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Abstract

The correctness of software is affected by its constant changes. For that rea-
son, developers use change-impact analysis to identify early the potential conse-
quences of changing their software. Dynamic impact analysis is a practical tech-
nique that identifies potential impacts of changes for representative executions.
However, it is unknown how reliable its results are because their accuracy has not
been studied.

This paper presents the first comprehensive study of the predictive accuracy of
dynamic impact analysis in two complementary ways. First, we use massive num-
bers of random changes across numerous Java applications to cover all possible
change locations. Then, we study more than 100 changes from software reposito-
ries, which are representative of developer practices. Our experimental approach
uses sensitivity analysis and execution differencing to systematically measure the
precision and recall of dynamic impact analysis with respect to the actual impacts
observed for these changes.

Our results for both types of changes show that the most cost-effective dy-
namic impact analysis known is surprisingly inaccurate with an average precision
of 38-50% and average recall of 50-56% in most cases. This comprehensive study
offers insights on the effectiveness of existing dynamic impact analyses and mo-
tivates the future development of more accurate impact analyses.
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1. Introduction

Modern software is increasingly complex and changes constantly, which threat-
ens its quality, reliability, and maintainability. Failing to identify and fix defects
caused by software changes can have serious effects in economic and human
terms. Therefore, it is crucial to provide developers with effective support to iden-
tify dependencies in code and deal with the impacts of changes that propagate via
those dependencies. Specifically, developers must understand the risks of modi-
fying a location in a software system before they can budget, design, and apply
changes there. This activity, called (predictive) change-impact analysis [1, 2, 3],
can be quite challenging and expensive because changes affect not only the mod-
ified parts of the software but also the parts where their effects propagate.

An existing importantapproach to assessing the effects of changes in a pro-
gram is dynamic impact analysis [4, 5, 6, 7, 8, 9, 10, 11]. This approach uses run-
time information such as profiles and traces to identify the entities that might be
affected by changes under specific conditions—those created by the test suite for
that program. The resulting impact sets (affected entities) of dynamic approaches
that are safe for the execution sets utilized are smaller [6], and thus usually more
manageable, than those obtained by safe static analyses as they focus on only a
particular subset of all possible inputs (and executions accordingly) [9]. For scal-
ability, most dynamic impact analyses operate on methods as the entities that can
be changed and be impacted by changes [4, 5, 6, 7, 8, 9, 10, 11]. At the statement
level, dynamic slicing [12, 13, 14], in its forward version, can be used for impact
analysis in greater detail but at a greater computational cost [6, 7, 15].

Despite its attractiveness, however, dynamic impact analysis has not been eval-
uated for its ability to correctly predict the actual impacts that changes have on
software. Techniques exist to describe the impacts of changes after changes have
been made (e.g., [16, 17, 18]). However, for predictive purposes—before the
changes are even known—the usefulness of dynamic impact sets remains a mys-
tery. For instance, CHIANTI [8] and its applications [19, 20] evaluate their impact
analysis results with respect to affected test cases or changes between pairs of pro-
gram versions, but these approaches are descriptive [1] rather than predictive. The
rest of the literature focuses only on comparing the sizes of dynamic impact sets
(i.e., relative precision) and the relative efficiency of the techniques without con-
sidering how closely those impact sets approximate the real impacts of changes.

To address this problem, in this paper, we introduce a novel approach for as-
sessing the accuracy (precision and recall) of dynamic impact analyses. The ap-
proach uses SENSA, a sensitivity-analysis technique we recently developed [21,
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22]. We adapted SENSA for making large numbers of random changes efficiently
across the software and running dynamic impact analysis on those change loca-
tions. While random changes do not necessarily represent all changes, the impacts
they find (or not) can help identify deficiencies in precision and recall of dynamic
impact analyses across the entire software. The benefit of this approach is that
all methods in a program can be analyzed, in contrast with others based on code
repositories which, if available, offer selections of changes that, although suppos-
edly more representative of developer practice, are less comprehensive.

Nevertheless, it is important to also incorporate in a study of impact analysis
the changes that developers typically make to complement the comprehensive-
ness of the new approach with the representativity of real changes. Thus, we
designed our approach to support repository changes in addition to the random
changes inserted by SENSA. Specifically, our approach takes changes committed
by developers into SVN repositories and also changes (bug fixes) from the SIR
repository [23] made by other researchers for their own studies.

To find the ground truth—the code actually impacted by changes—our ap-
proach uses execution differencing [17, 18, 24] on the program before and after
each change is applied to determine which code is really affected (i.e., code that
changes states or occurrences [25]). By design, we use the same test suite as the
dynamic impact analysis to assess the accuracy of that analysis under the same
runtime conditions. The similarities and differences between this ground truth
and the impact sets indicate how accurate the evaluated impact analysis can be for
predicting actual impacts.

Using this approach with both random and repository-based changes, we per-
formed a comprehensive empirical study of the accuracy of dynamic impact anal-
ysis on multiple Java subjects. For dynamic impact analysis, we chose the best
known and most cost-effective technique from the literature: PATHIMPACT [4]
with execute-after-sequences (EAS) [9], which we call PI/EAS. (Another tech-
nique, INFLUENCEDYNAMIC [10], is only marginally more precise yet much
more expensive, and also more complicated, than PI/EAS.) For different sets of
changed methods in each subject, we obtained the impact set predicted by PI/EAS
and computed its precision and recall with respect to the ground truth.

The results of our study are surprising. On average for all subjects, the pre-
cision of the impact sets ranged between 38% and 50% depending on the change
type. In other words, at most one in two methods reported by PI/EAS was ac-
tually impacted by the studied changes. Moreover, the average recall of PI/EAS
was about 50–56% except for SIR changes, for which the average recall was 87%.
These results reveal that dynamic impact analysis can also miss many real impacts.
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Interestingly, the accuracy of PI/EAS was lower for SVN changes, made by de-
velopers in practice, than for artificial changes (random and SIR). These results
suggest that developers should not expect a great accuracy from existing dynamic
impact analyses and that there is plenty of room for improving such techniques.

Our study also showed that, often, the precision was high and the recall was
low or vice versa. We hypothesized and confirmed that, when the program exe-
cution is shorter before a change (when predictive impact analysis is performed)
than after a change, runtime effects are missed (e.g., many methods execute only
in the changed program). Interestingly, the precision in such cases is greater than
usual, suggesting that methods in dynamic impact sets are more likely to be truly
impacted if they execute relatively soon after the change.

In all, the main contributions of this paper are:

• An approach for evaluating the accuracy of dynamic change-impact analysis
techniques with respect to the actual impacts of source-code changes

• An implementation of the approach that applies massive numbers of changes
to support accuracy studies with both artificial and repository changes

• A comprehensive study—the first of its kind—on multiple Java subjects that
estimates the accuracy of the most representative and cost-effective dynamic
impact analysis known and shows the inadequacy of existing techniques for
predicting the effects of changes

The rest of this paper is organized as follows. Section 2 details the problem ad-
dressed by, and the motivation of, this work. Section 3 provides the necessary
background and a working example. Section 4 discusses the qualities of PI/EAS
that affect its accuracy. Then, Section 5 presents our approach for assessing that
accuracy with artificial and repository changes. Section 6 and Section 7 present
our studies using this approach for both types of changes. Finally, Section 8 dis-
cusses related work and Section 9 concludes.

2. Problem and Motivation

The new paradigm of software engineering focuses on software evolution,
which is characteristic of incremental changes [26, 27]. One of the two steps of
designing incremental changes is impact analysis, a key activity during software
development that assesses the full extent of the changes [26, 28]. In fact, several
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industrial user studies have also shown that developers widely recognize the cru-
cial role of impact analysis in their daily tasks [29, 30, 31], with views on impact
analysis issues varying with different perspectives and organization levels [32].

However, developers face many challenges to impact analysis [29, 33, 31, 34],
and one of the most critical issues is the uncertain results produced by existing
analyses [30, 32]. In addition, an even more critical issue reported by developers
is that available analyses are incomplete [32]. Taken together, these studies show
that developers have already realized and encountered the inaccuracy of today’s
impact analysis in practice. And furthermore, such inaccuracy has been suggested
as an issue with existing analysis techniques and tool supports that block their
adoption in practice [32, 34].

On the other hand, despite of a large and growing body of research on impact
analysis [3, 35], the empirically suggested inaccuracy has not yet been formally
studied or systematically quantified [3]. Although a great number of automatic
impact-analysis tools have been developed as well (e.g., [4, 5, 10]), the accuracy
of most existing impact analyses was evaluated using relative measures only (e.g.,
the ratios of impact-set sizes of one technique over the other) with respect to the
execution sets utilized by the analysis [3]. Particularly, when it comes to predictive
impact analysis, empirical accuracy measurement with respect to actual impact
sets (as ground truth) is still missing.

While predictive impact analysis plays a vital role in driving software evolu-
tion as it enables developers to assess potential risks and consequences of can-
didate changes during the planning phase for the changes, it is equally critical
to gauge the accuracy of impact-prediction techniques through a comprehensive
and in-depth study. For one thing, reporting false impacts (i.e., imprecise results)
potentially causes wastes of time and other resources for developers inspecting
the resulting impact sets; for another, failing to report true impacts (i.e., unsafe
results) potentially threatens the quality and reliability of the evolving software.
Additionally, results from a comprehensive study of this accuracy, and insights to
the results, can motivate and guide future development of more advanced tech-
niques for not only impact analysis itself but also its client analyses, such as fault
localization [20], regress testing [5], and changeability assessment [36]. With-
out sufficient understanding of the accuracy of impact analysis, results from these
client analyses tend to suffer from severe uncertainty as a consequence.

Specifically, in this work, we focus on the study of predictive dynamic impact
analysis, which is usually much less conservative than its static alternatives, and
reports potential impact sets with respect to concrete operational profiles of pro-
grams. In general, many applications of impact analysis are essentially enabled,
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1 public class A {
2 static int M1(int f, int z) {
3 M2(f+z);
4 return new B().M3(f,1); }
5 void M2(int m) {
6 if (m > 0)
7 C.M5(); }}

8 public class B {
9 public static int t=0;
10 int M3(int a, int b) {
11 int n = b∗b ´ a;
12 return n; }
13 static void M4() {
14 t = 10; }}

15 public class C {
16 public static boolean M5() {
17 return B.t > 10; }
18
19 public static void M0() {
20 if (A.M1(4,´3) > 0)
21 B.M4(); }}

PATHIMPACT trace: M0 M1 M2 M5 r r M3 r r r x
EAS first-last events: M0[0,8] M1[1,7] M2[2,4] M3[6,6] M4[-,-] M5[3,3]

Figure 1: The example program E, an example PATHIMPACT runtime trace, and the
corresponding EAS first and last events.

or at least supported, by dynamic impact analysis (e.g., program debugging and
regression testing) [3].

For our accuracy study, we utilize semantic dependence analysis [25] to obtain
the ground truth, as the actual effects of code changes can be captured by dynamic
semantic dependencies [37] with respect to those changes. Ideally, for a potential
change location, we would need to exercise all possible changes at that location
to get the full set of dynamic semantic dependencies, which however is impracti-
cal. Instead, we use limited numbers of changes to approximate that set, thus to
estimate the predictive accuracy of dynamic impact analysis. Nevertheless, with a
large variety and number of changes applied at each of the locations throughout a
program, our study can still give reasonable and informative estimates.

3. Example and Background

Figure 1 shows an example program E used in this paper. In E, the entry
method M0 in class C calls methods M1 and M4 in classes A and B, respectively.
M1 receives two integers from M0 and passes the sum to M2, which conditionally
calls M5. Then, M0 calls M4, which sets variable t that M5may read.

3.1. Dynamic Impact Analysis
Dynamic impact analysis uses execution information to compute change-impact

sets (e.g., for a test suite) that estimate the impacts that any changes in a set of
program locations might have on the entire program, at least for the executions
considered. Developers typically apply the analysis on the unmodified program
before designing and applying any changes to explore the potential impacts of
changing parts of that program. This type of impact analysis is predictive [1].
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Of existing method-level predictive dynamic impact analyses in the literature,
PATHIMPACT [4] with execute-after sequences (EAS) [9], which together we call
PI/EAS, has shown almost the best precision and about the best efficiency com-
pared with the alternatives [9, 10, 4, 5, 7]. Only one other technique, INFLU-
ENCEDYNAMIC [10], has shown a marginally better precision than PI/EAS but
at a much greater cost. Although an efficient implementation of forward dynamic
slicing could offer a statement-level option for dynamic impact analysis at a cost
that may be acceptable by some developers, we could not include it in our present
study due to the lack of known tool support. While some dynamic slicers are
available indeed, they work backwardly and require great efforts to adapt for for-
ward slicing. For example, adapting JavaSlicer [38] for such purpose would need
redo more than half of its present implementation (as we confirmed with the au-
thors). Nevertheless, we plan to include forward dynamic slicing for dynamic
impact analysis in our future study when such tool support becomes available.

PI/EAS computes the impact set of a method m (or a set of methods m) based
on the method-execution order of the program. The idea of PI/EAS is that any
method called by or returned into its callers after m starts executing might be
impacted by a program state modified at m. The original version of PI/EAS,
PATHIMPACT, first collects the trace of the events of entering and exiting each
method. Then, PATHIMPACT responds to a query for the impact set of a method
m by finding in the trace the set of all methods entered or returned into after
entering m. The set includes m itself.

To illustrate, Figure 1 on the bottom left shows an example trace for program
E, where r indicates a method return, x is the program exit, and a method name
(e.g., M1) represents the entry to that method. For a candidate change location M2,
for example, PATHIMPACT first traverses the trace forward and identifies M5 and
M3 as impacted because they are entered after M2. In this traversal, PATHIMPACT

also counts two unmatched returns. Then, a backward traversal from M2 finds the
two matching methods M1 and M0 for those return events. The resulting impact set
is {M0,M1,M2,M3,M5}. PATHIMPACT repeats this process for all occurrences
of the candidate method in all traces considered and reports the union of the sets.

