
September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

International Journal of Image and Graphics
c© World Scientific Publishing Company

Parallel Rendering for Legible Illustrative Visualizations
of Dense Geometries on Commodity CPUs

Haipeng Cai

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, Indiana 46556, United States

hcai@nd.edu

Received (26 June 2015)
Revised (21 September 2015)
Accepted (XX XX XXXX)

This paper presents a parallel visualization technique for illustrative rendering of dense
three-dimensional (3D) geometry data sets. Our approach maps the depth information in each
geometry onto various visual dimensions of graphical representations, including shape, color,
brightness, transparency, and size, to achieve legible display in dense geometry environments where
visual clutters often hinder perception and navigation in the visualizations. At the same time, we
leverage legacy CPU computing power to overcome performance challenges as a result of the
depth-dependent illustrations used for the visual legibility enhancement. This is realized by a novel
parallel rendering algorithm we developed particularly for illustrative visualizations of
depth-dependent stylized dense geometries at interactive frame rates. While the computation could
be performed atop modern GPU devices, we target a parallel visualization framework that enables it
to efficiently run on commodity CPUs, which are much more available than GPUs for ordinary users.
We evaluated our framework with visualizations of depth-stylized geometries derived from 3D
diffusion tensor MRI data, by comparing its efficiency with several other alternative parallelization
platforms with respect to the same computations. Results show that our approach can efficiently
render highly dense 3D geometry data sets and, thus, it offers not only an alternative and
complementary, but also more adoptable, solution to users in contrast to parallel visualization
environments that rely on GPUs.

Keywords: Illustrative visualization; parallel rendering; 3D geometry; depth-dependent rendering;
stylized visualization; visual legibility

1. Introduction

When visualizing large-scale geometrical data such as dense tubes or simply polylines,
one of the critical issues lies in the visual perception in the depth dimension due to
inherent clutters or occlusions as a result of overlapping graphical objects and/or
structures. To improve the overall visual legibility of three-dimension (3D) data
visualizations, mapping depth information to various visual variables of graphical
representations can be an effective means for enhancing depth perceptions, especially
during user interactions in the context of interactive visualizations.

On the basis of the semiology of graphics 13, various visual variables, such as size,
color, brightness (value), and transparency, etc., can be used for the depth mappings. For

1



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

2 Haipeng Cai

instance, a linear mapping from per-vertex depth value to the radius (i.e., the size) of a
tube in a visualization of dense 3D geometries can give users a visual cue for discerning
depth positions as the radii monotonically decreases along the viewing direction. Similarly,
a consistent mapping from depth to color provides a constant correlation between the view
distance from the viewer to the geometries and the color, thus it helps the viewer navigate
the visualized data set along the depth direction. In both cases, better depth perception can
be obtained to enhance the overall legibility of the rendering in the visualization.

To render the depth-dependent visualizations at interactive frame rates, real-time
computation involved in the depth mappings is desirable and usually required. In that
regard, there are two major computation-intensive steps to be performed every time depth
reordering is needed—for example, the data view is changed as a consequence of rotating
the visualization. First, depth values are calculated according to updated viewing
directions and sorted along those directions. Second, mappings are computed and the
geometries are rendered over again to update the visualization. Concisely, depth sorting
and re-rendering should be performed once depth order is changed due to view
transformations which disrupt the visual distance from users to individual geometries. To
obtain an interactive frame rate of such visualizations, therefore, these computations need
be performed in a real-time fashion, which have been proven difficult either with
sequential approaches or by direct use of general-purpose parallel-computing facilities.

To address such performance challenges, it is reasonable to consider parallelizing the
depth-dependent visualizations for interactive rendering. While GPUs are being
increasingly applied in many modern parallel computations and, indeed, visualizations of
large-scale dense geometry data could be a perfect fit for GPU computing platforms, we
aim at a cheaper solution to the same challenges. In particular, we target a solution that
can be a useful complement to the GPU computing paradigm, especially when GPU
devices and related high-end hardware configurations are not readily available. In fact,
this is mostly true since GPUs are generally much more expensive than ordinary computer
users would like to afford for tasks like visualizing dense geometries.

In this context, we present a parallelized illustrative visualization approach that enables
real-time computations for interactive depth mappings hence enhanced visual legibility in
3D visualization environments. Our technique utilizes the message passing interface (MPI)
in collaboration with the Visualization ToolKit (VTK) 16 while extending current VTK
facilities for the purpose of performance optimization. Through the optimized coordination
between a parallel depth ordering algorithm and parallel rendering method with customized
data structures for real-time depth mappings, our approach has been shown as an efficient
solution in visualization use scenarios involving dense 3D geometry data sets.

We applied our approach to depth-dependent 3D dense geometry visualizations with
depth mapped to primary visual variables, and have obtained interactive rendering speed
with either single variable mapping applied or multiple variable mappings combined. It is
noticeable that even with the combination of mappings from depth to size and those to any
other visual variables, in which two passes of depth sorting and rendering plus geometry
generation from polylines are all required for each frame, our approach has still been able
to render the dense data sets at interactive frame rates.



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 3

The main contributions of this paper are the legibility-enhanced visualization of dense
3D geometries and the CPU-based parallel rendering scheme. While we demonstrate its
application only in context of illustrative visualizations of geometry data, the parallel
rendering can also be applied to relevant other performance-critical scenarios where, for
example, real-time sorting of vertices is needed.

The rest of this paper is organized as follows. Section 2 highlights the legibility issues
encountered in our visualization scenarios with existing approaches that motivate this
work and gives necessary background necessary for understanding our approach and
experimental data set. Then, we describe the details about our approach in Section 3 and
key implementation issues in Section 4. Section 5 presents our empirical studies and
evaluation results, followed by an extended discussion on the implications of those results
in Section 6. We discuss previous research related to our approach in Section 7 and give
concluding remarks finally in Section 8.

2. Motivation and Background

This work was originally motivated by our research on visualizing the diffusion tensor
magnetic resonance imaging (DT-MRI or DTI) data sets 6,4. As an advanced MRI
technique, DTI has been shown advantageous over other imaging techniques in enabling
in vivo investigation of biological tissues. Specifically in our work on scientific
visualizations targeting neuroscientists and radiologists, we are primarily concerned about
the DTI model of human brains. One way to visualize the brain DTI data sets is to, via 3D
tractography, reconstruct the geometrical model of the distribution and connectivity of
neural pathways in the brain white matter. For our end users (i.e., the domain scientists),
these pathways represented by 3D geometries (e.g., polylines and tubes) can greatly assist
with understanding the internal structure of brains hence diagnosing cerebral anomalies
and planning neurological surgeries 4,7.

