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ABSTRACT
We envision visual semantics learning (VSL), a novel methodology
that derives high-level functional description of given software
from its visual (graphical) outputs. By visual semantics, we mean
the semantic description about the software’s behaviors that are
exhibited in its visual outputs. VSL works by composing this
description based on visual element labels extracted from these
outputs through image/video understanding and natural language
generation. The result of VSL can then support tasks that may
benefit from the high-level functional description. Just like a
developer relies on program understanding to conduct many of
such tasks, automatically understanding software (i.e., by machine
rather than by human developers) is necessary to eventually enable
fully automated software engineering. Apparently, VSL only works
with software that does produce visual outputs that meaningfully
demonstrate the software’s behaviors. Nevertheless, learning visual
semantics would be a useful first step towards automated software
understanding. We outline the design of our approach to VSL and
present early results demonstrating its merits.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Computing methodologies→ Scene understanding;
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1 INTRODUCTION
Understanding the behaviors of software is a fundamental activity
in software process. This activity offers the crucial basis for various
other tasks such as localizing functionality defects and security
vulnerabilities, as well as identifying changes to fix them. This
is particularly true during software maintenance and evolution,
which is driven by such changes.

Essential for these tasks is the description of the functional se-
mantics of a given software application. Just like human developers
rely on manually achieved program comprehension for (manually)
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performing other tasks (e.g., debugging), machines would rely on
automatically deduced software understanding in the form of such
descriptions for (automatically) performing similar tasks. We see
this as the key spirit of automated software engineering, where
software could be developed and maintained (at least partly) by ma-
chines instead of human developers. These descriptions would also
readily provide an effective means for searching equivalent/similar
applications if their semantics descriptions are also available.

Unfortunately, obtaining such descriptions of software semantics
is difficult. Manual approaches, such as code reading, is costly,
error-prone, and hard to scale, especially with the ever-growing
code bases and search sources. Potentially able to overcome these
limitations, automated approaches to software understanding
would be necessary. However, automating the process of software
understanding is challenging. First, software requirements and/or
design specifications that describe the software’s functionalities
would greatly ease the task, yet such documents are usually
unavailable. Second, specification mining and recovery techniques
exist [31], yet currently their resulting descriptions/representations
tend to be too coarse or abstract to be amendable for semantics
understanding. Finally, conventional program analysis falls far
short of automated semantics inference [21, 22].

We envision visual semantics learning (VSL), a novelmethodology
to automatically understanding the high-level functional semantics
of software, hence facilitating the automation of tasks based on the
functional semantics. We refer to the description about software
behaviors that can be demonstrated through visual outputs as
visual semantics. Accordingly, software that has visual semantics
(i.e., producing visual outputs that meaningfully demonstrate at
least part of its behaviors) are referred to as visual software. By
visual output, we mean what a program produces as outputs that
consist of visual (graphical) elements, including but not limited to
GUI elements (e.g., data visualizations such as pie charts and heat
maps). Certainly not all software is visual software, and not all of
the behaviors of visual software are necessarily manifested through
visual outputs. Yet by helping address the task of automated
software understanding for visual software, VSL would still serve as
an essential, first step towards automated software engineering.

This paper sketches a VSL approach that leverages advances in
image and video understanding (mainly based on deep learning)
and natural language processing. Our approach learns visual
semantics through recognizing the labels of various visual elements
(not only the names of visual objects but also their attributes
including spatial relationships with other objects, and scene types)
from each visual output as an image, as well as inferring temporal
relationships and interactions among these elements from the
time sequences of multiple visual outputs as videos. The approach
then generates the semantics description by composing short
natural-language sentences from all of the learned visual element
labels. This description can be used to support applications that
benefit from it (e.g., software classification/search).
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Figure 1: An overview of the envisioned approach to VSL.

To demonstrate the benefits of VSL, we implemented an
open-source prototype [18] of part of our approach’s design using
existing techniques for image/video understanding and natural
language processing. We then applied it to 16 real-world subject
programs from diverse sources that are developed in different
programming languages and represent varied application domains.
Our early results suggest that our approach did have unprecedented
merits in automatically learning the visual semantics of the studied
subjects (and their executions) with over 90% precision and recall
on average for high-level software understanding.