EAS improves PATHIMPACT to obtain the same results for a much lower cost.
Instead of using traces, EAS only keeps track of the first and last time each method
is entered or returned into. From this, we can infer the execution order of all
methods and, thus, their dynamic impacts. To illustrate, Figure 1 on the bottom
right shows the first and last values within square brackets for the methods of
E. A “timer” starts at 0 and is incremented on each event. The first event for
M2 occurs at time 2 when it is entered. M4 is not executed so its registers are
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uninitialized. All other methods execute after time 2, so the impact set of M2
is, again, {M0,M1,M2,M3,M5}. For another example, the impact set for M3 is
{M0,M1,M3} because only the last events for M0 and M1 occur after time 6—the
time at which M3 was first entered.

3.2. Execution Differencing
Differential execution analysis (DEA) [17, 18, 24] identifies semantic depen-

dencies [25] at runtime of statements on changes—statements truly affected by
those changes. Formally, a statement s is semantically dependent on a change c
and a test suite T if, after change c is made, the behavior of s (i.e., the values
computed by s or executions of s) changes when running T [18]. The approach
requires the execution of the program before and after the change under the same
conditions for all sources of non-determinism to ensure that a difference in the
behavior of s is, in fact, caused by the change.

Although finding all semantic dependencies in a program is an undecidable
problem, DEA detects at least a subset of those dependencies at runtime. With
respect to a concrete input (execution) I and change c, such detected semantic
dependence is precise and complete (sound). Thus, given an impact set M com-
puted by any predictive dynamic impact analysis using I on a potential change
location L, we can use DEA to obtain the ground truth (actual impacts) against M
for I and c at L. To do that, DEA compares the execution histories of a program
before and after a change is made. An execution history is the ordered sequence of
statements executed and the values computed by them. The differences between
histories mark the statements whose behaviors change and are thus semantically
dependent on the change.

To illustrate, consider in Figure 1 the execution of E starting at M0 and a
change in line 6 to if (m<0). DEA first executes E before the change to obtain
the execution history

x20(false), 3(1), 6(true), 7(), 17(false), 4(-3), 11(-3), 12(-3)y
Each element spvq in this sequence indicates that statement s executes and com-
putes value v. DEA then runs the changed P and obtains the execution history

x20(false), 3(1), 6(false), 4(-3), 11(-3), 12(-3)y.
Finally, DEA compares the two histories and reports statements 6, 7, and 17 as
truly affected at runtime (i.e., semantically dependent on the change) because 6
computes a different value and 7 and 17 execute only before the change is made.

To study method-level impact analyses, we adapted DEA to report all methods
containing at least one affected statement. We call this variant MDEA. For our
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example change, MDEA finds for M2 the actually-impacted set {M2,M5} because
those methods contain the affected statements 6, 7, and 17.

3.3. Sensitivity Analysis and SENSA
Sensitivity analysis [39] has been used to measure the influence of one part of a

system on other parts and, particularly in software engineering, to relate require-
ments and components [40, 41]. Mutation analysis is also a form of sensitivity
analysis, which is used to simulate common faults in programs so as to assess the
ability of a test suite in error detection [42, 43]. Previously, we developed a tech-
nique and tool SENSA built on sensitivity analysis and execution differencing to
predict and quantify potential impacts of candidate changes [22]. SENSA inputs
a program P , a potential change location (statement) s and a test suite T , and
outputs a quantified impact set of s.

The process of SENSA is essentially to find the set of statements in P , as the
impact set, that are dynamically semantically dependent [37] on s relative to T .
To that end, SENSA first instruments state-modification probes at s and then, at
runtime, repeatedly changes the value computed at s to produce multiple modified
executions. SENSA also runs P to produce the original execution. The last step
of the SENSA process is to compute, via execution differencing, the impact set
with respect to each modified execution against the original one. By calculating
the frequency of each statement occurring in the impact sets from all the modified
executions, SENSA obtains the quantified impact set of s.

Although both leveraging sensitivity analysis and modifying program states,
SENSA differs from mutation analysis in two main aspects. First, SENSA focuses
on particular program points (candidate change locations) to analyze their influ-
ences on all relevant statements while mutation analysis checking various points
for their influences on program outputs. Second, unlike mutation analysis, SENSA
modifications do not involve changing any operators in the program or using mu-
tant operators [44]. By directly modifying the value computed at a specified lo-
cation, SENSA guarantees producing and using different values in each different
modified executions, thus is more efficient, for our study purposes, than mutation
analysis, which employs mutations that may not effectively change program states
from original ones. For instance, in the example of Figure 1, changing the relation
operator at statement 6 will not change the value of the predicate if m equals 0.
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4. Analytical Assessment

Intuitively, the conservative nature of PI/EAS (defined in Section 3.1) with
respect to the analyzed executions can make the analysis imprecise. Moreover,
predicting potential change-effects using dynamic analysis on a single program
version can also affect the recall of the technique. This section provides an an-
alytical examination of the implications of technical definition of PI/EAS of the
predictive accuracy of this technique. This examination is a prelude to the com-
prehensive empirical analysis that follow in the next sections and it helps explain
those results.

4.1. Precision
PI/EAS relies solely on runtime execution orders to identify, for a method m,

its dynamic impact set. At a first glance, the technique seems safe as only meth-
ods that execute after m can be affected by m, while producing smaller impact
sets than approaches based on runtime coverage [5] for almost the same cost [9].
However, not all methods executed after m are necessarily affected by m. Thus,
PI/EAS can be quite imprecise.

For the example of Figure 1, PI/EAS predicts that the dynamic impact set
of M2 is I={M0,M1,M2,M3,M5}. However, when applying the change to if
(m<0) in line 6 (see Section 3.2), the set of truly-affected methods is M={M2,M5}.
Thus, the predictive precision of PI/EAS in this case is only |IXM |{|I| “ 2{5 “
40%. The imprecision is caused by the limited effects of the change, which pre-
vents line 7 from executing and from calling M5 but has no other consequences.
Of course, for other changes in line 6, the precision can reach 100%. Therefore,
we must empirically study the precision of PI/EAS for many changes to draw any
conclusion.

In general, given a set of executions, PI/EAS can produce large and poten-
tially imprecise impact sets for a method m in a program. This problem occurs
when one or more executions continue for a long time after the first occurrence
of m and a large number of methods are called or returned into during that pro-
cess, but only a small portion of those methods are dynamically dependent on m.
In some cases, the execution of the program at m goes deep into a call structure
but, because of modularity, a change in m propagates only to some of those calls.
Similarly, m might be called when the call stack is deep, making PI/EAS mark all
methods in that stack as impacted even if many of them are completely unrelated
to m in actuality.
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4.2. Recall
Naturally, no method that can only execute and return before another method

m is called for the first time can be affected by the behavior of m. Therefore, in
a descriptive sense, PI/EAS has 100% recall. For example, for the program of
Figure 1, PI/EAS reports all methods but M4 as possibly impacted by M2, which
has 100% recall because M4 does not execute and, thus, cannot be dynamically
impacted. For another example, the impact set for M3, which is {M0,M1,M3},
also has 100% recall in a descriptive sense because M2 and M5 are no longer
executing when M3 starts executing.

However, developers normally need to identify not only the effects of a method
on a single version of the program but also the impacts that changing that method
can have on the entire program, possibly before changes are designed and applied.
This is the task of predictive impact analysis. A method m1 that a dynamic impact
analysis does not report as potentially impacted by a method m might be actually
impacted by a change in m if that change that affects the control flow of the
program such that m1 executes after the changed m executes. As a consequence,
the recall of a predictive dynamic impact analysis can be less than 100%.

To illustrate, consider again our example of Figure 1. If the expression b*b-a
in line 11 changes to a*a-b, the value returned by M3 and M1 becomes 15 instead
of -3. Thus, the expression at line 20 now evaluates to true and line 21 executes,
calling (and impacting) M4. However, the dynamic impact set for M3 does not
include M4. The change modifies the control flow of E so that M4, which did
not execute before, now executes after M3. In other words, despite not executing
before the change, M3 is dynamically dependent on line 11 because, for the same
input and a change in line 11, M3 changes its execution behavior.1 Thus, the
predictive recall of PI/EAS for this example change is 75%.

4.3. Accuracy
To be useful in addition to efficient, a dynamic impact analysis must be ac-

curate. Typically, neither a good precision nor a good recall alone is enough.
Rather, a good balance is desired. On one hand, PI/EAS achieves 100% recall
for a method m if all methods execute after m but only a few of them are truly
impacted, which yields a low precision. On the other hand, if the program halts at
method m, PI/EAS predicts an impact set {m} for m with 100% precision but,

1More generally, a method that executes fewer or more times for the same input after a change,
is dynamically impacted by that change [25].
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after changes to m, many methods might execute after m so yielding a low recall.
Therefore, in this paper, we also use an F-measure [45] to estimate the balance of
PI/EAS. We use the first such measure:

F1 “ 2ˆ
precisionˆ recall

precision` recall

To illustrate, consider again the change of line 6 in method M2 to if (m<0)
in our example. As we saw in Section 4.1, PI/EAS produces an impact set of
{M0,M1,M2,M3,M5} for M2, whereas the actual impact set for this change is
{M2,M5}. Thus, precision is 40% and recall is 100%, whereas the accuracy is
2ˆp0.4ˆ1.0q{p0.4 ` 1.0q “ 57.1%. For another example, for the change in the
expression in statement 11 in method M3 from b*b-a to a*a-b (see Section 4.2),
the precision is 100% and recall is 75%, for an accuracy of 85.7%.

4.4. Exception Handling
The PI/EAS approach, as published [9], can suffer from unpredictable results

in the presence of unhandled exceptions that can make the runtime technique miss
return or returned-into events. To process such events, PI/EAS assumes that an
exception raised in a method m is caught by a catch or finally block in m before
m exits or in the method that called the instance of m that raised the exception.
However, this assumption does not hold for many software systems, including
some of those studied in this paper.

If neither method m nor a sequence of (transitive) callers of m handle an
exception thrown by m, the returned-into events for m and all methods in the call
stack that do not handle the exception will be missed. As a result, those methods
will not be added to the resulting impact set. To illustrate, in Figure 1, if an
exception is raised in M3, it will not be handled. Thus, the last records for M1
and M0 will not be updated to reflect that they were returned into after M3 exited
abnormally, and the impact set for M3 will miss M1 and M0.

For our work, we decided to fix this problem by developing an improved ver-
sion of PI/EAS that accounts for unhandled exceptions. Our design captures all
return or returned-into events by wrapping all methods in special try-catch blocks.
Those blocks catch unhandled exceptions, process the events that would otherwise
be missed, and re-throw those exceptions. In the rest of this paper, whenever we
mention PI/EAS, we refer to the version of this technique corrected by us.
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Figure 2: Process for estimating the accuracy of dynamic impact analyses through sensitivity
analysis and execution differencing.

5. Experimental Approach

For a comprehensive study of the predictive accuracy of dynamic impact anal-
ysis, we consider both artificial and repository changes as these two types of
changes complement each other. Repositories reflect how software evolves in
practice but usually contain changes to only a fraction of all methods in the soft-
ware. Artificial changes, in contrast, might not represent software evolution in
practice but have two key benefits: they can be generated massively to cover all
analyzable change locations (i.e., those executed at least once) and can reveal
potential deficiencies in precision and recall.

In order to generate artificial changes for all analyzable methods, we used our
sensitivity-analysis tool SENSA [21, 22] which makes random modifications to
the code of each method. We call these changes SENSA changes. We also used
as changes various bug fixes from the SIR repository [23] introduced by other
researchers to study realistic faults. Finally, we retrieved numerous changes from
popular SVN open-source repositories. As opposed to the SENSA changes, we
refer to the changes from both SIR and SVN repositories as repository changes.
(The SVN changes are, nevertheless, the repository changes we deem as most
representative of developer practice.)

In this paper, we study the accuracy of PI/EAS with SENSA and repository
changes separately. Next, we describe the experimental approach for each part
of our study.2 Also, to assess the validity of this approach for obtaining accuracy

2The entire toolkit that implemented our study framework is available to the public for down-
load at http://nd.edu/˜hcai/deam
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results, we conducted two small case studies in which we manually determined
the ground truth, for sample program inputs and impact-set queries, and checked
it against the ground truth used by our experimental framework.

5.1. Approach with SENSA changes
To estimate the range of accuracy that developers can expect with the predic-

tive dynamic impact analysis, we designed an approach that (1) systematically
applies impact analysis to a large number of candidate change locations through-
out the program, (2) changes those locations in groups of one to ten methods at a
time, and (3) compares the predicted impact sets with the actual impacts found by
MDEA as the ground truth.

5.1.1. Process
Figure 2 outlines our experimental approach. The process uses a Changer

module that, for each change location (a statement in a method) in a location set
C for program P , performs a number of changes in that location to produce one
version of the program per change. For greater realism, each changed program
version is treated as the unchanged (base) program for predictive impact analysis
and the original P is treated as the “fixed”, changed version. In other words, the
changes can be seen as bug fixes.

The changer first instruments P at the locations C to produce a large number
N of base (unchanged) versions of P called P1 to PN . Then, at runtime, the in-
strumentation in P invokes the changer for the points in C to produce the N base
versions, one at a time, across which the C locations (statements) are distributed.
A change strategy is provided for customization. By default, this strategy is ran-
dom, which replaces the values or control-flow decisions computed at each change
point with random values of the same type.

The replacement values generated for each execution of P are stored so that
each base execution of P can be reproduced. Unlike similar tools, to speed up
the process by avoiding disk-space blowup, our system uses only two versions of
the program: the original P and the instrumented P controlled at runtime by the
changer. At runtime, using the test suite provided with P , the approach applies
dynamic impact analysis (dynamic IA) to each of the N base versions to obtain,
for each method that contains at least one change location, its dynamic impact set.
Then, MDEA is applied to that version and P with the same test suite to find the
actual impacts (ground truth). We use the same test suite on purpose so we can
compare predicted and actual impacts under the same runtime conditions.
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In the last step, our approach compares the dynamic impact set of each changed
method against the ground truth calculated by MDEA to determine the predictive
precision, recall, and accuracy (F1 measure) of that impact set. The last step,
shown on the right of Figure 2, computes statistics of these accuracy results for
the final report for the subject program P .