However, under a common data-acquisition setting (e.g., a scanning resolution of
0.9375mm x 0.9375mm x 4.52mm), the resulting 3D DTI geometry model usually
contains over 10,000 polylines each consisting of up to 100 line segments. What is more
challenging is that not only is the scale of these geometries quite large, but also they are
extremely dense, reflecting the cramped layout of neural pathways in human brains.
Consequently, directly rendering such highly dense geometries in a 3D setting ends up
with visualizations full of visual clutters 6, making it quite difficult for domain scientists
to explore hence understand the brain model.

Moreover, streamtubes 8 are usually more preferable than polylines as they are able to
convey more data characteristics, such as shape, size and orientation, of the brain neural
pathways. Unfortunately, streamtube visualizations tend to suffer much more greatly from
legibility issues such as visual clutters than polyline representations due to the need for
expressing the added data properties. In fact, previous studies have shown that even
reaching a region of interest in a dense streamtube visualization appears quite difficult
even with aids of specialized interaction facilities 7,5. Despite of a large body of previous
research on visualizing DTI data sets 4, existing approaches mostly turn to render the data



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

4 Haipeng Cai

sets with different metaphor or graphical representations (e.g., visualizing the underlying
tensor field itself or showing only higher-level abstractions of the data model), missing the
benefits of facilitating the comprehension of the spatial structures and internal
connectivity of the brain.

To address the legibility issues in the 3D visualization of dense data set, an important
and effective approach is to enhance depth perception as the loss of depth information
accounts largely for the difficult navigation in 3D rendering environment 14,26. And depth
mapping to various visual elements can greatly alleviate that difficulty as it provides
additional visual cues that help viewers orientate themselves along the depth dimension.
On the other hand, however, such mappings can also substantially increase the overhead
of rendering, which is particularly true in interactive visualizations as in our situation.
While the modern GPU computing architecture is designed to address challenges in
graphics rendering performance, the commodity CPUs are more commonly seen in legacy
computing platforms. Thus, a much cheaper solution that provides real-time
visualizations with depth-enhanced illustrations seems to be right in demand.

3. Approach

3.1. Depth Dimension Management

Visual legibility of two-dimensional (2D) graphical representations can be characterized
by graphical density, angular separation, and retinal separation 13. Further, retinal
separation is defined by six visual variables: size, color, shape, value, orientation and
texture. Motivated by the legibility rules defined in terms of these dimensions, we explore
the visual legibility issues in 3D data visualizations by examining 3D legibility
dimensions. While our exploration is still based on the 2D legibility framework, certain
expansion is required to characterize legibility in 3D environments. To that end, we
expand that framework from 2D to 3D by adding the depth-separation dimension, which
is characteristic of 3D data visualizations in general as well. We also examine how typical
retinal variables affect the legibility of 3D visualizations by investigating visual encodings
that map depth information to each of those variables separately and combinatorially.
Through such encodings, users are given visual cues to better discern depth locations so
that the overall legibility of the visualization can be enhanced.

Specifically, in our 3D legibility framework, we reused the three variables, size, color
and (brightness) value, from the 2D legibility framework directly, and added one more
variable, transparency, which plays an important role in depth perception in 3D geometries.
In our visual encodings, depth information of geometries is encoded either by a single
visual variable alone or by multiple variables combined. By comparing different encodings,
we examine effects of those visual variables on the depth-separation dimension hence the
overall 3D visualization legibility.

3.2. The Parallel Visualization Pipeline

Our parallel visualization pipeline is outlined in Figure 1. The parallelism is realized
through the MPI infrastructure and the visualization powered by the VTK with



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 5

Fig. 1 The overview of our parallel visualization pipeline. The data partitioning is done in
the master process: for N processes, the master equally divides the entire data set into N
partitions, keeps one partition for itself, and then sends each of the other partitions to one
of the N−1 slave processes.

parallelization supports. Among the four processes shown in the figure, the master
process P0 is responsible for data I/O, visualization interactions, and coordinations that
are required for a parallel rendering with consistent depth mappings, and for rendering
local data partitions as also done by all slave processes. The collaborations between the
master process and slave processes involve all key steps in the pipeline, from data
decomposition to parallel depth sorting and geometry rendering.

3.3. Data Decomposition

Data decomposition is usually an essential part of a parallelization mechanism. Although
the concrete decomposition scheme can be very much dependent on the interrelations
among data components, and there are different levels of granularity at which the data
components are defined, it is natural to split the whole data set into independent partitions
such that data processing of each partition can be performed in parallel. In the case of 3D
geometries, for instance, a single geometry unit (e.g., a polyline or tube in the DTI model)
is regarded as a unit component and vertices on a geometry should not be assigned to
different partitions.

In addition, to maximally harness the computing resources available, we equally
decompose the whole geometry model among all partitions, and then evenly distribute the
computational tasks for sorting, mapping, and rendering to all processes. This simple data
partitioning scheme is efficient for our case of dense-geometry rendering because, for one
thing, there is no data or semantic dependency among all geometries, and for another, task
load for each process is closely equal to others even if the master process takes certain
additional roles of management and coordination. Moreover, our data decomposition
strategy enables the independence of partitions on view updates: each process deals with
the partition of the entire geometry model assigned to it, including updating the depth



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

6 Haipeng Cai

Fig. 2 Illustration of data partitioning and pixel-wise compositing in our framework.

mapping and refreshing the visualization, independently of other processes dealing with
the rest of the model; the decomposition scheme itself does not change in the event of
viewpoint (camera) changes (arising from user interactions, for instance). However, data
decomposition in general itself is a separate topic and there are no universally optimal
solutions, and probing the cost-effectiveness tradeoffs and impacts on parallelization
performance of different decomposition strategies is out of the scope of this work.

