
Exploring How Deprecated Python Library APIs Are (Not)
Handled

Jiawei Wang
jiawei.wang1@monash.edu

Monash University
Australia

Li Li
li.li@monash.edu
Monash University

Australia

Kui Liu
kui.liu@nuaa.edu.cn

Nanjing University of Aeronautics and Astronautics
China

Haipeng Cai
haipeng.cai@wsu.edu

Washington State University
USA

ABSTRACT
In this paper, we present the first exploratory study of deprecated
Python library APIs to understand the status quo of API deprecation
in the realm of Python libraries. Specifically, we aim to compre-
hend how deprecated library APIs are declared and documented in
practice by their maintainers, and how library users react to them.
By thoroughly looking into six reputed Python libraries and 1,200
GitHub projects, we experimentally observe that API deprecation
is poorly handled by library contributors, which subsequently in-
troduce difficulties for Python developers to resolve the usage of
deprecated library APIs. This empirical evidence suggests that our
community should take immediate actions to appropriately handle
the deprecation of Python library APIs.

CCS CONCEPTS
• Software and its engineering→ Software evolution.

KEYWORDS
Deprecated API, Deprecation, Python library, Evolution.
ACM Reference Format:
Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. 2020. Exploring How Dep-
recated Python Library APIs Are (Not) Handled. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’20), Novem-
ber 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3368089.3409735

1 INTRODUCTION
Application Programming Interface (API) offers a communication
protocol for different programs to interact with each other. Nowa-
days, APIs have often been regarded as the standard means pro-
viding interfaces of modern Software Development Kits (SDKs)

Li Li and Kui Liu are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409735

or libraries to support and simplify the development of software.
When using APIs, developers do not necessarily need to under-
stand the underlying implementations of APIs that could be super
complicated and could involve interacting with many other APIs.

Just like the fast-evolving nature of software, e.g., for providing
new features or fixing bugs and vulnerabilities, APIs need to be
continuously maintained and updated as well [30]. Indeed, the
implementation of APIs can also come with bugs or vulnerabilities
that, if not being fixed, can propagate the same problems to their
consumers, i.e., the software that accessed these APIs [61]. Since
multiple consumers can access the same APIs, all of them will
benefit from the changes in those APIs. While changing, in order to
not break the access of their consumers, certain parts of the APIs
(i.e., signatures), including the name and parameter numbers of
the APIs, cannot be altered. In such cases, e.g., it is unavoidable to
change the signatures of APIs [27], the recommended approach is
to introduce new APIs and encourage the consumers of the APIs to
migrate to the new ones, meanwhile, the old APIs will be marked
as deprecated.

API deprecation has become a common practice for evolving
unwanted APIs, which are discouraged from using in new devel-
opments, and which will still be kept for a while (before removed)
to preserve “backward compatibility” for existing consumers of
the APIs. There are many valid reasons to deprecate APIs: the
APIs are insecure, buggy, highly inefficient, or encourages poor
coding practices, or will not be maintained anymore [10]. Taking
these reasons and the natural progression of APIs in mind, our
fellow researchers in the software engineering community have
proposed various approaches to characterize the impact of API
deprecation [13, 23, 33, 43–46, 50].

Unfortunately, despite that the literature has proposed numerous
approaches targeting various aspects of deprecated APIs, cover-
ing many programming languages such as Java [22], Android [23],
C# [7], etc., the deprecation of Python library APIs have never
been the main focus. It is even more astonishing concerning that
Python is the most popular programming language, according to
the rank enumerated by IEEE Spectrum [12]. IEEE Spectrum at-
tributes Python’s success to its explosion of new users in recent
years, driven by easy-to-use yet capable Python libraries such as
NumPy, Pandas, etc. Indeed, Python third-party libraries (hereafter,
Python libraries) play an essential yet critical role in supporting
the implementation of Python applications. APIs in such Python

233

https://doi.org/10.1145/3368089.3409735
https://doi.org/10.1145/3368089.3409735

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai

libraries, just like any other programming language, can also be
deprecated. Indeed, as manifested in our empirical observation on
Stack Overflow discussions, API deprecation in Python libraries has
been continuously posted by developers, and the number of such
discussions is even continuously increasing. This evidence shows
that Python developers concern about API deprecation just as much
as developers of other major programming languages. Therefore,
the deprecation of Python library APIs should not be neglected by
the community. There is a strong need to understand the status
quo of deprecated Python APIs.

