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ABSTRACT
The rapid expansion of the Android ecosystem is accompanied by
continuing diversification of platforms and devices, resulting in
increasing incompatibility issues which damage user experiences
and impede app development productivity. In this paper, we
conducted a large-scale, longitudinal study of compatibility issues
in 62,894 benign apps developed in the past eight years, to
understand the symptoms and causes of these issues. We further
investigated the incompatibilities that are actually exercised at
runtime through the system logs and execution traces of 15,045
apps. Our study revealed that, among others, (1) compatibility
issues were prevalent and persistent at both installation and run
time, with greater prevalence of run-time incompatibilities, (2)
there were no certain Android versions that consistently saw more
or less app incompatibilities than others, (3) installation-time
incompatibilities were strongly correlated with the minSdkVersion
specified in apps, while run-time incompatibilities were most
significantly correlated with the underlying platform’s API level,
and (4) installation-time incompatibilities were mostly due to apps’
use of architecture-incompatible native libraries, while run-time
incompatibilities were mostly due to API changes during SDK
evolution. We offered further insights into app incompatibilities, as
well as recommendations on dealing with the issues for bother
developers and end users of Android apps.
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1 INTRODUCTION
Due to the shift of personal computing to mobile platforms and the
predominance of Android [38], to most people today software
applications are mostly Android apps. Like software in other
application domains, mobile apps are subject to common issues
with various quality factors, including not only those related to
reliability and security [3, 8, 42] which have received wide
attention [4, 5, 12], but also compatibility issues which have not
been as much attended. In particular, incompatibilities lead to low
usability hence poor user experiences, harming the health of the
mobile software ecosystem. Since they compromise the production
and adoption of apps, compatibility issues also impede the
productivity of app developers. Intuitively, the larger the user base
of the ecosystem, the greater the (negative) impact of these issues.

As Android increasingly gains its momentum, compatibility
issues in Android also have been on the rise [30, 39, 43, 47, 48].
The open-source nature of Android has led to the diversification of
Android devices [34] and customized Android platforms (e.g., the
Android operating system kernel) [11]. The Android system itself
also constantly evolves, leading to continuous SDK/API
changes [35, 44]. While this facilitates the growth of Android on
mobile computing markets, it also has caused various
incompatibilities in Android apps. In consequence, apps developed
for mobile devices of one model and/or the Android system of a
particular version may not normally function, or cannot even be
installed to, devices of a different model or other versions of the
Android system. As people increasingly rely on Android apps for
their daily lives, it is crucial for app developers and end users to
understand application incompatibilities in Android, a first step
towards mitigating and even preventing relevant issues.

A few prior studies concerned compatibility issues in Android
apps, but considered only those due to a particular kind of causes
(e.g., fragmentation [27, 29, 44] and API evolution [33, 35]). Also,
these studies examined a relatively small set of app samples, without
considering the time factor of the samples or the issues. Latest
efforts [28, 32] focus more on detecting/predicting potential and
specific compatibility issues induced by API changes through static
code analysis (thus suffer false positives), and/or characterizing how
developers deal with compatibility issues in app’s code [28]. Other
relevant research investigated app bugs and crashes in general [10,
36], not necessarily due to compatibility issues.

As it stands, there has been no study that addresses (1) the
status quo of app incompatibilities in Android that are actually
observed both at a large scale and with an evolutionary
perspective and (2) varied symptoms of these issues occurring at
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different stages (i.e., installation and execution) of app use and
corresponding root causes. Such a study would shed light on a
comprehensive understanding of the compatibility issues in
Android apps and how they evolve, so as to offer insights on
mitigating and preventive strategies against those issues.

To fill this gap, in this paper, we conducted a comprehensive and
longitudinal study at a large scale of observed incompatibilities in
Android apps. We collected 62,894 benign apps from various sources
that were developed in eight different years (2010 through 2017),
and profiled 15,045 of these apps with random inputs each for five
minutes. We then investigated both installation-time and run-time
incompatibilities according to the corresponding APKs and their
execution traces, respectively, on all the 8 major Android versions
of a non-trivial market share (from API level 19 through 27) [16].
We regarded an app as installation-time incompatible if it can be
successfully installed (as indicated by the return code/message
of the installation) to at least one (version of) Android platform
but cannot to another. Similarly, an app was regarded as run-time
incompatible if it can run for a specified time period successfully
(i.e., without producing any system error messages, exceptions, or
crashes) on at least one (version of) Android platform but cannot on
another. We differentiate these two classes of app incompatibilities
to enable an in-depth understanding of the extent and phases of
the corresponding compatibility issues.

Through these datasets and the two complementary experiments
(on the two types of compatibility issues, respectively), we aim to
assess the prevalence of both types of compatibility issues, as well
as their distribution with respect to various symptoms and causes.
We also intend to disclose key properties of apps (e.g., age) and those
of the Android platform (e.g., release time) that have a significant
impact on app incompatibilities. Finally, in a longitudinal view, we
attempt to reveal the evolutionary patterns of these characteristics
of app incompatibilities over time.

In particular, we explore the following research questions:

• RQ1: How prevalent are app compatibility issues in Android?
Previous relevant works have suggested the potential
existence of compatibility issues in Android apps due to
particular reasons (e.g., SDK evolution) [28, 32, 35, 44]. To
understand compatibility issues as exhibited due to any
possible reasons, we actually installed and ran each sample
app to characterize such issues in them as observed, and
differentiated the different stages (installation and run time)
in which such issues occur.

• RQ2: How are the compatibility issues in Android apps
distributed over major symptoms? App incompatibilities are
exhibited through observable symptoms (e.g., error logs
upon installation failures, and crash traces upon execution
failures, that are induced by compatibility issues) [10, 36].
Examining what contributed to incompatibilities with
respect to particular symptoms can help us understand the
root causes of those symptoms. Thus, we examined the
main symptoms (effects) of installation- and run-time
incompatibilities and looked into the distribution of
installation/execution failures over those symptoms.