When using MPI as the underlying parallelization support, the visualization data set is
decomposed according to the local process id (LocalProcId) and total number of
processes specified (ProcNum). Precisely, suppose a total of n data partitions is intended,
given all the data components C0,C1,C2, · · · ,Cn−1 in the equal-partition scheme, local
sub-range of data for process i will be {Csidx,Ceidx}, where
sidx = n/ProcNum ∗ LocalProcId,eidx = n/ProcNum ∗ (LocalProcId + 1), for the
starting and end index of the data partitions, respectively. Specially, the last process may
take more or less data components than others if n is not exactly divided by ProcNum, in
which case eidx = n. Figure 2 illustrates this data decomposition scheme while showing
the overall picture about how the depth-stylized visualization is rendered in parallel.

3.4. Parallel Depth Sorting

3.4.1. Per-vertex Depth Ordering

In application scenarios like the 3D stylized visualization of dense geometries, depth
information of each vertex (or other geometry units such as triangles and stripes) can be
flexibly mapped to different visual variables, such as size, color, and transparency, to
assist with visual perception and navigation. However, despite of which particular
mapping is applied, such mappings must be consistent regardless of the current user
viewing directions in order to maintain depth perception hence visual legibility along the



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 7

depth dimension. In other words, all the vertices (or other geometry units) need to be
ordered along the current viewing direction so that they can be consistently mapped to
visual variables initially assigned.

Thus, once the viewing direction changes, which typically occurs when users rotates
the view, those vertices need to be reordered before mappings are updated to refresh the
visualization. Concretely, in the case of dense-geometry rendering, depth ordering for
vertices is required if a depth-dependent size encoding is applied. An example of such
encodings is that a tube tapers or grows in its radius along the depth dimension.

3.4.2. Real Time Sorting

From the above discussion, we can see that, for our visualization scenarios at least, depth
ordering is necessary and real-time depth mapping relies on real-time depth sorting. In fact,
(re-)sorting attributes (e.g., depth) of geometries (e.g., vertices) is commonly required in
interactive 3D visualizations when the attributes change during the interactions to address
the object visibility problem. Note that depth buffering (i.e, Z-buffer) alone is not sufficient
for our illustrative visualizations since we need to maintain consistent visual encodings
with respect to various visual elements such as size and color.

For the per-vertex depth sorting, the computation is essentially sorting a sequence of
floating-point numbers. For other geometry units, the computation can also be reduced to
the problem of per-vertex depth sorting. For instance, if we want to discern the depth
locations only at the level of tubes rather than that of vertices (i.e., all vertices on a tube
have the same visual-variable value), a vertex can be selected to represent the entire unit,
and then the per-geometry sorting becomes sorting the selected representatives—how
representative vertices are chosen depends on particular application needs. Therefore, we
generalize the depth sorting problem into the sorting of a sequence of cells. Practically,
the cell can either contain a single numerical value such as a floating-point number or be a
packed data such as a structure including multiple fields. In our case, the concrete
structure of the cell is determined by the specific depth mapping or chosen combination of
multiple mappings because different mapping requires different granularity at which the
visual elements need to be distinguished (e.g., at the levels of vertices, lines, or tubes).

While there are a rich set of parallel sorting algorithms freely available 2, they mostly
serve the solitary purpose of sorting and are usually implemented as stand-alone parallel
applications. Since our ultimate goal is to parallelize dense geometry visualizations in
which depth mappings are integrated, we need a holistic parallel framework where the
sorting algorithm works together with other steps, such as depth mapping and parallel
rendering, in such a way that maximizes the overall visualization performance. In
contrast, we integrated our parallel sorting algorithm into the holistic illustrative
visualization pipeline (Section 3.5), that includes data partitioning, and fitted it with
efficient depth mappings (Section 3.6.1).

We adopt mixed sorting algorithm for our parallel depth sorting by the following key
steps. First, each process updates the depth values (z-coordinates) of local vertices
through simple vector arithmetics using the current camera parameters (focal point and



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

8 Haipeng Cai

position, etc.). Then, every process sorts vertex depth values in the partition assigned to it
using a common quick-sort algorithm and then sends the sorted depth information to
master process once finished. Finally, the master process gathers locally sorted partitions
and performs either a multi-way merge sort or multiple two-way merge sorts. Given our
data decomposition strategy, we employed the latter scheme on the master process, which
is more efficient because an iterative two-way merging can be performed once a sorted
partition is received from a slave process without waiting all processes to finish their local
sorting. Algorithm 1 shows how this parallel sorting algorithm works while illustrating
how the real-time depth mappings fit the parallel visualization framework as a whole.

3.5. Parallel Geometry Rendering

In stylized geometry visualizations, the primary performance challenges come from two
sources: depth sorting and geometry rendering. For each updated frame, the whole
geometry model needs be rendered over again after depth sorting to reflect the depth
mapping updates. Although both are critical for a real-time frame rate, the rendering part
(Tr) usually takes a larger proportion of the total frame refreshing time (T = Ts +Tr) than
the depth sorting time (Ts). In one sample test with a geometry date set of 140,000
vertices, we found that Ts/T was less than 10% in the illustrative visualization where
per-vertex depth was mapped to vertex color. This suggests that the rendering phase can
be the main bottleneck for the overall visualization performance. In other words,
interactive depth-stylized visualization depends on real-time rendering of the
depth-mapped geometries. Nevertheless, as mentioned earlier, the proposed approach
aims at a cheap and readily applicable parallel illustrative visualization solution based on
commodity CPUs, rather than resorting to specialized architecture like GPUs. Our
approach to parallel rendering simply consists of two major steps.

3.5.1. Concurrent Local Rendering

After data decomposition, we first deploy the local partition to each process. Here we refer
to as a process any basic program unit of computation, which can be a single processor on a
multiple-processor platform, a single core on a multi-core processor, or a worker thread on
a single core processor. For each rendering frame, all separate renditions, each performed
by a single process, are aggregated into a single holistic rendering that is only visible on
the one of the processes called master process, which is randomly elected from among all
processes at runtime. This aggregation is practically realized by means of pixel-wise image
compositing as the second step detailed below.

