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Multilingual systems are prevalent and broadly impactful, but also complex due to the intricate interactions
between the heterogeneous programming languages the systems are developed in. This complexity is further
aggravated by the diversity of cross-language interoperability across different language combinations, resulting
in additional, often stealthy cross-language bugs. Yet despite the growing number of tools aimed to discover
cross-language bugs, a systematic understanding of such bugs is still lacking. To fill this gap, we conduct the
first comprehensive study of cross-language bugs, characterizing them in 5 aspects including their symptoms,
locations, manifestation, root causes, and fixes, as well as their relationships. Through careful identification and
detailed analysis of 400 cross-language bugs in real-world multilingual projects classified from 54,356 relevant
code commits in their GitHub repositories, we revealed not only bug characteristics of those five aspects
but also how they compare between two top language combinations in the multilingual world (Python-C and
Java-C). In addition to findings of the study as well as its enabling tools and datasets, we also provide practical
recommendations regarding the prevention, detection, and patching of cross-language bugs.
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1 Introduction
Multilingual software development [49] (i.e., developing one software project withmultiple program-
ming languages that interact) is ubiquitous [9, 16, 37] and still on the rise [23, 30, 43, 44]. Thus, the
vast and growing majority of real-world systems aremultilingual, hence the paramount importance
of assuring their quality [8]. While fostering a productive software process in various ways [1, 5]
(e.g., combining the strengths of different languages [32, 45]), multilingual development also leads
to great complexity of the resulting software [47]. This is not just the result of adding per-language
complexities up, but particularly due to the intricate interactions between heterogeneous languages.
The extra complexity tends to make multilingual software more buggy [2, 13, 20, 26, 28, 51].

Even worse, the multilingual world is diverse, both in terms of the large number and great variety
of languages that can be used in tandem [16, 23] and concerning the varying ways in which the
languages used may interact [21, 22, 29]. This diversity aggravates the complexity of multilingual
software, explaining their bug-proneness, both qualitatively [31] and statistically [2, 20]. In fact,
the bug-proneness often indicates actual/real bugs [13, 14, 17, 19, 24, 42], especially stealthy bugs
borne in faulty cross-language information flow induced by interactions between the used languages
(referred to as cross-language bugs).
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Yet in contrast to the burgeoning tools each discovering only a few of them [10, 14, 19, 24, 25, 50,
51], cross-language bugs have not been comprehensively studied. Earlier relevant research does
exist, which has examined the general characteristics of bugs induced by language use [52] and
interoperation [3]. However, the extant works fall short in at least three folds. First, most current
studies are concerned about individual languages each used separately from others, not really
addressingmultilingual software (i.e., withmultiple languages used together with interactions) [4, 37,
52]. Second, studies that do address multilingual software are qualitative or statistical/probabilistic—
they investigate bug-related human opinions (e.g.,developers’ perception [1, 31]) or defect proneness
(e.g., in terms of statistical associations between language combination and likely bug indicators [13,
17, 20]), not focusing on factual bugs in real-world multilingual code. Likewise, the most recent
relevant works are either based on developers’ discussions [48]—and the issues examined are not
necessarily code-level bugs, or limited to high-level characteristics (e.g., open/reopen timing) of
bugs in software using multiple languages [26–28]—the software is not necessarily multilingual per
se and the bugs may not be induced by language interactions. Third, studies addressing language
interoperability are closer to understanding cross-language bugs, yet they are mainly focused on
cross-language API misuses [14, 42] rather than systematically investigating various aspects (e.g.,
symptoms, locations, manifestation, root cause, fixes, and their relationships) of those bugs.

In this paper, we conduct the first comprehensive study of real-world cross-language bugs (CLBs),
focusing on those in two dominating language combinations [22] that have seen widespread
presence and impact: Python-C (e.g., in machine-learning frameworks such as PyTorch/TensorFlow
and NumPy/SciPy) and Java-C (e.g., in mobile/Web/database platforms such as Android, Tomcat,
MySQL). For each language combination, we randomly sampled 200 CLBs, filtered and classified
from a total of 865,680 commits in 2,428 repositories on GitHub. For each of the 400 confirmed
CLBs, we then carefully examined the commit logs, the code changed and those impacted by the
change, directly associated and indirectly linked bug/issue reports, and relevant official/external
documentation. Both of the automated commit classification/labeling and manual CLB inspection
are enabled by our novel static cross-language analyzer. The main goal of our study is to understand
where and why CLBs occur as well as how to fix them, hence dissecting the lifecycle of CLBs.
Accordingly, our study aims to answer the following questions on 5 aspects of CLBs:
• RQ1: What are the symptoms of CLBs? We identify how CLBs are externalized (as observed
by developers or users) by examining the bug/issue reports.

• RQ2: Where do CLBs occur? We identify the location (in terms of structural/syntactic code
contexts) where CLBs appear by forward tracking the cross-language information flow from the
bug-fixing locations indicated in the associated CLB-fixing commit.

• RQ3: What are the manifestation characteristics of CLBs? We identify how CLBs are
manifested, concerning the categories of functional semantics (e.g., memory access versus I/O)
of the cross-language functions on the CLB’s underlying information flow.

• RQ4:What are the root causes of CLBs?We identify the reasons why CLBs occur by backwardly
tracking the cross-language information flow paths from the bug location (identified for RQ2)
until the flow source (i.e., CLB origin).

• RQ5: How are CLBs fixed? We identify the CLB fixing strategies, immediately based on the bug
fixes indicated by the associated CLB-fixing commit.

For each RQ, we seek answers both for each language combination and between the two combinations
(concerning the similarities and differences). Moreover, we examine the lifecycle relationships between
the 5 aspects of CLBs via association analysis across the answers to these RQs.
Among a number of other novel findings, our study revealed that: (1) CLBs exhibit three pri-

mary symptoms: incorrect results/outputs, error/warning messages, and crashes/aborts, which are
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common to both Python-C and Java-C integrations. Yet, performance bottlenecks were notably
more prevalent in Java-C code, while memory leaks were more significant in Python-C code due to
reference count misuse in cross-language memory management semantics; (2) CLBs commonly
occur at assignments and function calls in both Python-C and Java-C code. However, they fre-
quently manifested at cross-language API call sites in Python-C code and at conditional statements
involving foreign data in Java-C code; (3) the studied CLBs were mostly manifested in code se-
mantics related to foreign data parsing, foreign object handling, cross-language (data) conversion,
and memory management (particularly reference counting) across the two languages; (4) the two
primary root causes of CLBs were cross-language logic errors and boundary conditional errors,
with the former far dominating over any other categories; (5) the primary CLB fixing strategies
involved adding missing (e.g., boundary) checks and using the correct data types across languages.
These strategies effectively addressed the prevalent logic and boundary errors in both language
combinations. Finally, (6) the CLB symptom of memory leaks is strongly associated with the CLB
root cause of reference count misuse, which is further strongly associated with the manifestation
semantics of cross-language memory management; the symptom of incorrect result/output is
strongly associated with CLB locations of return statements and conditional expressions.
Contributions. In summary, this work makes the following main contributions:
• To the best of our knowledge, this is the first comprehensive study of real-world factual/confirmed
CLBs that systematically examines their lifecycle aspects (bug locations, root causes, manifestation,
symptoms, fixing strategies), while addressing two dominant language combinations, Python-
C and Java-C, including their similarities and differences in each aspect. Our novel empirical
findings can help researchers and developers gain a systematic and in-depth understanding of
such stealthy bugs hence guide their countermeasures. Based on these findings, we also offer
actionable insights/recommendations on how to avoid, detect, test/debug, and repair CLBs, which
can inform design of practical tooling support of respective capabilities.

• We contribute the first high-quality (i.e., accurate and diverse) dataset of CLBs and an automated
tool (a novel static cross-language analyzer) to collect/analyze the dataset, which can assist with
curating more of them. This dataset/tool can be used to benefit relevant future research.

2 Methodology

GitHub

Bug-fixing commit 
identification

Cross-language code 
revision identification

Cross-language-bug-fixing 
commit identification Codebooks creation

Open coding

Candidate 
repositories and 
associated 
commits

Study results

Repository Mining CLBF Commit Classification Manual Bug Analysis

Repository/commit 
collection

Fig. 1. Overview of our study methodology (process).