In this work, we attempt to fill the gap by presenting to the
community the first exploratory study on the deprecation of APIs
in popular Python libraries. We manually look into the implemen-
tation of six Python libraries that are among the top-10 popular
libraries (based on the study of Pimentel et al. [38]) and that in total
have been used by over 70,000 Python projects hosted on Github.
We first aim at manually understanding how Python library con-
tributors deprecate their APIs. Based on the manual observation,
we further summarize the deprecated APIs and check against the
official library documentation to examine if the deprecated library
APIs are properly documented. If so, we go one step further to
check if replacement messages are given in the documentation of
deprecated APIs. Finally, we perform a large-scale study on the
reaction of Python developers to deprecated library APIs. We select
1,200 Python projects on Github (Top-200 projects per library) to
search for the usage of deprecated APIs and possible historical fixes
of deprecated library APIs. We achieve this by introducing to the
community a prototype tool called DLocator to automatically char-
acterize the usage of deprecated APIs in Python repositories. The
core contribution of DLocator is to statically resolve the challenges
brought by the flexibility of Python’s API accessing mechanism (i.e.,
Python developers often map the long fully qualified API names to
shorter ones), which has been deemed as a long-run challenge by
the literature [34, 60].

Overall, our investigation into the deprecated Python APIs seeks
to answer the following research questions (RQs):

• RQ1: How do popular Python libraries deprecate their APIs? In
this very first research question, by investigating the deprecation
strategies of popular Python libraries, we aim at understanding
the current practices adopted by Python developers, in the hope
of observing the root causes bearing the continuous increase of
Python deprecation-related discussions on a developer-oriented
online discussion website.
Main Findings: Despite there is a specific package to deprecate
Python library APIs, Python library contributors often ignore the
recommended solution and implement ad-hoc strategies to dep-
recate APIs. These strategies are further different from libraries
to libraries, and each library may adopt several strategies at the
same time (yet in an inconsistent manner) to deprecate their no
longer supported APIs.
• RQ2: How are deprecated APIs documented in the Python Li-
braries? The fact that Python libraries adopt ad-hoc strategies
to deprecate APIs motivates us to investigate further how are
the deprecated APIs documented. The ad-hoc implementations
for deprecating Python APIs make it hard to invent automated
approaches for managing the deprecated APIs, including their

documentations. As a result, library contributors may have to
rely on ad-hoc solutions as well to document the deprecated APIs,
which, however, may be prone to mistakes.
Main Findings: There are a significant number of deprecated
library APIs that are not mentioned in the official library docu-
mentation. For the documented ones, unfortunately, not all of
them have been provided with explicitly replacement messages
for helping library users to avoid the usage of deprecated APIs.
• RQ3:How are deprecated library APIs used by Python projects? The
findings of the previous two research questions further motivate
us to go one step deeper to examine the impact brought by the
fragmented implementation of API deprecation strategies and
poor documentation of deprecated APIs. To this end, we are
interested in knowing the Python developers’ reactions to API
deprecation when maintaining their Python projects involving
libraries with deprecated APIs.
Main Findings: Python projects indeed use deprecated library
APIs, for which the usage is positively correlated with the num-
ber of total accessed library APIs. Unfortunately, the usages of
deprecated library APIs are rarely changed during the evolution
of Python projects.

2 MOTIVATION
Python is an interpreted, high-level, general-purpose programming
language [40]. Since 2003, Python has become one of the top-10
most popular programming languages listed by TIOBE Index [51].
From January 2020, it is listed as the third most popular language,
following Java and C. Furthermore, Python won the “Programming
Language of the Year” award [51] in 2007, 2010, and 2018, respec-
tively. Many organizations, including Google, CERN, NASA, are
using Python to build their rich software platforms and applica-
tions [41, 49, 57]. In the Python Package Index (PyPI) repository [39],
there are more than 210,000 Python projects released with over
1,600,000 versions as of January 2020, which can assist developers
in addressing a broad range of tasks.

The more libraries being leveraged by Python developers, the
greater influence the deprecation of Python library APIs may lead
to. Hence, there is a need to understand and quantify such influ-
ences. To better motivate this necessity of this, we now present a
preliminary study on the extent of developer discussions related to
the deprecation of Python library APIs.

2.1 Deprecation in Developer Discussions
As a preliminary study in understanding to what extent are depreca-
tion problems discussed by software developers, we resort to public
posts provided by developers on the famous developer Questions &
Answer (Q&A) website, Stack Overflow[35]. We perform a search
using composite conjunctions of keywords, including programming
languages (i.e., Java, C, Python, C++, and C# [51]) and a category
of deprecation-related keywords (i.e., deprecate, deprecated, and
deprecation) with Sotorrent dataset, an official data dump of Stack
Overflow [4]. We limit the search space into the questions that were
posted from January 1st, 2009, to December 31st of 20181. In total,
1,063,837 posts are identified in this search.

1The rounded time slightly earlier than the moment when we started to work on this
project.

234

Exploring How Deprecated Python Library APIs Are (Not) Handled ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

We first assess how frequently the deprecation of each program-
ming language is discussed on Stack Overflow by the numbers of
Q&A posts that contain the deprecation-related keywords, of which
results are presented in Figure 1. We observe that deprecation re-
lated to Java programs present is more discussed than that of the
other four programming languages. Nevertheless, when reaching a
peak in 2015, the number of discussions started to decrease. As can
be seen from the figure, only the deprecation discussions related
to Python are constantly increased over the period. This empirical
evidence shows that Python’s deprecation problems have attracted
more and more attention from Python developers in recent years.