3.5.2. Pixel-wise Compositing

When each process finished its local rendering of the partition assigned to it, the rendering
ends up with a set of pixels in the frame buffer. As such, pixel-wise compositing is in
essence a process of compositing frame buffers. In practice, to reduce computational
costs, compositing only the color buffer and depth buffer is sufficient for our visualization



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 9

Algorithm 1 integrated parallel depth sorting and mapping

1: numProcs← total of processes
2: myId← local process rank
3: numPts← total number of vertices in local partition
4: Gather all numPts values into array allNumPts
5: idoset← 0
6: for i = 0→ myId−1 do
7: idoset← idoset +allNumPts[i]
8: end for
9: for i = 0→ numPts−1 do

10: depth[i].vd ← depth value of the ith vertex in local geometries calculated from
camera parameters

11: depth[i].id← i+ idoset
12: end for
13: sort depth according to the vd field using qsort
14: Sum up all numPts to totalPts
15: if myId == 0 then
16: oset← 0
17: tdepth[0..numPts−1]← depth[0..numPts−1]
18: for i = 1→ numProcs−1 do
19: Receive tdepth[numPts+oset.numPts+oset +allNumPts[i]] from process i
20: inplace merge tdepth[0..numPts+oset.numPts+oset +allNumPts[i]]
21: oset← oset +allNumPts[i]
22: end for
23: for i = 0→ totalPts−1 do
24: hashIndex[tdepth[i].id]← i
25: end for
26: Broadcast hashIndex
27: else
28: Send depth to master process 0
29: Receive hashIndex from master process 0
30: end if
31: for i = 0→ numPts−1 do
32: Rankglobal [i]← hashIndex[i+ idoset]
33: end for

purposes. Although in other application contexts alpha buffer may also have to be
considered, for brevity, here we describe compositing for these two main types of frame
buffer only (alpha buffers can be composited in similar ways).

The compositing process is performed in the following three steps: (1) each process
fetches pixels from the frame buffers in its local process memory space; (2) all slave (as
opposed to the master) processes send all the buffers to the master process but not its local



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

10 Haipeng Cai

Fig. 3 An example of the pixel-wise compositing in our parallel visualization framework.
The dense geometry (tube) visualization with depth mapped to size, color, and transparency
(three visual encodings combined) is parallelized using 4 processes. Process 0 (master)
gathers all parallel rendering from slave processes and composites them together with its
own local rendering to produce the final holistic rendering.

buffers though; and (3) the master process performs a pair-wise buffer compositing every
time it receives the buffer from a slave process until all slave buffers are composited.
Finally, the master process writes the composited depth and color values back to
corresponding local frame buffers to create a complete rendering. Figure 2 illustrates this
pixel-wise compositing process, of which an example is shown in Figure 3 where four
processes are utilized to parallelize the rendering phase.

In addition, when rendering geometries in parallel in the background, the
parallelization should be transparent to users. So except for special needs for showing
slave rendering, no rendering partitions should be visible and the composited
visualization is displayed on the master process only. Furthermore, there are two optional
optimizations for the compositing process, which we have included in our current
implementation of the visualization framework. First, off-screen rendering is applied to
avoid slave rendering. This is not only to meet the need of slave renderers for invisible
rendering but also, and more importantly, to improve the overall rendering performance.
Second, creation of rendering windows on all slave processes is avoided. Depending on
practical graphics platforms used, a less ideal solution would be to hide the rendering



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 11

windows if it is necessary to create them for correct rendering. Example case includes that
a window must be created to establish a context for the drawing function to take place in.
Finally, synchronizing camera parameters across all processes before any process starts to
render can simplify the last step of the compositing. As adopted in our approach, a simple
way of realizing this synchronization is to broadcast key camera parameters (focal point
and position, for instance) retrieved from the master process to all slave processes.

3.6. Depth Mappings

Depth mappings are applied to stylize geometry units according to their depth values so
that a better perception in the 3D environment can be obtained. Depending on how the
depth value is mapped to the value of different visual variables, a depth mapping is either
a linear or non-linear function f (v) = V (Rank(vd)), where Rank(x) is the rank (order) of
x in the sorted sequence, vd is the depth value of a single geometry unit, and function V
maps the rank sequence to the domain of the associated visual variable, [Vmin,Vmax].a In the
case of linear mapping, for instance,

V (x) =
Vmax−Vmin

xmax− xmin
(x− xmin) (1)

When considering size (s), color (c), value (i), and transparency (t) as the visual variables to
which depth values are mapped, V (x) is a scalar function. Also, V (x) is a unitary function
for single mapping, while multiple mappings are simply an aggregation of multiple single
mappings. For example, when mapping depth to size, color, and transparency at the same
time, V : x→ (s,c, t) is simply V : x→ (S(x),C(x),T (x)), where S,C,T are all unitary
mappings for the size, color, and transparency, respectively.

3.6.1. Depth Mappings in Parallel Rendering

In the context of geometry rendering, depth mappings are easily performed according to
the simple function evaluations as described above. However, depth mappings need be
parallelized as well in order to collaborate with parallel rendering for optimized
performance of the illustrative visualization. In our parallel visualization framework,
depth mappings are required to be coherent in the geometry model as a whole. Therefore,
simply mapping local geometry on each process independently and then compositing the
locally depth-stylized rendering would not produce correct visualizations.

On each individual process, the input of depth mapping is the rank of depth values of
local geometries and, as a result, each process will only have the local rank for every
vertex in its local geometry partition. However, the global rank of a vertex in the range of
the whole geometry must be retrieved for a coherent global depth mapping. With global
ranks of local vertices, every process can render its local geometry independently yet
correctly due to the correct mappings from the local vertices to the partition of the range

aFor brevity, we mostly use the case of vertex to illustrate our approach, which however can be applied similarly
to other types of geometry units.



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

12 Haipeng Cai

Fig. 4 Hash index for efficient depth mapping in support of interactive illustrative
visualizations in our framework.

of V (Rank(vd)) corresponding to those vertices. Figure 4 shows the outline of the
integrated parallel sorting and depth mapping algorithm in our parallel visualization.

3.6.2. Hash Index

To obtain the global depth-sorting rank of each local vertex, a straightforward solution
would be to gather all locally sorted partitions together onto the master process, sort all
depth values, and then broadcast the resulting ranking, stored in an array, to all other
processes. As such, the global rank would be retrieved from the depth ranking received
for evaluating f (v) for each vertex v. However, the retrieval would be of a O(N2) cost for
all N local vertices, which can be too prohibitive to reach an interactive frame refreshing.
Instead, for a real-time global depth ranking, we create a global hash index for the whole
geometry immediately after the depth sorting on the master process completed.

