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Abstract—Inter-component communication (ICC) serves as a
key element of any Android app’s implementation. Specifically,
an Android app uses Intents as the main mechanism for ICC
to complete tasks such as switching between different user
interfaces, starting background services, communicating to other
apps on the Android device, and saving or retrieving data
from device storage. Thus, dissecting how an app uses ICCs
to accomplish its tasks is fundamental to understanding the
app’s underlying behaviors. Existing works involving ICCs focus
on resolving Intents and/or mapping ICCs for security analysis
purposes. While the ICC analysis result is potentially informative,
it is difficult to digest on its own and has not been utilized
for app/ICC comprehension. Also, the result is based on static
analysis, and thus does not inform of run-time app behaviors
exercised via ICCs. We propose the first approach to dissecting
Android ICCs via interactive, dynamic visualizations, empowered
by static and dynamic ICC analysis combined. Through multiple
semantically linked views and in-situ interaction features, our ap-
proach enables real-time visual explorations of ICCs as they are
triggered by user inputs to the app under analysis. It conveys rich
ICC information while managing limited visual space through
various visualization design strategies. Our case studies with a
number of commonly used apps have showed promising merits
of the approach for both deep ICC comprehension and security
vulnerability inspection, as well as practical scalability. Our
tool prototype of the approach has enabled quick revelation of
inefficient, intrusive, and malicious behaviors in several popular
apps that were normally hidden to users.

I. INTRODUCTION

As the Android ecosystem increasingly dominates the mo-
bile computing market [1], it is crucial for developers to un-
derstand effective development and security defense strategies
for Android applications (apps). A prominent characteristic of
Android apps lies in their common uses of a communication
model called inter-component communication (ICC). While
ICC has largely contributed to app development productivity
through code reuse and implementation flexibility, it also has
been a main surface for security attacks in Android [2]–[6].
ICCs can expose apps to security threats mainly because the
flexibility they offer also allows malicious apps to either ex-
ploit benign ones [7] or collude with other malicious apps [8].

ICCs are a major obstacle for app understanding as well [7],
[9], [10]. One reason is that ICCs are of various types, based
on the communication scope and linkage specificity [9]. In ad-
dition, ICCs can possibly carry complicated payloads, and link
components both within individual apps and across different
apps [7]. Moreover, ICCs involve sophisticated intermediation
of the Android platform [6]. The primary means for ICC is
Intent, a messaging object that passes the communication con-
tent between components. Thus, dissecting Intent-based ICCs
is an essential first step towards deeply and comprehensively
understanding the behaviors of Android apps.

Various approaches have been proposed to resolve ICC
Intents [10], [11] and map ICCs between components within
or across apps [3], [12], [13]. These approaches are aimed
at identifying security vulnerabilities in Android apps, us-
ing the ICC analysis underneath as an enabling technique.
The resulting Intent data and ICC links among components
have been further utilized for developing more security tools
(e.g., learning-based malware detector [4] and versatile app
classifiers [14]). However, they have not been employed for
developing direct tool supports for more deeply understanding
app behaviors. While potentially useful for high-level compre-
hension of ICC-related app features, the ICC information itself
is not sufficient for deeply examining complex app behaviors
exhibited through sophisticated intra- and inter-app ICCs.

Moreover, existing ICC analysis techniques are based on
static code analysis, thus are subject to both imprecision and
unsoundness due to common obstacles to static analysis (e.g.,
reflection and code obfuscation) [15]. Further, Intent fields
cannot always be resolved statically [16] (e.g., the extras

field). Since it is based on the resolved Intents, static ICC
mapping is impeded alike. In addition, many ICCs have their
target components determined by the Android platform at
runtime. Static analysis has no way to precisely map such ICCs
between components. These technical difficulties result in ICC
information that is often too rough to be practically useful for
understanding how ICC works in an app. Notably, the static
ICC information does not provide an immediate means for
understanding how Android apps actually behave with respect
to the ICCs in the apps exercised at runtime.