5.1.2. Generation of Base Versions
At the core of our approach is the generation of N base versions from P .

Every base version consists of P with one or more modifications, each made to
one statement per method. These base program versions are the ones to which
impact analysis is applied and P is the “fixed” (changed) version. To make the
study comprehensive, the system selects the change set C to cover as much code
and methods in P as possible. The approach compares the predicted impact set
of each such method against the actual impacts of all changes in C located in that
method to compute accuracy metrics.

To implement the changer, we adapted SENSA [21, 22], our sensitivity-analysis
technique and tool for Java bytecode. SENSA can modify values of primitive types
and strings in assignments and branching conditions. We call statements whose
value can be modified by SENSA modifiable statements; other statements not sup-
ported by SENSA are normally affected directly by those supported by SENSA.
Although most heap-object values are not directly supported now, any supported
value within a heap object can be modified by SENSA at the location where that
value is computed.3 Therefore, the change set C is selected from all statements to
which SENSA is applicable. We regard a method with no applicable statements
as non-applicable.

The goal of our approach is to change every applicable statement in the pro-
gram at least once. However, this can be impractical for large subjects. Therefore,
we choose a well-distributed subset of those statements according to per-method
limits L and Lmax which default to 5 and 10, respectively. For each method m
and applicable-statements set Am in m, the change location set Cm for m is Am

if |Am| ď L. Otherwise, the size of Cm is limited to minp|Am|, Lmaxq to ensure
that at most Lmax locations are used in m. In the latter case, to evenly cover
m, the system splits the method into Lmax segments of equal length (rounded).
For each segment i of consecutive applicable statements in positions rmaxp0, i´

3Modifications involving other unsupported values require applying changes not directly to
that location but to the statement(s) that compute the supported parts of such values.

15



Source-code 
differencing

PbasePbase
Dynamic IA

mDEA
Impact Set 

Comparison

Test Suite

Accuracy 
Report

Accuracy 
Computation

Changed 
Methods

PchangedPchanged

Figure 3: Experimental process for evaluating the accuracy of dynamic impact analyses with
repository changes.

1qˆ|Am|{Lmaxs to rmaxp1, iqˆ|Am|{Lmaxs, the system randomly picks for Cm

one statement in that segment. The union of all sets Cm is the set C.

5.2. Approach with Repository Changes
To evaluate the accuracy of dynamic impact analysis for the types of changes

made in practice by developers (SVN repositories) and researchers (the SIR repos-
itory [23]), we created an experimental pipeline customized for each subject ap-
plication of our study. This system (1) retrieves from the repository, configures,
and compiles a series of software versions, (2) finds the set of all changed methods
between each pair of consecutive versions, (3) computes the predicted and actual
impacts of those changed methods using dynamic impact analysis (e.g., PI/EAS)
on the first version and MDEA on both versions, respectively, and (4) calculates
the predictive accuracy of the dynamic impact sets.

We describe first the experimental process for our study with repository changes
and then our approach for finding the changed methods.

5.2.1. Process
The experiment process for studying repository changes is shown in Figure 3.

For each pair of base version Pbase and changed version Pchanged of a subject pro-
gram P , the process first retrieves the source code from the repository and then
uses a special differencing tool to find the set M of methods changed from Pbase

to Pchanged. Next, it runs dynamic impact analysis (Dynamic IA) on the base ver-
sion to produce the predictive impact set for M and MDEA to obtain the actual
impacts, both using the test suite provided with the subject. The last step com-
putes the accuracy of the impact set for these two versions of P . This process
reuses some of the modules for dynamic IA, MDEA, and accuracy computation
presented in Figure 2 for SENSA changes.
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Since we focus on the study of code impact analysis, we ignored non-source
changes such as updates in software documentation and changes in code com-
ments. The process automatically checks against program versions that did not
contain any source-code changes for a better performance than doing that during
the retrieval of changed methods.

5.2.2. Retrieval of Changes
In contrast with the SENSA changes, which were seeded by our system to

generate the base versions, repository changes are not immediately available as
they have to be computed from existing sources like the Apache project’s SVN
servers and the SIR repository. The retrieval of repository changes is thus an
essential step for this part of the approach. To that end, we developed a tool to
help find changed methods between two given software versions. The tool finds
the sets of methods added, deleted, and modified between two versions with the
aid of a source-code differencer.

5.3. Execution Differencing as Ground Truth
As we calculate the predictive accuracy of dynamic impact analysis relative to

actual impacts that are automatically produced by our framework using execution
differencing as ground truth, it is crucial to check that such ground truth is accept-
able with respect to the executions utilized for computing the impact sets under
evaluation. To that end, we chose two of the seven subjects used in our empirical
evaluation, Schedule1 and NanoXML, and performed one small case study for
each one of them to analyze the obtained ground truths. Next, we summarize the
study procedure and report the results.4

5.3.1. Procedure
Our case studies covered both single-method and multiple-method changes.

For each study, we randomly selected two candidate change locations consisting
of single methods and one change location consisting of multiple methods. To
keep our manual analysis of change impacts manageable, we constrained these
locations to those for which PI/EAS produced impact sets with at most 20 meth-
ods. In addition, for each change location, we randomly chose three test inputs
from all the inputs that cover that change location.

Our manual identification of the ground-truth impact sets was based on our
detailed understanding of the code structure, functionality, and purpose of the

4Full details are available at http://nd.edu/˜hcai/deam/manuinsp.html
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subjects. Furthermore, for each input and change, we first manually traced the
execution of the subject starting from the change location, recording the outcome
of control-flow decisions and collecting values computed at each statement. Next,
we applied a random change at that location and repeated that process. Then,
we determined the methods actually impacted by that change according to our
understanding of the source code and the effects of the change on control flows
and values. We utilized the Eclipse debugger to assist our effort.

5.3.2. Results
Our results show that, for all the changes and inputs we studied, the ground-

truth impact sets manually determined constantly conformed to those computed
by our framework using the MDEA technique. Although the order in which actu-
ally impacted methods were discovered during our manual examination was not
always the same as that in which those methods were identified by MDEA from
the execution-history differences, the eventual impact sets produced as ground
truth from both approaches were consistent in all cases. Accordingly, the accu-
racy of PI/EAS relative to the manual ground truth for each corresponding impact
set was always equal to that relative to the MDEA-based ground truth.

For Schedule1, for instance, the first single-method change was to modify a
floating-point variable in a method at the core of this subject, which occurred deep
in the call stack for executions on all the three inputs. As a result, 18 out of the to-
tal 24 methods in this program executed after the query, which were all identified
as impacted by PI/EAS. However, only 8 of those 18 methods were actually im-
pacted by the change according to our manual investigation, which were the same
as all the ones found by MDEA; the other 10 were not really affected because they
did not use that floating-point variable either directly or transitively.

Similarly, changing a loop variable in the second single-method case did not
affect most of the methods executed after the change location, because the change,
although escaped to three callees of the queried method, did not propagate further
along or back to any callers. MDEA reported rightly just those three callees,
which were exactly what we manually found as the ground truth in this case. In
contrast, PI/EAS falsely included 13 additional methods in its impact set.

In the case of multiple-method changes, modifications to single statements
in each of the two changed methods affected together many more methods than
each change alone did. Yet, three methods were identified falsely as impacted by
PI/EAS. Two of them were initializers that used constants only. The third false
positive was the entry method that transitively called the two changed methods
without using any of the changed values afterwards. These false-positive impacts
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were included neither in our manual ground truth nor by MDEA in its actual
impact set. On the other hand, the manual examination and MDEA both found
the same set of true impacts.

Results from the cases with NanoXML were very similar to those with Sched-
ule1 above, although most of the true impact sets were smaller. Constantly,
MDEA found all actually impacted methods without including any false impacts
in its results, according to our manual verification. While it happened to be more
accurate with the first single-method change, PI/EAS suffered from low precision
in the other two cases for the same reason as mentioned in the Schedule1 cases.
Finally, as we expected, with both subjects, PI/EAS had slightly higher accuracy
for multiple-method changes than for single-method ones in most cases. This is
consistent with what we observed from the empirical study results (in Section 6.3).

In sum, for all the cases we studied, MDEA produced actual impact sets al-
ways the same as those we manually obtained. As we examined only a few
cases for two relatively small subjects, results from these case studies may not
be generalizable. Nevertheless, since we have carefully verified the conformance
of MDEA results to manual ground truth, for both single-method and multiple-
method changes with randomly chosen program inputs and queries, these results
suggest that it is reasonably valid to evaluate the predictive accuracy of PI/EAS
using MDEA-based ground truth.

6. Study with SENSA Changes

We first present our study of the predictive accuracy of PI/EAS using SENSA
changes. Because changes can happen to a single method or multiple methods at
once, we consider both single-method and multiple-method changes in this study.

6.1. Experimental Setup
For our SENSA-change studies, we chose eight Java subjects of a variety of

sizes, complexities, and functionalities. Most of these subjects are widely-used,
nontrivial open-source applications. We used the entire test suites provided with
these subjects except for PDFBox, for which we considered 29 of its 32 test cases.
The three remaining test cases cause our MDEA implementation to run out of
memory (even on an 80GB RAM machine). Table 1 lists these subjects with brief
descriptions and their statistics, including their sizes in non-comment non-blank
lines of Java source code (#LOC), the total number of methods (#Methods), and
the number of test cases (#Tests).
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The first four subjects and JMeter came from the SIR repository for software
testing studies. When applicable, the subject name includes the SIR version.
Schedule1 is representative of small modules for specific tasks. NanoXML is a
lean and efficient XML parser. Ant is a popular cross-platform build tool. XML-
security is an encryption and signature component of the Apache project. JMeter
is an Apache application for performance assessment of software. We obtained
the other three subjects from their respective source-code repositories, some of
which are still evolving. We chose a stable version of the subject from each repos-
itory. BCEL is the Apache library that analyzes and manipulates binary Java class
files. PDFBox is a PDF document processing tool from the Apache project. The
last subject, ArgoUML, is a UML modeling tool.

The subjects Ant, BCEL, JMeter, and ArgoUML exhibit some non-determinism—
a few varying behaviors for the same test inputs—due to their use of the system
time and random number generators. To ensure that MDEA does not report false-
positive differences caused by non-determinism, we manually determinized these
subjects by ensuring that, for each test case, the subjects used the same sequence
of the system time and randomly generated values before and after each change.
To assure that we did not accidentally break those subjects, at least for their test
suites, we re-run those test suites on the determinized versions. We found no dif-
ferences in outputs and assertion evaluations between the determinized and corre-
sponding original versions.

We implemented our approach in Java to analyze the subjects in Java bytecode,
as described in Section 5. We also implemented PI/EAS according to Section 3
with our exception-handling correction described in Section 4.4. We built this
infrastructure on top of our Java-bytecode analysis and monitoring framework
DUA-FORENSICS [46, 47], which is based on Soot [48], and our sensitivity-
analysis tool SENSA [22].

We also found that some changes alter the length of the base executions con-
siderably. To better understand the effects of those kinds of changes, our imple-
mentation classifies changes for which the number of PI/EAS events in the base
version is 50% or less than in the changed version (the “fixed” program) as short-
ening (S) and the rest as normal (N).

6.2. Part I: Single-method Changes
For this study, we used our approach described in Section 5.1, where each

base version is applied one change in one method at a time (i.e., the reverse of
the SENSA change that “fixes” the program). Table 2 summarizes the results of
this study. For each subject, the table reports the average precision, recall, and
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Table 1: Experimental subjects and their characteristics

Subject Description #LOC #Methods #Tests
Schedule1 priority scheduler 290 24 2,650
NanoXML-v1 XML parser 3,521 282 214
Ant-v0 Java build tool 18,830 1,863 112
XML-security-v1 encryption library 22,361 1,928 92
BCEL 5.3 byte code analyzer 34,839 3,834 75
JMeter-v2 performance test tool 35,547 3,054 79
PDFBox 1.1 PDF processing tool 59,576 5,401 29
ArgoUML-r3121 UML modeling tool 102,400 8,856 211

accuracy for all changes in that subject. Since the data points were collected per
change, methods that contain larger numbers of applicable change locations are
better represented in those results. This is appropriate because those methods
contain more locations that developers could change. The second column (Scope)
indicates how much of the program is truly studied, which corresponds to the
percentage of all statements belonging to the methods that are called at least once
at runtime and contain at least one modifiable statement.

The row for each subject has three sub-rows, each named after the type of
change (C.T.) in the third column: All (both normal and shortening), N (normal
only), and S (shortening only). The extent of the changes made to each subject per
category is indicated by the fourth column (C.S.) for the total number of executed
and changed statements and the fifth column (C.M.) for the number of methods
containing at least one changed statement. Note that the sums of numbers of
methods for categories N and S can be greater than for All because some methods
contain both N and S changes.

Next, the table shows the accuracy results per subject and change category,
starting with the average number of impacted methods found by PI/EAS (P.S.)
and the average number of actually-impacted methods identified by MDEA (A.S.)
The next two columns show the average number of false positives (#FP) and false
negatives (#FN) for PI/EAS with respect to the actual impacts. Finally, the last
three columns show the average precision, recall, and accuracy (F1) of PI/EAS
for the subject and change category. Each of those columns presents the mean
and its 95% confidence interval (conf. range) obtained via the non-parametric
Vysochanskij-Petunin inequality [49], which makes no assumptions about the nor-
mality of the data distribution.

To illustrate, consider the results for JMeter, for which 78% of its code was
in methods that contained one or more changes, which were those analyzable by
PI/EAS and MDEA. Of the 1439 statements on which changes were studied,
distributed across 401 methods, 198 of them, distributed across 82 methods, con-
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Table 2: Predictive accuracy of PI/EAS for single-method SENSA changes, for all changes and
their two subsets: normal (N) and shortening (S).