In both the local and global depth arrays, an index is kept for each depth value at each
element and the depth array is essentially a sequence of vector (d, Id) where d is the depth
value and Id is the index, which is initialized with the global depth rank of a vertex in
the original input geometry model. As such, wherever a depth array element is moved
after sorting, its original rank, taken as a vertex identifier as well, can be always retrieved
immediately. We use this id to associate the unsorted with sorted depth array through the
hash index. Figure 4 illustrates this hashing process used for our depth mappings.

3.6.3. Depth-mapping Updating

As we discussed earlier, during the interactive exploration of the depth-stylized
visualizations, mappings need be updated whenever the depth order of geometries along
the current viewing direction changes, and the mapping updating is then reflected through
rendering refreshing. For that purpose, our technique actively triggers the frame



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 13

refreshing once the mapping is updated. Two strategies are available for the
synchronization between frame refreshing and mapping updating such that the former is
immediately triggered upon the occurrence of the latter.

First, a polygonal data filter, which is used for depth sorting, can be inserted into the
demand-driven rendering pipeline so that rendering update will be triggered when either
the input or output of the filter is modified. However, besides updating depth mappings,
geometry cloning between the data filters is also required, which can greatly slow down
the visualization frame rate. It is noteworthy here that the geometry itself is not updated at
all when the depth mappings change. The other mechanism is to explicitly invoke frame
refreshing via user-interaction handling, with which only mappings are recomputed while
no geometry cloning is involved. We employ the latter for a better performance. In
addition, for the interaction-driven updating strategy, we only directly handle user inputs,
such as mouse interaction, that may change the depth order of geometries on the master
process. When responding to such user inputs, the master process invokes frame updating
after finishing mapping calculations and then sends a remote method invocation (RMI)
message to all slave processes. In the RMI handler on each process, mapping updating is
first triggered, followed by an active call to frame updating.

4. Implementation

Our parallel depth-stylized visualization is implemented in C/C++ using VTK with
parallelization supports of MPI. In the parallel sorting algorithm, the qsort routine is
adopted from the standard C library for local quick-sort on each process, and generic
in-place merge algorithm in C++ STL library is used for iterative two-way merge sort on
the master process. We have employed image-compositing functionalities provided by
VTK with necessary extensions that tailor their functions for our customized pipeline
components in order to implement the pixel-wise compositing.

In addition, our depth sorting filter is extended from VTK’s filter for polygonal data
depth sorting and also from an interactor component extended from VTK’s track-ball
camera interactor, which work together to realize the interaction-driven mapping updating
mechanism. To explicitly trigger frame updating, user-defined RMI messages are added
and the callbacks are registered to VTK’s multiple process controller before parallel
rendering starts. With these extended components, the interactor responds to data rotation
by broadcasting a mapping-updating RMI message to all slave processes, and then
mapping calculations and frame update are invoked in the callback of the RMI message.
The visualization program is simply running as a MPI application, thus the number of
processes can be specified when launching the MPI runtime. As we discuss in detail in
Section 5, an optimal number of processes to be used depends on the configurations of
underlying hardware architecture.

Figure 5 shows the outlook of our parallel visualization interface (as in other sample
visualizations, we omit the colormap to highlight the rendering itself; our system provides
options to show or hide colormaps). The GUI is created using Qt 4.0 by which all the
interaction widgets are set up for the depth-stylizing customizations. In order to achieve



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

14 Haipeng Cai

Fig. 5 The outlook of our parallel depth-stylized 3D geometry visualization interface.

better performance, parallel processing is applied only to the rendering widget and all
other GUI components are created on the master process only. GUI interactions have to be
explicitly relayed from the master process where they are triggered to all slave processes
so that the slave renderings can reflect changes in the illustrative rendering settings as a
result of those interactions. To that end, we register another type of RMI message and
define a callback devoted to realizing the RMI for updating slave renderings. RMI
messages are easily transmitted by MPI communications. Note that beyond the visual
encodings and illustrative geometry rendering we presented in this paper, our framework
has also integrated additional features, such as tube halos and volume rendering. We omit
discussion on them in this paper in order to focus on the central topic.

5. Empirical Results

We have applied our parallel visualization framework to interactive depth-stylized 3D tube
visualizations of DTI data sets with single and multiple depth encoding schemes applied in
order to enhance users’ depth perception in the 3D visualizations. Figure 6 shows sample
renderings produced by our framework for one of the DTI data sets.

Additionally, using the implementation as described above, we evaluated the
efficiency of our parallel visualization approach by first measuring the overall rendering



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 15

Fig. 6 Our parallel visualization of a DTI model using tube shape-encoding with single
mapping, including depth to size (upper left), color (upper right), value (middle left),
and transparency (middle right), respectively, and multiple mappings, including depth to
size and color combined (bottom left) and to value and transparency combined (bottom
right). We use these different mappings with typical visual variables to communicate depth
information in this 3D DTI tube-based visualizations.



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

16 Haipeng Cai

Fig. 7 Performance for depth-stylized geometry visualizations using our parallel method
compared with sequential visualization approach. Both single depth encoding and multiple
depth encodings are applied in the experiment and performance results compared between
the two (parallel and sequential) visualization approaches.

cost, including that of depth sorting and MPI communication, and then comparing our
method to other alternative parallel rendering approaches. Next, we report the results
based on many runs of illustrative rendering of a selected DTI model on an Intel(R)
Core(TM)2 Quad 2.66GHz processor with 4GB DDR2 memory.

5.1. Parallel Performance

We measured the proposed parallel visualization method by first comparing its rendering
performance against sequential alternatives, for different scales of 3D geometry data sets.
Specifically, for each test data set, the total time (in milliseconds) spent by our approach
for rendering a single frame of the interactive visualization is compared to that by the
sequential alternative for performing the same computation. Here in our application
scenarios, we visualize 3D depth-stylized tubes generated from diffusion tensor MRI data
with different depth mapping schemes applied for the tube illustrations.

As shown in Figure 7, parallelization enables interactive rendering performance for our
depth-stylized geometry visualizations, which is hard to obtain with a sequential approach.
Each number of the rendering-time measures is an average of the total rendering cost over



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 17

Table 1 Effects of the number of processes on the parallel performance in terms of time
costs in milliseconds, on parallel speedup, and on efficiency. The data points were obtained
from an experiment running our parallel visualization framework for the visualizations of
9,635 tubes consisting of 1,447,005 vertices, with depth mapped to color.

