
ArgoUML. However, for a software of such scale, the time of less than 10 minutes
seems to be reasonable. Moreover, this phase is required only once for all pos-
sible impact-set queries and varying program input sets, for the single program
version the analysis works with at least—since the impact analysis is predictive,
the impact set produced is with respect to the change location (i.e, the query
method) rather than concrete changes at that location. Additionally, given that the
MDG was implemented as a quick prototype for our study, there is large room for
performance optimization in the implementation which is expected to incur less
overheads. Yet, even with these potential optimizations and accommodations, the
substantial increase in the static-analysis overhead with the MDG versus the SEA
might still not be acceptable, especially for a large-scale software like ArgoUML.
And whether it is acceptable in practice depends on the budget constraints and
how the users balance the cost and effectiveness of the impact analysis, and also
how they deal with the tradeoff between the efficiency in the static-analysis phase
and that in the querying phase (as we discuss later below).

25

For a similar reason to that for the abstracting time difference, the MDG took
more space than SEA. However, our results revealed that the space costs of both
approaches were almost negligible with respect to today’s storage configurations:
the highest such cost was no more than 50M, seen by ArgoUML.

The querying-time costs to the right of the table show that the higher one-time
costs of the MDG approach were quite paid off: compared to the SEA, it cost
constantly less in terms of the mean querying time with also smaller variations. In
addition, the p-values tell that, for all individual queries, the MDG was more effi-
cient than the SEA with strong significance, in all cases but ArgoUML, possibly
due to the much larger graph size for this subject. Following a similar procedure
to the Cliff’s delta computation used for RQ1, we obtained effect sizes ranging
from .14 (with ArgoUML) to .46 (with Schedule1), confirming the advantage of
the MDG over the SEA although the difference is generally not as large as seen in
the precision comparison. In all, over all subjects, the mean querying cost on the
MDG is 85ms, less than half of that incurred by the SEA (184ms).

Put together, in contrast to the SEA-based dependence abstraction, the MDG
approach sacrifices the efficiency in the static analysis for faster answers to
impact-set queries. In addition, the impact analysis based on the MDG offers
much more accurate (i.e., significantly higher precision and perfect recall) impact
sets than the SEA-based alternative. Also, it is reasonable to expect, for large
programs in particular, that the potential time savings obtained from our
approach versus the SEA as a result of inspecting much less false-positive
impacts and getting the impact sets faster for each single query should well pay
off and outweigh the increase in the static-analysis overhead in practical use
scenarios of these techniques.

On the other hand, compared to the cost of the full TSD model (the last col-
umn), both abstraction models appeared to be much cheaper. For the two smallest
subjects, querying the method-level forward dependencies was 100x faster than
on the TSD model; for other subjects, the ratio was around 1000x. For example,
the huge variation of the TSD querying costs suggests that in some cases, a single
query can take as long as a few hours, as we experienced in experimentation. By
average over all queries, the SEA costs 1.96% of the per-query time, in contrast
to 0.59% by the MDG, relative to the TSD-based static forward slicing.

Answer to RQ2: Both the MDG and SEA dependence abstraction models
are reasonably efficient, and much (100x–1000x) cheaper than the TSD model for
querying method-level forward dependencies.

26

5.2.3. Cost-effectiveness for static impact analysis (MDG versus SEA)
From the above comparisons, it has been seen that the MDG as a TSD ab-

straction approach is generally much more precise than the SEA alternative, for
approximating forward dependencies at least. The numbers in Table 2 also suggest
that the MDG approach provides significantly faster dependence-set querying than
the SEA too, at the cost of more but reasonably affordable static-analysis time. In
addition, for the cases we studied, both approaches were confirmed to be safe,
always giving perfect recall relative to the full TSD-based static slicing.

Note that the forward-dependence sets studied above can also be regarded
as impact sets from the perspective of static impact analysis. Therefore, taken
together, the advantages in the precision and querying efficiency of the MDG over
the SEA imply that, in the presence of the higher dependence abstraction overhead
which remains practical, the MDG-based static impact analysis is potentially more
cost-effective than the SEA-based analysis.

As we noted before, the abstraction time of the MDG (and the ICCFG) is a
one-time cost as the resulting dependence model can accommodate both different
impact-set (i.e., forward dependence set) queries and different sets of program
inputs (for the single program version analyzed by these impact-analysis tech-
niques). In addition, while the time cost for computing a single query appears
quite small compared to the model abstraction time, developers may need to
query impact sets on demand and repeatedly for different queries [34]. Thus,
the querying efficiency can also be a significant factor in practice.