0

50

100

150

200

250

300

350

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

#
Q
&
A
ab
ou
td
ep
re
cc
at
io
n

Java C Python C++ C#
Figure 1: Distribution of deprecation-related Q&A for the
top-5 popular programming languages in the last decade.

29.3%

39.7%

39.0%

38.8%

29.7%

62.6%

51.9%

54.5%

54.3%

62.8%

8.1%

8.3%

6.5%

6.9%

7.5%

Java

C

Python

C++

C#

Negative Neutral Positive

Figure 2: Sentiment distribution of developer attitudes con-
cerning the deprecation problems of the top-5 popular pro-
gramming languages.

2.2 Developers’ Sentiment Reaction to
Deprecation

We then investigate the developers’ emotional attitude towards the
discussions with respect to the deprecation, relying on Senti4D, a
tool for analyzing sentimental polarity from software development
corpus [8]. We apply Senti4D to all the deprecation-related posts
we have identified previously. Developers’ sentiment reacted to
deprecation problems will be grouped into three categories (i.e.,
negative, neutral, or positive). The experimental results are illus-
trated in Figure 2. We observe that Python has the lowest positive
discussions about its deprecation problem compared with the other
four programming languages.

Additionally, for the negative sentiment, the related discussions
for Python are close to or higher than other languages. It implies

that Python developers are not happy with the current deprecation
mechanism provided by or largely implemented in the Python
community. Indeed, Figure 3 illustrates such an exmaple (simplified
from a Stack Overflow page), where a developer complains about
the deprecation of a library API is not properly documented2.

Figure 3: Complaining the deprecation in Python library ex-
cerpted from Q&A on Stack Overflow.

Python becomes popular in the software community, and Python-
related issues such as problems related to the deprecation of Python
APIs are increasingly discussed on the online Question & An-
swer site. Like the reactions of other popular programming lan-
guages, Python developers lean to be negative as well when posting
deprecation-related issues, Therefore, there is a need to empirically
understand the status quo of deprecation in the Python realm, so
as to recommend actionable steps to help developers better handle
deprecation-related issues.

3 STUDY DESIGN
We now present the design details of our study, specifically, in-
cluding the study subjects and the methodology of identifying
deprecated APIs in Python codebase.

3.1 Subject Selection
In this work, we are interested in understanding the deprecation
of Python library APIs. As one of the most popular programming
languages nowadays, Python has attracted a lot of attention from
software developers who have already developed plenty of Python
projects, including a large number of reusable packages (i.e., li-
braries). Indeed, there are at least 200,000 Python libraries available
in the Python community, which are readily accessible for develop-
ers to choose from. It is nonetheless challenging to investigate all
of the available libraries. Hence, we decide to leverage the famous
Python libraries to form our study. In a recent study, Pimentel et
al. [38] have reported the top-10 leveraged Python libraries, concern-
ing their imported frequencies, in their large-scale empirical study.
Among the ten libraries, four of them are provided as Python’s
built-in modules, which should not be considered as third-party
libraries. Therefore, we focus on our study on the remaining six
Python libraries.

Table 1 enumerates the selected six Python libraries, which are
briefly described below:
2https://stackoverflow.com/questions/15847931/django-depracation-error-when-
calling-syncdb

235

https://stackoverflow.com/questions/15847931/django-depracation-error-when-calling-syncdb
https://stackoverflow.com/questions/15847931/django-depracation-error-when-calling-syncdb

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai

Table 1: Information of Subjects: six Python Projects.

Subjects Version kLoC # Commits # Stars # Forks
NumPy 1.8.1 432 22,038 12.9k 4.3k
Matplotlib 3.2.0 857 32,418 10.8k 4.8k
Pandas 1.0.0 919 21,452 23.6k 9.4k
Scikit-learn 0.22.1 768 25,004 39.3k 19.2k
SciPy 1.4.1 729 22,498 6.8k 3.1k
Seaborn 0.9.0 80 2,450 6.8k 1.2k

• Numpy is a fundamental package for scientific computing [53].
• Matplotlib is a Python 2D plotting library which produces
publication-quality figures in a variety of hardcopy formats
and interactive environments across platforms [20].
• Pandas is a Python package providing fast, flexible, and ex-
pressive data structures designed to make working with
“relational” or “labeled” data both easy and intuitive [29].
• Scikit-learn is a famous Python library that is frequently
leveraged to implement machine learning approaches. Scikit-
learn is built on top of SciPy and is distributed under the 3-
Clause BSD license [37]. Pandas and Scikit-Learn are popular
frameworks for data science and statistical machine learning
with highly efficient modules of data prepossessing, machine
learning algorithms.
• SciPy is an open-source software depending on NumPy for
mathematics, science, and engineering [52]. SciPy provides
users with great convenience for scientific computing cover-
ing fast matrix operations.
• Seaborn is a Python visualization library implemented on
top of matplotlib. Both Seaborn and Matplotlib provide high-
level interfaces for drawing attractive statistical graphics [48].