Our study is governed by the overall
process outlined in Figure 1. Given
the lack of existing datasets on CLBs,
we start with CLB collection via
repository mining (targeting Python-
C and Java-C projects) on GitHub, the
most popular source of open-source
(multilingual) software [22]. Then,
based on the resulting list of candi-
date repositories and their associated

commits, we aim to curate CLBs from potential cross-language-bug-fixing (CLBF) commits identi-
fied using our CLBF commit classification (CCC) tool. CCC works in three steps: (1) bug-fixing
commit identification to produce any commit aimed to fix a bug, (2) cross-language code revision
identification to ensure the revision corresponding to a bug-fixing commit includes cross-language
interactions, and (3) cross-language-bug-fixing commit identification to determine if the commit is
intended to fix a CLB. Finally, guided by our RQs, we perform manual bug analysis to confirm and
analyze CLBs to obtain study results, following an open coding process after codebooks creation.
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2.1 Repository Mining
Given the vast diversity of the multilingual world [23, 37], it is infeasible to cover many language
combinations while aiming at a comprehensive and in-depth bug study in one paper. We start with
Python-C and Java-C as they are the most popular and impactful language combinations [22, 49]
where most of existing CLBs are reported [14, 18–20, 24]. For each candidate project, we use the
GitHub API [11] to retrieve its set of languages used and the code size of each language unit. Based
on this information, we collect projects per two criteria summarized and justified below:
• 50% or more of the project is written in Python/Java and C combined in terms of code size (SLOC)—
such projects can be considered Python-C or Java-C software per earlier studies [14, 19, 24].

• The project’s repository has𝑛 stars.While not a perfect indicator of the true quality of a project [7],
#stars has been widely used as a popularity indicator to select software projects in many prior
studies [6, 20, 22, 23, 34, 37, 38, 41]. Projects with a larger 𝑛 tend to gain more attention, thus the
bugs in them likely have broader impacts. Meanwhile, a larger 𝑛 implies fewer projects to be
collected. However, a greater number and diversity of projects would make our study findings
more representative. With this trade-off in mind and per our preliminary repository mining
outcome, we chose 𝑛 = 50 to strike a good balance between the two competing concerns.

With these criteria, we obtained 4,185 (2,428 Python-C and 1,757 Java-C) repositories. Then, consid-
ering their entire history, we mined a total of 886,526 commits associated with these repositories.

2.2 CLBF Commit Classification (CCC)
Not all the projects and commits obtained in §2.1 will be relevant for our study. Relevant are CLBF
commits each meeting 3 requirements outlined and justified below:
• R1: The commit is associated with (i.e., aimed for) fixing a bug—because we intend to retrieve
bug cases from such commits.

• R2: The commit is made to a project revision (version) that is multilingual (i.e., having interactions
between its programming languages)—the commit can be a CLBF commit only if it aims to fix a
bug in truly multilingual software.

• R3: The bug to be fixed by the commit involves interactions between languages (i.e., cross-
language behaviors)—we study CLBs which are induced by faulty cross-language behaviors.

Our CCC tool has three major steps, labeled as 2○, 3○, and 4○ in Figure 1, to check a commit against
R1, R2, and R3, respectively, as elaborated next. CCC follows this specific order of these steps
because of their descending levels of overhead— 2○ is the fastest and 4○ is the most expensive. Thus,
the order enables filtering out more irrelevant commits earlier and letting the fewest candidate
CLBF commits enter the most costly step, hence the lowest overall cost.

2.2.1 Bug-Fixing Commit Identification. A CLBF commit must be a bug-fixing commit in the first
place. Thus, we first check the commits mined so far against R1. For each commit, we start by
looking for its associated issue (id) and dismiss those for which we can not find any. Otherwise, we
further use a set of bug related keywords to check against the issue tags, including ’error’, ’bug,’
’defect,’ ’patch’, ’mistake’, ’fault’, ’failure’, ’fix’, ’issue’, ’incorrect’, and ’flaw’. Then, a commit is
considered a bug-fixing commit if its associated issue’s tag name contains any of these keywords.
Developers do not always associate a bug-fixing commit with an issue, though. Thus, CCC may
miss some true positives here. However, our approach is precise (e.g., more than those based on
matching commit messages against such keywords [36]). We prioritize precision over recall in our
study as justified by our goal of studying cross-language bugs (that are actually so). By the end of
this step, we obtained 54,356 bug-fixing commits.
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2.2.2 Cross-Language Code Revision Identification. Now we check each bug-fixing commit against
R2: the underlying bugmay not be a CLB unless the commit is made to a project revision/version that
is indeed multilingual (i.e., with cross-language interactions). Moreover, checking such interactions
at the project level may not suffice because the language use and multilingual nature of a project
may change across revisions [20, 23], as we indeed encountered.
We developed an automaton-based module in CCC to detect whether a project revision has

language interactions via common Python-C or Java-C FFIs (e.g., Python C Extension and JNI),
by extending PolyFax [21], a language interfacing mechanism detector. The automaton transitions
between states based on the presence of respective FFI’s characteristics within the code. The
automaton’s transition to its final state indicates the use of a specific FFI, thereby confirming that
the code revision involves multiple interacting languages. After this step, we have 25,120 commits.

2.2.3 Cross-Language-Bug-Fixing Commit Identification. For each commit (that satisfies R1 and R2)
to be further associated with a cross-language bug, the changed code should be part of the cross-
language behaviors of the revision. Such behaviors can be modeled by cross-language information
flows. Moreover, in an FFI-based Python-C or Java-C revision, language interactions are realized
via cross-language APIs. Thus, a bug-fixing commit in a multilingual project (revision) is a CLBF
commit if at least one of the changed code lines has a (transitive) dependence (backward or forward)
relationship with code entities of the other language via at least one of the cross-language APIs.
However, a static information flow/dependence analysis tool widely applicable to real-world

Python-C or Java-C programs is not available [51]. The closest available one is Joern [46], which
supports intraprocedural control flow analysis for Python, Java, and C. Based on these capabilities,
we extended Joern to build a whole-program cross-language interprocedural control flow graph
(CICFG) for a given project (revision). A CICFG is directed graph where each node represents a
statement in any of two language units and each edge represents control flow between two nodes.
To construct the CICFG, CCC first obtains control flow graph (CFG) of each method in each

language unit as Joern immediately provides. Next, CCC builds the intra-language call graph for
each language unit by traversing per-method CFGs of that unit, then builds cross-language call
graph from the two intra-language call graphs and call edges across the two languages. To identify
the cross-language call edges, CCC uses calling-relation rules defined per the respective FFI (e.g.,
Python C Extension or JNI) according to their official specifications (e.g., cross-language function
naming/calling conventions). Finally, based on the cross-language call graph and per-method
CFGs, CCC builds the CICFG following classical ICFG construction approach [40]. To facilitate
forward/backward traversal on it, CICFG is annotated with function names and line numbers.
CCC checks if a commit is CLBF as described earlier, but using CICFG to approximate cross-

language dependencies (information flow). The resulting imprecision is resolved by our final
confirmation during the manual bug analysis. The CICFG may also be incomplete (e.g., due to
the lack of pointer/reference analysis in construction), which is acceptable for our bug collection
purposes. After this step of CCC, we have 5,941 (likely CLBF) commits.

2.3 Manual Bug Analysis
To answer our RQs, we manually examine the CLBs associated with the confirmed, associated
CLBF commits via case studies. The answers would involve terms/phrases that we had no full
prior knowledge about. Thus, we adopted an open coding approach for each RQ, first deriving
a codebook and then applying it to characterize each bug in each of the 5 aspects—both by the
authors following a common inter-agreement and consensus procedure.
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Random sampling for codebook. To create the codebooks, we first randomly sampled 364 out
of the 5,941 commits for analysis. This sample size is statistically significant at 95% confidence level
(CL) and 5% margin of error (ME) with respect to the population (i.e., the 5,941 commits).