It is plausible that the cost-effectiveness advantage of the MDG over SEA
in the context of static impact analysis would not hold if developers using these
techniques often perform very few queries on the analyzed program version before
making changes to the version. In such cases, the higher cost of the MDG for the
static analysis could dominate the total analysis cost incurred by the technique
hence diminishes its merits over SEA. First, we believe that it is not common
nor safe in practice to have a program changed so frequently without carefully
assessing the potential impact of candidate changes, thus the presumptive cases
are expected to be rare. Second, even in such rare cases, potential savings in the
impact-inspection time due to the higher precision (effectiveness) of the MDG
compared to the SEA-based approach may still ultimately render the MDG a
more cost-effective option overall—the cost includes the human overhead for
examining the resulting impact sets. In fact, the human overhead can readily
dominate the total time spent on impact analysis on account of the slower human
reasoning relative to the automated machine computation. Particularly, it is not

27

uncommon that inspecting some methods in the impact set that have complicated
interaction with other methods can be quite time-consuming [8].

Answer to RQ3: The MDG incurs expectedly larger one-time cost than the
SEA, which is still affordable though; otherwise, the MDG tends to be significantly
more cost-effective than the SEA for static impact analysis.

6. Study II: Improving Hybrid Dynamic Impact Analysis

This section presents our secondary study, which addresses the application
of static dependence abstraction in hybrid dynamic analysis using the dynamic
impact analysis as an example. This study concerns the efficiency benefits of the
MDG abstraction and seeks to answer the last research question (RQ4). We also
examine the hypothesis that the MDG-based dynamic impact analysis (MADGER)
gives as accurate impact sets as the DIVER technique. That is, we expect that
MADGER improves querying performance over DIVER without losing accuracy
hence gains in the overall cost-effectiveness.

6.1. Methodology
For this study, we applied MADGER and DIVER to the same seven subjects as

used in the first study. For each subject, we collected the impact set given by the
two analysis tools separately, using each single method of the subject as the query.
We collected also the CPU time elapse as the querying cost for each query.

To obtain the method execution event trace per test case required by both tools,
we used the test suite provided with each subject as shown in the first two columns
of Table 3, where the third column gives the number of queries (methods) that
executed in at least one per-test trace. Together with the total number of methods
listed in Table 1, these numbers implicitly give the method-level coverage of the
test suites. We then calculated the following metrics using the impact sets and
querying costs for the covered queries only.

To measure the hypothetical improvement in impact-set querying performance
of MADGER over DIVER, we first computed the ratio, as percentage, of the query-
ing cost of MADGER to that of DIVER per query, in addition to the absolute
numbers on the query time of each approach. We report the mean and standard
deviation of such data points from all queries per subject. To verify the expected
precision preservation of MADGER relative to DIVER, we compared their impact
sets and calculated the set differences.

Finally, to examine whether the performance improvement is statistically sig-
nificant, we performed the same statistical test on the querying costs of both tools.

28

6.2. Results and Analysis

Table 3: Mean impact-set querying time of the two dynamic impact analyses and the mean
querying time ratios of MADGER to DIVER, with the statistical significance (p values) of mean
differences in this cost.

Subjects #Tests #Queries

MADGER querying
time (seconds)

DIVER querying
time (seconds)

Querying time ratio:
MADGER/DIVER (%) Wilcoxon p-value

(Effect size)mean stdev mean stdev mean stdev
Schedule1 2,650 20 8.3 2.8 14.3 6.3 58.94 5.19 1.65E-06
NanoXML 214 172 4.1 5.8 5.1 6.8 88.18 9.15 3.50E-02
Ant 112 607 1.9 4.8 2.4 5.5 71.60 28.64 1.88E-12
XML-security 92 632 4.6 5.7 7.0 9.1 71.64 26.02 1.27E-08
JMeter 79 732 1.3 4.0 1.9 4.2 81.92 29.54 4.80E-03
JABA 70 1,129 35.0 38.4 38.8 41.9 83.84 29.50 2.10E-02
ArgoUML 211 1,098 8.0 33.8 9.3 39.9 84.10 35.88 1.71E-05

Overall average 12.7 31.2 14.8 33.4 80.50 30.32 1.08E-27

6.2.1. Querying performance
The performance of impact computation of MADGER is compared to that

of DIVER in Table 3, including the mean and standard deviations (stdev) of the
querying time of both techniques (the fourth to seventh columns) and the ratios
of MADGER over DIVER (the eighth and ninth columns), with the Wilcoxon p-
values for the differences in the querying costs (the last column). The bottom row
shows the measures for all data points over the seven subjects (not for those shown
in the above rows).