Metrics
Number of Processes

2 3 4 5 8 12
Time (ms) 409 359 347 401 469 642
Speedup 1.72 1.95 2.02 1.75 1.5 1.09

Efficiency 0.86 0.65 0.51 0.35 0.19 0.09

100 continuous frames. For the parallel rendering, the time measure included the cost of
communications among the (four) processes we used in our experiments.

Without loss of generality, we differentiate only two instances of visual encoding
schemes here, depth to color only and depth to size and color combined. These two
instances may represent two disparate types of computations in terms of complexity for
depth encodings in our study. For the single-variable mapping, from depth to color, there
is only one pass of depth sorting beyond the rendering phase. For the multiple-variable
mappings, from depth to both size and color at the same time, there are two passes of
depth sorting plus the tube mesh generation besides the rendering phase. Of these two
passes of depth sorting, one is for mapping the depth of geometries to the sizes of them
before geometries of different radii are generated. The other is for mapping the depth of
tube geometries to the color of them after tube geometries are generated from polylines
(the input format of the geometry model).

To examine the effects of the number of processes on the visualization performance,
we run the comparative study with different numbers of processes used in our parallel
rendering pipeline. The main results are shown in Table 1. As can be seen, performance
increases monotonically with the number of processes before that number reaches four.
However, beyond four processes, the performance decreases, also monotonically, when
the number continues to grow. This may be explained by the fact that the CPU we used
has four cores—running the visualizations on a CPU of more cores is expected to see more
speedups before reaching the cutoff point. On the other than, it seems to be counterintuitive
that with four cores the parallelization achieved a speedup of 2x only (while ideally it
should have been around 4x). The main reason for the unideal speedup is that, according to
the architecture of our framework, the rendering of all data partitions is not fully parallel—
the pixel compositing task needs to wait for the other rendering tasks to complete before it
can start, and the compositing task itself, which is more expensive than the slave rendering
tasks, is not parallelized.

It is also important to note that although we used a quad-core CPU for this
experiment, and, as the results suggest, the architecture (e.g., number of cores) of
computing hardware does affect the visualization performance, our technique itself does
not require the CPU to have multiple cores, nor does it have any other specific



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

18 Haipeng Cai

Fig. 8 Performance for partially-parallel depth-stylized geometry visualizations using our
approach compared to that using KXAAPI with respect to the same computations (for
depth sorting). Performance of the sequential approach is also included for reference.

requirements concerning the hardware architecture—the goal of our approach is to offer
an efficient illustrative rendering solution for legible visualizations in dense geometry
environments by maximally harnessing any commodity CPUs available to users.

5.2. Peer Comparisons

Beyond the performance comparisons between our technique and sequential alternatives,
we further investigated the efficiency of the proposed approach to peer parallel
alternatives, for depth-stylized geometry rendering. We implemented the 3D geometry
visualization with depth-stylizing using both partially- and fully-parallel rendering. For
both configurations, we gauged the total rendering time with five different scales of 3D
tube geometries stylized by depth-dependent color and/or size encodings, similar to the
methodology for measuring performance gain of parallel over sequential visualizations
presented in Section 5.1. We also used the same experiment settings as those in the first
study, including the quad-core CPU.

For the partially-parallel configuration, only the depth sorting is parallelized while the
rendering phase is sequential, with which we intend to show the advantages of our
approach with respect to meshing the sorting parallelization with the rendering
parallelization. We employed the Kernel for Adaptive, Asynchronous Parallel and



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 19

Fig. 9 Performance of fully-parallel depth-stylized geometry visualization using our
approach compared to that of Paraview IceT with respect to the same computational tasks.
Performance of the sequential approach is also included for reference.

Interactive programming (KXAAPI) framework 11 to sort the depth information of the
whole geometry model on the sequential visualization pipeline of VTK. The major result
is depicted in Figure 8, where the y axis indicates the execution time taken by the three
alternative sorting approaches while the x axis lists different scales of geometry in terms
of the numbers of vertices sorted. As can be seen, the KXAAPI took almost as much the
time for the sorting as the sequential algorithm, and the growth of time expense with the
growing geometry sizes is also very close to the sequential approach. A possible reason is
that the KXAAPI framework focuses on the overall parallel programming facilities rather
than sorting performance only. In contrast, the results suggest that our approach appears
to be much more efficient, outperforming the peer solution by over two times: not only
did it take significantly less time on any of these five data sets, the time cost also grows
much slower when the data size increase, suggesting a better scalability of our algorithm.

For the fully-parallel configuration, both depth sorting and the overall rendering
pipeline are parallelized. For an alternative fully-parallel visualization solution to
compare, we implemented our depth-stylized geometry visualization using the IceT
module in Paraview 17. We used the same performance metrics used in comparative study
with the parallel sorting solution KXAAPI. Specifically, we ported part of the IceT
module as necessary from the Paraview source package to VTK for our experimentation.



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

20 Haipeng Cai

Figure 9 shows the comparisons in the same format as Figure 8. The results clearly
exhibit the advantages of parallelization over sequential computation—there is a large gap
between these two types of computing schemes. Nevertheless, our parallel visualization
solution largely outperformed the IceT based parallelization constantly. In addition, our
approach also appears more scalable than the peer solution, although not as much as seen
in the comparisons to partially-parallel approaches.

6. Discussion

In our application scenarios, we visualize depth-stylized 3D geometries, which is
generated on the fly during visualization rendering. Alternatively, tube meshes can be
produced beforehand to avoid the computational cost of tube generation during the
rendering process. However, we did not adopt off-line tube generation due to performance
considerations. During the interactive visualization, we need to change visual variable
values (e.g., geometry sizes like tube radii) upon depth changes for depth encodings, for
which manipulating geometries during the rendering process can help obtain higher
overall visualization performance than loading preprocessed geometries. For example, it
is more efficient to load line geometries and then generate tubes on the fly for visualizing
geometries with depth to tube size mapping than loading tube meshes as original inputs
and then transforming each geometry to implement the depth encoding.