The second column in Table 1 presents the version of the selected
libraries. Since all of the selected libraries are open-source and are
available on GitHub, the following columns further present their
lines of code, the number of commits, stars, and forks. The fact that
all the selected libraries have received more than 1,000 stars and
forks shows that they are indeed popular libraries in the Python
community, and hence should be representative to fulfill our study.

3.2 Methodology
We now briefly summarize the methodology we adopt in order to
answer the three research questions we enumerated in Section 1.
Initially, we plan to write Python scripts to characterize the dep-
recation of Python library APIs automatically. However, as we
will detail in the next section, Python library contributors do not
follow the same strategy to deprecate APIs or provide means to
programmatically document the deprecated APIs, making it hard
to automatically achieve the purpose (i.e., identifying deprecated
APIs and their documentation). Therefore, we resort to a manual
approach to answer the first two research questions.

Regarding the third research question, which concerns the de-
velopers’ reaction to deprecated Python APIs, one of the core tasks
towards answering this question is to check if a given deprecated
API is used in a Python project. To achieve this purpose, we design
and implement a prototype tool called DLocator to automatically

API Calling Type 1:
from sklearn.feature_extraction.text import Tfidfvectorizer
tf_idfv = TfidfVectorizer()

API Calling Type 2:
from sklearn.feature_extraction import text
tf_idfv = text.TfidfVectorizer()

API Calling Type 3:
from sklearn.feature_extraction import text as T
tf_idfv = T.TfidfVectorizer()

API Calling Type 4:
import numpy as np
a = np.array((2,5))
a.reshape

Figure 4: Examples of four API calling types in Python code.

Algorithm 1: Formatting API Calls.
Input :𝑃 , a Python program.
Output :𝐴𝑓 , a set of formatted API calls.

1 Function format (𝑃)
2 𝐴← initMap () /* Initiate a map for API calls. */

3 𝐴𝑓 ← initList () /* Initiate a list for formatted API calls. */

4 𝐴𝑠𝑠← initMap () /* Initiate a map for assignments. */

5 𝐶← initList () /* Initiate a list for function calls. */

6 𝑃𝐴𝑆𝑇 ← parsePythonCode (𝑃) /* Parse the Python code into an AST. */

/* 𝑁𝐴𝑆𝑇 : an AST node in 𝑃𝐴𝑆𝑇 . */

7 foreach 𝑁𝐴𝑆𝑇 in 𝑃𝐴𝑆𝑇 do
8 if isImportStatementNode (𝑁𝐴𝑆𝑇) then
9 if hasAlias (𝑘𝑒𝑦) then
10 𝑘𝑒𝑦← getAlias (𝑁𝐴𝑆𝑇)

11 else
12 𝑘𝑒𝑦← getImportItem (𝑁𝐴𝑆𝑇)

13 if isImportStatement (𝑁𝐴𝑆𝑇) then
14 𝑣𝑎𝑙𝑢𝑒← getModuleName (𝑁𝐴𝑆𝑇)

15 else if isFromImportStatement (𝑁𝐴𝑆𝑇) then
16 𝑣𝑎𝑙𝑢𝑒← getModuleName (𝑁𝐴𝑆𝑇 .from, 𝑁𝐴𝑆𝑇 .import)

17 𝐴.put(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)

18 else if isFunctionCallNode (𝑁𝐴𝑆𝑇) then
19 𝐶 .add(getFunctionCallName (𝑁𝐴𝑆𝑇))

20 foreach 𝑐 in𝐶 do
21 𝑓 𝑢𝑙𝑙𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒← retrieveFullQualifiedName (𝐴)
22 if 𝑓 𝑢𝑙𝑙𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 != null then
23 𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝐴𝑃𝐼𝐶𝑎𝑙𝑙 ← format (𝑐 , 𝑓 𝑢𝑙𝑙𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒)
24 𝐴𝑓 .add(𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝐴𝑃𝐼𝐶𝑎𝑙𝑙)

25 return𝐴𝑓

characterize the usage of library APIs in Python projects. As ac-
knowledged by Zhang et al. [60] in their recent study about the evo-
lution of Python framework APIs, it is non-trivial to achieve such a
purpose. Indeed, as justified by them, when accessing into Python li-
brary APIs, developers often map the long fully qualified API names
to shorter ones (e.g., from sklearn.feature_extraction.tex.Tf-
idfVectorizer to TfidfVectorizer). Furthermore, APIs can be
shortened in different methods (such as the four different API call-
ings types shown in Figure 4) depending on developers’ program-
ming behavior. Subsequently, such usages of shortened API versions
cannot be statically reflected back to their fully qualified versions
and can impede the identification of the same APIs with differ-
ent usages. To resolve this challenge, we formatted the API calls
presented in Python projects before characterizing them.