This table shows that, overall, MADGER can considerably improve the query-
ing performance of DIVER, by 12% (for NanoXML) to 41% (for Schedule1) on
average. The generally small standard deviations with respect to corresponding
means indicate that such performance gains were relatively steady for any in-
dividual queries. In addition, the difference in the mean querying time was all
significant statistically, according to the p-values that were constantly lower than
the α value of 0.05. In some cases, such as Ant and XML-security, the significance
values were very strong (close to 0). We also measured the effect sizes as for RQ1
and RQ2 with the same test settings but here for the difference between DIVER and
MADGER in the querying time. The results in the range of 0.62 (with ArgoUML)
to 1 (with Ant) with a median of 0.83 confirmed that the MDG model is apparently
more efficient than the fine-grained dependence representation used in DIVER for
the DDIA technique. Over all subjects, the performance gain was about 20% by
MADGER in contrast to DIVER.

29

Individually, the largest querying-cost reduction, of over 40%, was seen by
Schedule1, which is the smallest subject but has the largest number of test cases.
This subject has also the smallest variation of such reduction compared to other
subjects. Second to Schedule1, XML-security and Ant also had large improve-
ments, close to 30% by average. In contrast, the three largest subjects, JMeter,
JABA, and ArgoUML, had noticeably smaller improvements.

For most of these subjects, it appears that the performance gains were inversely
correlated with the subject sizes: MADGER tends to archive smaller improvements
against DIVER for larger programs. The only exception is NanoXML, which
received the lowest querying-cost reduction among all seven subjects. This obser-
vation is not surprising, though, given the technical difference between DIVER and
MADGER. As we confirmed from manual inspection, the main reason underneath
this observation is that as program sizes grow, the programs tend to have higher
degree of logic complexity in their interface among methods, which potentially
results in larger numbers of interprocedural dependencies than intraprocedural
ones in their DIVER dependence graphs—-MADGER, however, right focuses on
reducing the number of intraprocedural dependencies through the dependence ab-
straction in the MDG. For example, JABA has very tight inter-function couplings
due to its design choice of trying to separate the core functionality into many
small-sized functions to facilitate internal code reuse. Similar code structure was
found in ArgoUML as well, in which the layered architecture reflected by a large
number of interconnected modules (packages) and components (classes) leads
to dense dependencies among methods of relatively small sizes. Other relevant
factors may include execution trace length, test input size, and subject nature [38,
27, 28]. We also manually checked the exceptional case NanoXML, and found
that this subject, although relatively small in source size, has relatively high inter-
method couplings and simple logic in most individual methods. Consequently,
interprocedural dependencies that have to be kept in the MDG largely outnumber
intraprocedural dependencies that the MDG tries to simplify.

On the other hand, the absolute numbers of querying time of MADGER versus
DIVER suggest that the efficiency improvements obtained through the dependence
abstraction via the MDG is not trivial: by average, querying on the MDG is faster
than on the DIVER dependence graph by a few seconds for each single query.
Furthermore, the constantly larger standard deviations of the means of DIVER over
MADGER imply that the efficiency improvements are even higher in many cases—
such improvements especially matter for those queries incurring the highest time
overheads. Over all subjects, the dependence abstraction of the MDG reduced
the mean impact-set querying time by over two seconds. When querying multiple

30

queries, the aggregate reduction to be achieved by the MDG tends to be even more
significant relative to the SEA.

6.2.2. Other Costs
Additional costs involved in the total cost of DIVER include the static-analysis

time, runtime overhead, and space costs [27]. However, in terms of overhead, the
static-analysis phase incurs a one-time cost, thus it is usually a less critical part in
the overall analysis process, as discussed in Section 5.2. As we expected, the time
for constructing the MDG in MADGER was in fact always considerably (5–15%)
smaller than that for constructing the DIVER dependence graph (as explained in
Section 3.1.1); other parts of the static-analysis phase are the same between the
two. We omit those data here for the above mentioned reasons. The runtime
phase is the same between MADGER and DIVER, where the static dependence
information is not used. The space costs for both tools were quite small, with the
largest of such costs being less than 50MB as mentioned before.

Effectiveness (impact-set accuracy) We also compared each pair of impact
sets produced by MADGER and DIVER to examine our hypothesis that the MDG
did not introduce imprecision because of the dependence abstraction. According
to our results on impact-set differences between the two tools, we confirmed
that for every query MADGER produces the same impact set as DIVER. This
was expected because the MDG captures the same essential information that this
analysis requires as the DIVER dependence graph provides.

In all, MADGER appeared to be 20% more efficient than DIVER without losing
precision or recall. Since the only difference between the two tools lies in the
static dependence model underneath, our results suggest that the MDG can enable
a hybrid dynamic impact analysis like DIVER to increase its cost-effectiveness
significantly. Note that while such improvement may seem trivial for queries that
the analysis technique can answer sufficiently fast, for those that take substantially
longer time [28], a 20% reduction on average could imply quite useful savings in
practice, given the restricted budget for impact analysis of developers [33].