In this paper, we propose a novel approach for deeply
understanding Android app construction and behaviors with
respect to ICCs. By combining lightweight ICC profiling
and interactive dynamic visualizations, our approach aims
at offering a practical and effective support for dissecting
complex run-time interactions among app components. Given
an Android app under analysis, we first instrument it by
probing at all ICC API callsites in the app. At runtime, ICC
traces are collected and fed into our visualization framework
while the app is being manipulated. A dynamic ICC call graph
is built on the fly based on the streaming ICC calls exercised
by the user inputs, and is rendered in real time upon new
ICC instances via dynamic graph visualization. In addition, by
leveraging results of static Intent resolution and ICC mapping,
the framework further provides a view of the static ICC graph
of the app that is linked to the dynamic call graph view.
The complete ICC mapping offers an important context for
exploring and navigating in the dynamic visualization.

Through enabling simultaneous visual exploration and app
navigation that are automatically synchronized, our approach
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Fig. 1: Overview of our approach to dissecting ICCs: the technique workflow (left) and the user interface outlook (right).

empowers users to extensively inspect component-level inter-
actions within and at the app boundary hence to deeply under-
stand ICC-induced app behaviors. ICCs are commonly invoked
both in app code and at runtime [16]. The large volume of
ICCs, even only the exercised subset, can quickly constitute
visual clutters in a graph-based visualization. The problem
is further aggravated when all ICC call instances are to be
visualized. To overcome these challenges, we propose various
visual design strategies well-suited for ICC visualizations,
combined with statistical ICC information summaries. The rich
interaction features offered in our visualization framework,
in addition to enhancing ICC understanding, further mitigate
common visual-perception blockades by exploiting human
decision making during the visualization exploration process.

To validate our design, we have developed a tool prototype
for the proposed approach. We also have successfully applied
this prototype to a set of top apps from Google Play in our
preliminary evaluation. In several case studies, our approach
allowed us to clearly observe and digest the app behaviors with
respect to exercised ICCs. More importantly, it has enabled us
to discover abnormally heavy workloads and resource usage
of benign apps on advertisement services in one instance, and
to reveal an inter-app security attack and understand how the
attack is triggered and performed in another case.

In summary, the main contributions of this paper include:

‚ A novel approach to dissecting Android app behaviors
with respect to Intent-based intra- and inter-app ICCs.
To the best of our knowledge, this is the first attempt
that focuses on addressing the unattended difficulties in
understanding ICCs in Android apps.

‚ Visual design strategies and information summarization
schemes that help mitigate visual exploration challenges
in graph visualizations of sizable call traces.

‚ A prototype implementation of the proposed approach,
and a preliminary evaluation for it that shows its practical
scalability and usability. Using the prototype has revealed
abnormal behaviors in widely used benign apps and
demonstrated the detailed process of security attacks.

II. BACKGROUND

The understanding of ICCs involves that of app components,
Intents, and ICCs, of various types, and their relationships.
Component types. Android features a framework-based ap-
plication development paradigm, by which an app may be

quickly built by implementing four types of components each
inherited from a top component (class) defined in the Android
framework. Specifically, an Activity component represents a
single screen of an app’s user interface; a Service component
represents an app running as a service in the background; a
Content Provider component assists an app with data storage,
data sharing, and data security; and a Broadcast Receiver
component is that which is registered to be notified for
specific application or system-wide events. Whether a type
of component is included in an app depends on whether the
app implements the corresponding scope of functionalities.

ICC and Intent types. For an Intent-based ICC, the associated
Intent object carries the actual communication information
between the two components involved. Intents can be thought
of as the mechanisms of ICC that app components use to
interact, both within an app and with other apps on the same
device. An Android developer designs and sets an Intent when
they need an operation to be performed by a component. There
are two ICC types in terms of communication scope. An ICC
is internal if the two components involved are defined in the
same app, and external otherwise. Accordingly, the associated
Intent is referred to as internal or external, respectively.