The immediate audience of VSL would be researchers and
developers of techniques and tools that support automating
software development and maintenance tasks. Through our work,
we foresee a new direction in this grand endeavor that exploits
latest advances in machine learning and artificial intelligence for
automated software understanding.

2 OUR APPROACH TO VSL
We first give a brief overview of the approach we envision and then
elaborate each of the key components of the design.

2.1 Overview
As shown in Figure 1, our design includes three major components:
visual output generation (VOG), image/video understanding (IVU),
and natural language generation (NLG). The main inputs include the
visual software (executable program), optionally with any available
run-time inputs (e.g., test cases) of the software.

First, the VOG checks if the run-time inputs (when available)
are those that exercise all known visual-output-generating APIs
(referred to as visual APIs), and automatically generates more such
inputs if necessary. Then, it runs the program against those inputs to
produce visual outputs. Next, the IVU takes the visual outputs and
recognizes visual elements, including visual objects (e.g., a curve)
and their attributes (e.g., color) as well as (spatial) relationships in
each individual visual output as an image, and then produces bags
of words (referred to as visual element descriptors) that describe each
visual element recognized. The IVU further treats the sequence of
visual outputs (if exists) as a video to identify temporal relationships
across varied visual outputs as additional visual element descriptors.
All these descriptors are fed into the NLG module to generate
natural-language (NL) sentences (e.g., “the app makes a phone call
to a number from a contact list when the user hovers over the
number and taps on it") that describe the program’s (high-level)
functional semantics (referred to as semantics descriptions). These
resulting descriptions are the visual semantics that VSL tries to
learn, the output of our approach.

2.2 Visual Output Generation (VOG)
How well our approach can learn visual semantics from software
(e.g., howmuch its visual semantics learned covers its full functional
semantics) depends on the quality of its visual outputs available
for learning. The VOG module aims to exercise as much of the
complete visual semantics as possible by first identifying method

calls that immediately trigger visual outputs (i.e., visual APIs).
Next, the VOG runs the program against the available run-time
inputs to check if these inputs exercise all the visual APIs identified.
For each exercised visual API, it collects the visual outputs; for
any unexercised ones, it automatically generates additional inputs
needed through a targeted input generation approach.

Specifically, to generate inputs that exercise a visual API 𝑣𝑎, the
VOG traverses (interprocedural) control flows from each callsite
of 𝑣𝑎, backward to any program entry point, resulting in a set of
control flow paths. It then tries to solve the path conditions on each
of these control flow paths to either identify the path as infeasible
(e.g., the path contains contradicting path conditions), or derive
input values from solving the conditions using a constraint solver.
Then, the VOG runs the program against these additional inputs to
collect more visual outputs.

We note that our approach’s eventual scope of outputs is
determined by that of the generated visual outputs. The automated
software understanding and its application scenarios (e.g., software
search) can be either at whole-software level or at class even
method levels, as long as the corresponding levels of visual outputs
are provided to the rest of the proposed pipeline. We also note
that if sufficient visual outputs are supplied as part of its inputs,
our approach would be language-agnostic, since otherwise only
VOG would be language-dependent—the only module that would
require code analysis for input generation.

2.3 Image/Video Understanding (IVU)
The IVU module aims to extract semantic information regarding
software functionalities, first from each individual visual output
as a single image and then from, if available, the entire (time)
sequence of visual outputs as a video, through image and video
description generation, respectively. Figure 2 illustrates the
extraction process through image understanding based on deep
learning (DL). Concrete instances of VSL concepts (e.g., visual
output, visual semantics) are also given in this illustrating example.

To understand each visual output, the IVU focuses on recognizing
varied kinds of visual elements, including objects, attributes of each
object, spatial relationships among objects, and scene type, using
convolutional neural networks (CNNs) which have the advantage
(over peer solutions to image understanding) of capturing deep
characteristics about visual elements of an image [28]. Given that
texts are common in software-produced visual outputs (e.g., button
labels like "bar"/"line", menu items, window/dialog title, etc.), the
IVU also detects each block of (continuously-spaced) texts as an
object using dedicated detectors [39, 40]—the resulting label of such
an object is the block of texts itself. Recent advances in computer
vision and image understanding [42] for visual relation extraction
is utilized to extract relationship information (visual dependen-
cies [25]) from the image, which is essential for the NLG to generate
meaningful sentences that describe software functionalities.