Derive codebooks.We need a codebook for each RQ. To that end, each author independently
curated an initial catalog (e.g., of root cause) based on the 364 commits. Subsequently, they recon-
ciled any differences until agreeing upon a finalized codebook. In particular, each participant (1)
meticulously reviewed the commits, (2) evaluated whether each commit fell within the existing
categories, and (3) forged a fresh category if necessary. When formulating a new category, the
initial step involved defining a label to encapsulate the bug aspect (e.g., root cause) presented in the
commit. Following this, we crafted detailed descriptions for this new category, and identified that
bug aspect that would appropriately fall under this category. The commit was then incorporated
into the codebook, serving as an illustrative example for this new category.
Random sampling for study. Given the great time cost of manually examining even a single

commit, we randomly sampled commits (other than the 364 for creating per-RQ codebooks) until
we had 200 Python-C and 200 Java-C CLB cases, 400 confirmed CLBs in total for the bug analysis.
This sample size is statistically significant at 95% CL and 5% ME.

As during the sampling for codebook creation, the confirmation of a potential CLBF commit
(identified by CCC) as corresponding to a true CLB is subsumed in the sampling here too. The
confirmation is to verify that the underlying CICFG path actually bears relevant information flow.

Coding process. For each RQ, we applied the respective codebooks to answer it against each of
the 400 CLBs. To ensure the reliability of this process, we utilized a negotiated agreement approach,
which is often adopted when the main goal is to generate novel insights [33], as needed in study.
• For RQ1, we identify CLB symptoms per the issue/bug reports and any related documents they
link to, developer-user discussions, bug-inducing code, and expected outputs, etc.

• For RQ2, we start with a forward traversal on the CICFG from the bug-fixing location, carefully
examining the information flow (data/control dependencies), to pinpoint the bug location and
name it per the respective codebook.

• For RQ3, starting from the bug location, a backward traversal on the CICFG is conducted until
reaching the bug’s source/origin in the other language. We identify cross-language (e.g., foreign
and native) functions encountered during the traversal and classify the semantics of each as per
its code (along with any comments and project documentation), language interfacing definitions,
and the official specifications of foreign functions.

• For RQ4, a deeper examination of the backward cross-language information flows from the bug
location back to its source/origin is carried out to identify the bug’s root cause, which is named
per the respective codebook.

• For RQ5, the code changes in the associated CLBF commit are examined. The fixing strategy is
summarized based on the semantics impact of the bug-fixing changes on the bug location.

3 Study Results
3.1 RQ1: Symptoms of CLBs
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Fig. 2. Distribution of symptoms (vertical axes) of CLBs (counted on
horizontal axes) in Python-C (left) and Java-C (right) projects.

As Figure 2 shows, we found
six types of CLB symptoms.
’Incorrect result/output’ is the
predominant symptom, while
’hang’ and ’performance bottle-
neck’ are the least common. The
top 3 symptoms are as follows:
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Sym1: Incorrect result/output. Incorrect results/outputs refer to situations where a program fails
to produce the intended outcome or behaves unexpectedly due to issues in the cross-language
information flow, often in response to user inputs. As shown in Figure 3, this issue report describes
the symptom (Sym) where cross-language code does not utilize the expected 16-bit color depth for
drawing on an image, instead using only the lower 8-bits. This bug leads to a discrepancy between
the expected and actual color output.

What did you expect to happen? 

The full 16-bit fill color provided should be used to draw on the image. 

What actually happened? 

Only the lower 8-bits (duplicated into the higher and lower byte) were used. 

Fig. 3. A case of incorrect result/output symptom.

Sym2: Error/warning messages. The program
provides explicit notifications that it encounters
a situation it cannot handle or when an operation
fails. As shown in Figure 4, the issue report depicts
the symptom where an error occurred because the
function expected a string type for the filename, but a Path object was provided instead. This bug
leads to an error message arising.

Traceback (most recent call last):

  File "/home/jtai/Desktop/pillow-fail/fail.py", line 5, in <module>

    img.save(Path('image.jp2'), format='JPEG2000')

  File "/home/jtai/Desktop/pillow-fail/venv/lib/python3.9/site-packages/PIL/Image.py", line 2235, in save

    save_handler(self, fp, filename)

  File "/home/jtai/Desktop/pillow-fail/venv/lib/python3.9/site-packages/PIL/Jpeg2KImagePlugin.py", line 247, in _save

    if filename.endswith(".j2k"):

AttributeError: 'PosixPath' object has no attribute 'endswith'

What actually happened?

What did you expect to happen?

It should save the file correctly, since the documentation says that passing in a Path object is allowed.

Fig. 4. A case of error/warning message symptom.

Sym3: Crash/abort. A program crash/exit
refers to an unexpected termination of the
program during its execution, which prevents
it from completing its intended tasks. As
shown in Figure 5, the Python program ex-
periences a crash specifically when using the
psutil.Popen() function on the FreeBSD 12
operating system. This bug causes the Python
interpreter to terminate unexpectedly.

While Sym2 may seem to be subsumed by Sym3 (e.g., the messages are collected from crashes),
we treat them separately as they represent distinct aspects of bug manifestation, and understanding
both provides a more comprehensive picture of how CLBs surface in practice. In particular, (1)
error/warning messages (Sym2) are diagnostic outputs that indicate potential issues without
necessarily leading to program termination—thus they are not always collected from crashes/aborts.
In contrast, Sym3 (crash/abort) represents cases where the program terminates unexpectedly, which
is typically a more severe outcome requiring immediate attention. Also, (2) while Sym2 may precede
Sym3, this is not always the case. For example, certain CLBs, such asmemory corruption, can directly
result in a crash without producing any warning messages. Conversely, many error messages are
indicative of recoverable states or issues that do not escalate into crashes. Thus, (3) by analyzing
Sym2 and Sym3 separately, we capture the spectrum of bug symptoms more comprehensively:
including diagnostic signals (Sym2) that may aid in early detection to severe consequences (Sym3)
that highlight system vulnerabilities. This separation also allows us to study how error reporting
mechanisms vary across languages and systems, a key characteristic of cross-language interactions.

Software versions: 

Python: 3.7.2 

FreeBSD: 12.0-RELEASE r341666 

Psutil: 5.5.0 

interpreter crashing on FreeBSD 12.  

 

Trying to use psutil.Popen() leads to the Python 

Fig. 5. A case of crash symptom.

Between Python-C and Java-C CLBs, it is evident that the top
three symptoms are common to them: Sym1, Sym2, and Sym3,
in that order. This trio of symptoms not only tops the list but
also collectively constitutes over 75% of the reported issues in
each language combination, indicating a significant prevalence.

Memory leaks appear to be more problematic in Python-C projects compared to Java-C. This is
related to differences in garbage collection mechanisms between Java and Python. In Python-C
projects, memory leaks can be particularly problematic due to the way Python’s garbage collection
interacts with manually managed memory in C. Also, performance bottlenecks are notably more
significant in Java-C projects. The JNI requires frequent context switches between the JVM and
native C environments, leading to performance bottlenecks due to overheads in data marshaling,
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memory management synchronization, and error handling. In both Python-C and Java-C projects,
hangs are relatively uncommon compared to other symptoms. This rarity suggests that both
language combinations tend to effectively manage scenarios that typically lead to hangs, such as
resource deadlock or inefficient loop conditions in cross-language interoperations.

The CLBs exhibit three top symptoms: incorrect result/output, error/warning messages and crash/abort,
which are common to Python-C and Java-C. Yet performance bottlenecks are notably more prevalent
in Java-C code and memory leaks are more significant in Python-C code.

3.2 RQ2: Locations of CLBs
The studied CLBs were mainly introduced at 9 locations (Locs) within a function shown in Figure 6.
The following are the top 3 CLB locations within Python-C and Java-C projects:

Loc1: Assignment. The CLB happens when a foreign object is assigned to a local variable. In these
cases, the assignments are usually used to either map cross-language data or convert data formats
between two languages. The goal of such assignments is often to ensure interoperability and correct
data handling. The assignment statement is the location where CLBs occur most frequently in
Python-C and the second most frequent location for CLBs in Java-C.
Bug location patterns in Python-C and Java-C assignments exhibit similar characteristics, in-

cluding: (1) Initialization for foreign data type interaction, which is critical for setting up variables
involved in cross-language operations. Errors at this stage can propagate, causing downstream
issues. (2) Calculation with foreign data types, which involves assigning computed values to for-
eign variables or vice versa. Errors in this process can lead to computational inaccuracies, type
mismatches, or memory corruption. (3) Foreign function return value assignment, which captures
the output from functions written in a foreign language. Proper handling of these return values is
essential to ensure their correct interpretation and usage in the calling language.
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Fig. 6. Distribution of CLB locations.