While other optimizations exist, such as parallelizing the querying phase of
the impact analysis for multiple queries, those optimizations are orthogonal to the
improvement in the MDG. In cases where the querying cost remains challenging
(for programs with very long execution traces, for instance), efforts focusing on
parts other than the static dependence model in the overall analysis process can be
invested in collaboration with the dependence abstraction via the MDG.

Answer to RQ4: The MDG dependence abstraction can significantly improve
the efficiency of a hybrid dynamic impact analysis like DIVER while without

31

losing effectiveness (precision), hence gain in the overall cost-effectiveness of the
dynamic impact analysis as a whole.

7. Related Work

We mainly discuss three categories of previous work related to ours: program
dependence abstraction, static impact analysis, and dynamic impact analysis.

7.1. Program Dependence Abstraction
Most existing dependence-abstraction approaches were designed for specific

applications, and mostly either do not directly model or not subsume complete
method-level (data and control) dependencies. For instance, the program sum-
mary graph [19] was originally developed to speed up interprocedural data-flow
analysis, which is similar to some data dependence abstraction parts of the MDG,
but it is built based on program call structure only and, thus, it can be not only
imprecise but also unsafe from the perspective of approximating a full TSD-based
program dependence model.

Particularly targeting impact analysis, several abstract dependence models
were proposed, including the object-oriented class-member dependence
graph [20], the lattice of class and method dependence [21], and the influence
graph [22]. These abstractions consider only partial dependencies: The former
two only capture structural dependencies among classes, methods, and class
fields that are directly derived from objected-oriented features, such as
class-method memberships and class inheritance, and method-call relations; the
last one captures only data dependencies among methods in an overly
conservative manner while ignoring the analysis of intraprocedural dependencies,
which has been shown highly imprecise (precision close to a transitive closure on
the ICFG) [22]. The RWSets tool in [52] abstracts data dependencies via field
reads and writes but ignores control and other data dependencies.

A few other approaches explicitly attempted to model method-level dependen-
cies. One example is the abstract system dependence graph (ASDG) [29], which
is built by first creating the entire SDG and then simplifying statement-level edges
thereof. In [39], an extended TSD model is described to generalize the definitions
of interprocedural dependencies, directly at both statement and procedure levels.
Since these models were straightly derived from or developed atop the (SDG) [6],
they are at least as heavyweight as the underlying TSD model itself.

The SEA/SEB abstraction [7] to which we compared the MDG is developed on
the simplified ICFG (called ICCFG) in order to capture method execution orders

32

statically, which is motivated by the dynamic version of such orders proposed
in [17]. Developed also for interprocedural data-flow algorithms, the program
super graph [53] connects per-procedure control-flow graphs with call and return
edges, similar to the ICFG but enclosing calling contexts as well. The context-
sensitive CFG in [54] is proposed to visualize CFGs for program comprehension,
which also simplifies each intraprocedural CFG as for the SEA/SEB.

In contrast, the MDG we proposed directly models method-level dependencies
that explicitly include both data and control dependencies. However, compared to
the TSD model, the MDG avoids expensive interprocedural data-flow analysis
with context-sensitivity ignored as well, which makes it conservative yet enables
it to be relatively lightweight. The summary edges in the MDG are also different
from those of the same name used in the SDG and ASDG: Those edges were used
to help represent calling contexts in the SDG and transitive data-flow across pro-
cedures in the ASDG; we use such edges to abstract reachability from incoming
to outgoing dependencies within each method.

When developing the MDG, we reused some terms, such as the port and
data-dependence classification, from DIVER [27]. Also, in terms of the graph
representation, the MDG can be viewed as a more compact version of the DIVER

dependence graph. However, in contrast to the MDG, that dependence graph is
essentially a context-insensitive version of the SDG. In addition, unlike the MDG
which is intended for a general lightweight TSD approximation (although initially
motivated by our work on impact analysis), the dependence graph used by DIVER

targets a specific application of static dependencies in hybrid dynamic impact
analysis. In this sense, the MDG generalizes the DIVER dependence graph for
a broader range of applications.

To address the scalability and usability challenges of the TSD model, ap-
proaches such as thin slicing [55] seek from a different perspective for simplifying
the traditional dependence model by taking the concept and definition of depen-
dencies of a constrained sense to prune less relevant dependencies, as was also
examined in dynamic dependence analysis area [56]. The MDG shares similar
goals with such techniques but attempts to directly reduce the TSD model to sup-
port dependence analysis of higher granularity rather than adapting the traditional
dependence definitions or concepts.