A key challenge here is to overcome the lack of software-produced
visual outputs for training the CNNs. We address this by utilizing
the ensemble of existing relevant datasets (e.g., [20, 24, 33]) to
extract GUI elements as visual objects. However, these datasets
do not include the other necessary types of visual elements (i.e.,
attributes, relationships, scene type), which we reduce from
visual objects using attribute inference techniques [26, 35]. For
understanding non-GUI elements, we build the training datasets
through a snowballing approach as shown in Figure 2, starting
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Figure 2: An example illustrating the envisioned visual semantics learning via image understanding.

with example/illustrating programs for graphics and visualization
programming (e.g., OpenGL and VTK code examples [32, 38]). First,
we curate a small number of samples by running the code examples,
and create the visual element labels via manual annotation; next,
we use this initial dataset to train an object detector with the
capabilities to deduce visual dependencies; then, we use the trained
detector to extract the visual elements from additional non-GUI
visual outputs, and manually calibrate the results so as to augment
the training dataset. Repeating the second and third steps lets us
obtain a sizable training dataset for non-GUI visual outputs.

When available, multiple visual outputs (with timestamps)
are utilized in two ways. If the outputs form a meaningful
sequence (i.e., without abrupt changes) as a video, we exploit
the temporal structure and attributes of visual objects across the
image sequence, in addition to the spatial relationships between
visual elements within each image. Specifically, we (1) compute the
temporal information from differencing the semantics descriptions
between adjacent visual outputs, (2) add the detected changes
in and interactions between visual elements to the output of the
image-understanding component, and then (3) incorporate the
resulting labels (words) to the NLG step. If there are abrupt changes
between adjacent visual outputs, video understanding would not
apply. In this case, we treat the outputs as individual images and
generate the semantics description for each image separately,
followed by a text summarization process [41].

2.4 Natural Language Generation (NLG)
The NLG module aims to turn the visual content extracted from
the visual outputs into a natural-language-like representation. We
pursue this representation mainly because it is a good way to
describe the structural and semantic relationships among the visual
elements of the visual outputs, whereas these relationships are an
essential part of functional (visual) semantics of software.

Specifically, with the list of unstructured words resulting from
the IVU step, we generate the target representation using a hybrid
approach combining template-based and statistical approaches, as
illustrated in Figure 2. We adopt part of the template-based idea
by filling sentence templates with the labels (as nouns) indicating
visual elements and visual dependencies among the elements
(as conjunctions, prepositions, etc.). To mitigate the tedious and
unscalable nature of the template-based approach, we then exploit
the spirit of statistical approaches at the same time: automatically
learn sentence templates from a limited training dataset, using
a state-of-the-art statistical framework (e.g., [29]). To that end,
we use project descriptions and README files from top-quality
open-source project repositories (e.g., on GitHub) to build the
initial training dataset for the template learning purpose.

A main challenge with this approach to NLG seems to lie in
its limited accuracy in practice, due to the potential failure of
underlying IVU techniques to accurately detect the visual elements

Table 1: Subject programs used in our evaluation
Subject LanguageGround-truth functionality
MPAndroidChart [1] Java Produces various kinds of charts
GeometricObjects [2] Python Produces various geometric objects
Python-QRcode [14] Python Generates QR code
QR code [15] PHP Generates QR code
StackedBarGraph [12] Python Produces a barchart
BarchartDemo [13] Python Produces a barchart
Circle [3] C++ Generates a circle
Matplotlib-circle [4] Python Generates a circle
Triangle [5] C++ Produces a triangle
Streamplot [6] Python Produces a streamplot
SIP Caller [7] Java Makes call to SIP numbers
Emerald Dialer [16] Java Makes phone call
AppAppCall [8] Java Makes app-to-app call
Piechart [9] Python Procudes a piechart
Piechart2 [10] Python Produces a piechart
Rectangle [11] C++ Generates a rectangle

and/or that of the underlying natural-language generation
techniques to accurately produce fluent and grammatically correct
sentences. However, as mentioned earlier, VSL does not target
human developers and help them understand visual semantics
(which they would rather directly obtain by viewing the visual
outputs generated). Instead, the users of the visual semantics
descriptions are automated techniques serving application tasks
based on software understanding (e.g., automated code reuse, fault
diagnosis, software search, etc.). For these automate applications,
the representation does not have to be perfectly correct in terms of
natural language grammar or being fluently human-readable—the
more important requirement is that it will maintain the visual
elements and their key relationships.