Loc2: Local function call. The CLB occurred
at a callsite targeting a local function, but the
callee is not a cross-language function/API—
although the function call is on the cross-
language information flow responsible for the
CLB. Typically, the callee is misused or itself
faulty. Local function calls primarily involve in-
voking functions to process data from a differ-
ent language. Such callsites are second most fre-
quent CLB location in Python-C and the most
frequent in Java-C. In both Java-C and Python-
C contexts, foreign objects are rarely directly
used as arguments in local function calls. In-

stead, they are typically converted into local objects or processed through some computation before
being passed to the function. This conversion ensures compatibility with the function’s expected
argument types and leverages the local language’s type safety mechanisms.

Loc3: Cross-Language API callsite. The CLBwas introduced right at a cross-language API callsite.
First, at the cross-language API callsite, data types from foreign languages are converted into native
types through FFI (e.g., convert PyLong to long via PyLong_AsLong). Second, high-level languages,
such as Java or Python, typically offer richer standard libraries, as well as support for advanced
features like garbage collection. To maintain consistency with high-level languages, the C language
invokes corresponding APIs, such as using Py_DecRef() to manage reference count. The cross-
language API callsite is the location where CLBs occur third most frequently in Python-C.
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There is a notable difference in return value handling between Python-C and Java-C. In Python-C,
some API calls return values (e.g., PyInt_AsLong, shown in Figure 12), while others do not (e.g.,
Py_INCREF, shown in Figure 13). Most JNI functions do not return values, as they often perform
operations that manipulate memory or state directly through their arguments. Therefore, in Python-
C, the usage of arguments at cross-language API callsites is similar to that of local function calls,
typically involving the conversion of foreign objects to local variables. In contrast, Java-C often
requires the direct involvement of foreign objects as arguments in these API calls.

Loc4: Conditional statement. In these cases, the CLB occurred in a conditional expression (e.g.,
a predicate) at a conditional statement (e.g., if). These conditional statements are typically used to
manage decision-making processes that involve cross-language information flow. The goal of such
conditional expressions is often to ensure the integrity of cross-language data flow and avoid logic
errors. The conditional statement is the location where CLBs occur third most frequently in Java-C.
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Fig. 7. Distribution
of CLBs across lan-
guage units.

In Python-C and Java-C projects, a common pattern is omitting critical
conditions within conditional statements. This oversight often leads to the
processing of invalid or unexpected data, as vital checks are neglected. For
instance, overlooking NULL pointer checks or other crucial state verifica-
tions can precipitate system crashes or generate erroneous outputs. Notably,
Python-C projects exhibit a higher incidence of operator errors compared to
Java-C projects. This disparity largely stems from the fundamental differences
in operator handling and type conversion between Python and C. Python’s
dynamic typing and flexible operator usage can cause confusion when trans-
lated to C’s stricter and more explicit syntax. This misalignment increases the
likelihood of using incorrect operators, leading to logical errors.
As shown in Figure 6, assignment and function call are the dominating

locations where CLBs occurred. Among the CLB locations, the cross-language
API call site shows significant quantitative disparity between the Python-C
and Java-C projects. Within the Python-C context, this location is ranked
third (out of ten), whereas Java-C is ranked to ninth (out of ten).104

69
79 84

17

47

0

20

40

60

80

100

Python-C Java-C
native NAX foreign

Fig. 8. Distribution of CLB
locations within 3 kinds of
cross-language functions.

Figure 7 reveals a predominance of CLBs in native code for both
Python-C and Java-C projects, indicating hightened complexity in na-
tive language components. This distribution stems from two primary
factors. First, native code manages intricate data translations between
languages with disparate type systems and memory models, necessitat-
ing complex conversions and integrity checks that increase CLB risk.
Second, native components act as critical bridges between languages,
implementing error-prone interfaces that require low-level system calls
and meticulous resource management. These findings underscore the
challenges inherent in cross-language integration, particularly in data
handling and interface implementation, where the native language bears
the brunt of synchronizing divergent programming paradigms.

Figure 8 shows that CLBs primarily occur in native functions within
Python-C and non-API cross-language (NAX) in Java-C. A NAX function

is defined as a helper function that supports the operation of cross-language APIs. These functions
facilitate the underlying mechanisms necessary for the API’s cross-language communication and
integration. They also assist in the preparation, conversion, or management of data to ensure
compatibility and efficient interaction between languages. For example, a NAX function might
involve a function in C that is directly called by Java through JNI, but this function is not part of any
public API, and it is typically used internally by the application for specific cross-language tasks
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Fig. 9. A Python-C case exhibiting the CLB manifes-
tation semantics of cross-language data parsing.

+

+
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+
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Fig. 10. A Java-C case exhibiting the CLB manifesta-
tion semantics of cross-language object handling.

(e.g., handling low-level memory or resource management). While these functions are not exposed
as formal APIs, they still operate in cross-language contexts. Here we highlight the importance
of NAX functions as they are a critical but often overlooked source of bugs. These functions
complicate the debugging process because they are not part of the formal API and might not be
well-documented or exposed in typical error reporting mechanisms. As shown in Figure 8, native
functions in both Python-C and Java-C projects exhibit a large number of CLBs, potentially due
to the complexity these functions often entail. The presence of a substantial number of CLBs in
NAX functions suggests challenges in managing cross-language operations that do not involve
direct API calls but still require language interfacing. This could involve data marshaling, memory
management, or concurrency controls, which are inherently complex and prone to CLBs. Foreign
functions have the fewest CLBs in both project types, which indicates that they are less susceptible
to cross-language errors.
CLBs occur at two main locations, assignment and function call on cross-language information
flows, that are common to Python-C and Java-C projects. Differently, CLBs frequently occur at
cross-language API call sites in Python-C code, versus at conditional expressions in Java-C code. There
is a significant challenge in managing CLBs in the native language.

3.3 RQ3: Manifestation Characteristics
To understand how CLBs are manifested, we mainly examined the manifestation characteristic
(MC), specifically the type of cross-language function/API involved in terms of its functional
semantics. Due to the various interfacing mechanisms used between Python-C and Java-C projects,
the naming rule for the cross-language API’s semantics category also varies accordingly. As shown
in Figure 11, there are 10 distinct cross-language API types that appear on the information flows
underlying respective Python-C and Java-C bugs. We focus on the 4 most prevalent categories for
the two language combinations studied, as the other categories are minor.

MC1: Cross-language data parsing. Parsing arguments and building values involves translating
strings into data structures according to specific rules or syntax. In our study, many CLBs arose
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Fig. 11. Category distribution of cross-language APIs called on
the cross-language information flow paths underlying CLBs in
Python-C (left) and Java-C (right) projects.

from inconsistencies in how cross-
language APIs parsed data from for-
eign languages or converted these
into formats understandable by the
native language. This issue is predom-
inant in Python-C projects but absent
in Java-C ones. Figure 9 illustrates the
use of the PyArg_ParseTuple func-
tion in Python-C to interpret param-
eters passed to C, highlighting a criti-
cal semantics facet of Python-C inter-
facing that facilitates data exchange
and manipulation across languages.
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MC2: Cross-language object handling. This category includes those aimed at manipulating (e.g.,
creating, accessing, and managing) foreign (i.e., Python and Java) objects. These CLBs involve
incorrect object creation, misuse of object methods, or issues with object lifetime management.
Our result points to difficulties hence bug-proneness in managing objects across languages. This
semantics category constitutes nearly half of the cases in Java-C projects and also ranks as the
second most prevalent in Python-C projects. As shown in Figure 10, the JNI function is designed to
open a file descriptor from a Java object and manipulate it in native code. The foreign function
GetIntField (at line c1) extracts the integer value of the descriptor field, which demonstrates object
field manipulation across languages. Then the native part of the function proceeds to duplicate the
file descriptor (fd) obtained from the Java object and associates it with a file stream for reading.

MC3: Cross-language conversion. This semantics category involves the translation of data types
and structures between different programming languages. It ensures that the data exchanged
between languages maintains its integrity and relevance. In our study, CLBs related to this seman-
tics frequently emerged from challenges associated with correctly transforming data from one
language’s data type system to another’s. In Python-C projects, this semantics category ranks third,
but it is missing within Java-C projects. Figure 12 shows that the original implementation employs
the Python API PyInt_AsLong to convert a Python object tmp directly into a long integer in C.
This method assumes that the Python object strictly represents an integer. However, if tmp is a
floating-point number, using PyInt_AsLong leads to incorrect results.