Subject ScopeC.T. C.S. C.M. P.S. A.S. #FP #FN Precision Recall Accuracy (F1)
mean conf. range mean conf. range mean conf. range

Schedule1 82%
all 46 12 16.1 13.4 4.5 1.8 0.73 [0.59, 0.87] 0.90 [0.81, 0.99] 0.72 [0.59, 0.85]
N 12 6 16.7 5.8 11.0 0.2 0.33 [0.09, 0.56] 0.99 [0.95, 1.00] 0.43 [0.17, 0.69]
S 34 12 15.9 16.0 2.2 2.4 0.87 [0.77, 0.97] 0.87 [0.75, 0.99] 0.83 [0.72, 0.93]

NanoXML
-v1 85%

all 379 129 74.6 54.2 39.3 18.8 0.46 [0.40, 0.52] 0.73 [0.68, 0.79] 0.40 [0.34, 0.46]
N 181 78 81.2 18.0 64.6 1.4 0.24 [0.16, 0.31] 0.95 [0.91, 0.98] 0.27 [0.20, 0.34]
S 198 107 34.1 82.2 3.3 51.3 0.73 [0.66, 0.81] 0.31 [0.25, 0.36] 0.41 [0.35, 0.47]

Ant
-v0 77%

all 437 121 21.8 78.2 9.2 65.7 0.67 [0.62, 0.73] 0.53 [0.48, 0.58] 0.39 [0.35, 0.44]
N 381 102 17.6 27.6 8.8 18.8 0.65 [0.59, 0.71] 0.59 [0.54, 0.64] 0.43 [0.38, 0.48]
S 56 22 49.9 422.4 12.4 384.8 0.81 [0.70, 0.91] 0.11 [0.05, 0.17] 0.14 [0.09, 0.20]

XML-
security

-v1
80%

all 1405 297 149.1 208.1 53.8 112.8 0.70 [0.67, 0.73] 0.42 [0.39, 0.45] 0.40 [0.38, 0.43]
N 843 218 127.2 112.9 77.3 63.0 0.56 [0.52, 0.60] 0.38 [0.35, 0.42] 0.31 [0.28, 0.34]
S 562 122 182.0 350.9 18.6 187.6 0.91 [0.89, 0.93] 0.47 [0.43, 0.52] 0.54 [0.50, 0.58]

BCEL
5.3 77%

all 1523 436 257.8 88.5 232.3 63.0 0.29 [0.27, 0.32] 0.59 [0.56, 0.62] 0.17 [0.16, 0.18]
N 1345 399 266.3 35.9 250.6 20.2 0.25 [0.22, 0.27] 0.63 [0.60, 0.66] 0.16 [0.15, 0.18]
S 178 86 193.4 485.7 94.3 386.5 0.65 [0.58, 0.73] 0.27 [0.19, 0.34] 0.23 [0.18, 0.29]

JMeter
-v2 78%

all 1439 401 81.6 51.6 54.5 24.4 0.42 [0.39, 0.44] 0.58 [0.56, 0.61] 0.38 [0.36, 0.40]
N 1241 357 78.7 32.5 57.1 10.8 0.38 [0.35, 0.41] 0.60 [0.58, 0.63] 0.37 [0.35, 0.40]
S 198 82 99.9 171.3 38.4 109.7 0.66 [0.60, 0.72] 0.44 [0.37, 0.51] 0.42 [0.36, 0.48]

PDFBox
1.1 67%

all 1092 268 131.7 144.3 75.0 87.6 0.58 [0.55, 0.61] 0.45 [0.42, 0.48] 0.35 [0.33, 0.38]
N 749 228 158.4 76.7 102.4 20.6 0.46 [0.43, 0.50] 0.55 [0.52, 0.59] 0.39 [0.37, 0.42]
S 343 127 73.3 292.1 15.3 234.0 0.83 [0.80, 0.86] 0.22 [0.18, 0.26] 0.27 [0.23, 0.31]

ArgoUML
-r3121 70%

all 1239 421 81.6 51.4 56.9 26.6 0.39 [0.36, 0.41] 0.65 [0.63, 0.67] 0.37 [0.35, 0.39]
N 1043 371 77.3 33.3 58.8 14.8 0.34 [0.32, 0.37] 0.68 [0.65, 0.71] 0.35 [0.34, 0.37]
S 196 70 104.9 147.6 46.9 89.7 0.62 [0.55, 0.70] 0.49 [0.43, 0.54] 0.44 [0.38, 0.49]

Overall
(all

subjects)
77%

all 7560 2085 72.2 58.9 52.0 36.5 0.48 [0.47, 0.49] 0.55 [0.54, 0.56] 0.34 [0.33, 0.35]
N 5795 1759 68.5 30.6 58.4 13.4 0.39 [0.38, 0.41] 0.60 [0.58, 0.61] 0.31 [0.30, 0.32]
S 1765 628 85.7 175.2 25.1 128.2 0.78 [0.77, 0.80] 0.38 [0.36, 0.40] 0.41 [0.39, 0.43]

tained changes that shortened the executions of the base program to less than half.
On average for JMeter, the PI/EAS impact set had 81.6 methods, the actual im-
pacts were 51.6, and the false positives and negatives of PI/EAS were 54.5 and
24.4 methods, respectively. The average precision of PI/EAS was 0.42 with 95%
confidence that its real value is not outside the range [0.39, 0.44]. Recall and
accuracy are presented similarly.

The last row presents the overall results for all changes in all subjects, so
that every change has the same weight in those results. Thus, subjects with more
changes (column #Changed Statements) have a greater influence in those results.
Overall, the changed methods covered 77% of the code even though these methods
were only a fraction of all methods in the subjects (see Table 1). This means that
the methods that never executed or for which SENSA was not applicable were
much smaller than the average. In total, the study spanned over 7500 changes.
More than 3 in 4 of them were normal.
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For all changes, on average, the precision of PI/EAS was 0.48, its recall
was 0.55, and its accuracy was only 0.34. The non-parametric statistical anal-
ysis shows with 95% confidence that these values are no farther than 2 percentage
points from the real value. (For individual subjects, which have fewer data points,
the confidence ranges are wider). These numbers indicate that only a bit less than
one in two methods reported by PI/EAS are actually impacted by those changes.
Also, almost one in two methods truly impacted were missed by PI/EAS (low
recall). Although, on average, the PI/EAS impact sets were close in size to the
actual impact sets, the large numbers of false positives and false negatives led to a
low accuracy. Thus, we conclude with high statistical confidence that, at least for
these SENSA changes, the accuracy of PI/EAS is low. Hence, for many practical
scenarios, dynamic impact analysis appears to need considerable improvements.

For a more detailed view of the accuracy of PI/EAS, Figures 4–6 present the
distribution of the precision (prec), recall (rec), and F1 accuracy (acc) of all sub-
jects for changes in all, N, and S categories, respectively. Each box plot shows
the minimum (lower whisker), the 25% quartile (bottom of middle box), the 75%
quartile (top of middle box), and the maximum (upper whisker) of the three met-
rics, respectively. The medians are marked by horizontal lines within the middle
boxes. The vertical axis of each box plot represents the values of the metrics—
precision, recall, and accuracy—for all changes in the corresponding subject.

For Schedule1, the simplest subject, the precision, recall, and accuracy were
the highest of all subjects. This may be explained by the smaller number of
methods that share many global variable accesses in Schedule1, which makes
any change likely to truly impact the methods executed after it, and that control
flows were not changed much thus most truly impacted methods executed after
the change location. The box plots for Schedule1 also show the concentration
on the top of the accuracy values for its 46 changes. NanoXML also had a high
recall, possibly for similar reasons to Schedule1, but its precision was low—less
than half the methods that execute after the change were truly impacted. This low
precision suggests that NanoXML performs a larger number of independent tasks
(so that changes to one task do not affect all other tasks).

For the largest six subjects, the average recall was much lower than what was
observed with the two smallest ones, ranging from 0.42 to 0.65, suggesting that
changes in them have greater effects on their control flow because missed methods
(false negatives) not called after the execution of change locations in base versions
are actually executed in changed versions after those locations. In other words,
there seem to be many methods that execute under specific conditions satisfied
only in changed program versions.
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Figure 4: Distribution of accuracy of PI/EAS for all single-method SENSA changes.

As for precision, Ant and XML-security had a greater value than NanoXML
and closer to Schedule1, suggesting that the degree of propagation of the effects of
changes in those subjects was high, possibly by performing sequences of tasks that
feed into each other. Among the four largest subjects, ArgoUML and BCEL had
the lowest precision, suggesting that their internal tasks are less coupled. How-
ever, PDFBox exhibited a relatively high precision compared with other large
subjects, likely due to the tight couplings among its internal components, which
closely collaborate for its centralized style of PDF-document processing.

When considering the N and S categories separately, we can see that the
changes in N usually have a higher recall than changes in S. This result was
expected, as normal base versions of the subjects execute more methods and,
therefore, have larger predictive impact sets found by PI/EAS. At the same time,
the precision for S was greater than for N , which was also expected because
the shorter executions analyzed by PI/EAS correspond to methods executed soon
after each change. We conjecture that closer methods are more related to the
changed method and, thus, actually impacted.
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Figure 5: Distribution of accuracy of PI/EAS for normal (non-shortening) single-method
SENSA changes.

The recall trend for N and S, however, does not apply to XML-security, where
the recall is lower for N than for S. To understand this phenomenon, we manually
examined the source code and executions of this subject by randomly picking five
change points of type N with a recall below .0001. These changes, by definition
of N , had traces of similar length before and after each change. However, the
traces diverged for the most part after each change, making the actual impacts
very different from the predicted impact sets. In contrast, for the changes of type
S in this subject, the recall was greater, suggesting that in reality these changes
did not affect the control flow of the program too dramatically.

6.3. Part II: Multiple-method Changes
Developers often change more than one method. To estimate the accuracy of

PI/EAS with multiple-method changes, we used the same experimental approach
as for the single-method study, but with each base version having multiple meth-
ods changed, where one statement was changed in each changed method. Given
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Figure 6: Distribution of accuracy of PI/EAS for shortening single-method SENSA changes.

the set C of all applicable change locations in the subject program P , our system
randomly picks g locations from C, as evenly distributed across g different meth-
ods as possible (i.e., g locations were chosen such that each different location is
within a different method, with one change per method). Then, we generate a base
version by applying those changes to the subject. After picking g methods without
replacement, we repeated the process by picking g new methods at a time until no
more methods are left to change. To reduce the potential noise from grouping g
methods randomly, we repeated the entire process three times and averaged the
results. We performed our study for all values of g from 2 to 10.

Table 3: Predictive accuracy of PI/EAS for all multiple-method SENSA changes, for query
(change-set) sizes from 1 to 10.

Subject #Methods
changed P.S. A.S. #FP #FN Precision Recall Accuracy (F1)

mean conf. range mean conf. range mean conf. range

Schedule1

1 16.1 13.4 4.5 1.8 0.73 [0.59, 0.87] 0.90 [0.81, 0.99] 0.72 [0.59, 0.85]
2 16.3 17.0 2.1 2.7 0.87 [0.84, 0.91] 0.85 [0.77, 0.93] 0.83 [0.76, 0.89]
3 15.4 17.6 1.8 4.0 0.88 [0.84, 0.91] 0.78 [0.68, 0.89] 0.79 [0.71, 0.87]
4 15.3 17.9 1.7 4.2 0.88 [0.85, 0.91] 0.77 [0.65, 0.90] 0.79 [0.70, 0.88]
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Table 3: Continued

Subject #Methods
changed P.S. A.S. #FP #FN Precision Recall Accuracy (F1)

mean conf. range mean conf. range mean conf. range
5 14.6 17.9 1.7 5.0 0.87 [0.82, 0.91] 0.73 [0.58, 0.89] 0.75 [0.63, 0.87]
6 13.2 18.1 1.5 6.4 0.85 [0.79, 0.91] 0.66 [0.47, 0.84] 0.69 [0.55, 0.84]
7 13.9 18.2 1.5 5.8 0.88 [0.82, 0.93] 0.69 [0.51, 0.88] 0.73 [0.59, 0.87]
8 13.0 18.3 1.6 6.8 0.84 [0.77, 0.92] 0.63 [0.42, 0.85] 0.68 [0.50, 0.85]
9 11.5 18.3 1.4 8.2 0.82 [0.73, 0.91] 0.56 [0.30, 0.83] 0.61 [0.39, 0.83]

10 11.7 18.4 1.4 8.1 0.86 [0.78, 0.93] 0.57 [0.33, 0.81] 0.64 [0.45, 0.82]

NanoXML

1 74.6 54.2 39.3 18.8 0.46 [0.40, 0.52] 0.73 [0.68, 0.79] 0.40 [0.34, 0.46]
2 119.2 82.6 50.6 14.0 0.60 [0.56, 0.63] 0.86 [0.83, 0.88] 0.62 [0.59, 0.65]
3 134.5 97.1 51.8 14.4 0.65 [0.60, 0.69] 0.89 [0.86, 0.91] 0.68 [0.64, 0.71]
4 141.3 106.6 50.2 15.5 0.68 [0.63, 0.72] 0.89 [0.86, 0.92] 0.71 [0.67, 0.74]
5 145.8 109.1 53.7 17.0 0.67 [0.62, 0.72] 0.89 [0.84, 0.93] 0.69 [0.65, 0.74]
6 146.3 115.5 49.4 18.6 0.69 [0.65, 0.74] 0.88 [0.83, 0.92] 0.71 [0.66, 0.75]
7 148.2 116.0 52.0 19.8 0.68 [0.63, 0.73] 0.88 [0.83, 0.92] 0.70 [0.65, 0.75]
8 142.9 119.7 47.5 24.3 0.71 [0.65, 0.78] 0.84 [0.77, 0.91] 0.69 [0.62, 0.75]
9 140.5 121.6 45.9 27.0 0.71 [0.65, 0.77] 0.82 [0.76, 0.89] 0.68 [0.61, 0.74]

10 141.8 119.3 50.0 27.5 0.70 [0.64, 0.76] 0.83 [0.76, 0.90] 0.67 [0.60, 0.73]