236

Exploring How Deprecated Python Library APIs Are (Not) Handled ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Formatting API Calls. We propose to format all API calls into
the fully qualified name style that generally present APIs in a
Python library in the form of A.B.C.API_Name (such as sklearn.fe
ature_extraction.text.TfidfVectorizer()), where each iden-
tifier is separated with “.”, which represents the hierarchical struc-
ture of the full API path, including the location where the API is
declared and the relationship between a class and its members.

The process of formatting API calls is illustrated in Algorithm 1.
Given a Python program, we first parse it into an abstract syntax
tree (AST) to facilitate traversing each entity of the program. We
first collect the full paths (including the specific module names) for
all API calls. If an AST node in the entire AST of the Python program
is an import statement node [1], its information related to API will
be extracted. If the import statement node has an alias, the alias
(such as 3rd one in Figure 4) is extracted as the retrieving key for
API mapping (cf. Line-9). Otherwise, the import item is collected
as the retrieving key (cf. Line-11). If the import statement node
represents an import statement, the full module name is identified
as the path value for API mapping (cf. Line-13). While if the import
statement node is a from-import statement, the full module name
concatenated with the import item is identified as the related value
for API mapping (cf. Line-15). We then collect and format all API
calls from the Python program code. For each AST node in 𝑃𝐴𝑆𝑇 , if
it is a function call node, the related function name is collected as an
API call candidate (cf. Line-18). After checking all AST nodes, each
API call candidate is validated whether it is invoked as an API call
from a library. If so, the related full qualified name is concatenated
to format each API call.

4 STUDY RESULTS
We now provide the experimental results along with the key in-
sights observed for answering aforementioned research questions.

4.1 RQ1: Declaration of Deprecated APIs
Our first research question concerns the declaration of deprecated
APIs. We want to understand how Python library contributors
deprecate their library APIs. We hence manually look into the
open-source repositories of the selected six libraries.

Our observation reveals that Python APIs are deprecated at
different granularities, which are summarized into four categories:
function, parameter, parameter’s value, and others.

• Function: A function/class defined in a library is simply no
longer supported by the library, such as the three examples shown
in Figure 6. The deprecated Python class is grouped into this cat-
egory as the invocation of Python class is similar to the function
call (like constructor calls in Java).
• Parameter: The positional or keyword argument [14] defined
in an API can be deprecated in Python. For example, parameter
“numeric_only” of function pandas.DataFrame .min in Figure 5
is deprecated and will be replaced with “skipna”.
• Parameter’s Value: This type refers to the cases where an argu-
ment of an API will no longer accept certain value(s) as input. For
example, values “full” and “economic” for argument mode of
API numpy.linalg.qr will no longer be supported (lines 10-11
in Figure 5).

1: Parameter:
2: @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="

skipna")
3: def min(self, skipna=True):
4:
5: Parameter’s Value: example from numpy.linalg.qr
6: def qr(a, mode='reduced'):
7: """
8: mode : {'reduced','complete','r','raw','full','economic'},
9:
10: 'full' : alias of 'reduced', deprecated
11: 'economic' : returns h from 'raw', deprecated.

Figure 5: Examples of deprecated APIs at parameter and pa-
rameter’s value levels.

01: (1) Decorator
02: matplotlib/lib/matplotlib/scale.py
03: @cbook.deprecated("3.1", alternative="LogTransform")
04: class LogTransformBase(Transform):
05:
06:
07: (2) Hard-coded Warning
08: scikit-learn/sklearn/ensemble/_gb.py
08: class sklearn.ensemble.GradientBoostingClassifier(...)
09: if self.presort != 'deprecated':
10: warnings.warn("The parameter 'presort' is deprecated and "
11: "has no effect. It will be removed in v0.24. You can "
12: "suppress this warning by not passing any value "
13: "to the 'presort' parameter. We also recommend "
14: "using HistGradientBoosting models instead.",
15: FutureWarning)
16:
17: (3) Comment
18: scipy/scipy/signal/windows/windows.py
19: def slepian(M, width, sym=True):
20: """
21: .. note:: Deprecated in SciPy 1.1.
22: `slepian` will be removed in a future version of
23: SciPy, it is replaced by `dpss`, which uses the
24: standard definition of a digital Slepian windo.

Figure 6: Examples of declaring of deprecated APIs in
Python libraries.

Comparing with other popular programming languages (e.g.,
Java), Python API deprecations present a finer granularity. Except
the code entities (i.e., classes, and functions) that can be deprecated
by developers in different programming language code, the parame-
ter and its value could be discarded by Python contributors as well.
Table 2 illustrates the distributions of API deprecations at each
of the three granularities. Overall, functions are the main entities
that will be deprecated by Python contributors, it is similar to the
deprecated entities in other programming languages. In Pandas,
Scikit-learn, and SciPy, the deprecated parameters hold a signifi-
cant share of API deprecations. Only a small number of deprecated
API cases are caused by the parameter’s value. Nevertheless, the
deprecated APIs with respect to parameters raise a challenge in
maintaining tasks for developers. any part of it is declared as such.