-

+

Fig. 12. A Python-C case exhibiting the CLB
semantics of cross-language conversion.

MC4: Cross-language memory management. Reference
counting is a fundamental aspect of memory manage-
ment in Python and Java. It helps ensure that memory is
efficiently allocated and deallocated. The CLBs underlain
by the cross-language APIs of this category often arise

from improper increments or decrements of reference counts, leading to memory leaks or premature
disposal of objects. The #cases within this semantics category do not vary significantly between
Python-C and Java-C projects. As shown in Figure 13, the initial implementation risked such issues
by potentially over-incrementing the reference count of dtype->singleton without corresponding
decrements. Incorrect handling of reference counts can lead to memory leaks or dangling pointers.
In Python-C projects, prevalent cross-language data parsing issues arise due to the intrinsic

mechanisms of data transfer between Python and C. Python frequently utilizes the CPython API for
functions like PyArg_ParseTuple, which breaks down Python arguments (args and kwargs) into C-
compatible types. This is necessitated by Python’s dynamic typing and high-level structures lacking
direct C equivalents, requiring explicit parsing and validation at language boundaries. Conversely,
Java-C interactions often employ JNI for direct object handling, facilitating straightforward access
to Java objects and method calls from C without needing additional type conversions.

-

+

+

Fig. 13. A Python-C case ex-
hibiting the CLB location of
cross-Language API callsite.

The higher incidence of conversion-related bugs in Python-C can be
attributed to Python’s dynamic nature, which requires constant runtime
type checks and conversions when interfacing with the statically typed
C. In contrast, Java’s static typing aligns more closely with C, allowing
JNI to manage type conversions seamlessly, reducing the necessity for
external cross-language conversion functions. This alignment results
in many Java-C interactions being categorized under ’None’, indicating

a lack of specific cross-language function/API usage, reflecting JNI’s inherent capability to handle
type conversions and data passing effectively.

Moreover, the frequent use of NAX functions in Python-C, alongside native and foreign functions,
suggests complex interactions that necessitate bespoke handling, often involving specific data
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Control Flow
Data Flow

-
+

Fig. 15. A Python-C CLB case rooted in ’logic error’ [39].

java1    return getCurrentPosition(gifInfoPtr);
----------------------------------------------------------------------
c1    Java_pl_droidsonroids_gif_GifInfoHandle_getCurrentPosition

(JNIEnv *__unused env, jclass __unused handleClass, jlong gifInfo){
c2 GifInfo *const info = ((GifInfo *) (intptr_t) gifInfo);

…
c3        const uint_fast32_t idx = info->currentIndex;
c4        if (info->gifFilePtr->ImageCount == 1) {
c5            return 0; }
c6        uint_fast32_t i;
c7        uint32_t sum = 0;
c8        for (i = 0; i < idx; i++) {
c9        const uint_fast32_t maxFrameIndex = info->currentIndex 
      == 0 ? info->gifFilePtr->ImageCount : info->currentIndex;
c10      for (i = 0; i < maxFrameIndex; i++) {
c11          sum += info->controlBlock[i].DelayTime; }

-

-
+

+

Fig. 16. A Java-C CLB case rooted in ’logic er-
ror’ with incorrect algorithm implementation

transformations or memory management for effective Python-C integration. In Java-C projects,
the dominance of native functions points to a reliance on direct JNI interactions, with less frequent
use of NAX functions, indicating a more standardized approach to managing cross-language tasks.
The CLBs studied were mostly manifested in code semantics on data parsing, objects handling, data
conversion, memory management (reference counting in particular), all across languages.

3.4 RQ4: Root Cause of CLBs
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Fig. 14. Distribution of CLB root causes in Python-C (left) and Java-C (right).

We traced the data/control
flow to determine the root
causes (RCs) of CLBs, and
identified 18 (Python-C)
and 12 (Java-C) root cause
types, as shown in Fig-
ure 14. Our results show
that the most prevalent is-
sues are related to logic er-
rors, boundary conditional
errors, and data type errors.

The "other" category in our analysis encapsulates some issues that are difficult to classify. These are
related to general concerns such as thread management issues, compilation errors, and compatibility
errors. Subsequently, we presented definitions for these primary categories, conducting an in-depth
analysis of their implications. Furthermore, we illustrated the concepts by including exemplar bugs
representing instances within each category:

-

+
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+
+
+
+
+
+
+
+
+
+
+

Control Flow
Data Flow

Fig. 17. A Java-C CLB case with the root
cause of ’boundary conditional error’ [12].

RC1: Logic error. A logic error is a type of runtime error
that causes a program to deviate from its intended behavior
through the cross-language information flow. Logic errors
frequently stem from misconceptions or flawed presump-
tions made by the programmer during the development
process. Our study shows that logic error incorporates an
incorrect algorithm—a situation where the algorithm de-
vised to resolve a problem is either flawed or incomplete.

Illustration. Figure 15 illustrates a logic error due to in-
correct algorithmic implementation across languages. The
Python code aims to obtain the minmax of a given list of cus-
tom objects T through a lambda key function. The minmax
function is implemented in C, which invokes the key function that requires an argument (line
py4). However, the C code prepares a tuple of size 0 for the argument, which is not consistent with
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the lambda function taking one argument, hence causing the logic error. To fix this, the variable
funcargs is assigned a tuple object of size 1.

Pattern. The main pattern of logic errors is incorrect algorithm implementation in both Python-
C and Java-C. These errors primarily stem from a misunderstanding of how to correctly implement
and handle algorithmic calculations in a cross-language context. The algorithm needs to account
for all possible values, including edge cases where variables come from the other language. For
instance, the algorithm failed to properly calculate because it did not account for the special case
of a native variable being 0, leading to an incorrect result. In these cases, developers frequently
misinterpret the logic necessary to handle specific scenarios, leading to flawed implementations.
As shown in Figure 16, the Java code aims to obtain the current position of a GIF image using

the getCurrentPosition method. This method is implemented in C via the JNI function, where
it calculates the total delay time by iterating over frames. However, the C loop condition did not
account for currentIndex being 0, leading to incorrect calculations. By modifying the C code to
use maxFrameIndex, which correctly reflects the frame count needed, the calculation includes the
appropriate number of frames up to currentIndex. This cross-language adjustment ensures that
the Java method integrates seamlessly with the C, maintaining accurate delay time summation.
In both Python-C and Java-C cases, logic errors often arise from an incorrect understanding of

how to handle data states and edge cases in a cross-language context. This includes misinterpreting
algorithm requirements and failing to account for all possible values and conditions. In Python-C,
these errors frequently involve dynamic typing and flexible data handling. In Java-C, these errors
more often involve logical conditions and algorithmic calculations.

RC2: Boundary conditional error. A boundary conditional error occurs when a condition at the
boundary of an interval or at the extreme ends is not correctly handled on the cross-language
information flow. These errors often manifest in scenarios like array indexing (accessing an element
outside the bounds of an array), looping constructs (incorrect loop termination conditions), and
numerical ranges (performing calculations at the limits of numerical ranges).
Illustration. In Figure 17, the RC2-induced CLB arises in the interaction between Java and C

when assigning the encryption implementation in EVP_aes_128_gcm() to the evp_gcm_cipher
pointer. The Java method encryptFinal calls the JNI function, which initially sets evp_gcm_cipher
to EVP_aes_128_gcm() without considering the key length. The cause of this error is the lack of a
mechanism to select the appropriate AES-GCM algorithm version based on the provided key length
during the JNI call. This oversight leads to a boundary condition error as the fixed assignment to
EVP_aes_128_gcm() does not accommodate different key lengths (16, 24, or 32 bytes).

To fix this bug, a switch-case structure was introduced in the JNI function. This addition ensures
that before assigning the encryption algorithm to the evp_gcm_cipher pointer, the function evalu-
ates the key length based on the data passed from the Java method and selects the corresponding
AES-GCM algorithm (EVP_aes_128_gcm(), EVP_aes_192_gcm(), or EVP_aes_256_gcm()).