Ant

1 21.8 78.2 9.2 65.7 0.67 [0.62, 0.73] 0.53 [0.48, 0.58] 0.39 [0.35, 0.44]
2 35.7 113.8 17.2 95.3 0.59 [0.55, 0.63] 0.54 [0.49, 0.58] 0.36 [0.32, 0.40]
3 37.9 120.0 18.1 100.2 0.59 [0.54, 0.63] 0.52 [0.48, 0.57] 0.35 [0.31, 0.39]
4 39.6 126.3 18.8 105.6 0.59 [0.55, 0.64] 0.52 [0.48, 0.57] 0.36 [0.32, 0.40]
5 40.3 129.4 18.8 107.8 0.59 [0.55, 0.64] 0.51 [0.46, 0.56] 0.36 [0.31, 0.40]
6 43.4 141.7 19.9 118.2 0.58 [0.54, 0.63] 0.50 [0.45, 0.55] 0.35 [0.30, 0.39]
7 45.3 148.6 20.4 123.7 0.60 [0.55, 0.65] 0.49 [0.43, 0.54] 0.36 [0.31, 0.40]
8 48.8 157.6 22.3 131.1 0.58 [0.53, 0.63] 0.48 [0.43, 0.54] 0.34 [0.30, 0.39]
9 50.4 166.5 22.8 138.8 0.59 [0.54, 0.64] 0.48 [0.42, 0.53] 0.35 [0.30, 0.39]

10 52.1 170.2 23.5 141.7 0.58 [0.53, 0.63] 0.46 [0.41, 0.52] 0.33 [0.29, 0.38]

XML-security

1 149.1 208.1 53.8 112.8 0.70 [0.67, 0.73] 0.42 [0.39, 0.45] 0.40 [0.38, 0.43]
2 164.7 190.4 62.3 88.0 0.64 [0.62, 0.66] 0.49 [0.46, 0.51] 0.44 [0.42, 0.47]
3 183.9 218.5 63.5 98.1 0.67 [0.65, 0.69] 0.52 [0.49, 0.55] 0.48 [0.46, 0.51]
4 206.4 241.5 68.5 103.6 0.68 [0.66, 0.71] 0.55 [0.53, 0.58] 0.52 [0.49, 0.54]
5 220.6 267.6 65.7 112.7 0.71 [0.68, 0.73] 0.56 [0.53, 0.59] 0.54 [0.51, 0.57]
6 230.1 283.3 68.7 121.9 0.72 [0.70, 0.75] 0.57 [0.54, 0.60] 0.55 [0.52, 0.58]
7 241.8 303.9 69.4 131.5 0.74 [0.71, 0.76] 0.57 [0.54, 0.61] 0.56 [0.53, 0.59]
8 251.4 314.5 71.7 134.8 0.74 [0.71, 0.76] 0.59 [0.55, 0.62] 0.57 [0.54, 0.60]
9 265.4 337.1 69.4 141.1 0.76 [0.74, 0.79] 0.60 [0.56, 0.63] 0.59 [0.56, 0.62]

10 270.3 344.3 79.1 153.1 0.74 [0.71, 0.77] 0.58 [0.54, 0.62] 0.57 [0.54, 0.60]

BCEL

1 257.8 88.5 232.3 63.0 0.29 [0.24, 0.34] 0.59 [0.55, 0.63] 0.17 [0.14, 0.20]
2 271.8 156.3 191.5 76.0 0.39 [0.37, 0.42] 0.64 [0.61, 0.66] 0.30 [0.28, 0.32]
3 284.7 163.9 201.9 81.0 0.39 [0.36, 0.41] 0.64 [0.61, 0.66] 0.30 [0.28, 0.32]
4 296.4 182.7 200.7 86.9 0.40 [0.38, 0.43] 0.64 [0.61, 0.66] 0.32 [0.30, 0.34]
5 311.3 178.7 219.7 87.1 0.38 [0.35, 0.40] 0.66 [0.63, 0.68] 0.31 [0.28, 0.33]
6 315.6 190.3 218.8 93.4 0.39 [0.36, 0.42] 0.65 [0.62, 0.67] 0.32 [0.29, 0.34]
7 325.2 205.3 219.5 99.5 0.40 [0.37, 0.43] 0.63 [0.61, 0.66] 0.33 [0.30, 0.35]
8 340.9 218.2 226.2 103.5 0.40 [0.37, 0.43] 0.65 [0.62, 0.68] 0.34 [0.31, 0.36]
9 349.9 229.7 227.4 107.3 0.40 [0.37, 0.43] 0.65 [0.62, 0.68] 0.34 [0.32, 0.37]

10 354.4 237.3 227.6 110.5 0.41 [0.38, 0.44] 0.65 [0.62, 0.68] 0.36 [0.33, 0.38]

JMeter

1 81.6 51.6 54.5 24.4 0.42 [0.39, 0.44] 0.58 [0.56, 0.61] 0.38 [0.36, 0.40]
2 90.0 62.0 57.8 29.8 0.42 [0.39, 0.45] 0.43 [0.41, 0.46] 0.35 [0.33, 0.37]
3 98.9 67.7 62.8 31.7 0.42 [0.39, 0.45] 0.46 [0.43, 0.48] 0.36 [0.33, 0.38]
4 108.3 73.0 68.1 32.9 0.42 [0.39, 0.45] 0.48 [0.46, 0.51] 0.37 [0.35, 0.40]
5 118.0 78.6 73.0 33.7 0.42 [0.39, 0.46] 0.50 [0.48, 0.53] 0.39 [0.36, 0.42]
6 123.5 84.0 76.1 36.6 0.43 [0.40, 0.46] 0.51 [0.48, 0.54] 0.39 [0.37, 0.42]
7 134.9 90.7 81.3 37.1 0.43 [0.40, 0.46] 0.53 [0.50, 0.55] 0.40 [0.38, 0.43]
8 146.6 98.8 87.1 39.3 0.43 [0.39, 0.46] 0.55 [0.52, 0.58] 0.42 [0.39, 0.45]
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Table 3: Continued

Subject #Methods
changed P.S. A.S. #FP #FN Precision Recall Accuracy (F1)

mean conf. range mean conf. range mean conf. range
9 152.5 103.7 89.6 40.9 0.44 [0.40, 0.47] 0.56 [0.53, 0.59] 0.43 [0.40, 0.46]

10 161.7 109.2 94.0 41.5 0.44 [0.40, 0.47] 0.57 [0.54, 0.60] 0.44 [0.41, 0.47]

PDFBox

1 131.7 144.3 75.0 87.6 0.58 [0.54, 0.62] 0.45 [0.40, 0.50] 0.35 [0.32, 0.39]
2 117.7 151.2 64.5 98.1 0.59 [0.57, 0.61] 0.41 [0.38, 0.44] 0.34 [0.32, 0.37]
3 117.9 157.0 63.7 102.8 0.60 [0.57, 0.62] 0.40 [0.37, 0.43] 0.34 [0.32, 0.37]
4 119.9 161.9 63.6 105.7 0.60 [0.58, 0.63] 0.41 [0.37, 0.44] 0.35 [0.32, 0.37]
5 142.6 159.9 81.5 98.8 0.57 [0.55, 0.60] 0.45 [0.42, 0.48] 0.36 [0.33, 0.38]
6 146.1 168.9 81.8 104.6 0.59 [0.56, 0.61] 0.46 [0.43, 0.49] 0.36 [0.34, 0.39]
7 145.8 171.0 81.9 107.1 0.58 [0.56, 0.61] 0.45 [0.42, 0.49] 0.36 [0.33, 0.38]
8 152.7 176.5 84.8 108.5 0.58 [0.55, 0.61] 0.46 [0.43, 0.49] 0.36 [0.33, 0.39]
9 156.9 182.4 87.0 112.5 0.59 [0.56, 0.62] 0.47 [0.43, 0.50] 0.37 [0.34, 0.39]

10 160.7 185.0 89.1 113.3 0.59 [0.56, 0.62] 0.47 [0.44, 0.51] 0.37 [0.34, 0.39]

ArgoUML

1 81.6 51.4 56.9 26.6 0.39 [0.36, 0.41] 0.65 [0.63, 0.67] 0.37 [0.35, 0.39]
2 107.8 78.0 74.0 44.2 0.38 [0.36, 0.41] 0.53 [0.51, 0.55] 0.34 [0.32, 0.36]
3 111.2 80.7 75.8 45.3 0.38 [0.36, 0.41] 0.53 [0.51, 0.55] 0.34 [0.32, 0.36]
4 114.7 82.7 77.9 46.0 0.39 [0.36, 0.41] 0.54 [0.51, 0.56] 0.35 [0.33, 0.37]
5 118.6 85.5 80.9 47.8 0.39 [0.36, 0.41] 0.53 [0.51, 0.56] 0.35 [0.33, 0.37]
6 120.2 86.9 81.3 48.1 0.39 [0.36, 0.41] 0.54 [0.52, 0.56] 0.35 [0.33, 0.37]
7 124.5 89.2 84.4 49.1 0.38 [0.36, 0.41] 0.54 [0.52, 0.57] 0.35 [0.33, 0.37]
8 128.8 93.2 86.9 51.3 0.39 [0.36, 0.42] 0.54 [0.52, 0.56] 0.35 [0.33, 0.37]
9 130.4 95.3 87.4 52.3 0.39 [0.37, 0.42] 0.55 [0.52, 0.57] 0.36 [0.33, 0.38]

10 135.6 98.5 90.7 53.6 0.40 [0.37, 0.42] 0.55 [0.53, 0.57] 0.36 [0.34, 0.38]

Table 4: Predictive accuracy of PI/EAS for all multiple-method SENSA changes in all subjects

Subject #Methods
changed P.S. A.S. #FP #FN Precision Recall Accuracy (F1)

mean conf. range mean conf. range mean conf. range

Overall
(all subjects)

1 72.2 58.9 52.0 36.5 0.48 [0.47, 0.49] 0.55 [0.54, 0.56] 0.34 [0.33, 0.35]
2 147.4 124.7 88.7 66.0 0.49 [0.48, 0.50] 0.53 [0.52, 0.54] 0.37 [0.36, 0.38]
3 155.0 133.0 92.7 70.8 0.49 [0.48, 0.50] 0.53 [0.52, 0.55] 0.37 [0.36, 0.38]
4 161.8 141.8 94.3 74.3 0.50 [0.49, 0.51] 0.54 [0.53, 0.55] 0.38 [0.37, 0.39]
5 172.0 144.6 102.7 75.4 0.49 [0.48, 0.50] 0.55 [0.54, 0.56] 0.38 [0.37, 0.39]
6 174.5 150.8 103.0 79.3 0.49 [0.48, 0.51] 0.55 [0.54, 0.57] 0.38 [0.37, 0.40]
7 179.0 157.0 104.5 82.5 0.49 [0.48, 0.51] 0.55 [0.54, 0.56] 0.39 [0.37, 0.40]
8 186.3 163.7 108.2 85.6 0.49 [0.48, 0.50] 0.56 [0.54, 0.57] 0.39 [0.38, 0.40]
9 190.3 170.0 108.6 88.2 0.50 [0.48, 0.51] 0.56 [0.55, 0.57] 0.39 [0.38, 0.41]

10 192.8 172.8 110.4 90.4 0.50 [0.48, 0.51] 0.56 [0.55, 0.57] 0.39 [0.38, 0.41]

Table 3 shows the results of this study for all changes, in a format similar to
Table 2 except that, for each subject, the results are listed per value of g (#Methods
changed) for all changes instead of three categories. For comprehensibility, we
do not include data per change category (N and S) although we comment on
these later in this section. To facilitate comparisons, we do include the results
for the single-method study (g=1) for all changes. All metrics were calculated
in the same way as for single-method changes, including non-parametric 95%-
confidence intervals for average precision, recall, and F1 accuracy.
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To illustrate, consider the results for BCEL in Table 3. On average for all stud-
ied 10-method changes, for example, PI/EAS produced impact sets with 354.4
methods where 227.6 were false positives and 110.5 false negatives, leading to a
precision of .41, recall of .65, and accuracy of .36.

For all subjects but Schedule1, both the impact sets reported by PI/EAS and
the actual impacts kept growing as the number of changed methods increased.
This correlation was expected because more changes often lead to larger aggre-
gate impacts. For Schedule1, however, PI/EAS reported shrinking impact sets
and decreasing recalls when more methods were changed, which can be explained
by the small size of this subject, that a large fraction of its methods are already
impacted by single changes, and that changes in Schedule1 shortened its execu-
tions while, as g grew, there were not many methods left to add to the aggregate
(multiple-method) impact sets.

The numbers of false positives and false negatives tended to vary proportion-
ally with the impact set sizes. As a result, the precision and recall numbers were
relatively stable for most subjects for change sizes 2 to 10, with only small fluctu-
ations. Interestingly, there was often a noticeable fluctuation between changes of
size 1 and size greater than 1. Other than that, there were two noteworthy excep-
tions to the stability of the results. First, the recall for Schedule1 decreased almost
steadily due to its decreasing execution lengths, and second, precision tended to
increase considerably with the change size for NanoXML and, less dramatically,
for XML-security and BCEL. Also, for each change size, the F1 accuracy was
generally stable with tight confidence intervals.

In absolute terms, PI/EAS had the smallest precisions, below .5, for three of
the four largest subjects: BCEL, JMeter, and ArgoUML. These low precisions
suggest that these larger subjects execute many methods that are not necessarily
related to (impacted by) each other, even when up to 10 methods are changed.
Thus, these subjects seem to exercise different functionality at the same time that
do not directly relate to each other, unlike PDFBox which appears to operate as a
batch process where each step feeds into the next.

The observed comparisons and correlations suggest some subtle effects of the
characteristics of programs on the accuracy of PI/EAS for those programs. Ex-
ample such characteristics include the coupling among internal components and
the sensitivity of test executions to random changes.

Overall, for multiple-method changes, PI/EAS still suffered from poor pre-
dictive accuracy, as it did for single-method ones. This technique often reported
impact sets where half of its elements were false positives and missed about half
of the actual impacts. Interestingly, although the sizes of impact sets given by
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PI/EAS and those of the true impacts consistently grew as expected with the
number of changed methods, the three accuracy metrics were quite stable with
increasingly narrow confidence intervals. These results suggest that PI/EAS falls
short for predicting the actual impacts of changes of different sizes.