7.2. Static Impact Analysis
Static impact analysis [57] provides impact sets for all possible program in-

puts. At method level, a main approach to such analysis is to find methods that
are directly or transitively dependent on the given query. In comparison to the

33

SEA-based impact analysis that requires a reachability algorithm [13, 24], a static
impact analysis based on the MDG simply computes the transitive closure from
the query. The MDG-based impact analysis also gives more information regarding
how, in addition to whether, impacts propagate across methods (through the ports
and edges among them), thus it tends to better support impact inspection and
understanding, than the SEA-based approach.

Static slicing has been directly used for static impact analysis, but it was shown
to have challenges from overly large results and/or prohibitive costs [8]. Many
other static approaches exist, which utilize various types of program information,
such as code structure and version repository [31, 24]. Our static impact anal-
ysis based on the MDG utilizes method-level dependencies to offer an efficient
approach with a precision comparable to static slicing. Others static approaches
to impact analysis exploit concept lattice [58], or combine it with call graph [59],
potentially providing an alternative to our technique based on the MDG.

7.3. Dynamic Impact Analysis
In contrast to static approaches, dynamic impact analysis uses concrete pro-

gram execution sets to provide smaller impact sets specific to the program inputs
utilized by the analysis [31, 37, 38]. For instance, EAS [17] identifies as impact-
ed methods that execute after the input query, like the SEA/SEB approach, but
leverages runtime data to improve the precision of results. We also utilized the
execute-after relations as by EAS, but prunes false-positive impacts to gain even
higher precision using a static dependence graph.

The dynamic impact analysis MADGER based on the MDG is an optimized
version of DIVER [27]. By summarizing intraprocedural dependencies, MADGER

avoids unnecessary overheads by carrying those dependencies in the dependence
graph used by DIVER while losing no necessary information required for the anal-
ysis. Thus, compared to DIVER, MADGER archives higher impact-set querying
performance without sacrificing precision, akin to the EAS optimization over its
predecessor PATHIMPACT [16]. Previously, a number of other dynamic impact
analysis techniques has been proposed, trying to continue improving the precision
of EAS but no significant improvement was archived (e.g., [22, 60]).

Note that, with both static and dynamic approaches, a large body of other
impact-analysis techniques has been developed but is descriptive [12, 31], such
as SIEVE [61], CHIANTI [62], and the impact analysis based on static slicing
and symbolic execution [63]. These approaches require prior knowledge about
actual changes made across two program versions. In contrast, the impact analysis
we focused on in this paper is predictive, which inputs a single program version

34

without knowing the actual changes, thus it gives prediction of possible impacts
based on information from the single version of the program rather than describing
the impacts of those known changes.

8. Conclusions and Future Work

Despite of a number of dependence abstractions proposed to approximate
the fine-grained and heavyweight TSD model, only few of them intended for
a safe and efficient general approximation. A recent one of such abstractions,
the SEA/SEB, has been developed, yet it remains unclear how accurately this
approach can approximate forward dependencies for object-oriented software.
Also, our intuition and initial application of the SEA/SEB suggest that it may
not be sufficiently accurate for that approximation.

Motivated by our work on impact analysis, we developed an alternative de-
pendence abstraction, the MDG, which directly models method-level dependen-
cies while giving more information than the SEA/SEB. For forward dependence
approximation, we evaluated the accuracy and efficiency of the MDG against
the SEA using fine-grained static forward slices uplifted to method level as the
ground truth. We also implemented both a static and a dynamic impact analysis
based on the MDG and evaluated their cost and effectiveness against the SEA-
based alternative and one of the latest dynamic impact analysis techniques DIVER,
respectively. We showed that the MDG is safe and highly precise, not only relative
to the TSD but also strongly significantly more precise than the SEA, and that the
MDG can improve the cost-effectiveness of both types of impact analysis with
strong statistical significance.

There are considerable potentials of the MDG for other dependence-based
applications, such as program comprehension, testing, and fault cause-effect un-
derstanding, which we plan to explore next. While our study results demonstrated
that the MDG can be a better option for the TSD approximation, this paper is
constrained to show that advantage for forward dependencies and at method level
only. Thus, future study may consider addressing backward dependencies and at
other levels of granularity.

Finally, while our work examines dependence abstractions relative to the TSD
model, as previous work revealed and studied [25, 29], hidden dependencies that
cannot be captured by the TSD model also exist, especially in object-oriented
software, and can be discovered (partially) by approaches based on the SEA [25].
It would also be of interest to investigate in that regard using the MDG, especially
in contrast to the SEA-based approaches.

35

Acknowledgments

This work was partially supported by ONR Award N000141410037 to the Uni-
versity of Notre Dame and faculty startup fund from Washington State University
to the first author.