In addition, there are two ICC types in terms of linkage
specificity. For an ICC, if the sending component explicit-
ly specifies the name of the receiving component (in the
component field of the associated Intent), the ICC is explicit.
Otherwise, the Android framework will need to determine at
runtime the receiving component according to the action,
category, and data fields in the associated Intent set by
the sending component, and the ICC is implicit. The associated
Intent is explicit or implicit, accordingly.

Intent resolution and ICC mapping. Intent-based ICC calls
are both asynchronous and run-time binding within the An-
droid framework. Intent resolution refers to the analysis for
determining the value of each field of an Intent object. Based
on the results of Intent resolution, the component sending an
Intent may be matched to an appropriate receiving component
capable of handling whatever operation the sending compo-
nent is requesting as specified in the Intent. This matching
process is referred to as ICC mapping.

With an explicit Intent, since it specifically has the target
(receiving) component set, the Android platform simply uses
the specified target component to map the corresponding ICC.
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With an implicit Intent, however, the target component is
uncertain until runtime, when the Android platform uses the
three Intent fields mentioned above to match the same fields of
the Intent filters specified for each component in the manifest
file of the app. These filters claim what kinds of Intents
(in terms of the three fields) the associated components can
handle. If the matching succeeds, the latter component will
receive and handle the Intent.

III. VISUAL ICC DISSECTION

We first give an overview of our holistic approach for ICC
dissection, and then present our solutions to ICC data analysis
and multiple-view, interactive visualizations.

A. Overview

Figure 1 depicts an overview of our technical approach
(left), which contains two packages: instrumentation and
graphing, and an outlook of the user interface (right), which
consists of three views: dynamic ICC view, static ICC view,
and dashboard. The interface outlook also illustrates the
workings of our approach in a real use scenario. The two
packages are decoupled for extensibility such that (1) the
instrumentation package may provide streaming data for varied
post-processing steps while (2) the graphing package may
take different streaming sources (of graph structures) for
interactive, visual examination. Moreover, the (inter-process)
communication between these two packages is realized via
TCP socket such that the user may use this approach with an
actual device in hand, as opposed to relying on an emulator.

Given the APK of an app under analysis, the first pack-
age instruments it for tracing dynamic ICC calls. Later the
instrumented APK is installed to and manipulated by the app
user on a device, when the resulting traces are streamed to the
second package for visualization. The core of the visualization
is graphing both static and dynamic ICC information, which
automatically updates upon user inputs to the running app. The
user can then simultaneously navigate the app and explore the
visualization for dissecting the app construction and behaviors,
both based on the ICC visualizations and by referring to the
dashboard where run-time statistics about the ICCs exercised
(in addition to graph legends) are displayed.

B. ICC Data Analysis

To enable dissecting ICCs in an app, the ICC data must
be computed before representing it for visual exploration. We
compute two main categories of ICC data: static ICC mapping,
and dynamic ICC traces. Mapping all ICCs based on the app
code requires (1) static ICC analysis that resolves the ICC
Intent at all ICC invocation sites (e.g., startActivity)
and (2) parsing the manifest file, followed by (3) the matching
between ICC Intents and Intent filters, as described earlier
(Section II). In particular for (1), we utilized the most precise
existing ICC resolution technique [11]. The other two steps
are straightforward using standard methods [17]. The static
ICC data is then represented as a component-level call graph,
referred to as static ICC graph, where all possible ICC
calls are considered. As expected, this static call graph is
imprecise due to the imprecision of Intent resolution and the
conservativeness of static ICC mapping (for safety).