We further investigate how the deprecated APIs are declared in
Python programs by developers. According to our investigation,
the API deprecations are generally declared in three strategies:
(1) Decorator: The strategy used by library contributors to declare

the deprecation of Python APIs is through the so-called Python
decorator mechanism.
Similar to the Java annotation mechanism, Python decorator
provides a means to extend the behavior of a function without

237

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai

Table 2: Distributions of deprecated APIs in each category.

Subject Function Parameter Parameter’s Value Total
NumPy 26 2 2 30

Matplotlib 47 7 4 58
Pandas 14 11 0 25

Scikit-learn 19 18 4 41
SciPy 23 17 3 43

Seaborn 6 1 0 7
Total 135 56 13 204

explicitly modifying it. Figure 6 presents a concrete example
showing how the Python decorator is used to deprecate APIs in
class LogTransformBase (e.g., line 3). Unfortunately, different
library contributors tend to maintain their own decorator im-
plementations instead of adopting a common one such as the
deprecation project hosted on PyPI, the official third-party soft-
ware repository for Python. This ad-hoc decorator implemen-
tation makes it hard to invent generic scripts to automatically
characterize deprecated APIs for Python libraries.

(2) Hard-coded warning: The declaration of API deprecation is
realized by providing hard-coded warning messages to API
users at runtime. Figure 6 demonstrates such an example, where
the deprecated API “GradientBoostingClassifier()” (one of
its parameters is deprecated) is highlighted by a hard-coded
warning message (line 10).

(3) Comments: The deprecation is declared as comments (i.e., nat-
ural language) in the source code. Let us take Figure 6 again as
an example, in line 20, the comments of API slepian() explic-
itly note readers that the API is deprecated in SciPy 1.1.
Table 3 summarizes the declaring strategies of deprecated APIs

adopted by the selected popular Python libraries. It is interest-
ing to observe that: (1) Generally, most of the libraries (except
Seaborn) leverage Python decorator to declaring the deprecation
of APIs. Similar methodologies have been adopted by Java as well
(via @Deprecated annotation), which has been demonstrated to
be effective. Unfortunately, unlike what occurs in Java, where all
the projects use the same mechanism to manage deprecated APIs,
Python library contributors maintain their deprecation decorator
that is different from the ones adopted by other libraries (except for
SciPy, which leverages the decorator supported by NumPy). (2) All
six libraries attempt to describe API deprecation via developer com-
ments. However, when commenting on the deprecation of APIs,
Python libraries do not provide structural mechanisms (such as
@deprecated Javadoc) to help in maintaining the up-to-date docu-
mentation of deprecated APIs, resulting in difficulties to propagate
the deprecation to the API users. (3) To mitigate this problem, all
the libraries have decided to warn library users at runtime about
their usages of deprecated APIs.

Among the six selected libraries, four of them have leveraged all
the three strategies to declare the deprecation of APIs. These three
strategies seem to complement each other: Decorator allows main-
tainers to programmatically manipulate the deprecated APIs but
does not provide a detail explanation on why is the API deprecated.
Comments can then be leveraged to fill the gap by providing natural
language explanation to library developers. Finally, the hard-coded
warning provides an effective means to further propagate the depre-
cation message to library users. To check if library contributors are

Table 3: The declaring strategies of deprecated APIs in six
Python libraries.

Subject Decorator Hard-code warning Comments
NumPy np.decorator ✓ ✓
Matplotlib mp.decorator ✓ ✓
Pandas pd.decorator ✓ ✓
Scikit-learn sk.decorator ✓ ✓
SciPy np.decorator ✓ ✓
Seaborn ✓ ✓

∗“np”, “pd”, “mp” and “sk” represent NumPy, Matplotlib, Pandas and
Scikit-learn that define the decorators.

Table 4: The number of deprecation occurrences in the sub-
ject dataset by different ways

Subject C W D C+W C+D D+W C+D+W Total
NumPy 1 6 4 19 0 0 0 30

Matplotlib 5 8 42 3 0 0 0 58
Pandas 1 13 6 5 0 0 0 25

Scikit-learn 10 2 15 12 2 0 0 41
SciPy 12 5 14 8 4 0 0 43

Seaborn 3 3 0 1 0 0 0 7
Total 32 37 81 48 6 0 0 204

∗C,W, D represent comments, hard-coded warning and decorator declaring
strategies, respectively.

actually using different strategies to complement each other when
deprecating APIs, we are further motivated to answer the following
question: To what extent are the identified strategies adopted to
declare deprecated APIs?