Pattern. Both Python-C and Java-C top patterns concern value/size validations. This involves
verifying that values meet expected criteria and sizes are within acceptable ranges before proceeding
with operations. This error pattern often occurs when checking specific states (e.g., system state,
array state, and initialization state). Figure 17 provided an example showing a JNI function that

+
+

Fig. 18. A Java-C CLB case with the root cause of ’boundary
conditional error’ with validation in values.

validates the keyLen parameter, which de-
termines the length of the encryption key.
In Figure 18, the memory allocation in

the C function opj_aligned_alloc_n is
part of a larger system interfacing with
Java. This function includes an additional
check to ensure that the size parameter is not zero before proceeding with memory allocation.
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Table 1. Comparison of CLB fixing strategy between Python-C and Java-C.

CLB Fixing Strategy Python-C Java-C
Count Percentage Count Percentage

Apply appropriate error and exception handling 17 8.5% 15 7.5%
Apply proper memory management and reference counting 36 18.0% 22 11.0%
Correct logical mistakes in conditions or loops 25 12.5% 31 15.5%
Ensure thread safety and synchronization 2 1.0% 4 2.0%
Improve code structure, comments and error messages 19 9.5% 17 8.5%
Incorporate necessary checks or input validations 38 19.0% 36 18.0%
Optimize performance and memory usage 6 3.0% 6 3.0%
Update and fix function calls and APIs 23 11.5% 14 7.0%
Utilize appropriate data types and casting 29 14.5% 38 19.0%
Other 5 2.5% 17 8.5%

This cross-language interaction starts from the Java method internalEncodeImageToJ2K, which
calls the JNI function Java_org_openJpeg_OpenJPEGJavaEncoder_internalEncodeImageToJ2
K, eventually leading to the C function. The size parameter must be validated to avoid undefined
behavior when calling memory allocation functions like realloc. If size is zero, realloc can
exhibit implementation-defined behavior, potentially causing unexpected results such as returning
NULL or reallocating to a minimum block size. This validation is crucial here to ensure consistent
and predictable behavior across the Java and C boundary.

Boundary conditional errors in cross-language interactions occur due to differences in memory
management, type systems, and error handling between languages. In Python-C, manual memory
management and type flexibility in C contrast with Python’s automatic memory management
and dynamic typing, leading to discrepancies because C’s lack of automatic checks can result in
unhandled null pointers or type mismatches. In Java-C, Java’s strict type checking and automatic
garbage collection differ from C’s flexible type system and manual memory handling, causing
issues in state validation and pointer use.
Python-C/Java-C cases highlight the necessity of validating input values and sizes to prevent

boundary conditional errors, ensuring indices and dimensions are within acceptable ranges before
proceeding with operations. In Python-C, errors often arise from insufficient checks on array
dimensions and indices, leading to out-of-bounds access, whereas in Java-C, the focus is on ensuring
valid memory allocation sizes to prevent undefined behavior in low-level operations like realloc.
The two primary root causes of CLBs were logic errors and boundary conditional errors in language
interoperations. The number of bugs rooted in logic errors far dominated over other root causes.

3.5 RQ5: Fixing Strategies of CLBs
We looked into the kinds of code changes involved in the fixes (i.e., how the fixes were made).
Table 1 presents a comparative overview of CLB-fixing strategies employed in Python-C and Java-C
projects. Below, we elaborate the top 2 fixing strategies (FS) across both language combinations:

FS1: Incorporate necessary checks or input validations.These checks/validations, often prior to
essential operations, enhance the robustness and reliability of cross-language behaviors. By per-
forming validations against null pointers, container boundaries, and logically invalid values, critical
operations such as pointer dereferencing, array indexing, and arithmetic operations are safeguarded.
Such checks prevent erroneous data and operations from propagating through the system, ensuring
that cross-language interactions are managed securely and consistently.

As shown in Figure 10, the JNI function is designed to open a file descriptor from a Java object and
manipulate it in native code. The foreign function GetIntField (at line c1) extracts the integer value
of the descriptor field, demonstrating object field manipulation across languages. Subsequently, the
native function duplicates the file descriptor (fd) obtained from the Java object and associates it
with a file stream for reading. The code changes in lines c7 and c8 exemplify the implementation of
an input validation strategy. This approach can be adapted across various programming languages
that support system calls and error handling mechanisms, including Python, Java, and C.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE058. Publication date: July 2025.



Dissecting Real-World Cross-Language Bugs FSE058:15

c1  npy_intp ndmin = 0;
c2  int ndmin = 0; ...
c3  ndmin_obj = PyDict_GetItem(kws, npy_ma_str_ndmin);
c4  if (ndmin_obj) {
c5      ndmin = PyLong_AsLong(ndmin_obj);
c6      if (error_converting(ndmin)) {
c7      long t = PyLong_AsLong(ndmin_obj);
c8      if (error_converting(t)) {
c9          goto clean_type;} …
c10   ndmin = t;}

+
+

-
-

-
+

+

Fig. 19. A CLB fixed with the FS2 strategy.

Pattern. This fixing strategy has two top pat-
terns: 1) Null check/validation, which involves val-
idating pointers or object references in C to ensure
they are not null before performing operations. For
example, in Figure 9, the function in C starts by
parsing the input arguments using foreign function
PyArg_ParseTuple. If the parsing fails, the function
returns NULL, indicating an error in input validation.
2) Type check/validation, ensuring that variables or inputs are of expected types, such as integers,
arrays, or specific objects (common in Python, C and Java). For instance, the function instanceof
is used for checking if an object is an instance of a list or other collection interfaces. But in Python,
it uses isinstance(variable, list) to check if a variable is a list.

FS2: Utilize appropriate data types and casting. In cross-language programming, using appropri-
ate data types and performing correct type casting are crucial to maintaining data integrity and
preventing bugs. Mismatched data types between languages can lead to data corruption and unex-
pected behaviors. This strategy ensures that data passed between languages is stored and processed
using the correct types, and strong type conversions (casting) are applied where necessary. For
example, using an integer variable in the native language (C) to hold floating-point data passed
from the foreign language (Python) led to data-corruption bugs. Such measures prevent errors
arising from incorrect type handling and ensure operations are performed on the correct data
representations, maintaining the integrity and reliability of cross-language interactions.

As illustrated in Figure 20, the original code utilized uint_fast16_t type for the widthOverflow
and heightOverflow variables, which were assigned values passed from Java to C. However, if the
Java side passes values that exceed the storage capacity of 16-bit integers, this leads to overflow
issues. The modification involved using int_fast32_t instead of uint_fast16_t for calculating
dimensional overflows in C to provide a much larger range for data handling. This change addresses
CLBs related to data type mismatches, ensuring safer handling of variable values.

-

+

+

-

Fig. 20. A Java-C case exhibiting the CLB
location of assignment.

Pattern. The top pattern of this fixing strategy is type
mismatch. In Python-C, dynamic typing in Python of-
ten leads to implicit type conversion issues when in-
terfacing with C, which requires explicit type defini-
tions. For example, in Figure 19, the original implemen-
tation directly assigns the result of foreign function
PyLong_AsLong(ndmin_obj), which is used for convert-
ing the int type in Python to the long type in C, to ndmin, which is of type npy_intp. This assignment
can lead to data type mismatches, potentially causing runtime errors or misinterpretations of the
variable’s value in C. The modified code assigns the result to a long variable 𝑡 , which is a more
appropriate type for holding the conversion result from the foreign function PyLong_AsLong. This
pattern is most commonly associated with the misalignment in type expectations, where Python’s
flexibility contrasts with C’s rigidity, leading to type safety violations.
In Java-C, the fix strategy often involves utilizing appropriate data types and careful casting

to bridge the gap between Java’s strict type system and C’s more permissive casting rules. For
example, errors occur when casting Java objects to C pointers, such as casting a Java Integer to a C
int* or handling Java arrays as C arrays without proper conversion. Developers can align Java’s
strict typing with C by employing correct data types and explicit casting methods.
Two top CLB fixing strategies are adding missing checks and using correct data types, both against
cross-language data flow, together accounting for 37% (Java-C) and 33.5% (Python-C) of CLBs.
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3.6 Associations between CLB Lifecycle Aspects
Table 2. Association between root causes and symptoms