The dynamic ICC traces are generated through the APK
instrumentation. This data also is represented as a component-
level call graph, albeit only components exercised and com-

 

Fig. 2: A look into the dynamic ICC view with a closeup.

municating with at least one other exercised component are
considered, hence the graph is referred to as a dynamic ICC
graph. Notably, the dynamic ICC traces are produced as
streaming data to enable real-time visual explorations of ICCs
as they are triggered by user inputs. Our dynamic ICC analysis
is online, thus these traces are not stored to disk files but
transmitted and visualized on the fly.

In both graphical ICC representations, content and type of
associated Intents, as well as ICC types are annotated on the
graphs to assist with ICC comprehension. Additionally, on the
dynamic ICC graph, all ICC instances are encoded to depict
the frequency of ICC calls.

C. Visual Exploration of ICCs

As shown in Figure 1 (right), the enabling solution to ICC
dissection is an interactive, dynamic visualization of ICCs. The
entire viewport consists of three complementary views that are
semantically linked and enhanced by rich interaction features.

1) Multiple Linked Views: Visual encodings. Given that
ICCs are essentially (implicit/explicit) component-level calls,
(call) graphs are a natural visual representation of ICCs.
Moreover, we use different shape and color encodings to
represent various properties of an ICC. Specifically, as shown
in the dashboard view of Figure 1, lines with differentiating
colors indicate ICC types, and ICC sending and receiving sites
are indicated by squares and spheres with different colors
(red and gray), respectively. Components receiving external
Intents are indicated by a square shape with blue color, while
(caller) components sending internal Intents by spheres with
a (non-gray) color palette applied. These encoding schemes
are adopted in order to enhance visual perception of rich ICC
information in the visualizations. Arrowed lines indicate the
time ordering of ICC calls in the dynamic view, facilitating
navigation along the time line of app executions. The graphs
are depicted in a zigzag structure to maximally reduce clutters.

Dynamic ICC view. Traditional ICC analysis relies on static
analysis in order to map ICC within an app, which limits app
understanding by the inherent shortcoming of being forced to
introduce assumptions into the results. For example, a static
analysis approach concerning ICCs will not be able to defini-
tively determine what components will invoke ICC at a given
time, and so the analysis approach must (over-) conservatively
match ICC sending sites with potential receiving components.
In contrast, the dynamic ICC view as proposed is inherently
more intuitive and precise in explaining how an app behaves
at component level, as no assumptions need to be made about

3



which Intent is being resolved to which component at what
point in an app’s traversal.

This view holds the dynamic ICC graph, which has two
kinds of nodes: (1) each component node representing an
exercised component, and (2) each ICC node representing
an exercised Intent. Every ICC node has as its label the
specific callsite that invokes the associated Intent, and the
caller is indicated by the component node that is attached
to the ICC node. The graph has three kinds of edges: (1)
each ICC edge connecting the two ICC nodes of the ICC
link, with the edge label showing detailed ICC information
(type and sending/receiving sites), (2) a second, ICC time edge
between two ICC nodes indicating the time lapse between
their generation in the graph, with the edge label giving the
time amount which informs the user of how long the ICC has
taken, and (3) the attachment edge linking an ICC node to the
attached component node.

Figure 2 captures part of an example dynamic IC-
C view, where the MainActivity component initiates
an ICC through a call to an ICC API startService

and later another component CustomTabsClient invokes
bindService for sending another ICC. Both ICCs are
explicit and external in this case. In contrast to the dynamic
view of Figure 1 showing ICCs received in an app, this figure
depicts an app’s sending ICCs. As the user manipulates the
app, the dynamic ICC graph will be updated to add new ICCs,
enabling visual tracking and comprehension of ICCs as they
are being exercised. Note that the entire graph is plotted in a
chronological hierarchy to visualize the ICCs as time-series
data while reducing visual clutters.