References

[1] A. Podgurski, L. Clarke, A Formal Model of Program Dependences and
its Implications for Software Testing, Debugging, and Maintenance, IEEE
Transactions on Software Engineering 16 (9) (1990) 965–979.

[2] S. Bates, S. Horwitz, Incremental program testing using program depen-
dence graphs, in: Proc. of Symp. on Principles of Program Lang., 384–396,
1993.

[3] R. Santelices, M. J. Harrold, Exploiting Program Dependencies for Scalable
Multiple-path Symbolic Execution, in: Proceedings of ACM International
Symposium on Software Testing and Analysis, 195–206, 2010.

[4] G. K. Baah, A. Podgurski, M. J. Harrold, The Probabilistic Program Depen-
dence Graph and Its Application to Fault Diagnosis, IEEE Transactions on
Software Engineering 36 (4) (2010) 528–545.

[5] J. Ferrante, K. Ottenstein, J. Warren, The program dependence graph and its
use in optimization, ACM Trans. on Prog. Lang. and Systems, 9(3):319-349
.

[6] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using dependence
graphs, ACM Trans. on Prog. Lang. and Systems 12 (1) (1990) 26–60.

[7] J. Jász, Á. Beszédes, T. Gyimóthy, V. Rajlich, Static execute after/before
as a replacement of traditional software dependencies, in: Software Main-
tenance, 2008. ICSM 2008. IEEE International Conference on, 137–146,
2008.

[8] M. Acharya, B. Robinson, Practical Change Impact Analysis Based on
Static Program Slicing for Industrial Software Systems, in: Proceedings
of IEEE/ACM International Conference on Software Engineering, Software
Engineering in Practice Track, 746–765, 2011.

36

[9] D. Jackson, M. Rinard, Software Analysis: A Roadmap, in: Proceedings of
the Conference on The Future of Software Engineering, ICSE ’00, 133–145,
2000.

[10] D. Binkley, Source code analysis: A road map, in: 2007 Future of Software
Engineering, 104–119, 2007.

[11] H. Cai, R. Santelices, D. Thain, DiaPro: Unifying Dynamic Impact Anal-
yses for Improved and Variable Cost-Effectiveness, ACM Transactions on
Software Engineering and Methodology (TOSEM) 25 (2) (2016) 18.

[12] S. A. Bohner, R. S. Arnold, An introduction to software change impact
analysis, Software Change Impact Analysis, IEEE Comp. Soc. Press, pp.
1–26, 1996.

[13] J. Jász, L. Schrettner, Á. Beszédes, C. Osztrogonác, T. Gyimóthy, Impact
analysis using Static Execute After in WebKit, in: Software Maintenance
and Reengineering (CSMR), 2012 16th European Conference on, IEEE, 95–
104, 2012.

[14] L. Schrettner, J. Jász, T. Gergely, Á. Beszédes, T. Gyimóthy, Impact analysis
in the presence of dependence clusters using Static Execute After in WebKit,
Journal of Software: Evolution and Process 26 (6) (2014) 569–588.

[15] X. Ren, O. C. Chesley, B. G. Ryder, Identifying failure causes in java
programs: An application of change impact analysis, Software Engineering,
IEEE Transactions on 32 (9) (2006) 718–732.

[16] J. Law, G. Rothermel, Whole program Path-Based dynamic impact analysis,
in: Proc. of Int’l Conf. on Softw. Eng., 308–318, 2003.

[17] T. Apiwattanapong, A. Orso, M. J. Harrold, Efficient and Precise Dynamic
Impact Analysis Using Execute-After Sequences, in: Proc. of Int’l Conf. on
Softw. Eng., 432–441, 2005.

[18] J. Jász, Static execute after algorithms as alternatives for impact analysis,
Electrical Engineering 52 (3-4) (2010) 163–176.

[19] D. Callahan, The Program Summary Graph and Flow-sensitive Interpro-
cedual Data Flow Analysis, in: Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation, PLDI
’88, 47–56, 1988.

37

[20] X. Sun, B. Li, C. Tao, W. Wen, S. Zhang, Change impact analysis based on
a taxonomy of change types, in: IEEE Computer Software and Applications
Conference, 373–382, 2010.

[21] X. Sun, B. Li, S. Zhang, C. Tao, X. Chen, W. Wen, Using lattice of class and
method dependence for change impact analysis of object oriented programs,
in: ACM Symposium on Applied Computing, 1439–1444, 2011.

[22] B. Breech, M. Tegtmeyer, L. Pollock, Integrating Influence Mechanisms into
Impact Analysis for Increased Precision, in: Int’l Conf. on Softw. Maint.,
55–65, 2006.

[23] S. Mancoridis, B. S. Mitchell, Y. Chen, E. R. Gansner, Bunch: A clustering
tool for the recovery and maintenance of software system structures, in:
Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International
Conference on, 50–59, 1999.