6.4. Implications of the Results
The goal of this study was to assess, for as many change locations as pos-

sible, the predictive accuracy of the most cost-effective dynamic impact analy-
sis technique in the literature. The quality of impact analysis is critical to tasks
such as regression testing and maintenance. Despite a few differences between
single-method and multiple-method changes, the results show that the predictive
accuracy of PI/EAS can be surprisingly low. Although we cannot generalize the
levels of inaccuracy observed with SENSA (random) changes, these numbers cast
serious doubts on the effectiveness and practicality of PI/EAS when considering
the possibility of changing almost any part of a program.

From these results, we first conclude that, at least for these subjects and these
types of changes, the precision of PI/EAS can indeed suffer. A likely reason
seems to be that this technique is quite conservative. It assumes that all methods
executed during or after the execution of changed methods are infected [50, 51]
by the change (i.e., carry on an affecting modification in the program state). In
practice, however, methods can execute for different purposes and their order of
execution does not always imply dependence.

Moreover, while PI/EAS appears at a first glance to be safe relative for the ex-
ecutions analyzed [9], our studies revealed that, for predictive purposes, PI/EAS
also suffers from low recall. This drawback of dynamic impact analysis, which is
orthogonal to the problem of not having a sufficient variety of executions, has not
been emphasized in the past. Further, since the recall is measured with respect to
the inputs utilized by PI/EAS in our study, adding more tests would not change
the recall for those inputs, which come with the subjects we used in this work. On
the other hand, the recall problem is particularly important for cases in which the
unchanged program has relatively short executions, such as when there is a crash-
ing bug that needs to be fixed. Therefore, developers who consider using PI/EAS
may first want to determine whether a change would lengthen the execution of the
program under analysis with respect to the inputs utilized.

6.5. Threats to Validity
The main internal threat to the validity of our conclusions is the possibil-

ity of implementation errors in our infrastructure, especially in the new mod-
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ules PI/EAS and MDEA. However, both are built on top of our analysis and in-
strumentation framework DUA-FORENSICS, which has been in development for
many years [46, 47] and has matured considerably, and SENSA, which has been
in development for two years already [21, 22]. DUA-FORENSICS and SENSA
have been carefully tested over time.

A second internal threat is the possibility for procedural errors in our use of the
infrastructure, including our scripts for running experiments and analyzing data.
To reduce this risk, we tested, inspected, debugged, and manually checked results
from all phases of our process.

A third internal threat is the determinization process for Ant, BCEL, JMeter,
and ArgoUML. It is possible that errors were introduced in these subjects. There-
fore, we inspected and validated the determinized subjects by checking that their
execution behavior and semantics of the programs were not affected—at least for
the test suites we used. We compared the outcomes of all test cases for the deter-
minized and original versions of these subjects, which are not supposed to depend
on their non-determinism, and found no differences. To confirm that we did not
miss other sources of non-determinism, we run the determinized programs multi-
ple times and used MDEA to look for differences among them. We found no such
differences. Many programs are almost impossible to determinize, but this is a
limitation of the approach and not of our studies here. This limitation, however,
could affect the application of our approach to other subjects in the future.

The main external threat to our studies is the representativeness of the changes
that we used (fixes to random SENSA modifications). Yet, these changes directly
implement the concept of right-hand-side function replacements to show semantic
dependencies [25], which is ultimately what dynamic impact analysis looks for.
Moreover, we studied a very large number of those changes distributed evenly
across every subject.

Another external threat is the representativeness of our selection of subjects
and test suites with respect to software in general. To limit this threat, we chose
subjects of different sizes, coding styles, and functionality to maximize variety
in our studies within our available resources. Most of our subjects are nontrivial,
widely used, professionally developed, and have dozens if not hundreds of test
cases covering most of their functionalities.

The main construct threat to the validity of our studies lies in the design of our
approach and the ability of random modifications and their fixes to produce similar
effects to other changes that can be made to software. While actual changes made
by developers might be found in source-code repositories, our design ensured that
all parts of the program were studied. (In a typical repository, only a fraction
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of the system changes, even for long periods of time.) More importantly, the
primary goal of this study was to find whether inaccuracy exists in dynamic impact
analysis. Also, we made sure that the modifications had a real effect, even if just
local, on the program at runtime. The changes studied represent at least a subset
of all changes that developers can make.

Also, as discussed in Section 5.1.2, our changes were limited to the value
types that SENSA currently can change, which are primitive types and strings.
Nevertheless, almost all other values in a program can be directly affected by
the values modifiable by SENSA. In addition, despite this limitation, the SENSA-
based changes were evenly spread, covered a large portion of each subject, and
allowed our study to include most non-trivial methods. Thus, we studied most
parts on which a developer might run predictive impact analysis.

Another construct threat is the possibility of errors in the MDEA implementa-
tion we used to find the actual impacts of changes (the ground truth). To minimize
this threat, we have tested and debugged this tool over four years [18] and we
used subjects for which all or most test cases do not run for such a long time that
the data produced cannot be analyzed by MDEA. We also applied MDEA to a
subject with the same test suite used for dynamic impact analysis so that the same
operational profile was considered.

Finally, a conclusion threat is the appropriateness of our statistical analysis and
our data points. To minimize this threat, for the two parts of this study, we used
a non-parametric analysis [49] that computes confidence ranges without making
any assumptions about the normality of the data distribution. This is the safest
way to statistically analyze any data set. In addition, we studied the precision
and recall metrics as well as the F1 accuracy metric. We included the quartile
distributions of all the data points for the single-method changes study. Also,
for diversity of the data, we distributed the change points across each subject as
evenly as SENSA permitted.

7. Study with Repository Changes

The study using SENSA changes enabled us to exhaustively estimate the pre-
dictive accuracy of dynamic impact analysis, as it considers all methods that can
possibly be changed, with random changes applied to many locations in each
method. Yet, such random changes might not necessarily represent those that de-
velopers make in practice. Thus, to complement that study for a truly comprehen-
sive evaluation, it is necessary to investigate the accuracy with repository changes
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as well, even though they are not available in the same numbers and coverage of
the subjects as the SENSA changes.

This section presents our study with changes from software repositories. We
focus on open-source repositories to measure the practical accuracy of PI/EAS
with actual changes made by developers when developing and maintaining their
software. We also use the SIR repository [23] to further assess the accuracy of
PI/EAS with changes made by other researchers.

7.1. Experimental Setup
For our repository-change study, we chose the repositories for three Apache

projects. We also picked four subjects from SIR. For the Apache projects, we
checked out a contiguous series of subversion (SVN) revisions for each of the
three projects. We started with the versions corresponding to the stable releases
used for our study in Section 6 (Table 1). For the SIR-change study, we obtained
seven single-method changes per subject directly from the seeded faults in the SIR
repository. Similar to the SENSA-changes study, the SIR changes studied in this
section correspond to the fixes of the faults inserted in those subjects.

To produce the method-level execution traces required by PI/EAS, for the
SVN-change study, we adopted the test suite provided with the first version of the
series we chose for each project and used that same test suite for all revisions of
that project. For the SIR-change study, we used the test suite provided by SIR.
We applied the same determinization process as in Section 6 to all revisions of
Ant and JMeter to ensure that MDEA identifies actual impacts caused by only the
changes committed to the repositories.

To obtain sufficient data points for our SVN study, for each project, we begun
with a set of 30 consecutive revisions and kept adding more sets of consecutive
revisions until we found at least a total of 30 revisions that contained source-code
changes, excluding comments and declarations, that were covered by the test suite
(and, thus, analyzable). For each pair of consecutive analyzable revisions, we
treated the set of all methods changed between them as the location set to which
we applied PI/EAS and the change for which we computed predictive accuracy
using MDEA.

Table 5 gives the statistics of the three Apache projects used in our SVN-
change study, including the revision range (Revision range), the number of re-
visions examined (#Revisions examined), the number of revisions covered by the
test suite for the respective project (#Revisions analyzed), and the number of meth-
ods changed per covered revision (#Methods changed). For each pair of revisions,
we considered methods that are deleted or modified as changed methods. We
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omitted added methods as they do not exist in the base (unchanged) revision and,
thus, cannot be queried by PI/EAS.

We implemented a tool for downloading SVN revisions and finding changed
methods between those by comparing the abstract syntax trees generated from
source code using the srcML [52] library. In our experiment, we obtained the
differences for all revisions but we studied only those revisions with differences
in executable source code (not comments or declarations) covered by at least one
test case of the corresponding test suite. Then, for these analyzable revisions, we
computed the same accuracy measures of the impact sets as in the SENSA-change
study. For this SVN-change study, we do not report results for shortening changes
because no change reduced any execution trace by a significant amount.

Table 5: Statistics of the subjects for the SVN-change study

Subject Revision range #Revisions
examined

#Revisions
analyzed

#Methods changed
mean stdev

Ant 269450–269758 90 45 9.8 13.0
XML-security 350550–350859 60 32 25.8 87.1
PDFBox 924515–1038227 180 39 7.4 18.5

Total 330 116 13.4 47.6

7.2. Part I: SVN Changes

Table 6: Predictive accuracy of PI/EAS using SVN changes.

Subject Pairs of
Revisions

C.M. P.S. A.S. #FP #FN Precision Recall Accuracy (F1)
mean conf. range mean conf. range mean conf. range

Ant 44 429 432.3 224.3 323.0 115.1 0.24 [0.12, 0.35] 0.56 [0.41, 0.71] 0.22 [0.13, 0.31]
XML-security 31 799 293.5 394.5 101.1 202.1 0.60 [0.43, 0.76] 0.57 [0.44, 0.70] 0.48 [0.36, 0.60]
PDFBox 38 282 265.3 245.8 159.5 140.1 0.38 [0.28, 0.48] 0.38 [0.28, 0.49] 0.35 [0.26, 0.44]

Overall
(all subjects) 113 1510 338.0 278.2 207.1 147.4 0.38 [0.30, 0.46] 0.50 [0.42, 0.58] 0.34 [0.27, 0.40]

In this study, for each pair of consecutive revisions per subject, we followed
the experimental approach described in Section 5.2. We designated the older of
the two revisions as the base version (Pbase) and the newer one the changed ver-
sion (Pchanged). As already mentioned, we treated the set of all methods that were
modified or deleted in the base version to obtain the changed version as the change
locations for applying dynamic impact analysis (PI/EAS) and MDEA.

As Table 5 shows, we considered a total of more than 300 commits of source-
code changes made by developers to three open-source projects which are still in
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active development. Among those commits, we report the impact-analysis results
of the changed methods for all analyzable revisions (i.e., revisions whose changes
are executed by the respective test suite), for a total of over 100 revisions. In other
words, about two thirds of all revisions that we examined only have changes in
declarations, comments, or untested methods.

For each project, a few analyzable revisions had exactly one method changed
with respect to their preceding analyzable revisions. Most revisions, however,
contained multiple-method changes, with a few of them having several hundred of
methods changed. Table 5 shows that, for all 116 analyzable revisions, on average,
more than 13 methods changed. The large standard deviation of 47.6 suggests that
the developers of these projects tended to vary considerably the scope, in methods,
of the changes they made.

Table 6 lists the results of this study, where the second column (Pairs of Revi-
sions) is the number of data points that contributed to the statistics in the columns
to the right on that table for each subject. As mentioned earlier, each of these pairs
consists of two consecutive analyzable revisions. The third column (C.M.) indi-
cates the set of all methods changed between the first and last analyzable revisions,
which may or may not include methods changed in non-analyzable revisions com-
mitted in between. The remaining columns show the average accuracy statistics
(precision, recall, and F1) and non-parametric 95%-confidence intervals.

Overall, the predictive accuracy for PI/EAS on SVN changes was quite low.
Precision was even lower than recall. The results in the last row for all changes
in the three subjects show that PI/EAS predicted, on average, more impacts than
the actual impacts caused by these changes but the majority of those impacts were
false positives. An exception was the set of changes in XML-security, for which
PI/EAS predicted fewer impacts than the actual impacts observed and had the
highest average precision among the three subjects. Nevertheless, PI/EAS for
this subject missed 43% of the actual impacts.

Individually, PI/EAS had the lowest precision for the smallest subject, Ant,
and a recall for this subject as low as that for XML-security. This very-low preci-
sion caused the F1 accuracy to also be the lowest of the three subjects. PI/EAS for
the largest subject in this study, PDFBox, had a more balanced average precision
and recall. However, both measures were still quite low and recall in particular
was much lower than that for the other two subjects. In all, PI/EAS only pre-
dicted about half of the actual impacts while reporting impact sets with more than
60% false positives. The confidence intervals in this study were wider than for the
SENSA-change study because fewer data points were available. Another possible
factor is the large variation in size of these SVN changes.
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Figure 7: Distribution of accuracy of PI/EAS for all SVN changes.

To offer a more detailed view of the accuracy results for all revision pairs Fig-
ure 7 uses boxplots to indicate how the precision (prec), recall (rec) and accuracy
(acc) distributed over all data points. The quartiles in these distributions confirm
the overall tendencies shown in Table 6, where the predictive accuracy of PI/EAS
was low for the three subjects studied. For instance, 75% of the revision pairs of
Ant had a precision lower than 50 but more than half of all pairs had more than
50% recall, although the accuracy was still below 25% for most data points. The
plots also show that, for PDFBox, its low average accuracy is explained by the
majority of data points being below 50% for all three metrics, whereas, for XML-
security, the middle 50% of the data points with respect to precision and recall
explain the averages observed for that subject.

An important observation is that the recall of PI/EAS for SVN changes, sim-
ilar to SENSA changes, was quite low even though the SVN changes did not
shorten any execution. For PDFBox, in particular, PI/EAS had an even lower av-
erage recall for SVN changes than for SENSA changes (both single- and multiple-
method ones). This observation confirms that the poor safety of PI/EAS found
for random changes is not accidental and that it might not be attributed simply to
the effects of changes on the length of executions.

Finally, for every subject of this study, PI/EAS exhibited an even worse av-
erage precision than for both types of SENSA changes, with the largest such gap
observed for Ant. In all, we can conclude based on both studies that PI/EAS can
suffer from very-low predictive accuracy.