One interesting observation from our experiment results is that, as the geometry model
size scales up, the visualization performance accelerations are much greater when multiple-
variable depth mappings are applied than when the depth is mapped to one visual variable
at a time only. A possible explanation is that larger portions of the overall computation
tend to be parallelized with multiple-variable mappings than with single-variable ones,
hence the larger gain in the overall rendering performance. This may suggest that it is
promising to scale our framework to more sophisticated visualization contexts where more
computation-intensive steps associated with rendering are involved.

Based on the scalability results shown in Table 1, one may extrapolate that the
visualization performance may continue to grow beyond four processes if we increase the
number of cores in the CPU used in the experiment. Also, in terms of implementation,
given the scalability of the underlying MPI infrastructure to more advanced computing
architectures, including multiple processors, the performance could be further accelerated
on those architectures. However, as we noted before, we do not intend to develop a
parallel visualization solution superior to solutions leveraging sophisticated hardware
such as GPUs, but rather to offer a solution as efficient as possible on cheap commodity
architectures. In this sense, using our approach on an advanced computing platform may
not be the best option: a GPU-based solution may give better performance. On the other
hand, users may consider adopting our framework based on their budgets. For example,
using advanced CPUs (such as those of many-cores) to obtain better performance with
our framework may not be worth it: GPU-based solutions can be more cost-effective if
those advanced CPUs are even more expensive than GPUs.



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 21

7. Related Work

7.1. Depth Enhancement

There has been much previous work focused on technical solutions to the depth
perception issues and visual occlusions in 3D data visualizations. For instance, a rich set
of landmarks and context cues 20 and shading with transparency 12 both help enhance
depth perception while alleviating occlusion problems within overlapping structures.
Focusing on improving depth perception also, Bruckner et al. employ volumetric halos to
increase the 3D legibility of volume visualizations 3. They introduce different halos
according to different ways of halo-volume combination, and use halos to construct
inconsistent lighting, which accentuates depth even further from a different perspective.

Elmqvist et al. 10 give a thorough discussion about occlusion management in 3D
visualizations, where they focused on reducing 3D occlusions. Occlusion management for
visualization is a more general class of visibility problem in computer graphics, which is
concerned about improving human perception for specialized visual tasks, such as
occlusion, size and shape. This method extensively enhanced the legibility of 3D data
visualizations. In contrast, we investigate how to manipulate typical retinal variables 13 in
graphics perception to address depth-wise legibility.

As visualization data sets usually include a large number of overlapping structures,
even direct volume rendering techniques can also suffer from poor depth cues. Using MIP
(maximum intensity projection) rendering 14, however, only few effort is required to
create a good understanding of the structures represented by high signal intensities. This
algorithm adds two different visual cues, occlusion revealing and depth based color. For
the first cue, the MIP color of occluding objects is modified for the same materials as
those at points of maximum intensity; for the second, actual positions of shaded
fragments are used to change their color using a spherical map. In this paper, we explore
depth enhancement in dense geometry visualizations by encoding depth information
using various visual variables.

Ritter et al. 26 employ hatching strokes to communicate shape while using
distance-encoded shadow to further enhance depth perception in their vascular-structure
visualizations. In addition, they achieve real-time rendering performance using
GPU-based hatching algorithm, which is efficient for rendering complex tabular
structures with depth being emphasized. Similarly, we handle tabular shapes in our
visualization scenarios also, but intend to improve depth perception in a much denser 3D
(geometry) date set derived from human brain MRI models. More importantly, our
approach provides a cheaper interactive rendering solution that works on commodity
CPUs in comparison to the GPU rendering facilities they employed.

7.2. Parallel Visualization

Parallelization has been extensively harnessed in data visualizations, especially where
performance becomes a challenge. In 1, the authors developed a scalable and portable
parallel visualization system based on augmenting VTK for efficiently visualizing large



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

22 Haipeng Cai

scale time-varying data. The system they proposed provides parallelism on both task and
pipeline levels, which primarily addresses visualization programmers. Also at a system
scale but even earlier, SCIRun 15 had offered task and data parallelism as a
data-flow-based visualization system running on shared-memory machines with
multiprocessors. This system was later extended to support task parallelism on
distributed-memory architectures 21. In comparison, we present a lightweight
parallelization method for visualizations of large 3D geometries by using existing
facilities, such as MPI and VTK, instead of providing a full-flown integrated system or
extended programming library.

Compared to system-level solutions, a lot more parallelization efforts for visualization
focus on parallel rendering, ranging from photo-realistic rendering 25 to volume
rendering 29 and parallel iso-surfacing 23. Other researchers have probed in more indirect
approaches, such as image composition schemes 18 and data decomposition strategies 28,
to improve polygon rendering performance. More recently, various parallel rendering
algorithms, including sort-first, sort-last, and the synthesis of them, were used and
evaluated on shared-memory computers, yet these algorithms originally targeted
distributed-memory architectures 22. In our work, we also explore polygon rendering
parallelization and employ image composition, but we aim particularly at depth
enhancement for the purpose of providing more legible 3D geometry visualizations, by
overlapping parallel depth sorting with parallel polygonal data rendering.

Note that the parallel sorting problem 19,9, which is at the core of our parallelization
framework here, could be alternatively solved with possibly high efficiency on GPU
platforms using a rich set of existing algorithms 24,27. In this paper, we target a cheaper
solution without relying on high-end computing resources such as GPUs. Alternatively
and complementarily, we use CPU-based parallel sorting algorithms leveraging a single
processor of either single or multiple cores, which is widely available in almost any
modern computers with bottom-line hardware configurations.

8. Conclusion and Future Work

We presented a parallel illustrative visualization framework that enables interactive frame
rates in legibly rendering dense 3D geometries. The framework leverages commodity
computing architectures to offer rendering efficiency for interactive visualizations, and
utilizes flexible depth encodings to enhance the visual legibility in the dense 3D
environment. Our approach has been evaluated using dense geometry models containing
millions of vertices with multiple mappings from geometry depth information to various
visual variables, and shown to be effective for addressing performance issues often seen
in legible dense 3D visualizations like the depth-stylized illustrations we explored in this
paper. We also demonstrated the advantages of our approach, as a commodity-CPU-based
parallel visualization framework, over both sequential alternatives and peer parallelization
approaches including XKAAPI and Paraview Icet. Our results suggest that the proposed
framework can provide an effective option for parallel visualizations, especially when
only cheap commodity computing hardware is available.