[24] G. Tóth, P. Hegedűs, Á. Beszédes, T. Gyimóthy, J. Jász, Comparison of
different impact analysis methods and programmer’s opinion: an empirical
study, in: Proceedings of the 8th International Conference on the Principles
and Practice of Programming in Java, ACM, 109–118, 2010.

[25] A. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy, V. Rajlich,
Computation of static execute after relation with applications to software
maintenance, in: Software Maintenance, 2007. ICSM 2007. IEEE Interna-
tional Conference on, IEEE, 295–304, 2007.

[26] M. C. O. Maia, R. A. Bittencourt, J. C. A. de Figueiredo, D. D. S. Guerrero,
The hybrid technique for object-oriented software change impact analysis,
in: Euro. Conf. on Software Maintenance and Reengineering, 252–255,
2010.

[27] H. Cai, R. Santelices, DIVER: Precise Dynamic Impact Analysis Using
Dependence-based Trace Pruning, in: Proceedings of International Confer-
ence on Automated Software Engineering, 343–348, 2014.

[28] H. Cai, R. Santelices, A framework for cost-effective dependence-based
dynamic impact analysis, in: 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), 231–240,
2015.

38

[29] Z. Yu, V. Rajlich, Hidden dependencies in program comprehension and
change propagation, in: Program Comprehension, 2001. IWPC 2001.
Proceedings. 9th International Workshop on, 293–299, 2001.

[30] S. Sinha, M. J. Harrold, Analysis and testing of programs with exception
handling constructs, Software Engineering, IEEE Transactions on 26 (9)
(2000) 849–871.

[31] B. Li, X. Sun, H. Leung, S. Zhang, A survey of code-based change impact
analysis techniques, Software Testing, Verification and Reliability 23 (2013)
613–646, doi:10.1002/stvr.1475.

[32] V. Rajlich, Software Evolution and Maintenance, in: Proceedings of the
Conference on the Future of Software Engineering, ISBN 978-1-4503-2865-
4, 133–144, 2014.

[33] P. Rovegard, L. Angelis, C. Wohlin, An empirical study on views of
importance of change impact analysis issues, Software Engineering, IEEE
Transactions on 34 (4) (2008) 516–530.

[34] C. R. de Souza, D. F. Redmiles, An empirical study of software developers’
management of dependencies and changes, in: Proceedings of the 30th
international conference on Software engineering, ACM, 241–250, 2008.

[35] M. Acharya, B. Robinson, Practical change impact analysis based on static
program slicing for industrial software systems, in: Proceedings of the 33rd
international conference on software engineering, ACM, 746–755, 2011.

[36] H. Cai, R. Santelices, T. Xu, Estimating the Accuracy of Dynamic Change-
Impact Analysis using Sensitivity Analysis, in: Proceedings of International
Conference on Software Security and Reliability, 48–57, 2014.

[37] A. Orso, T. Apiwattanapong, M. J. Harrold, Leveraging field data for impact
analysis and regression testing, in: Proc. of 9th European Softw. Eng.
Conf. and 10th ACM SIGSOFT Symp. on the Foundations of Softw. Eng.,
Helsinki, Finland, 128–137, 2003.

[38] A. Orso, T. Apiwattanapong, J. B. Law, G. Rothermel, M. J. Harrold, An
Empirical Comparison of Dynamic Impact Analysis Algorithms, in: Proc.
of 26th IEEE and ACM SIGSOFT Int’l Conf. on Softw. Eng. (ICSE 2004),
Edinburgh, Scotland, 491–500, 2004.

39

http://dx.doi.org/10.1002/stvr.1475

[39] J. P. Loyall, S. A. Mathisen, Using dependence analysis to support the
software maintenance process, in: Software Maintenance, 1993. CSM-93,
Proceedings., Conference on, IEEE, 282–291, 1993.

[40] S. Sinha, M. J. Harrold, G. Rothermel, Interprocedural control dependence,
ACM Trans. Softw. Eng. Method. 10 (2) (2001) 209–254, ISSN 1049-331X,
doi:http://doi.acm.org/10.1145/367008.367022.

[41] A. V. Aho, M. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques and Tools, Prentice Hall, 2006.

[42] R. Santelices, Y. Zhang, H. Cai, S. Jiang, DUA-Forensics: A Fine-Grained
Dependence Analysis and Instrumentation Framework Based on Soot, in:
Proceeding of ACM SIGPLAN International Workshop on the State Of the
Art in Java Program Analysis, 13–18, 2013.

[43] P. Lam, E. Bodden, O. Lhoták, L. Hendren, Soot - a Java Bytecode
Optimization Framework, in: Cetus Users and Compiler Infrastructure
Workshop, 2011.