3 EVALUATION
For a preliminary validation of our approach, we partly implemented
the envisioned design using simplified choices for its various
technical components. For the IVU module, we trained a CNN
model [30] using different types of images of non-GUI objects (e.g.,
simple geometric shapes such as circles, triangles, charts etc.) and
cropped images of standard GUI elements (buttons, checkboxes,
etc.) collected from online resources. With such a trained IVU
module, the prototype only recognizes object labels from individual
images separately at this stage. For the NLG component, we
simply adopted a template-based sentence generation method,
using templates manually created based on IVU-produced object
descriptors (e.g., “this program <verb> <object>"). The individual
sentences generated were then summarized to construct concise
semantics descriptions using NLTK [17].

We applied this early prototype to 16 real-world applications,
as summarized in Table 1. They were obtained from diverse
sources (github, vtk.org [37], F-droid [27], and matplotlib [32])
and represented different programming languages. We manually
exercised each application to generate a single (for 11 subjects) or
multiple (for the other 5) visual outputs, including GUI and non-GUI
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ones. The subjects also included those of similar functionalities to
facilitate our evaluation. The ground-truth functionalities were
manually derived and used to compute the precision and recall of
the prototype in generating semantics descriptions.
Effectiveness.We considered the semantics description generated
by the prototype for an application a true positive if the description
did capture the application’s functionalities demonstrated in
the given visual outputs, and a false positive otherwise. The
prototype achieved 96% precision and perfect recall for the 16 such
descriptions it produced—the imprecision was due to failures in
recognizing the visual objects for two subjects (MPAndroidChart
and GeometricOjbects) as a result of insufficient CNN training.
Efficiency. The main cost of our approach generally lies in that
for training and loading the IVU and NLG models, and depends
on the size of these datasets as well as the time for generating the
visual outputs. For our study in particular, generating all models
needed took no more than 3 minutes. Beyond this, the time for the
prototype to generate the semantics description for each subject
was negligible. Since the visual outputs were manually produced
for now, the VOG cost was not counted here.

4 RELATEDWORK
The prior work that is most related to ours is ReDraw, a GUI
code generation technique for Android apps as presented in [33].
Similar to our work, this technique recognizes GUI elements
of programs through computer vision based on deep learning
models (CNNs). Meanwhile, the VSL concept and our approach
to VSL are new with respect to this work in multiple ways. First,
ReDraw aims to generate GUI implementation (code), while we
envision VSL to understand the high-level program functionalities
from visual outputs by generating natural-language descriptions
of the functionalities. These outputs from which VSL learns
include but are not limited to GUI elements. Second, while ReDraw
helps Android app developers sketch up GUI code, VSL targets
automated software tools as users that leverage automatically
obtained understanding of software in general (not mobile apps
only). Third, ReDraw’s visual object recognition was limited to
individual GUIs as static images, while our approach also learns
visual semantics from time sequences of visual outputs as videos.

Like other prior work on GUI prototyping that generates GUI
design [23] and code [20, 34] skeleton from a given GUI image
or screenshot, our approach leverages data-driven techniques for
visual element recognition. The semantics descriptions resulting
from VSL can support software search (e.g., through natural
language matching). Yet this VSL application would focus on
finding existing software that match functional semantics expressed
by visual outputs according to user queries, rather than matching
a particular kind of visual outputs (GUIs) themselves—again, our
visual outputs are generally defined, not limited to GUIs.

Current work on GUI search aim at a more immediate step from
a GUI skeleton to the code that implements the GUI by searching
an existing code repository (rather than generating the code as
GUI prototyping does) [19, 36]. In comparison to a VSL-based
application search technique, the prior work targeted searching
code that implements given GUIs themselves (but not what they
mean/do—their semantics).

Compared to the rich body of work on program understanding
by developers, we target automated software understanding by

machines. And we are not aware of prior work on understanding
functional semantics from software visual outputs.

5 CONCLUSION & FUTUREWORK
We presented the design of a novel approach to automating
software understanding via visual semantics learning. Our
preliminary empirical results demonstrated promising prospects
of the proposed approach. An immediate next step is to realize
our full design hence evaluate the approach systematically. We
envision this work to stimulate a new direction in leveraging
artificial intelligence for automated software engineering.
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