• RQ3: What are the main factors that contributed to the
incompatibilities in Android apps? Current understanding

about Android app incompatibilities attributes them mainly
to the issues with the Android platform (e.g.,
fragmentation [44] and SDK evolution [28]). To
complement this understanding, we further study possible
properties of apps that are related to the compatibility
issues. We conducted statistical analyses to discover
possible correlations between installation/execution failures
and relevant app properties, including the age of apps and
their specification of minimal SDK version.

Guided by these questions, our study revealed, among others:

(1) Substantial portions (15% on average) of our benchmarks
from varied years suffered incompatibilities that failed their
installation to one or more of the eight Android platforms
we studied. These issues were strongly correlated to the
minSdkVersion specified in apps and its distance from the
API level of the platform the app was attempted to install to.

(2) 90% of the installation-time incompatibilities were due to
the apps using native library functionalities that are not
supported by the underlying hardware architecture. Among
other cases, the issues were mainly attributed to vendor
customizations of the Android system.

(3) Run-time compatibility issues were even more prevalent
(30–50%) than the issues at installation time in our
benchmarks, on Android versions prior to API 24. Opposite
to apps’ minSdkVersion being the major contributor to
installation-time issues, primarily contributed to run-time
incompatibilities was the Android platform’s API level.
Android versions since API 24, however, did not see any
run-time compatibility issues.

(4) On older Android platforms (with API levels prior to 24),
run-time compatibility issues were exhibited mostly via
verify errors (50%) and native crashes (20%), both mainly
caused by API changes during Android SDK evolution.
Counter-intuitively, apps developed in years closer to a
platform’s release year tended to be more likely to be
run-time incompatible on that platform.

From these observations, we also distill lessons learned andmake
recommendations for developers and app users to deal with app
incompatibilities based on the lessons. We have released all of the
source code and datasets used in our study, found here.

2 BACKGROUND
In this section, we give brief descriptions of the basic concepts
and terms about the Android system and Android apps that are
necessary for readers to understand the remainder of this paper.

2.1 Android Platform and SDK
The middle layer between the Android operating system (OS) (a
customized Linux kernel) and its user applications constitutes the
Android framework. This framework provides the implementation
of application programming interface (API) methods through
which user apps can receive system services and invoke common
functionalities associated with mobile devices. The API is typically
part of the Android software development kit (i.e., SDK) which also
includes tools to support app development.

https://www.dropbox.com/s/k7w5f77dv2yos17/androidincompat-artefact.zip?dl=0
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Figure 1: Overview of the process flow of our app incompatibility study.

Under the framework-based development paradigm, Android
apps usually comprise building blocks called components of four
types: Activity forming the basis of user interface, Service
performing background tasks, Broadcast Receiver (or just Receiver
in short) responding to system-wide broadcasts, and Content
Provider offering database capabilities.

2.2 Incompatibilities in the Android Ecosystem
As it stands, the same version of Android system may run on
devices with different hardware configurations (e.g., varied
processor models and screen sizes, with/without certain kinds of
sensors). Meanwhile, different vendors may customize the Android
system in various ways to help promote their mobile device
products. These variations constitute a phenomena in Android,
called fragmentation [27]. Due to the fragmentation problem, it is
difficult to develop an app that functions normally on any device
with any Android version, resulting in fragmentation-induced
compatibility issues [44].

To accommodate its marketing demands, Android provides a
large variety of operating system and SDK versions that both evolve
constantly, with faster evolution seen by the SDK (especially the
API) [16]. For instance, during the past eight years, Android has
released over 20 API versions (each corresponding to an API level).
Due to the API evolution, an app developed with one API level
might not be installable or runnable with Android of different API
levels. Thus, API evolution constitutes another important cause of
incompatibilities in Android apps [35].

There are two types of compatibility in Android: device
compatibility and app compatibility [14]. Device compatibility
concerns whether a mobile device is Android compatible (i.e., able
to run apps written for the Android runtime). Only
Android-compatible devices include Google Play Store. Also, the
regular avenue for users to install apps is from Google Play Store.
Thus, device compatibility is often not an issue for app developers.
App compatibility is a primary concern of app developers, which is
thus the focus of our study. An app can have incompatibilities with
the device configurations, the Android system (mainly the
framework/API), or both.

2.3 Compatibility Attempts in Android Apps
When an app is built, the developer can choose which API level
the app targets and the minimum API level required for the app to
function [48]. These numbers on API levels may be recorded in the
manifest file of the app package (i.e., APK), as minSdkVersion (i.e.,
the minimum API level) and targetSdkVersion (i.e., the targeted API
level). It is specified in the official Android developer guide
(OADG) [17] that an app should always declare minSdkVersion (or
it will be defaulted to 1) [25]. Since API level 4, apps can also
declare targetSdkVersion, which is optional though—when
unspecified, it would be defaulted to minSdkVersion. It is allowed

(also since API level 4) yet not recommended to declare another
API level number in the manifest: maxSdkVersion, which gives the
maximal SDK version that the app can run with. According to the
OADG, an Android system does not allow an app to be installed if
the API level used by the system is lower than the app’s
minSdkVersion or higher than its maxSdkVersion.1 However,
Android promises backward compatibility [22]: an Android
platform with an API level higher than an app’s minSdkVersion
allows the app to be installed and function as expected; if the
platform API level is higher than the app’s targetSdkVersion, the
system also enables compatibility behaviors allowing the app to
work as expected [25]. Nevertheless, between API level 4 and API
level 6, the check with respect to maxSdkVersion is enforced: the
installation will fail if the app specifies a maxSdkVersion that is
smaller than the platform’s API level.

3 METHODOLOGY
This section gives an overview of our study process, and describes
the dataset and tools used. We then define main metrics and
measures used for quantifying incompatibilities hence answering
our research questions.