7.3. Part II: SIR Changes
To complement and help compare our SENSA-change and SVN-change study

results, we performed an additional study with changes corresponding to the fixes
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Table 7: Predictive accuracy of PI/EAS using SIR changes.

Subject #Chgs C.M. P.S. A.S. #FP #FN Precision Recall Accuracy (F1)
mean conf. range mean conf. range mean conf. range

Schedule1 7 4 18.0 10.1 7.9 0.0 0.56 [0.38, 0.74] 1.00 [1.00, 1.00] 0.71 [0.57, 0.85]
NanoXML-v1 7 7 96.7 30.1 66.9 0.3 0.39 [0.01, 0.80] 0.99 [0.98, 1.00] 0.48 [0.09, 0.88]
XML-security-v1 7 6 189.7 159.4 119.3 89.0 0.53 [0.13, 0.92] 0.64 [0.24, 1.00] 0.40 [0.18, 0.61]
JMeter-v2 7 7 37.1 17.4 22.6 2.9 0.40 [0.05, 0.75] 0.84 [0.52, 1.00] 0.43 [0.12, 0.74]

Overall
(all subjects) 28 24 85.4 54.3 54.1 23.0 0.47 [0.30, 0.64] 0.87 [0.72, 1.00] 0.51 [0.36, 0.66]

of faults introduced by other researchers for their own studies and shared at the
SIR repository [23]. For this study, we chose from SIR four subjects listed in Ta-
ble 1: Schedule1, NanoXML, XML-security, and JMeter. Our choice was guided
by the availability of faults (real or artificial) and the availability of test cases
covering those faults and, thus, covering the changes that fix them.

For the three largest subjects—NanoXML, XML-security, and JMeter—the
maximum number of SIR changes usable for our approach was exactly seven.
For Schedule1, more changes are available but we chose the first seven to prevent
this subject from having a disproportionate weight in the overall results. Thus,
for each subject, we used seven changes and run PI/EAS on the faulty versions
to predict the impact set of the corresponding fault fixes. Each of these changes
(fixes) usually involved one or a few more statements, all of them located in one
method. Thus, all these changes are single-method changes. For all 28 changes,
we computed predictive accuracy of PI/EAS using its predicted impact sets and
the actual impacts found by MDEA after applying the changes.

Table 7, similar to Table 2 in format, shows the results of this study. The
second column (#Chgs) indicates the number of changes we studied. We did not
classify the SIR changes into the N and S categories because neither of those cat-
egories alone had enough data points to produce meaningful confidence intervals.
The PI/EAS and actual impact set sizes were similar to those in Table 2 for all
subjects except for JMeter, suggesting that the SIR changes for JMeter were less
similar to the SENSA ones for this subject than for the other subjects, although
the size ratio of predicted to actual impacts did not differ much.

For Schedule1, NanoXML, and JMeter, the average precision of PI/EAS was
even lower for SIR changes than for single-method SENSA changes—by 2 to 17
percentage points. These numbers are actually closer to the category N (non-
shortening) of SENSA changes than to the other category, suggesting that, for
most SIR changes, the faulty subject runs for long enough for PI/EAS to identify
as impacted a considerable number of unaffected methods. Interestingly, the con-
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fidence ranges of precision resemble the average precisions for categories N and
S in the SENSA study.

Recall, in contrast, was much higher for SIR changes on average per subject
than the recalls for all single-method SENSA changes. Similar to the case of
precision, though, the PI/EAS recalls for SIR changes were closer to those for the
category N of single-method SENSA changes. However, the differences between
recall and precision are still considerable, which suggests that, if not caused by
the smaller number of data points, the recall of PI/EAS might not be as bad as for
other types of changes (SENSA and SVN). Nevertheless, the recall for these SIR
changes is still far from perfect. The overall 13% of false negatives might contain
important impacts missed by PI/EAS and thus, possibly missed by users. This
increase in recall, however, is unable to make up for the lower precision, as the F1
accuracy per subject is almost the same as for single-method SENSA changes.

7.4. Discussion of All Results
As we saw in Section 6, applying PI/EAS can be risky by missing many

impacts in addition to falsely reporting many unaffected methods as impacted.
Because those results were obtained for SENSA changes, which were randomly
generated for each method and, for multiple-method SENSA changes, randomly
grouped, we expected that those results would only indicate weaknesses of PI/EAS
in general but not necessarily quantify those weaknesses as researchers and devel-
opers would normally experience them.

Unfortunately, our study on SIR changes, intended to represent fault fixes as
one important type of change, show that PI/EAS can be even less precise for such
changes (or at least those we studied). Although the F1 accuracy was higher for
the SIR changes than for the SENSA changes due to a higher recall, a 51% average
accuracy is probably still far from acceptable.

More importantly, the study on SVN changes made by developers in practice,
even though they did not cover the entire subjects as the SENSA changes did,
reveals that PI/EAS can perform even worse than estimated randomly via SENSA
in terms of both precision and F1 accuracy for almost all subjects considered in
both studies. Similarly, when taking all changes together for each study, recall for
SVN changes was also lower than for artificial changes.

The 34% overall accuracy for SVN changes was noticeably lower than for
all other types of changes studied in this work, indicating that, for usage scenar-
ios that resemble the revision ranges we considered in these SVN repositories,
PI/EAS (and similar dynamic impact analyses) has an even more disappointing
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performance. These results also suggest strongly the need for developing and
studying improved dynamic impact analyses that are more precise and safer.

A few interesting observations can be made in light of all these results. For in-
stance, the single-method SENSA changes, based on random modifications, did
not reflect well the SIR changes, although the latter were also single-method
changes. There were large differences between the recalls of PI/EAS between
the two types of changes. The SIR changes seem to represent fault-fixing scenar-
ios where faults do not cause program executions to crash the program quickly, as
about 20% of the SENSA changes did.

Another observation is that the studied SIR changes were not better at approx-
imating “real” (SVN) changes than the SENSA changes for assessing the accuracy
of PI/EAS. The average predictive accuracy of PI/EAS for SIR changes was, in
fact, less similar to SVN changes than the accuracy for SENSA changes.

Finally, for XML-security, the subject for which we studied all three types
of changes, the SIR changes were no different from the single-method SENSA
changes in approximating the accuracy that “practical” (SVN) changes had. Multiple-
method SENSA changes, however, had a much better accuracy than all other
change types for this subject.

7.5. Threats to Validity
The validity of our study on repository changes is affected by the same internal

and conclusion threats as the SENSA-change studies because we used the same
tools, experimentation and data-processing scripts, approach to removing non-
determinism, and statistical analysis. We also minimized these threats in the same
ways. In addition, for the source-code differencing tool that identifies the changed
methods between revisions, we manually checked the correctness of its outputs for
sample revisions of each of the three studied repositories and carefully inspected
the soundness of the results.

An external threat concerns the number and variety of subjects and changes
(revisions) used for the repository-change studies. To address this limitation, for
the SVN-change study, we chose evolving open-source projects of various sizes
and functionality and examined a considerable number of revisions to identify
over 100 analyzable changes. Also, the studied revision ranges have a fairly di-
verse set of changes in terms of change type and size. For the SIR-change study,
we selected projects using similar guidelines to our other studies and we used as
many fault fixes (seven per subject) as we could obtain from the SIR repository for
the largest subjects. Those faults have been used in many studies and researchers
often consider them as representative for testing and debugging studies.
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Another external is our choice of test suite for SVN changes. We used the test
suite provided with the first examined revision for all revisions studied. However,
we saw no changes in those test suites for the range of revisions examined.

8. Related Work

Since PATHIMPACT was introduced by Law and Rothermel [4], dynamic im-
pact analyses have been refined and studied but only for their relative precision in
terms of the sizes of their impact sets and their relative efficiencies [7, 9, 53, 10,
11]. In previous work [54], we presented a preliminary study of the predictive ac-
curacy of PI/EAS, but only for single-method SENSA changes. Our current work
extends that study and increases its representativity by using, in addition, changes
from source-code repositories, multiple-method SENSA changes, and more sub-
jects. The results of our extended work provide developers and researchers a
broader and deeper view of the effectiveness of the most cost-effective dynamic
impact analysis in the literature.

Shortly after PATHIMPACT, which is based on compressed traces, another dy-
namic impact analysis called COVERAGEIMPACT was introduced by Orso and
colleagues [5], which uses cheap information in the form of runtime coverage to
obtain impact sets. The authors of both techniques later compared empirically the
precision and efficiency of PATHIMPACT and COVERAGEIMPACT [7] and con-
cluded that COVERAGEIMPACT is considerably less precise than PATHIMPACT,
although it is cheaper.

Later, Apiwattanapong and colleagues developed the concept of execute-after
sequences (EAS) to perform PATHIMPACT more efficiently without any loss of
precision. Their approach requires only an execution-length-independent amount
of runtime data that is almost as cheap to obtain as the data for COVERAGEIM-
PACT [9]. However, before our work, the precision of the resulting technique,
which we call PI/EAS, was evaluated only in terms of its impact-set sizes against
COVERAGEIMPACT. In this paper, in contrast, we evaluated the effectiveness of
PI/EAS for a concrete, typical application: predicting actual impacts of changes.

To improve the precision of PATHIMPACT, Breech and colleagues conceived
INFLUENCEDYNAMIC [10] which adds influence mechanisms to PATHIMPACT.
However, the evaluation of INFLUENCEDYNAMIC showed very small improve-
ments over PATHIMPACT while no clear variant of EAS exists for INFLUENCE-
DYNAMIC to reduce the cost of tracing (dependent on execution length) that IN-
FLUENCEDYNAMIC incurs. That evaluation also focused only on the relative sizes
of the impact sets rather than their accuracy.
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Hattori and colleagues formally discussed the accuracy of impact analysis [55].
However, instead of dynamic impact analyses, they examined the accuracy of a
class-level static impact analysis tool introduced in that same work, based on call-
graph reachability with different depth values. Previously, at the statement level,
we recentlystudied the accuracy bounds of dynamic forward slicing [37], which
can be used for fine-grained (statement-level) dynamic impact analysis. In con-
trast, in our present work, we comprehensively study dynamic impact analysis and
we do it at the method level, which can be more practical than static approaches
and less expensive than statement-level analysis.

Sensitivity analysis [39] has been used for many software engineering tasks [56],
such as those that connect components with requirements [40, 41]. Recently,
we used sensitivity analysis and execution differencing to develop SENSA, a
statement-level dynamic impact analysis technique [22] that finds and also quanti-
fies impacts on statements using massive numbers of random changes. In our new
work, we leveraged SENSA as an efficient tool to inject changes and analyze their
effects across entire Java subjects to assess the precision and recall of PI/EAS as
a representative method-level dynamic impact analysis.

Mutation analysis is a particular form of sensitivity analysis [42, 51] that has
been extensively applied for software testing [57, 43, 58]. Indirectly, we bene-
fited from mutation analysis because some of the faults in the SIR repository are
the results of mutations. Moreover, SENSA can be seen as a tool that performs
mutation, although for different purposes. However, the sensitivity analysis we
used, specifically in the SENSA-change studies, is different from mutation anal-
ysis because SENSA is intended to simulate changes made to software, whereas
mutations are intended to represent typical mistakes made by programmers.

Program differencing is the starting point for descriptive impact analysis, which
we used to identify actual impacts. Many techniques have been proposed for dif-
ferencing programs. Some use syntactic information [59, 60, 61, 62] and others
perform semantic differencing [63, 16, 64], including execution differencing for
dynamic analysis [65, 17, 18, 66]. In this work, we used execution differencing
at method level in conjunction with an SVN library and the srcML tool [52] to
automatically download source code and find changes and their effects.

Our MDEA technique and other execution-differencing approaches such as
DEA [18] and Sieve [17] are descriptive impact analyses, which describe change-
effects observed at runtime before and after those changes are applied. In contrast,
we evaluated the most cost-effective predictive dynamic impact analysis known.
This analysis can answer impact queries much earlier than descriptive ones, when
only potential change locations (i.e., methods) have been identified.
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Other related dynamic impact analyses exist, such as CHIANTI [8], which is
also descriptive. CHIANTI compares two program versions and their dynamic
call graphs to obtain the set of changes between versions and to map them to
affected test cases and then affecting changes for each affected test. Our studies,
in contrast, focus on predicted impacts on code. Another technique [67] uses
dynamic impacts although as part of an iterative process that weighs statements to
improve dynamic backward slicing for debugging. In all, before our work, there
were no other accuracy studies of predictive dynamic impact analyses.

9. Conclusion and Future Work

In this paper, we presented a systematic approach for evaluating dynamic
change-impact analyses which we applied to most representative and cost-effective
technique in the literature. Using this approach, we performed the first study of
the predictive accuracy of dynamic impact analysis. We estimated the accuracy,
via precision and recall metrics, of PI/EAS for predicting the actual effects of
thousands of injected changes in Java software using our sensitivity-analysis tech-
nique, 28 changes (fault fixes) made by other researchers, and more than a hundred
changes from SVN repositories of open-source Java software systems. The results
of our studies indicate that PI/EAS can suffer from low precision or low recall,
or both and, thus, very low accuracy.

The accuracy levels observed for this dynamic impact analysis are probably
much lower than expected, and probably too low for many tasks. Therefore, the
knowledge gained in this work constitutes a note of caution to the community
on the usefulness of dynamic impact analysis. At the same time, the results can
also inform the understanding and use of dynamic impact sets. As our study did
not show any strong or consistent correlation between the accuracy and the size,
functionality or complexity of programs, for a variety of changes (e.g., simulated
and repository ones), developers who want to use the current analyses should be
aware of their low accuracy in general. However, developers may expect relatively
higher accuracy for programs with tighter internal coupling while possibly better
avoiding using the analyses for programs whose executions are greatly shortened
by potential changes (or lengthened if the changes will be bug fixes).

The results also show the need for improvements or brand new techniques that
provide developers with effective ways to take full advantage of the benefits of
dynamic analysis for change-impact prediction, especially its ability to represent
the behavior of software in practice and as a way to avoid the overly-conservative
results of static analyses. While the low recall was mostly resulted from largely
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altered control flows by potential changes, the low precision is very likely to be
the result of insufficient use of program dependence information. Design of more
accurate analyses, therefore, may explore from these perspectives accordingly.