Table 4 summarizes our empirical findings. The majority of dep-
recated APIs, in all the selected libraries, is declared by a single
strategy, as shown in columns 2-4. The remaining deprecated APIs
are mostly declared by two strategies: A large part of them are
deprecated by hard-coded warnings plus comments (column 5),
while a small number of them by decorator plus comments (col-
umn 6). There are no deprecated APIs that are declared by both
decorator and hard-coded warning strategies (column 7 and col-
umn 8). This evidence suggests that Python library contributors
have poorly handled API deprecation in the community. Although
different strategies are leveraged, they do not take efforts to ensure
the consistency among them, missing the opportunities to comple-
mentarily and hence thoroughly declare the deprecation of APIs.
This problem also explains why the number of Python depreca-
tion discussions on developer Q&A site continuously increases, as
disclosed in Section 2.

The deprecation of Python library APIs is mainly declared via
three strategies: Decorator, Hard-coded warning, and comments.
Library contributors, nevertheless, do not follow the same paradigm
but resort to different strategies, which are often customized and
maintained by their contributors, to deprecate APIs.
Moreover, there are cases that deprecated APIs may be declared by
two strategies. Nonetheless, there is no single API that is deprecated
via all the three identified complementary strategies, i.e., lacking
consistency between the adopted deprecation strategies.

238

Exploring How Deprecated Python Library APIs Are (Not) Handled ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

4.2 RQ2: Documentation of Deprecated APIs
For the future evolution and maintenance of programs, it is worthy
of providing clear documentation for deprecated APIs [23, 44, 62].
Indeed, as stated in the literature [13], it is essential to provide
sufficient information concerning deprecated APIs for library users.
Mainly, documenting APIs is known as one of the most effective
methods to resolve deprecated APIs since they can convey the
intentions of why APIs are deprecated [36].

Therefore, in the second research question, we concern about
the documentation of deprecated Python library APIs. The first
task is to identify the artifacts that document the deprecation of
library APIs. In this work, we resort to the official documentation
(also known as API reference) and release notes to check if the
deprecation messages are timely conveyed to library users. If so,
we consider the API deprecation is well documented; otherwise,
we regard the deprecation of APIs as undocumented ones.

Table 5 summarizes the number of undocumented deprecated
APIs. There are in total of 49 deprecated APIs (among the six se-
lected popular libraries) that are not documented by developers.
Specifically, concerning the three deprecation strategies, i.e., com-
ments, hard-coded warning, and decorator, the numbers of undoc-
umented APIs are 12(14%), 14 (17%), and 29 (33%), respectively.

Concerning each library along, to the best, only 8% of deprecated
Pandas APIs are not documented; to the worst, the undocumented
rate of deprecated SciPy APIs reaches as high as 47%.

Table 5: The number of undocumented/total deprecated
APIs in the six subjects.

Subjecct Comments Warning Decorator Total
NumPy 2/20 3/25 4/4 7/30 (23%)
Matplotlib 2/8 3/11 1/42 6/58 (10%)
Pandas 1/6 1/17 0/6 2/25 (8%)
Scikit-learn 1/24 1/14 12/17 13/41 (32%)
SciPy 6/24 5/13 12/18 20/43 (47%)
Seaborn 0/4 1/4 0/0 1/7 (14%)
Total 12/86(14%) 14/84(17%) 29/87(33%) 49/204(24%)
∗6 undocumented API deprecations are declared with both comments and
warning strategies, or both comments and decorator strategies, thus the
number in column “Total” is slightly lower than the sum of the previous
related three columns. The same as Table 6.

We further investigate whether the alternatives to deprecated
APIs are provided when their documents are available, of which re-
sults are summarized in Table 6. The correctness of the results were
confirmed by two PhD students who have Python as their primary
programming language for daily tasks but have been unaware of
the deprecation study for Python. These two PhD students are in-
vited to independently verify all of the 155 documented deprecated
APIs, among which they have agreed on 153 of them after reading
documentation text of these APIs, giving a substantial inter-rater
agreement as suggested by Cohen’s kappa coefficient (kappa=0.663).
The disagreements are mainly related to semantic differences of the
descriptive language mentioning of these APIs (without explicitly
mentioning the deprecation or removal of the API).

Overall, around one-third of documented API deprecations do
not provide alternatives for users, which is in line with the results

Table 6: The number of deprecated APIs that are docu-
mented but not provided with replacement messages.
Subject Comments Warning Decorator Total
NumPy 4/18 4/22 0/0 4/23 (17%)
Matplotlib 1/6 0/8 18/41 19/52 (37%)
Pandas 2/5 3/16 0/6 3/23 (13%)
Scikit-learn 7/23 3/13 5/5 11/28 (39%)
SciPy 6/18 3/8 1/6 6/23 (26%)
Seaborn 2/4 2/3 0/0 3/6 (50%)
Total 22/74 (30%) 15/70 (21%) 24/58 (41%) 46/155 (30%)

Figure 7: Example of unclear presentation of a deprecated
API excerpted from Scikit-learn’s documents3.