3.1 Process Overview
Figure 1 depicts the process of our study. We used the APKs of
benign apps as benchmarks. To enable an evolutionary viewpoint
in examining app incompatibilities, our datasets included samples
developed in different years (2010–2017). We considered all the 8
Android versions (API level 19 through 27), except for API 20
which is dedicated for wearable devices. These versions combined
constitute 96.5% of the entire Android market share (by late
2018 [16]). We dismissed other versions concerning their old age
(released in 2012 or earlier) and tiny market share (1.5% or lower).

We concern both installation- and run-time incompatibilities of
apps. To characterize the former, we attempted to install the original
APK of each app to an Android device for each of studied Android
versions. We collected the installation logs, and then analyzed these
logs to recognize the installation as a success or failure. The logs
also give information for us to understand the effects of installation
failures. We treated uninstallation success as part of installation
success. Thus, for each app installation test, we uninstalled the app
after successfully installing it.

To characterize run-time incompatibilities, we need to examine
app executions. We performed lightweight instrumentation and
profiling to facilitate differentiating two classes of run-time
incompatibilities: (1) incompatible launch, with which an app
cannot even be launched successfully, and (2) incompatible running,
with which a launch-compatible app exhibits incompatibilities
after successfully running for a while. To that end, we first
1The check against maxSdkVersion has been abolished by Android since its version
2.0.1 [25] (which corresponds to API level 6 [21]).
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Table 1: Subject apps used in our study

Data use
number of samples from each year within 2010-2017

Total2010 2011 2012 2013 2014 2015 2016 2017
Installation-time incompatibility study 16,835 9,977 10,991 9,688 5,300 5,406 2,431 2,266 62,894

Run-time incompatibility study 1,531 2,020 2,054 1,750 1,335 3,127 1,548 1,680 15,045

instrumented each app for tracing (all) method calls, with the
support of an underlying framework Soot [31] for Dalvik bytecode
manipulation. We then ran the instrumented app for five minutes
on an Android device, for each of the 8 Android versions, to gather
the app trace as well as the system log on the app’s execution. In
this way, differentiating the two run-time incompatibility
situations was enabled by simply checking the trace: if the trace
contains valid records of calls, we can exclude the app from the
incompatible launch category. We identified the effects of run-time
incompatibilities by further checking the system log.

The outputs of our study pipeline are the characterization results
on both types of incompatibilities. Next, we elaborated on key
elements of our study design.

3.2 Subject Apps
A summary of subjects (62,894 benign apps) used in our study is
listed in Table 1. These apps were developed in different years from
2010 through 2017. The 2,266 apps of 2017were downloaded directly
from Google Play [24]. All other benign apps were obtained from
AndroZoo [2], a diverse collection of apps from various sources.
All samples were confirmed as benign via VirusTotal [1].

The year of each app was obtained according to the dex date
retrieved from the app’s APK, which is the last modification date
of the app bytecode (as stored in classes.dex). During our data
collection, we discarded corrupted APKs which either cannot be
unzipped or are missing resource files. These corrupted apps are
not installable, but they are not relevant to app incompatibilities.
Eventually, we used 62,894 apps for the installation-time
compatibility study. For our study, we needed the minSdkVersion
for each app. Thus, we defaulted it as 1 (as Android does [25]) for
apps that did not specify minSdkVersion.2

We limited the number of samples to be used for our run-time
compatibility study concerning the overheads (i.e., of executing
each app for five minutes for each of the 8 Android versions). We
started with the apps used in the installation-time compatibility
study from each year. After finding out that many of the apps cannot
be successfully installed (to one or more of the 8 Android versions),
we continued to select more apps from respective sources, until we
had at least 1,000 installable apps for each year. In total, we used
15,045 apps for the run-time compatibility study.

3.3 Experimental Setup and Procedure
For the scalability of our study pipeline and control of study
overheads, we used 8 Android virtual devices (AVDs), all Nexus
One with 2G RAM and 1G SD but with varied API levels (i.e., 19,
21, 22, 23, 24, 25, 26, and 27). We ran these AVDs via the Android
emulator [18] shipped with each corresponding Android version.

To trace apps for studying run-time incompatibilities, we need
to feed the apps with run-time inputs. We used the Monkey

20.32–1.12% of the apps in our yearly datasets did not specify minSdkVersion.

tool [20] shipped with the Android SDK to generate random inputs
for app exercising. Both the app call traces and system logs were
serialized using the Logcat tool [19], also part of the SDK. For app
instrumentation and method-call tracing, we used our Android
characterization toolkit [7] and dynamic analysis utilities [6]. We
used apktool [45] to retrieve the manifest data of an app, including
the minSdkVersion, targetSdkVersion, and maxSdkVersion of the app.
We utilized the adb tool [15] for app installation and uninstallation.

With these study facilities, we now define key notions/terms we
referred to earlier but only intuitively. An app installation
(uninstallation) to a device A is regarded as successful only if
running the install (uninstall) command of adb on the app to
A returns a code explicitly indicating the success. Then, an app is
installation-time compatible with A if the app can be installed to
and then uninstalled from A, both successfully; otherwise, the app
is installation-time incompatible with A. For a given app, failure in
installing the app to a device could be due to reasons other than
(installation-time) compatibility issues. We regarded the failure as
caused by compatibility issues with one device if the app can be
successfully installed to at least one different device (i.e., with a
different Android version in our study). In addition, Android does
not allow apps with minSdkVersion higher than the underlying
platform’s API level to be installed to that platform [25]. Thus, we
did not treat installation failures of such apps on those platforms as
induced by (installation-time) compatibility issues. With Android
versions of API level 4, 5, and 6, app with maxSdkVersion lower
than the underlying platform’s API level is not allowed to install
either. However, since our study only experimented with Android
versions of API level 19 or higher, the check policies against
maxSdkVersion did not affect our results.3

Similarly, for a given app, failure in executing the app on a
device A, as indicated by execution error messages (in the system
log for the app’s execution), exceptions, and crashes, could be
ascribed to reasons other than (run-time) compatibility issues (e.g.,
bugs in the app or invalid user operations). To exclude failures
induced by non-compatibility issues with one device, we ran the
app on various devices of different Android versions (all for five
minutes with Monkey inputs). If the app can run on at least one
different device without exhibiting any of the execution failure
symptoms, yet it exhibited failures during the execution on A ( also
for five minutes and with the same sequence of Monkey inputs as
used in the successful run), then we regarded the app as run-time
incompatible with A. Then, accordingly, the error messages,
exceptions, and crashes exhibited in the failing execution on A
were regarded as run-time incompatibility symptoms.