Static ICC view. The dynamic view visualizes ICCs that are
exercised by the user inputs, which may not trigger all possible
ICCs in the app. We thus also provide a static ICC view,
where the static ICC graph of the app is visualized (using
similar edge/node notions as in the dynamic ICC graph). This
static view serves as a necessary context for the dynamic
view by showing unexercised ICCs as well, and how they are
connected to those exercised ones. While conservative hence
imprecise, the static call graph provides a holistic picture of
the entire spectrum of ICC-related app structure/construction,
complementing the dynamic view which highlights the run-
time app behaviors externalized by the exercised subset of all
potential ICCs. When ICC traces are streamed to the dynamic
view, exercised ICCs are also marked with color in the static
view, hinting the user about the part of the entire spectrum
that has been explored thus far.

ICC dashboard. The two graphical views are further com-
plemented by the dashboard view, where tabular information
is displayed showing both graph legends (as described in
visual encodings above) and ICC statistics (bottom right of
Figure 1). This view consists of two tables, showing dynamic
ICC summaries with respect to Intents and caller components,
respectively. The Intent table (top of the dashboard view)
shows the breakdown of ICCs over different categories (send-
ing/receiving, explicit/implicit, and internal/external) with for
each category the total number of instances and percentages
(against all static ICCs) that are exercised so far as shown in
the dynamic view. The caller table (bottom) shows the same
statistics for each exercised caller component. These numbers
offer a quick overview of the ICC dynamics in the app.
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Fig. 3: Multiple continuous levels of details of ICC views.

2) In-situ User Interactions: Both the static and dynamic
ICC graphs are interactive, allowing the user to control how to
explore the ICCs. Moreover, the user interactions are designed
as in-situ operations: visual aids/features become available
right in place where the operations start. Currently, there are
main categories of two in-situ interaction features.

First, hovering the mouse over a particular ICC node will
generate a window containing every individual field of the
captured Intent (as shown by the gray popup in the dynamic
view of Figure 3). Note that not every Intent field is generally
defined by the developer, so some fields will inherently be
blank, unknown, or null.

Second, clicking on a component node will generate clue
links between it and every other components of the same
type (e.g., Activity) within the current dynamic ICC graph.
These clue links can be clicked on or off at will, assisting the
user in quickly grasping the frequency and pattern of specific
component-level callers across the four component types in
the running app (Section II).

3) On-demand Continuous Scaling: A notable interaction
feature is that the user may continuously scale the two ICC
views on demand. At different zoom levels, different levels of
details will be visualized. Figure 3 depicts three example levels
of details of the dynamic view, as numbered in ascending order
of detail levels. The first level shows only symbolic graph
nodes and edges. After zooming in appropriately, the view
gets into the second level of detail, showing node annotations
and additional edges (e.g., ICC time edge). Zooming in further
will get into detail level 3 revealing edge labels, where Intent
popups can be clearly seen upon in-situ triggers. When in
finer detail levels, view sliders will appear allowing users to
navigate the graphs via scrolling, and panning becomes active.

IV. EVALUATION

We implemented a tool prototype of our approach and
applied it to 16 benchmarks. The preliminary evaluation aimed
at assessing the feasibility, usefulness, and practicality of the
approach. For that purpose, all benchmarks are the latest top
popular apps from Google Play. We instrumented each chosen
app and manually traversed for a few minutes after installing it
to an emulator. Next, we attempted to dissect the app behaviors
using our tool while continuing to manipulate the app.

In an interesting revelation, the vast majority of ICCs
occurring within a few of the studied apps were dedicated
exclusively to advertising services. For example, upon opening
the popular game app Sonic Dash, it was observed that
over 68% of all the messaging occurring within the app
was actually advertisement services setting up to run in the
background. Specifically, 82 unique advertising ICC callsites
were captured during the app’s five-second start-up period,
before users would even have a chance to interact with the app.
Looking into the advertising ICCs, it was observed that many
advertisers appear to intentionally attempt to obfuscate their
Intent field data. While our tool was still able to correctly map
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and visualize the advertisement services’ behaviors despite the
obfuscation, this practice is concerning as attempting to hide
Intent information indirectly creates potential security risks to
these apps which are mostly known as benign.