CLB Root Cause CLB Symptom Support Confidence Lift
Memory management error Memory leak 2% 57% 10.88
Reference count misuse Memory leak 2% 56% 10.71
Null pointer dereference Crash 2% 70% 4
Buffer overflow Error/warning message 1% 71% 3.01
Initialization error Error/warning message 3% 55% 2.32
Argument error Incorrect result/output 2% 58% 1.62
Logic error Incorrect result/output 14% 54% 1.49
Boundary conditional error Incorrect result/output 9% 42% 1.18
Error/Exception handling Incorrect result/output 2% 42% 1.17

To understand the lifecycle mecha-
nisms of CLBs, we analyze statistical
associations between each pair of the
5 CLB aspects. We compute frequent
if-then associations which consist of
an antecedent (if, e.g., root cause) and
a consequent (then, e.g., symptom), us-

ing the Apriori algorithm [35]. Below, we only discuss strong associations (with 𝑙𝑖 𝑓 𝑡>1) discovered.
Table 2 shows the relationship between the root causes and symptoms of CLBs. The super strong

association with 𝑙𝑖 𝑓 𝑡>10 suggests that when a memory leak resulting from a CLB is observed, it
is very likely that the root cause lies in memory management errors or reference count misuse.
Meanwhile, when a CLB of these two root causes occurs, memory leaks are very likely observed as
symptoms. The results also reveal that when crashes are encountered, null pointer dereference is
often found as the root cause. In contrast, when CLBs due to buffer overflow or initialization errors
occurr, only minor symptoms such as error messages or warnings are often observed. On the other
hand, when incorrect results/outputs are encountered, it may not be easy to link the symptom with
a specific root cause: it is significantly associated with 4 different root causes.
Table 3. Association between root causes and manifest. semantics
CLB Root Cause CLB Manifestation Semantics Support Confidence Lift
Reference count misuse Cross-language memory management 3% 63% 6.10
Argument error Cross-language data parsing 2% 50% 2.74
Null pointer dereference Cross-language objects handling 2% 70% 1.83
Memory management error Cross-language objects handling 2% 64% 1.68
Boundary conditional error Cross-language objects handling 11% 49% 1.29
Error/exception handling Cross-language objects handling 2% 47% 1.24
Initialization error Cross-language objects handling 2% 45% 1.18

Table 3 shows the association be-
tween the root cause and manifesta-
tion semantics of CLBs. The strong
association with a 𝑙𝑖 𝑓 𝑡 > 6 indicates
that when issues in cross-language
memorymanagement are manifested,

it is very likely that the root cause is reference count misuse. Conversely, when a CLB occurs due to
reference count misuse, cross-language memory management problems are highly likely to be the
semantics issue encountered. The results also reveal that when cross-language data parsing errors
are encountered, argument errors are often identified as the root cause. On the other hand, when
CLBs stem from null pointer dereference, memory management error, boundary conditional error,
error/exception handling, or initialization error, they are frequently associated with cross-language
object handling issues. This suggests that cross-language object handling problems are significantly
linked to multiple root causes, making it more challenging to pinpoint a specific root cause based
solely on the semantics issues observed. Table 4. Association between locations and symptoms

CLB Location CLB Symptom Support Confidence Lift
Return Incorrect result/output 4% 43% 1.26
Conditional expression Incorrect result/output 8% 42% 1.26

Table 4 shows how locations relate to
symptoms in CLBs. The results suggest
that when incorrect results/outputs are observed, the bug may be located at either return site or
conditional expressions. This means that while incorrect results/outputs are likely symptoms when
bugs are found in these locations, it is challenging to pinpoint the exact bug location based solely
on the symptom, as these symptoms are significantly associated with both locations.
The CLBs exhibit strong associations between reference count misuse and memory leaks, as well as
between memory management errors and memory leaks. When cross-language memory management
issues occur, the root cause is often improper reference count handling. CLBs occur at return statements
and conditional expressions, commonly leading to incorrect results/outputs.

4 Discussion
4.1 Uniqueness of CLBs
In our paper, we report findings on CLB characteristics without always prefacing them with
qualifiers such as “cross-language information flow” or “due to language interaction.” Nonetheless,
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all our results are fundamentally tied to the definition of CLBs—as bugs induced by faulty cross-
language information flow (see §1). We discuss the uniqueness of CLBs in two perspectives below.

4.1.1 Comparison to Single-Language Bugs. Some aspects of CLBs—-particularly symptoms and
root causes—may seem generic and like those of monolingual bugs. Yet there are notable differences.

Symptoms.Our study shows that CLB symptoms like incorrect outputs, error/warningmessages,
and crashes are frequently reported. While these manifestations are common to all software bugs,
in cross-language contexts they are direct consequences of interoperability issues such as data
type mismatches and incompatible memory management. Although performance bottlenecks and
memory errors are also potential symptoms, they tend to emerge only under specific conditions.
Moreover, error messages in cross-language systems often include low-level details from native
libraries, making them harder to interpret, and crashes can result from memory management
conflicts between, for example, garbage-collected and non-garbage-collected languages. These
factors mean that while the symptoms may look similar to those in single-language bugs, their
underlying causes are distinctly tied to cross-language interactions.

Root Causes. Although common root causes—such as logic errors, memory management issues,
and API misuse—are present in both CLBs and monolingual bugs, their origins in CLBs are uniquely
rooted in faulty language interactions. In a single-language environment, data type errors typically
arise from mishandled type casting within a consistent type system, often caught by the compiler
or interpreter. In contrast, cross-language contexts require converting data types between different
systems, which can lead to truncation, precision loss, or misinterpretation. For example, passing a
64-bit integer from C to a Java method expecting a 32-bit integer results in data loss and incorrect
calculations in our study. In short, underlying reasons of CLB root causes are unique: incorrect
data handling, type mismatches, and semantic misunderstandings between different languages.

4.1.2 Comparison to Monolingual Cross-Component Bugs. Certain CLB characteristics, such as
boundary checks and input validation, also apply to cross-component interactions in monolingual
systems. However, CLBs exhibit unique traits due to differences in semantics, runtime behavior,
and data representations across languages.
In cross-language systems, semantic mismatches among type systems, memory models, and

exception propagation models often lead to bugs that are rare in monolingual contexts. The use
of foreign function interfaces (FFIs), bindings, or bridges adds layers of complexity that require
explicit handling of data conversion. This often results in errors like data loss or misinterpretation
that are less common in single-language applications. Furthermore, differing memory management
paradigms—such as automatic garbage collection in Java or Python versus manual allocation in
C—can exacerbate issues like memory leaks, double frees, or dangling pointers.
Also, error propagation is more challenging in cross-language environments, where a unified

exception model is absent. For instance, in our study, errors originating in native C code invoked
from Java is not properly communicated back to the Java layer. Even standard practices like
boundary checking can falter; for example, a Java method passes an integer array to C under the
false assumption that it is null-terminated, leading to unexpected behavior.

Overall, CLBs differ from both single-language bugs and monolingual cross-component bugs in
two key respects: (1) they are more susceptible to interface-related failures due to challenges in
data marshaling, type coercion, and error propagation, and (2) they involve both conceptual and
implementation-level errors uniquely arising from flawed language interactions.

4.2 Implications and Actionable Insights
4.2.1 CLB Prevention/Avoidance. Our insights offer practical strategies for enhancing CLB preven-
tion and avoidance measures, as exemplified below.
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Be aware of various error-prone code. In §3.1, the diversity of symptoms related to cross-
language development presents significant challenges, underscoring the importance of CLB preven-
tion and avoidance measures to maintain system integrity and improve cross-language interaction
efficiency. Our results (§3.2, §3.4) reveal that the nature of these bugs can vary significantly de-
pending on the language combination. In Python-C, CLBs frequently occur at cross-language API
callsites (Loc3). This location is the third most common for CLBs in Python-C projects but ranks
much lower in Java-C projects. Conversely, in Java-C integrations, conditional statements (Loc4) are
more prone to CLBs, ranking third in frequency for Java-C projects. To mitigate CLBs, developers
should understand the specific challenges associated with the particular language combination.

Despite these differences, certain bug locations and root causes are common across both Python-C
and Java-C. Assignments (Loc1) and local function calls (Loc2) are the top two locations where CLBs
occur in both language combinations. These are critical points where cross-language information
flows, and any mismatch or mismanagement can lead to bugs. The most dominant root cause of
CLBs in both Python-C and Java-C projects is logic errors (RC1). Additionally, boundary conditional
errors (RC2) are another common root cause in both language combinations. To mitigate CLBs,
developers should be mindful of these common challenges in cross-language development.