Thus, one challenge to our study was to exclude irrelevant
(non-compatibility induced) failures during app installation and
executions, as it was time-consuming to find the successful

3Our initial datasets of year 2010 to 2017 had 1.06%, 0.83%, 0.98%, 0.52%, 1.03%, 2.89%,
3.51%, and 6.1% of the apps with maxSdkVersion specified, and 0, 1, 0, 0, 0, 3, 1, 2 apps
with minSdkVersion higher than 19, respectively.
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Figure 2: Installation incompatibilities in terms of IIR (y axis) in benign apps of varied years (x axis).

installation/execution. The cost was particularly high for finding
the successful execution, because of the great overhead of the
dynamic analysis (e.g., exercising each app for five minutes, and
checking the traces and system logs for failure symptoms).
Fortunately, we installed and ran each sample on the 8 different
Android versions, so we excluded irrelevant failures for each
version by referring to the results with all other 7 versions. We
would only have needed to try additional devices if the
installation/execution of an app failed on all the 8 versions, which
fortunately did not happen for any samples in our study.

3.4 Measurements
To answer our research questions, we computed a set of measures
for the two classes of app incompatibilities. For installation-time
incompatibilities, we measured the installation-time incompatible
rate (IIR) for each app set (apps of a particular year) against an API
level as the percentage of apps that cannot be successfully installed
to the AVD with that API level. We also computed the distribution
of IIR over major installation-time incompatibility effects. For
run-time incompatibilities, we computed run-time incompatible
rate (RIR), but separately for the two subclasses: incompatible
launch and incompatible running. We then looked into the
distribution of RIR over major run-time incompatibility effects.

In addition, we conducted a series of statistical analysis to
discover correlations between app incompatibilities and several
properties of the Android platform itself and its apps. Specifically,
in this study we were concerned about compatibility-related
platform properties (release year and API level) as studied by prior
works [28, 32]; more importantly, we also looked at multiple app
properties that are potentially relevant to app incompatibilities:
minSdkVersion, app (creation) year, app lapse, and API lapse4. We
retrieved the SDK release years per the Android history [21].

We introduce and study the two derivative properties (app lapse,
API lapse) because intuitively they can be used to examine the
length of Android’s forward and backward compatibility with
apps [32]. To measure the correlations of interest, we computed
the Spearman’s correlation coefficients [37] for relevant variables.
We chose this method because it is a non-parametric correlation
statistics that makes no normality assumption about underlying
data points. We refer to [46] in discerning correlation strengths
based on the range of the coefficient’s absolute value: [0.0, 0.19]:
very weak, [0.2, 0.39]: weak, [0.4, 0.59]: moderate, [0.6, 0.79]:
strong, and [0.8, 1.0]: very strong.

4In particular, we define app lapse as (SDK release year – app year), and API lapse as
(platform’s SDK API level – app minSdkVersion).

Next, we present the results of our empirical studies on
installation-time and run-time incompatibilities in Android apps.
We investigate the prevalence, contributing factors, distribution,
and security relevance of these incompatibilities, all with an
evolutionary perspective. For better clarity, we focus on
installation- and run-time incompatibilities in two separate studies,
Study I (Section 4) and Study II (Section 5), respectively. We
address the three research questions in both studies and discuss
major findings around these questions.

4 STUDY I: INSTALLATION-TIME
INCOMPATIBILITIES

As we mentioned earlier, an app is regarded as installation-time
compatible if its installation and uninstallation are both successful.
Intuitively, if an app is installable to a device, it should be
uninstallable from the same device as well. Our study results
confirmed this assumption: all of our subject apps that were
installed successfully were all uninstalled successfully too.

4.1 RQ1: Prevalence of App Incompatibilities
Figure 2 delineates the overall IIR of benign apps from each of the
eight years, and that of all benign apps considered in this study as
a whole, despite the varied symptoms of installation failures. A
high-level observation is that, within each yearly dataset, the
failure rate was quite close across the eight Android versions,
indicating largely negligible impact of the platform’s API level. In
fact, the aggregate result for all the benign apps put together as
one amalgamated dataset (benign-all) confirmed the same
observation. On the other hand, across the eight years, IIR of the
benign apps experienced a steady growth until 2014, followed by a
slowly decreasing trend. This evolution pattern potentially reflects
the gradual (albeit still not complete) compatibility adaptation
between apps and the rapidly evolving platform in the Android
ecosystem—initially the IIR grew as API lapse increased (as
indicated by the strong positive correlation between IIR and API
lapse as we found; see Table 2), and then the ecosystem took a few
(4, as per Figure 4) years to iron out the compatibility issues.
Concerning quantitative measures, the numbers show the IIR
ranging from 7% to almost 23% for individual app years and
Android versions, and that the aggregate IIR was about 15%. There
is no clear/consistent association between dataset sizes and IIR,
suggesting no substantial impact of the large size variations of our
datasets on these general observations.

A look into the results for the benign-2017 dataset revealed an
outlier with the newest version studied (API 27), with which the IIR
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Figure 3: Percentage distribution of installation-time incom-
patible apps over the varied symptoms exhibited.

of this dataset was higher than any other datasets on any Android
versions. API 27 (Android 8.1) was released at the end of 2017 [21],
when almost all of the studied benign-2017 apps had already been
created. Thus, Android 8.1 had the worst backward compatibility
with themost recent prior apps. Another outlier of the general trend,
API 25 and API 26 saw IIR rising again. An implication of these
contrasts is that newer/older Android versions did not necessarily
had better/worse compatibility with recent past/future apps.