[44] H. Cai, R. Santelices, TracerJD: Generic trace-based dynamic dependence
analysis with fine-grained logging, in: 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
489–493, 2015.

[45] H. Do, S. Elbaum, G. Rothermel, Supporting Controlled Experimentation
with Testing Techniques: An Infrastructure and its Potential Impact, Empir-
ical Software Engineering 10 (4) (2005) 405–435.

[46] A. R. Group, Java Architecture for Bytecode Analysis, http://gamma.
cc.gatech.edu/jaba.html, [Online; accessed 03-Mar-2014], 2005.

[47] tigris.org, The ArgoUML Project, http://argouml.tigris.org/,
[Online; accessed 03-Mar-2014], 2003.

[48] H. Cai, R. Santelices, A comprehensive study of the predictive accuracy
of dynamic change-impact analysis, Journal of Systems and Software 103
(2015) 248–265.

[49] R. E. Walpole, R. H. Myers, S. L. Myers, K. E. Ye, Probability and Statistics
for Engineers and Scientists, Prentice Hall, ISBN 978–0321629111, 2011.

40

http://dx.doi.org/http://doi.acm.org/10.1145/367008.367022
http://gamma.cc.gatech.edu/jaba.html
http://gamma.cc.gatech.edu/jaba.html
http://argouml.tigris.org/

[50] F. Mosteller, R. A. Fisher, Questions and Answers, The American Statisti-
cian 2 (5) (1948) pp. 30–31.

[51] N. Cliff, Ordinal methods for behavioral data analysis, Psychology Press,
1996.

[52] M. Emami, A practical interprocedural alias analysis for an optimizing/par-
allelizing C compiler, Master’s thesis, McGill University, 1993.

[53] E. M. Myers, A precise inter-procedural data flow algorithm, in: Proceedings
of the 8th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, ACM, 219–230, 1981.

[54] J.-C. Ng, Context-sensitive control flow graph, Master’s thesis, Iowa State
University, 2004.

[55] M. Sridharan, S. J. Fink, R. Bodik, Thin slicing, in: Proceedings of ACM
Conference on Programming Language Design and Implementation, 112–
122, 2007.

[56] X. Zhang, N. Gupta, R. Gupta, Pruning Dynamic Slices with Confidence,
in: Proceedings of ACM Conference on Programming Language Design and
Implementation, 169–180, 2006.

[57] X. Sun, B. Li, H. Leung, B. Li, J. Zhu, Static change impact analysis
techniques: A comparative study, Journal of Systems and Software 109
(2015) 137–149.

[58] P. Tonella, Using a concept lattice of decomposition slices for program un-
derstanding and impact analysis, Software Engineering, IEEE Transactions
on 29 (6) (2003) 495–509.

[59] B. Li, X. Sun, H. Leung, Combining concept lattice with call graph for
impact analysis, Advances in Engineering Software 53 (2012) 1–13.

[60] L. Huang, Y.-T. Song, A Dynamic Impact Analysis Approach for Object-
Oriented Programs, Advanced Software Engineering and Its Applications 0
(2008) 217–220.

[61] M. K. Ramanathan, A. Grama, S. Jagannathan, Sieve: A Tool for Auto-
matically Detecting Variations Across Program Versions, in: Proceedings of

41

IEEE/ACM International Conference on Automated Software Engineering,
241–252, 2006.

[62] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, Chianti: a tool for change
impact analysis of java programs, in: Proc. of ACM Conf. on Obj. Oriented
Prog. Syst., Lang., and Appl., 432–448, 2004.

[63] N. Rungta, S. Person, J. Branchaud, A change impact analysis to characterize
evolving program behaviors, in: IEEE International Conference on Software
Maintenance, 109–118, 2012.

42

	Introduction
	Motivation and Background
	Impact Analysis
	The Static Execute After (SEA)
	Program Dependencies

	The Method Dependence Graph
	Overview
	Definition
	Comparison
	Illustration

	Construction of the MDG
	Identification of Ports
	Construction Algorithm

	Empirical Evaluation
	Implementation
	Experiment Setup
	Threats to Validity

	Study I: Approximating Method-Level Forward Static Dependencies
	Methodology
	Results and Analysis
	Precision (MDG and SEA versus TSD)
	Efficiency (MDG and SEA versus TSD)
	Cost-effectiveness for static impact analysis (MDG versus SEA)

	Study II: Improving Hybrid Dynamic Impact Analysis
	Methodology
	Results and Analysis
	Querying performance
	Other Costs

	Related Work
	Program Dependence Abstraction
	Static Impact Analysis
	Dynamic Impact Analysis

	Conclusions and Future Work