Need for cross-language coding assistance/recommendations. Our analysis in Sections 3.2
and 3.4 underscores cross-language development’s complexities and error-prone areas. Developers
face significant hurdles when working with language combinations like Python-C and Java-C. In
addition to keeping in mind the common challenges in cross-language development, developers
must also understand the specific challenges associated with their chosen language combination.
These findings highlight the critical need for coding assistance and recommendations to mitigate
the burden on developers, thereby reducing CLBs and enhancing multilingual software reliability.
Note that while reference count misuse and null/type checking are well-known strategies for

error prevention, our contribution lies in systematically categorizing these issues as they manifest
specifically in cross-language interactions. For example, we highlight patterns of reference count
mismanagement that are unique to the boundary between Java and C and between Python and
C, where the contrasting memory management paradigms (automatic vs. manual) exacerbate the
problem. Also, our recommendations extend beyond generic best practices by addressing cross-
language-specific root causes. For instance, we identified subtle mismatches in language semantics
(e.g., data encoding differences or type conversion misbehaviors) that are unlikely or much less
likely to arise in monolingual contexts.

4.2.2 CLB Detection. Our findings on the locations and root causes of CLBs provide concrete
guidance on developing CLB detection/testing/debugging solutions.

Use symptoms to detect root cause and location. Our result (§3.6) provides critical insights
into how specific symptoms can quickly indicate underlying root causes and pinpoint bug locations
within CLBs. For example, the result reveals that memory leaks are highly associated with root
causes such as memory management errors and reference count misuse. This strong association
suggests that when a memory leak is detected, it is highly probable that it stems from improper
memory management practices or incorrect handling of reference counts. Consequently, CLB
detection tools should prioritize monitoring memory-related operations and reference counting
mechanisms. Furthermore, the association between bugs located in return statements and con-
ditional expressions with incorrect results or outputs underscores these code regions as critical
hotspots for CLBs. Developers can streamline the CLB detection process by systematically utilizing
symptom indicators to trace back to probable root causes and specific bug locations.
Utilize data flow analysis for CLB localization. We utilized the tool CCC to go through

the cross-language commits via backward and forward searches across language boundaries. This
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approach, though effective in tracing the control flow paths from one language context to another,
often proved insufficient for pinpointing the bug location and root cause solely through control
flow analysis. We found that a significant portion of the bug detection process necessitated manual
analysis of data flows to uncover the underlying source of issues. Leveraging data flow for efficient
bug detection presents a promising way of addressing the intricate challenges posed by cross-
language software systems. The experience has underscored the limitations of relying solely on
control flow analysis to identify the root causes, especially when crossing language boundaries.

4.2.3 CLB Fixing/Patching. Our findings in §3.5 provide immediate guidance on fixing/patching
CLBs through the common fixing approaches.
Start with the common strategies for CLB patching. In §3.5, we revealed two common

fixing approaches developers adopted for CLBs. This result provides clear guidance on what kinds
of code changes may be effective for writing CLB patches. For instance, developers may enhance
the robustness of cross-language interactions by adding null pointer checks or validating input
types before performing critical operations across the languages.

Leverage automated tools to support common patching strategies. Given the prevalence
of input validation and data type management in CLB fixes, there is a significant opportunity
to develop and utilize automated tools that assist developers with these issues. Tools that can
automatically insert necessary checks or validate data types across language boundaries can
streamline the bug-fixing process and reduce the likelihood of introducing new bugs. For example,
integrating static analysis tools that help fix type mismatches or potential null pointer dereferences
in cross-language code can efficiently resolve CLBs.

4.3 Limitations and Threats to Validity
Our study results are subject to manual labeling/analysis errors and human biases. To reduce this
threat, we followed a rigorous coding process for obtaining the results for each RQ. Moreover, we
adopted inter-rater and/or negotiated agreement protocols to resolve any diverged decisions, which
help reduce potential errors and human biases via cross-checking.

Despite justifiable repository mining criteria, the subject Python-C and Java-C projects chosen
may not be representative of all existing real-world Python-C and Java-C software. Accordingly,
the CLBs we analyzed do not necessarily represent all CLBs in these two language combinations.
To mitigate this threat, we considered a sizable number of projects of various domains while using
random sampling with statistically significant sample sizes. Also, by implementing comprehensive
criteria (e.g., language composition, star count) and processes (e.g., CLBF commit classification,
manual verification), we mitigate the inclusion of noisy (e.g., tutorials, demos, and other non-
representative) repositories. Our multi-faceted approach ensures that the analyzed projects are
substantial, actively developed, and relevant to real-world cross-language software development.

4.4 Extension to Other Language Combinations
As we revealed, different language combinations have different characteristics (e.g., symptoms,
locations, root causes). Yet, the framework and methodology in our study can be extended to other
language combinations, though several challenges would need to be addressed in doing so.
Extension. First, our core methodology of identifying and analyzing CLBs via an automated
tool combined with manual analysis is flexible and can be adapted to other language pairs. The
key principles of our approach—bug identification via approximate automation, followed by CLB
confirmation and deeper analysis of CLB patterns—apply to other language interoperability issues.
Second, while our tool is so far implemented for Java-C and Python-C, a similar tool could be

built for other cross-language environments. The process of analyzing CLBs would remain similar,
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but the tool would need to be adjusted for the specific inter-language calling conventions, memory
models, and data marshaling practices of each language combination. Our tool is based on Joern [?
] [46], which supports a number of languages, which facilitates the tool extension.
Challenges. First, as we showed, collecting the CLB dataset is challenging. To study another
language combination, we would need to overcome data-collection challenges (e.g., for some
combinations, there may not be as much resource available to collect a good number of CLBs).

Second, each language combination comes with its own set of interoperability mechanisms, such
as foreign function interfaces (FFIs), binding libraries, and calling conventions. Adapting our tool
would require retooling to accommodate these differences in the way languages interoperate.

5 Related Work
Several studies [4, 37, 52] are not really concerned about multilingual code—instead, they mainly
address single-language software despite looking at a variety of languages. In contrast, we study
cross-language defects that have been confirmed as bugs at code level. Yang et al. [48] manually
inspected 586 Stack-Overflow posts related to those issues, while dissecting challenges behind the
issues and summarizing current solutions. The study is based on developers’ discussions rather than
multilingual code. Li et al. investigated characteristics of bug resolution (e.g., bug open time and
reopen rate) in 54 Apache projects [28] and those of bugs themselves (e.g., code change complexity)
in 3 machine-learning frameworks [27]. Like ours, these two studies are based on code artifacts.
Yet neither the bugs nor the projects were necessarilymultilingual—they were defined by involving
multiple languages without concerning language interactions. Also, unlike these works, we address
code-level root cause, location, manifestation, and fixing strategies of multilingual code bugs
without being limited to specific software domains.

Sultana et al. [42] conducted a case study of interoperability issues in 20 C/Fortran applications,
focusing on the declaration, data sharing, and parameter passing in language interfacing, rather
than code bugs induced by C-Fortran interactions. Similarly, Hu et al. [14] identified 9 common bug
patterns concerning Python/C API usage. Our study concerns bugs induced by faulty cross-language
information flow, including but not limited to those caused by API misuses.

Hwang et al. [15] target JVM-specific bugs related to JNI compliance by generating synthetic tests
to expose deviations in JNI call handling. In contrast, our study examines real-world, application-
level bugs in Java-C software using JNI, beyond JVM behavior such as specification compliance
issues. Moreover, our study is grounded in analyzing actual bugs, which enables us to analyze a
broader range of symptoms, root causes, and manifestation patterns as they occur in practice.

6 Conclusion
We presented the first comprehensive study of real-world ross-language bugs. Using our tool along
with manual analysis, we collected and dissected the first set of 400 bugs carefully labeled from
real-world Python-C and Java-C repositories on GitHub. We thus identified the symptoms, locations,
manifestation characteristics, root causes, and fixing strategies of those bugs, discovering both the
common and different bug patterns between the two language combinations. Based on our findings,
we also provide actionable insights into how to prevent, detect, and fix cross-language bugs.

7 Data Availability
Wepublicly released all of our code and datasets at https://anonymous.4open.science/r/artifact-B457/.
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