Finding 1: Over the eight years studied, installation-time
app incompatibilities persisted with varying (7% to 23% IIR)
yet substantial presence (15% IIR on overall average), largely
independent of the underlying Android versions used.

4.2 RQ2: Distribution of App Incompatibility
Symptoms

Figure 3 depicts the percentage distribution of apps with
installation failures due to compatibility issues over the 15 failure
effects (shown in the legend) we observed in this study. Of these
effects, 14 were error codes (e.g., INSTALL_FAILED_INVALID_APK)
produced by adb as we observed at installation time. The last one
(NO_MESSAGE) was what we used to indicate the situation in which
the installation simply failed without resulting in any error
message/code. While we also computed such a distribution for
each Android version separately, given the very-high similarity of
these distributions across those versions, here we only present and
discuss the aggregate distribution: installation failure effects were
amalgamated over all the versions for each of the eight app years.

Despite this great variety of symptoms and the noticeable
percentage (5%) of NO_MESSAGE cases, the top two dominating
symptoms were INSTALL_FAILED_NO_MATCHING_ABIS and
INSTALL_FAILED_MISSING_SHARED_LIBRARY. As highlighted via
pattern fill (opposed to solid fill for the minor symptoms), for most
app years, over 90% of the apps that failed to be installed
encountered the INSTALL_FAILED_NO_MATCHING_ABIS error5,
meaning these apps use native libraries that are not compatible
with the hardware (CPU) architecture. For the last two app years
(2016 and 2017), a substantial percentage (15%) of apps failed at
installation because they use a library that does not exist in the
underlying Android framework (mostly due to the removal of
those libraries during vendor customizations), as indicated by the
INSTALL_FAILED_MISSING_SHARED_LIBRARY error.

5As per our approach to excluding non-compatibility-induced installation failures
(§ 3.3), we validated that these apps ran normally (did not crash nor encounter such
errors) on at least one different device, a core part of our experimental methodology.

Table 2: Spearman correlation (moderate or stronger coeffi-
cients in boldface) between IIR and contributing factors

app lapse API lapse minSdkVersion SDK API level app year
overall 0.046 0.680 -0.709 -0.047 -0.061
ABI -0.033 0.651 -0.695 -0.133 -0.015
LIB -0.081 0.418 -0.437 -0.056 0.078

Finding 2: Installation failures in apps were predominantly
(over 90%) due to their reliance on architecture-incompatible
native libraries, and others also (up to 15%) due to their use of
libraries missing in vendor-customized Android frameworks.

4.3 RQ3: Contributing Factors of App
Incompatibilities

To further understand the causes of installation-time
incompatibilities hence distill insights for dealing those issues, we
examined the distribution of IIRs over app lapse and API lapse.
This distribution is depicted by the heatmap of Figure 4, including
the overall distribution (regardless of symptoms) and the
distribution for the top two dominating symptoms separately. Each
data point (square) in the plot represents the IIR (with the square’s
color) of all the benign apps with a specific app lapse and a specific
API lapse, regardless of their creation years.

The overall distribution (left) suggest that the IIRs were very
low with apps of an API lapse in [−10, 10], and high mainly with
apps of high API lapse (>10), especially with those of >15 API
lapse. App lapses, on the other hand, were of no considerable
impact on IIRs: apps with the same API lapses have very close IIRs
despite their varying app lapses. This general observation still held
in the separate distributions associated with the two dominating
symptoms: out of the [−10, 10] range, higher API lapses were
associated with high IIRs, and app lapses had no major impact.
Comparing the IIR distribution between the symptoms reveals that
apps with very high IIRs (and associated very large API lapses)
failed more often due to vendor customizations of the Android
framework (missing libraries) than device hardware
incompatibilities (architecture-incompatible native libraries).

As shown in Table 2, our Spearman correlation coefficients
between IIR and various possible contributing factors (including
API lapse, and the three individual app/platform properties
mentioned in Section 3.4) confirmed the strong correlation (0.68)
of IIR with API lapse, rather than with the app years. This level of
correlation strength was observed similarly for the top two
symptoms. The strength was greater for apps failing in installation
due to INSTALL_FAILED_NO_MATCHING_ABIS (ABI) than those due
to INSTALL_FAILED_MISSING_SHARED_LIBRARY (LIB). This is
because the former has much greater dominance in the overall
distribution of IIRs (see Figure 3). Apps’ minSdkVersion was similar
to their API lapses in terms of the correlation with IIR, indicating
that minSdkVersion was the main contributor to the correlation
strength that API lapse had with IIR. The fact that, like app lapse,
app year and SDK API level, had no/negligible correlation with IIR
implies that the impact of app year on IIR seen in Figure 2 can be
further explained by the underlying varying minSdkVersions
specified in apps developed in varying years.
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Figure 4: Distribution of IIR (encoded by square color) over app lapse and API lapse, for all symptoms (leftmost) and the two
dominating ones: INSTALL_FAILED_NO_MATCHING_ABIS (middle) and INSTALL_FAILED_MISSING_SHARED_LIBRARY (right).
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Figure 5: Run-time incompatibilities in terms of RIR (y axis) in benign apps of varied years (x axis).

Finding 3: Apps of greater API lapses (especially out of
[−10, 10]), mainly due to their minSdkVersions being further
away from the underlying platform’s API level, had higher
IIRs. Vendor customization of Android contributed more than
hardware incompatibilities to very-high IIRs.

5 STUDY II: RUN-TIME INCOMPATIBILITIES
We present our empirical results on run-time app incompatibilities
following the same structure of the first study. We originally
intended to study two categories of run-time incompatibilities:
incompatible launch and incompatible running. However, our
results revealed that in our datasets there were no apps found to be
associated with the incompatible launch issues. Thus, in the rest of
this section, we only look at the first category of run-time
incompatibilities—incompatible running.