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

Parallel Rendering for Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs 23

The presented evaluation has been focused on the rendering performance of the
proposed parallelization approach, with the empirical assessment on the improvement in
visual perception supposedly provided by the illustrative visualizations is left for future
work. An immediate next step would be to conduct an user study that consists of two
components: a qualitative survey collecting subjective user opinions on the usefulness of
various legibility enhancements of our visualizations, and a quantitative experiment
measuring how the enhanced visual perception improves users’ understanding of the
visualized data set, with respect to a set of predefined user tasks 8, such as identifying an
anomaly in the brain MRI model and recognizing the difference in seeding resolution
applied during the MRI data acquisition 6. More specifically, for the quantitative study,
the task performance can be gauged in terms of the accuracy and time cost for each task
and compared between two groups where one group uses the enhanced features under test
while the other is given the visualizations with corresponding features disabled.

Acknowledgments

This manuscript has been considerably improved thanks to the valuable suggestions and
insightful comments given by anonymous reviewers.

References
1. J. Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka. A parallel approach for efficiently

visualizing extremely large, time-varying datasets. Los Alamos National Laboratory, Los
Alamos, New Mexico, Technical Report LAUR-00-1620, 2000.

2. G. E. Blelloch. A sampling of parallel sorting algorithms. http://www.cs.cmu.edu/
˜scandal/nesl/algorithms.html#sort, 2014.

3. S. Bruckner and E. Gröller. Enhancing depth-perception with flexible volumetric halos. IEEE
Transactions on Visualization and Computer Graphics, pages 1344–1351, 2007.

4. H. Cai. Zifazah: A scientific visualization language for tensor field visualizations. Master’s
thesis, University of Southern Mississippi, 2012.

5. H. Cai, J. Chen, A. P. Auchus, S. Correia, and D. H. Laidlaw. InBox: In-situ multiple-selection
and multiple-view exploration of diffusion tensor MRI visualization. In IEEE Symposium on
Biological Data Visualization, 2011.

6. H. Cai, J. Chen, A. P. Auchus, J. Huang, and D. H. Laidlaw. Measuring seeding resolution depen-
dence of diffusion tensor streamtube visualization. In IEEE Visualization Poster Compendium,
2011.

7. H. Cai, J. Chen, A. P. Auchus, and D. H. Laidlaw. InShape: In-situ shape-based interactive
multiple-view exploration of diffusion MRI visualizations. In International Symposium on
Visual Computing, pages 706–715, 7 2012.

8. J. Chen, H. Cai, A. P. Auchus, and D. H. Laidlaw. Effects of stereo and screen size on the
legibility of three-dimensional streamtube visualization. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2130–2139, 2012.

9. E. K. Donald. The art of computer programming. Sorting and searching, 3:426–458, 1999.
10. N. Elmqvist and P. Tsigas. A taxonomy of 3d occlusion management for visualization. IEEE

Transactions on Visualization and Computer Graphics, pages 1095–1109, 2008.
11. T. Gautier. Kernel for adaptative, asynchronous parallel and interactive programming. http:

//kaapi.gforge.inria.fr/dokuwiki/doku.php?id=start, 2014.



September 21, 2015 19:31 WSPC/INSTRUCTION FILE paper

24 Haipeng Cai

12. P. Irani and C. Iturriaga. Labeling nodes in 3d diagrams: Using transparency for text legibility
and node visibility. Technical report, University of New Brunswick, 2002.

13. B. Jacques. Semiology of graphics: diagrams, networks, maps. University of Wisconsin Press,
1983.

14. J.Diaz and P. vazquez. Depth-enhanced maximum intensity projection. International Symposium
on Volume Graphics, 8:1–8, 2010.

15. C. Johnson and S. Parker. The SCIRun parallel scientific computing problem solving environ-
ment. In Ninth SIAM Conference on Parallel Processing for Scientific Computing, 1999.

16. Kitware. The visualization toolkit. http://www.kitware.com/opensource/vtk.
html, 2014.

17. Kitware. VTK/MultiPass rendering with IceT. http://www.vtk.org/Wiki/VTK/
MultiPass_Rendering_With_IceT, 2014.

18. T. Lee, C. Raghavendra, and J. Nicholas. Image composition schemes for sort-last polygon
rendering on 2D mesh multicomputers. IEEE Transactions on Visualization and Computer
Graphics, 2(3):202–217, 1996.

19. C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to algorithms. The MIT
press, 2001.

20. Y. Li, C. Fu, and A. Hanson. Scalable wim: Effective exploration in large-scale astrophysical
environments. IEEE Transactions on Visualization and Computer Graphics, pages 1005–1012,
2006.

21. M. Miller, C. Hansen, and C. Johnson. Simulation steering with scirun in a distributed
environment. Applied Parallel Computing Large Scale Scientific and Industrial Problems, pages
366–376, 1998.

22. B. Nouanesengsy, J. P. Ahrens, J. Woodring, and H.-W. Shen. Revisiting parallel rendering for
shared memory machines. In Eurographics Symposium on Parallel Graphics and Visualization,
pages 31–40, 2011.

23. S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive ray tracing for isosurface
rendering. In Proceedings of IEEE Visualization, pages 233–238. IEEE, 1998.

24. M. Pharr and R. Fernando. GPU Gems 2: programming techniques for high-performance
graphics and general-purpose computation. Addison-Wesley Professional, 2005.

25. E. Reinhard, A. Chalmers, and F. Jansen. Overview of parallel photo-realistic graphics.
Eurographics 98 State of the Art Reports, pages 1–25, 1998.

26. F. Ritter, C. Hansen, V. Dicken, O. Konrad, B. Preim, and H. Peitgen. Real-time illustration of
vascular structures. IEEE Transactions on Visualization and Computer Graphics, 12(5):877–
884, 2006.

27. E. Sintorn and U. Assarsson. Fast parallel GPU-sorting using a hybrid algorithm. Journal of
Parallel and Distributed Computing, 68(10):1381–1388, 2008.

28. S. Whitman. Dynamic load balancing for parallel polygon rendering. IEEE Computer Graphics
and Applications, 14(4):41–48, 1994.

29. C. Wittenbrink. Survey of parallel volume rendering algorithms. Technical report, Hewlett-
Packard Laboratories, 1998.