Next, we will expand our experimental infrastructure to support the evaluation
of other predictive impact analyses [68, 35, 69, 70, 71], including the automa-
tion of the determinization process to support execution differencing [72, 65, 66]
and to enable our system to work efficiently with programs with long executions.
The study will also be further expanded to include other interesting examinations,
such as exploring the correlation between the predictive accuracy of dynamic im-
pact analysis and certain metrics of the program under analysis (e.g., complexity
measure), and evaluating the accuracy with even larger variety of changes (e.g.,
multiple changes in one method or multiple methods).

Driven by this accuracy study, we recently developed a new dynamic impact
analysis that overcomes the precision problem by replacing execution-order rela-
tionships with method-level dependencies (data and control) computed via a one-
time static analysis [73]. We are continuing along that line of research to study
the effects of other forms of dynamic information (e.g., statement coverage) on
the cost-effectiveness of dependence-based dynamic impact analysis. The exper-
imental framework presented in this paper will be used to evaluate both the new
technique and those effects.

Acknowledgment

This work was partially supported by ONR Award N000141410037 to the
University of Notre Dame.

References

[1] S. A. Bohner, R. S. Arnold, An introduction to software change impact anal-
ysis, In Software Change Impact Analysis, Bohner & Arnold, Eds. IEEE
Computer Society Press, pp. 1–26, 1996.

[2] V. Rajlich, Software Engineering: The Current Practice, Chapman and Hal-
l/CRC, 2011.

[3] B. Li, X. Sun, H. Leung, S. Zhang, A survey of code-based change impact
analysis techniques, Software Testing, Verification and Reliability 23 (2013)
613–646.

43



[4] J. Law, G. Rothermel, Whole program Path-Based dynamic impact analy-
sis, in: Proc. of IEEE/ACM Int’l Conf. on Software Engineering, 308–318,
2003.

[5] A. Orso, T. Apiwattanapong, M. J. Harrold, Leveraging Field Data for Im-
pact Analysis and Regression Testing, in: Proc. of joint European Software
Engineering Conference and ACM Int’l Symp. on the Foundations of Soft-
ware Engineering, 128–137, 2003.

[6] J. Law, G. Rothermel, Incremental Dynamic Impact Analysis for Evolving
Software Systems, in: Proceedings of the 14th International Symposium on
Software Reliability Engineering, 430–441, 2003.

[7] A. Orso, T. Apiwattanapong, J. B. Law, G. Rothermel, M. J. Harrold, An
Empirical Comparison of Dynamic Impact Analysis Algorithms, in: Proc.
of Int’l Conf. on Softw. Eng., 491–500, ????

[8] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, Chianti: a tool for change
impact analysis of java programs, in: Proc. of ACM Conf. on Obj. Oriented
Prog. Syst., Lang., and Appl., 432–448, 2004.

[9] T. Apiwattanapong, A. Orso, M. J. Harrold, Efficient and Precise Dynamic
Impact Analysis Using Execute-After Sequences, in: Proc. of Int’l Conf. on
Softw. Eng., 432–441, 2005.

[10] B. Breech, M. Tegtmeyer, L. Pollock, Integrating Influence Mechanisms into
Impact Analysis for Increased Precision, in: Proc. of IEEE Int’l Conf. on
Software Maintenance, 55–65, 2006.

[11] B. Breech, M. Tegtmeyer, L. Pollock, A Comparison of Online and Dynamic
Impact Analysis Algorithms, in: Proc. of European Conf. on Software Main-
tenance and Reingenering, 143–152, 2005.

[12] B. Korel, J. Laski, Dynamic program slicing, Inf. Process. Lett. 29 (3) (1988)
155–163.

[13] H. Agrawal, J. R. Horgan, Dynamic program slicing, in: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 246–256, 1990.

44



[14] X. Zhang, R. Gupta, Y. Zhang, Precise Dynamic Slicing Algorithms, in:
Proc. of International Conference on Software Engineering, 319–329, 2003.

[15] W. Masri, N. Nahas, A. Podgurski, Memoized forward computation of dy-
namic slices, in: Software Reliability Engineering, 2006. ISSRE’06. 17th
International Symposium on, IEEE, 23–32, 2006.

[16] T. Apiwattanapong, A. Orso, M. J. Harrold, JDiff: A differencing tech-
nique and tool for object-oriented programs, Automated Software Engineer-
ing 14 (1) (2007) 3–36.

[17] M. K. Ramanathan, A. Grama, S. Jagannathan, Sieve: A Tool for Automati-
cally Detecting Variations Across Program Versions, in: Proc. of IEEE/ACM
Int’l Conf. on Automated Software Engineering, 241–252, 2006.

[18] R. Santelices, M. J. Harrold, A. Orso, Precisely Detecting Runtime Change
Interactions for Evolving Software, in: Proc. of Int’l Conf. on Softw. Testing,
Verif. and Valid., 429–438, 2010.

[19] M. Stoerzer, B. G. Ryder, X. Ren, F. Tip, Finding failure-inducing changes in
java programs using change classification, in: Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software engineering,
57–68, 2006.

[20] X. Ren, O. C. Chesley, B. G. Ryder, Identifying failure causes in java pro-
grams: An application of change impact analysis, Software Engineering,
IEEE Transactions on 32 (9) (2006) 718–732.

[21] R. Santelices, Y. Zhang, S. Jiang, H. Cai, Y. jie Zhang, Quantitative Program
Slicing: Separating Statements by Relevance, in: Proc. of IEEE/ACM Int’l
Conf. on Software Engineering – New Ideas and Emerging Results track,
1269–1272, 2013.

[22] H. Cai, S. Jiang, R. Santelices, Y. jie Zhang, Y. Zhang, SENSA: Sensi-
tivity Analysis for Quantitative Change-impact Prediction, in: Proceedings
of IEEE Working Conference on Source Code Analysis and Manipulation,
165–174, 2014.

[23] H. Do, S. Elbaum, G. Rothermel, Supporting Controlled Experimentation
with Testing Techniques: An Infrastructure and its Potential Impact, Emp.
Softw. Eng. 10 (4) (2005) 405–435.

45



[24] W. N. Sumner, X. Zhang, Comparative Causality: Explaining the Differ-
ences Between Executions, in: Proc. of IEEE/ACM Int’l Conf. on Software
Engineering, 272–281, 2013.

[25] A. Podgurski, L. Clarke, A Formal Model of Program Dependences and
its Implications for Software Testing, Debugging, and Maintenance, IEEE
Transactions on Softw. Eng. 16 (9) (1990) 965–979.

[26] V. Rajlich, Changing the paradigm of software engineering, Communica-
tions of the ACM 49 (8) (2006) 67–70.

[27] V. Rajlich, P. Gosavi, Incremental change in object-oriented programming,
Software, IEEE 21 (4) (2004) 62–69.

[28] V. Rajlich, Software Evolution and Maintenance, in: Proceedings of the
Conference on the Future of Software Engineering, ISBN 978-1-4503-2865-
4, 133–144, 2014.

[29] T. D. LaToza, G. Venolia, R. DeLine, Maintaining mental models: a study of
developer work habits, in: Proceedings of the 28th international conference
on Software engineering, ACM, 492–501, 2006.

[30] C. R. de Souza, D. F. Redmiles, An empirical study of software develop-
ers’ management of dependencies and changes, in: Proceedings of the 30th
international conference on Software engineering, ACM, 241–250, 2008.

[31] Y. Tao, Y. Dang, T. Xie, D. Zhang, S. Kim, How do software engineers
understand code changes?: an exploratory study in industry, in: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, 51:1C–51:11, 2012.

[32] P. Rovegard, L. Angelis, C. Wohlin, An empirical study on views of impor-
tance of change impact analysis issues, Software Engineering, IEEE Trans-
actions on 34 (4) (2008) 516–530.

[33] T. D. LaToza, B. A. Myers, Developers ask reachability questions, in: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, ACM, 185–194, 2010.

[34] M. Acharya, B. Robinson, Practical Change Impact Analysis Based on
Static Program Slicing for Industrial Software Systems, in: Proceedings

46



of IEEE/ACM International Conference on Software Engineering, Software
Engineering in Practice Track, 746–765, 2011.

[35] S. Lehnert, A review of software change impact analysis, Tech. Rep., Ilme-
nau University of Technology, 2011.

[36] M. Ajrnal Chaumun, H. Kabaili, R. K. Keller, F. Lustman, A change impact
model for changeability assessment in object-oriented software systems, in:
Software Maintenance and Reengineering, 1999. Proceedings of the Third
European Conference on, IEEE, 130–138, 1999.

[37] S. Jiang, R. Santelices, M. Grechanik, H. Cai, On the Accuracy of Forward
Dynamic Slicing and its Effects on Software Maintenance, in: Proceedings
of IEEE Working Conference on Source Code Analysis and Manipulation,
145–154, 2014.

[38] JavaSlicer, https://www.st.cs.uni-saarland.de/
javaslicer/, [Accessed on 24-Nov-2014], 2014.

[39] A. Saltelli, K. Chan, E. M. Scott, Sensitivity Analysis, John Wiley & Sons,
2009.

[40] G. N. Rodrigues, D. S. Rosenblum, S. Uchitel, Sensitivity Analysis for A
Scenario-based Reliability Prediction Model, in: Proceedings of Workshop
on Architecting Dependable Systems, 1–5, 2005.

[41] M. Harman, J. Krinke, J. Ren, S. Yoo, Search Based Data Sensitivity Anal-
ysis Applied to Requirement Engineering, in: Proceedings of Genetic and
Evolutionary Computation Conference, 1681–1688, 2009.

[42] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on Test Data Selection:
Help for the Practicing Programmer, Computer 11 (4) (1978) 34–41.

[43] Y. Jia, M. Harman, An Analysis and Survey of the Development of Mutation
Testing, IEEE Transactions on Software Engineering 37 (5) (2011) 649–678.

[44] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, An experimental
determination of sufficient mutant operators, ACM Transactions on Software
Engineering and Methodology 5 (2) (1996) 99–118.

[45] R. E. Walpole, R. H. Myers, S. L. Myers, K. E. Ye, Probability and Statistics
for Engineers and Scientists, Prentice Hall, ISBN 978–0321629111, 2011.

47

https://www.st.cs.uni-saarland.de/javaslicer/
https://www.st.cs.uni-saarland.de/javaslicer/


[46] R. Santelices, M. J. Harrold, Efficiently monitoring data-flow test coverage,
in: Proc. of Int’l Conf. on Automated Softw. Eng., 343–352, 2007.

[47] R. Santelices, Y. Zhang, H. Cai, S. Jiang, DUA-Forensics: a fine-grained
dependence analysis and instrumentation framework based on Soot, in: Pro-
ceedings of the 2nd ACM SIGPLAN International Workshop on State Of the
Art in Java Program analysis, 13–18, 2013.

[48] P. Lam, E. Bodden, O. Lhoták, L. Hendren, Soot - a Java Bytecode Opti-
mization Framework, in: Cetus Users and Compiler Infrastructure Work-
shop, 2011.

[49] D. Vysochanskij, Y. Petunin, Justification of the three-sigma rule for uni-
modal distributions, Theory of Probability and Mathematical Statistics 21
(1980) 25–36.

[50] R. Santelices, M. J. Harrold, Demand-driven propagation-based strategies
for testing changes, Software Testing, Verification and Reliability 23 (6)
(2013) 499–528.

[51] J. Voas, PIE: A Dynamic Failure-Based Technique, IEEE Trans. on Softw.
Eng. 18 (8) (1992) 717–727.

[52] J. I. Maletic, M. L. Collard, Supporting source code difference analysis, in:
20th IEEE International Conference on Software Maintenance, IEEE, 210–
219, 2004.

[53] B. Breech, A. Danalis, S. Shindo, L. Pollock, Online Impact Analysis via
Dynamic Compilation Technology, in: Proc. of IEEE Int’l Conf. on Software
Maintenance, 453–457, 2004.

[54] H. Cai, R. Santelices, T. Xu, Estimating the Accuracy of Dynamic Change-
Impact Analysis using Sensitivity Analysis, in: IEEE 8th International Con-
ference on Software Security and Reliability, 48–57, 2014.

[55] L. Hattori, D. Guerrero, J. Figueiredo, J. Brunet, J. Damasio, On the Pre-
cision and Accuracy of Impact Analysis Techniques, in: IEEE/ACIS Int’l
Conf. on Computer and Information Science, 513–518, 2008.

[56] S. Wagner, Global Sensitivity Analysis of Predictor Models in Software En-
gineering, in: Proc. of IEEE Int’l Workshop on Predictor Models in Software
Engineering, 3–10, 2007.

48



[57] Y.-S. Ma, J. Offutt, Y. R. Kwon, MuJava: An Automated Class Mutation
System, Software Testing, Verififcation and Reliability 15 (2) (2005) 97–
133.

[58] L. Zhang, M. Gligoric, D. Marinov, S. Khurshid, Operator-based and random
mutant selection: Better together, in: 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering, IEEE, 92–102, 2013.

[59] W. Yang, Identifying syntactic differences between two programs, Software:
Practice and Experience 21 (7) (1991) 739–755.

[60] B. Fluri, M. Wursch, M. PInzger, H. C. Gall, Change Distilling: Tree dif-
ferencing for fine-grained source code change extraction, IEEE Transactions
on Software Engineering 33 (11) (2007) 725–743.

[61] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, V. Augustine, Dex: A
semantic-graph differencing tool for studying changes in large code bases,
in: 20th IEEE International Conference on Software Maintenance, IEEE,
188–197, 2004.

[62] Z. Xing, E. Stroulia, UMLDiff: An algorithm for object-oriented design dif-
ferencing, in: Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, ACM, 54–65, 2005.

[63] D. Jackson, D. A. Ladd, Semantic Diff: A tool for summarizing the effects
of modifications, in: International Conference on Software Maintenance,
IEEE, 243–252, 1994.

[64] S. Person, M. B. Dwyer, S. Elbaum, C. S. Pǎsǎreanu, Differential symbolic
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