5.1 RQ1: Prevalence of App Incompatibilities
In the same format as Figure 2, Figure 5 illustrates the overall RIR
of our benchmarks per yearly dataset and that of all benchmarks
amalgamated as a whole (benign-all). Notably, none of the four
newer Android versions (API levels 24, 25, 26, and 27) saw any
run-time incompatibilities with respect to the apps used in this
study. This largely facilitated our confirmation of execution
failures as indeed induced by compatibility issues. More
importantly, the sudden disappearance of run-time
incompatibilities since API 24 indicates the substantial
improvement of Android in accommodating apps of various ages
since that version, implying the changes made in that version [13]
largely addressed forward and backward compatibility issues. In
fact, API 24 was the most substantially changed version during the
Android history we studied with respect to prior versions [28].

Among the four older versions, API 19 and API 23 had mostly
considerably higher (by 15% or above) RIRs than the other two
versions across app years. A plausible reason is that API 19 is now
the oldest Android version with a non-trivial market share, while
API 23 is the first version adopting the run-time permission
mechanism which created quite some execution compatibility
issues [9]. Generally, in terms of the absolute RIR numbers,
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Figure 6: Percentage distribution of run-time incompatible
apps over the varied symptoms exhibited.

run-time incompatibilities were on the rise (albeit slightly) over
the eight-year span we considered, and these compatibilities issues
were much more prevalent than installation-time incompatibilities
(30–50% RIR versus 15% IIR on average overall all apps).

Finding 4: Run-time incompatibilities extensively (30–50%
RIR) and increasingly persisted on API 23 and older Android
versions. Yet newer versions (since API 24) had no run-time
compatibility issues with apps created in the studied span.

5.2 RQ2: Distribution of App Incompatibility
Symptoms

The percentage distribution of apps that encountered execution
failures over various symptoms is shown in Figure 6. The symptoms
were represented by 9 keywords (as listed in the legend) most
frequently appeared in the traces of failed app executions. As for
the installation-time incompatibility symptoms (Figure 3), here we
show the aggregated distribution for each app year over all the
Android versions given the similarity of per-version distributions.

For any of these app years, the run-time incompatibilities were
predominated by three symptoms: verify error, native crash, and
null pointer, in a descending order of dominance. Despite
fluctuations in their relative portions, these symptoms largely
remained substantial over the years. Given the top dominance of
verify error and the fact that we already know all these symptoms
as caused by (run-time) incompatibilities, SDK/API changes (to
which verify errors are imputed) were plausibly the primary cause
of these incompatibilities. The reason is that the apps were
compiled against some older SDKs and then ran on newer ones,
while this kind of inconsistencies is generally a major cause of
verify errors [26, 41]. Native crash can be attributed to bugs in the
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Figure 7: Distribution of RIR (encoded by square color) over app lapse and API lapse, for all symptoms (leftmost) and the two
top dominating ones: verify error (middle) and native crash (right).

Android Support Library [40] and more generally to problems with
the native (C/C++) code layer of Android itself. While the Support
Library is an Android effort for overcoming compatibility issues, it
only provided support for less than 23% of newly introduced
APIs [28]. Null pointer errors in this context are often just an
additional/derivative symptom of such issues [23]. Thus, we regard
SDK/API changes as the main cause of run-time incompatibilities.

Finding 5: Run-time incompatibilities were primarily exhi-
bited via verify errors (over 50%) and native crashes (over 20%)
as top dominating symptoms, which were mainly caused by
SDK/API changes during Android evolution.

5.3 RQ3: Contributing Factors of App
Incompatibilities

As in Study I, we examined the distribution of RIR over the same
possible contributing factors. In particular, Figure 7 highlights the
distribution with respect to app lapse and API lapse, over all
symptoms and separately for the top two symptoms, in the same
format as Figure 4. Each data point (circle) in the plot represents
the RIR of all the apps with a specific app lapse and a specific API
lapse, regardless of their creation years. In the overall distribution
(left), the RIRs were generally much lower than those seen in the
per-symptom distributions. This is because the overall distribution
included all of our benchmarks regardless of their app lapses and
API lapses, and we now know that those benchmarks that were
associated with platform API levels 24, 25, 26, and 27 were all of
zero RIRs (i.e., the corresponding apps did not show any run-time
incompatibilities). The two per-symptom distributions, however,
only concern the apps that exhibited run-time incompatibilities
during their executions (i.e., having RIRs greater than zero).

Referring to the overall distribution, unlike our observations in
Study I, larger API lapses were not associated with higher RIRs,
while what really impacted the RIRs were the app lapses. In fact,
the association was quite the opposite. For example, fixating at API
lapse of 20, the RIRs were mostly zeros for greater app lapses of
5 to 7 yet substantially higher for smaller app lapses (e.g., 2 and
3). The two per-symptom distributions also revealed the relatively
weak impact of API lapse, and that larger absolute values of app
lapse were associated with lower RIRs. Notably, in terms of these
two top symptoms, significant RIRs were mostly concentrated in
the areas where the app lapse was in [−4, 4], implying that apps
had most run-time compatibilities issues on the Android versions
(within API 19, 21, 22, and 23) that were 4 years older or newer
than they (the apps) were. An implication of this result is that
Android’s promise for backward compatibilities, albeit claimed by

Table 3: Spearman correlation (moderate or stronger coeffi-
cients in boldface) between RIR and contributing factors

app
lapse

API
lapse minSdkVersion

SDK
API level

app
year

overall -0.46 0.117 -0.274 -0.513 -0.052
native crash -0.266 0.092 -0.179 -0.278 -0.034
verify error -0.437 0.123 -0.268 -0.482 0

Android to offer [22], were not well fulfilled during the evolution
of the Android framework. Apparently, here we see that Android’s
support for forward compatibilities cannot be always anticipated
either (e.g., API 23, introduced in late 2015, saw over 60% RIRs for
apps developed in years 2016 and 2017).