It should be noted as well, however, that there were also app-
s that showed no evidence of obfuscation, in advertising ser-
vices or other app components. In one instance, a video game
app Boom Beach made only one external ICC call throughout
the entire traversal of the app. This app does host advertising
services, yet the ICCs for setting these services up were far
less pervasive and resource intensive when compared to other
gaming apps. The ICC information in our visualizations such
as those showing how an Android app handles a particular type
of component (e.g., background services) will potentially be
helpful to Google Play users in selecting appropriate Android
apps for download. For example, a statistical analysis of ICC
could be composed in an app’s description on the app store,
detailing how the specific app handles a device’s resources in
managing its run-time behavior. An end user could then use
the basic analysis in identifying apps that make excessive ICC
setting up services that are of no visibility, nor direct use to
the user, and thus avoid a potentially negative experience.

Our tool also has enabled new findings in regards to
suspicious behaviors even in these top apps. In one such
instance, we analyzed the behavior of an anti-virus app. This
app claims to find several viruses on the user’s device after an
initiated scan, and attempts to redirect the user to an external
payment service so that the user may pay to have the viruses
subsequently removed by the app. A quick (thirty-second)
analysis of the app with our tool clearly demonstrated that
at no point was the app actually conducting a system scan.
In fact, clicking the ’Start Scan’ button was directly linked to
an Activity pane indicating that viruses had been detected,
and providing an external link for payment.

In other suspicious apps, it was also observed that external
Intents made up the majority of the Intents at all ICC sending
sites. From a vulnerability analysis perspective, using external
Intents are a basic strategy for malicious inter-app ICC [16].
For example, there are many instances in which a suspicious
app seeking appropriate user permission will escalate per-
missions by invoking a component in a separate app on the
victim’s device that contains the necessary permissions [3].

In all cases, our tool enabled in-depth examination of the
app behaviors related to ICCs by visually conveying how each
ICC was triggered and connected, as well as how long it lasted.
Our study also shows that the proposed approach is scalable
for practical use. Over the 16 benchmarks, on average the
instrumentation took 1.5 minutes and caused less than 2%
runtime slowdown. Constructing the static ICC graph took
14.5 minutes on average, which however is a one-time cost
for a given app, as is the cost for instrumentation.

V. RELATED WORK

To date, we have not been aware of prior works address-
ing Android app comprehension with a focus on ICCs. As
discussed earlier (Section I), most existing works involving
Android ICCs focus on Intent resolution [10], [11] or address
ICC mapping [3], [7], [15]. Yet, the resultant information does
not immediately help with understanding ICC-induced app
behaviors, especially those exercised at runtime. Other works
aimed at detecting security threats exploiting ICCs as the main

attack surface [4], [5]. Relevant empirical studies [2], [16]
included general characterization of ICCs, which complement
to our approach in that they provide a broad view on ICC-
related app traits while ours offer a means for in-depth inspec-
tion of app construction and run-time behaviors due to ICCs.
Our approach also is complementary to security solutions that
target large-scale vetting by enabling dissection of ICCs for
deep investigation of security issues. Meanwhile, advances in
ICC resolution and mapping can enhance our approach via
improved precision and efficiency of the static ICC graph.

VI. CONCLUSION AND FUTURE WORK

As ICCs are a major obstacle for Android app compre-
hension and security, understanding ICCs is an essential step
for both developing and securing apps, which to date has not
been well assisted. To fill this grap, we propose to combine
static and dynamic ICC analysis and enable dissection of
resulting ICC information via interactive visual explorations.
Preliminary case studies already showed promising merits and
usage practicality of this approach in both app understanding
and vulnerability analysis. A next step is to assess the ap-
proach through user studies with formal comprehension and/or
security questions and a diverse user group. We also plan to
further enhance the visualizations with additional visual and
interaction features (e.g., a view of code related to ICCs).
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