These visually-appearing correlations between RIR and app/API
lapses were largely corroborated by the Spearman correlation
coefficients of Table 3. Overall, app lapse was significantly (with
moderate coefficients) correlated to RIR, as was the cases in which
only the RIRs associated with verify errors were concerned. The
negativity of the correlation confirmed our observations above:
higher RIRs were connected to shorter app lapses (in terms of the
absolute values of this app property). The correlation strengths
with respect to native crashes were weaker than those to verify
errors, because the latter had much greater dominance as seen in
Figure 6. On the other hand, among the other potential
contributing factors, API level (Android version) was most
strongly correlated with RIR, suggesting that SDK/API changes
might have been highly responsible for the run-time
incompatibilities we observed. This further implies that SDK API
level (accordingly the Android version release year) was the main
reason why app lapse had significant impact on RIR (given the
negligible impact of app year). Note that the negative correlation
between RIR and SDK API level was largely attributed to the fact
that the four newest (largest) Android versions had seen no
incompatibilities in our apps.

Finding 6: App lapse and SDK API level had relatively
strong correlations with RIRs: Apps of a greater app lapse
had lower RIRs on higher Android versions.

6 THREATS TO VALIDITY
One threat to internal validity of our study results lies in possible
errors in the implementation of experimentation utilities (tools
and scripts). To reduce this threat, we have conducted careful code
review of our own toolkit and scripts in addition to manual
verification of their functional correctness against our
experimental design. We have further done so by manually
validating partial experimental results against selected
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benchmarks. Other tools used in our study are part of the Android
SDK, which have been used widely by researchers and developers.

The primary threat to the external validity of our study results
concerns our choice of benchmark apps. While we have attempted
to use a large set of apps collected from a variety of sources, the
huge number of Android apps available to users or on the various
app markets still renders our selection a relatively small subset.
Thus, the studied apps from each of the eight years may not be
well representative of all Android apps of that year. Our results and
conclusions based on the results are limited to the apps studied.

The coverage of run-time inputs affects the ability of dynamic
analysis and the quality of its results in general. While the
dynamic analysis employed in our study is simple, the
identification of run-time incompatibility effects was immediately
subject to how much of the apps’ behaviors were exercised during
the five-minute execution. The random inputs generated by
Monkey might have missed some execution paths, hence certain
incompatibility effects, of the apps. Also, although we ensured
same test inputs against each app across the eight runs (each for a
different Android version), the app might still have been covered
differently in different runs due to changes in the Android
platform across the versions—an external threat to the validity of
our run-time incompatibility study results.

Yet another threat to external validity concerns the multi-APK
phenomenon in Android: a developer may upload multiple APKs of
an app to support different devices, and Google Play will provide
the correct APK to users as per the characteristics (e.g., hardware,
vendor, and Android version) of their devices. To preliminarily
evaluate the possible impact of this phenomenon on our results,
we randomly chose 10 apps that were found incompatible with API
21 in our study and tried manually installing (from Google Play
directly) and running them on a real Samsung Galaxy S4 (API 21)
phone—in our study these apps were downloaded from AndroZoo
without using a device ID. Our results show that all 10 apps are still
incompatible, suggesting that multiple APKs may not exist for these
apps. However, a systematic examination of all our benchmarks
against this phenomenon would be needed to thoroughly assess
its impact. Similarly, we did not consider the possibility that an
app, out of our benchmarks and found incompatible, may have an
updated version provided later that fixed the compatibility issues.
Together, these possibilities cause our study to suffer from potential
over-estimation of incompatibilities.

The main threat to construct validity concerns the metrics and
measurement procedures we used to assess the extent and
distribution of app incompatibilities. There might have been other
measures and metrics we missed that would better or further
support our conclusions. To mitigate this threat, we have
considered a diverse set of measures to characterize the
compatibility issues in Android apps from multiple perspectives. In
addition, we examined our data via various ways of measurement,
including the group statistics for understanding the overall
characteristics (e.g., the aggregate RIR) and the statistics of yearly
subsets for understanding relevant evolutionary patterns. Also, our
current study did not address app incompatibilities with respect to
the targetSdkVersion specified in apps (e.g., IIR of apps on the
platform of an API level that is equal to, versus smaller/greater
than, the app’s targetSdkVersion). Addressing this aspect could

affect our overall conclusions on installation-time incompatibilities
(especially those on Android’s forward and backward
compatibility). Finally, the eight AVDs used in our studies all used
x86/x86_64 processors. However, some of our benchmarks might
have been developed for ARM architectures. For those
benchmarks, the installation incompatibilities exhibited via the
INSTALL_FAILED_NO_MATCHING_ABIS errors may be justified by
the apps’ architecture preferences. Running these benchmarks on
devices with ARM processors could lead to different IIR results
hence changes to our current conclusions based on such results.

Due to heavy overheads of our study, we only considered a
single set of hardware configuration parameters for all the eight
devices (corresponding to the eight Android versions studied).
Thus, a threat to conclusion validity is that our results may not
generalize to all possible hardware configurations of Android
devices in use. Thus, our conclusions are best interpreted with
respect to the device API levels and configurations already used in
our study. Given the dominating symptoms and corresponding
causes of the incompatibilities we found and our case study above
(with the 10 apps on the Samsung phone), the incompatibilities
appeared to be attributed to the Android ecosystem (rather than to
the Nexus One device we used). Thus, we expect our results would
be similar if the study were conducted on a different device (such
as a Samsung phone). However, to be fully conclusive, we would
need to experiment with more than one hardware devices.

7 LESSONS & RECOMMENDATIONS
Based on our empirical findings as presented before, we now distill
further insights into app incompatibilities and provide practical
recommendations on how to deal with those issues.

7.1 On Installation-time Incompatibilities
Lessons learned. Concerning installation-time compatibility
issues only, while it seems that these issues are significantly
related to the age of an app, what really matters is the
minSdkVersion specified in the app. Installing an app to an Android
version with a delta within 10 between its minSdkVersion and the
platform API level might not be a big issue, but going too far could
risk failing the installation, especially when the gap goes beyond
15. When the installation did fail, it is most likely because the app
uses some native functionalities that are not supported by the
targeted hardware architectures.
Recommendations. For an app to be successfully installed to a
device, the developers should carefully specify the minSdkVersion,
making sure it is not too far from the API level of targeted Android
platform. Since minSdkVersion would be defaulted to 1 if it is not
specified in an app [25], not specifying this attribute would be a
risky decision (as the API lapse would be large, especially with
respect to newer Android versions). Also, to avoid installation
failures, the developer should check if the targeted devices support
all the app functionalities in terms of the hardware architecture of
the devices and the Android customizations by the device vendors.

7.2 On Run-time Incompatibilities
Lessons learned. Compared to installation-time incompatibilities,
run-time compatibility issues are a greater problem in the Android



ISSTA ’19, July 15–19, 2019, Beijing, China Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu

ecosystem prior to API 24, suggesting relevant efforts made by the
Android team (e.g., providing Support Libraries) to deal with these
issues were not sufficient. After an app is successfully installed
to a device, the minSdkVersion specified in the app is no longer
a major concern (as it does not affect much whether the app can
run well on the device). The major concern, with older Android
versions (before API 24), is that the SDK an app is compiled against
might not be compatible with the SDK it runs against due to API
changes. In particular, during the years of those older versions, the
corresponding SDK/API changes seem to need four years to iron
out most forward and backward compatibility issues. The good
news is that since API 24, Android seems to have made a giant leap
in addressing run-time incompatibilities in general.
Recommendations. With apps targeting Android versions
before API 24, the developers are recommended to avoid building
the apps based on Android SDKs that are released more than four
years away. Further, to minimize run-time compatibility issues, the
developers should look into the API changes made in the SDK
compared to prior SDK versions to make sure APIs used in the app
respect those changes. When the resulting apps fail during
execution, messages/logs on verify errors and native crashes might
be good places to look into when identifying and diagnosing
potential compatibility issues. For app users, updating to
newer/latest Android versions would be a good idea in order to
use more apps without much trouble. If they stick to older
platforms (prior to API 24), they should realize that apps developed
in years closer to the platform year might be even easier to fail.

8 RELATEDWORK
In earlier works, researchers have been concerned about the
compatibility issues in Android apps. In order to obtain empirical
evidences of the Android fragmentation phenomena, Han et
al. [27] focused on two Android device vendors (HTC and
Motorola) to study related bug reports submitted by users of these
devices, so as to identify the evidences through topic models and
topic analysis. The authors aimed at offering an understanding of
the fragmentation problem itself, but not of the compatibility
issues that problem had led to.

Several previous works investigated crashes of Android apps to
understand their causes [10] and to reproduce the crashes [36].
The crashes studied were not necessarily tied to app
incompatibilities, though. We only looked at the crashes that are
due to compatibility issues in order to characterize app
incompatibilities. Fazzini et al. [11] devised an automated tool for
detecting the inconsistent behaviors of apps across different
Android platforms. Incompatibilities can be part of the reasons for
the detected behavioral differences, yet our work focuses on the
incompatibilities themselves and their effects.

In [44], Wei et al. studied 191 instances of fragmentation-induced
compatibility (FIC) issues in five Android apps and characterized the
causes of FIC issues from this dataset. They further devised a tool for
automatically detecting FIC issues based on their empirical findings.
While Android fragmentation is a lasting cause of these issues,
it is not the only cause. Zhang et al. [47] proposed an approach
to testing the compatibility of apps for reducing the testing cost.
Recent studies [28, 32] focus on compatibility issues induced by

SDK evolution and API changes, where these changes, along with
developers’ strategies dealing with the issues, are characterized.

In contrast, our study is not as limited to a specific cause, and
with a much larger scale than prior peer works. We also studied
the compatibility issues at different phases (installation and
execution) that were actually observed, opposed to
characterizing/detecting such issues based on static analyses of
app’s code. The detection approaches are of a predictive nature
thus suffer from false positives as evidenced in their
results [28, 32]. In comparison, all the compatibility issues we
studied are true-positive issues. Also, none of those previous
studies addressed installation-time compatibility issues, nor did
they examine such issues with an evolutionary view. On the other
hand, their results are complementary to ours in that they covered
developers’ practice in preventing and fixing incompatibilities.
Also, our study results can be leveraged to, but not limited to, help
devise better incompatibilities diagnosis techniques.

A few studies on Android applied the evolutionary lens to
certain characteristics of apps. McDonnell et al. [35] examined
how the Android API evolved prior to the year of 2013 by looking
at the API update rate in Android. They revealed that the API
evolution was faster than the adoption pace of clients. In [42], the
authors investigated the evolution of malware but with respect to
the effectiveness of anti-malware analysis tools, rather than
examining the incompatibilities in malware. In comparison, our
study characterizes the incompatibilities in benign apps. Also, we
investigated the evolution of app incompatibilities, as opposed to
that of the API evolution which is a cause of app incompatibilities.
Compared to previous evolution studies, ours also spanned a much
longer period of time (of eight years). Recently, we started looking
into developers’ intentions for app compatibilities [48], which
provides another angle of understanding the causes of
incompatibilities but limited to installation-time issues.

9 CONCLUSION AND FUTUREWORK
We conducted a large-scale study of app compatibility issues in
Android, concerning the occurrences of these issues at installation
time in 62,894 apps and those exercised at runtime in 15,045 apps.
We characterized both types of compatibility issues in terms of
their prevalence, distribution, and evolutionary patterns over an
eight-year span from 2010 through 2017. We examined the
relationships between app incompatibilities and the API level that
was specified in apps themselves and that was used by the device.
We introduced two derivative app properties relevant to
incompatibilities, app lapse and API lapse, and investigated the
correlation between them, along with other individual
app/platform properties, with compatibility issues at installation
and run time. This study design has enabled us to discover many
new findings, which further led us to novel lessons regarding
compatibility issues in Android apps and to practical
recommendations for dealing with those issues. Part of our future
work is to expand our study by running the experiments on more
devices of various hardware configurations to gain deeper
understanding of hardware relevance to app incompatibilities.
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