Figure 8: Example of incorrect document of a deprecated
API excerpted from Matplotlib’s documents4: the depre-
cated API NaturalLogTransform is incorrectly presented as
NaturalLogTransformLog.

reported by Brito et al. [7] in a contemporary study for the depre-
cated APIs in Java programs. We observe that, 41% of deprecated
APIs declared with decorator are not provided with the alterna-
tives, that is much higher than comments and hard-coded warning.
Furthermore, in 46 deprecated APIs that are not provided with re-
placements, half (24) of them are declared with the decorator which
is followed by the comments and hard-coded warning strategies.

While going through the documents of deprecated APIs, we fur-
ther observe that some of such documents are un-clearly, vaguely
or even incorrectly described. For example, Figure 7 presents an
example of unclear documentation of deprecated APIs, where pa-
rameter min_impurity_split is deprecated in “all the tree-based
estimators are deprecated” that actually refers to 7 deprecated APIs
3https://scikit-learn.org/stable/whats_new/v0.19.html#api-changes-summarys
4https://matplotlib.org/3.1.0/api/prev_api_changes/api_changes_3.1.0.html#
transforms-scales

239

https://scikit-learn.org/stable/whats_new/v0.19.html#api-changes-summarys
https://matplotlib.org/3.1.0/api/prev_api_changes/api_changes_3.1.0.html#transforms-scales
https://matplotlib.org/3.1.0/api/prev_api_changes/api_changes_3.1.0.html#transforms-scales

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai

Table 7: Overview of selected datasets. Only such projects that have accessed at least one library API are considered.

Subject NumPy Matplotlib Pandas Scikit-learn SciPy Sea- born Total

Crawled Projects 200 200 200 200 200 200 1,200
Considered Projects 181 171 167 162 100 135 916
Total API calls 112,427 10,624 16,011 45,567 18,217 1,479 204,325

Table 8: The usage of deprecated APIs in the latest version of selected client projects.

Subjects # Deprecated Threshold-1 Threshold-10 Threshold-20 Threshold-50

APIs # Projects # deprecated
API Calls # Projects # deprecated

API Calls # Projects # deprecated
API Calls # Projects # deprecated

API Calls
NumPy 56 8/181 5/20 8/160 5/20 8/140 5/20 8/103 5/20

Matplotlib 270 5/171 24/108 5/121 24/108 5/87 24/108 4/38 22/105
Pandas 145 93/167 17/638 75/107 16/605 61/86 16/562 43/54 16/473

Scikit-learn 130 31/162 34/456 30/121 34/455 27/96 34/450 19/54 34/431
SciPy 101 9/100 35/305 8/35 35/304 7/21 35/303 7/12 35/303

Seaborn 15 23/135 4/57 12/40 4/42 8/18 4/21 3/6 3/5
Total 717 169/916 119/1,584 138/584 118/1534 116/448 118/1464 84/267 115/1337

in the context. However, the 7 APIs are not clearly described in this
document. Developers will take more efforts to figure out what are
the all tree-based estimators for their programming tasks. Without
giving explicit and definitive information, it is inconvenient for
developers to avoid the usage of those deprecated library APIs.
In Figure 8, the deprecated API NaturalLogTransform is incor-
rectly presented as NaturalLogTransformLog in Figure 8, which
can confuse even mislead the library users.

Around one-quarter of deprecated APIs are not mentioned in the
library’s official documentation, making it hard for library users
to mitigate the usage of deprecated APIs. For such deprecated APIs
that are documented, 70% of them further come up with alterna-
tives, which is in line with other major programming languages.

4.3 RQ3: Usages of Deprecated APIs
The findings we have observed for answering the previous two
research questions show that deprecated APIs are declared in a
disordered manner (multiple, non-generic ad-hoc strategies) and
yet are also not well documented. Hence, we hypothesis that this
disorganization may be propagated to Python library users. To this
end, in the last research question, we are interested in exploring
how are these deprecated APIs are used in real Python projects and
to what extent do developers address them.

A Dataset of GitHub Repositories. To support the experi-
ments, we resort to GitHub to collect open-source Python project
clients of each subject selected in this work. In particular, we crawl
the top-200 best-match-ranked projects returned by the GitHub
search, with the composite searching condition of the subject li-
brary name and Python repositories only. Note that, the official
repositories of the six subjects are excluded from the searching
results.

The search engine of GitHub is only a simple text-based tool that
receives as input a list of query words, thus the searched results
are not fully related to the searching condition [59].

To reduce the noise, the searched projects are further purified
by checking whether they indeed invoke the API calls from the
related subject library.

Eventually, as presented in Table 7, a total of 916 Python projects
that invoke 200k API calls from six Python libraries are collected
as their client projects. of the searched GitHub projects.

With the selected 916 repositories, we first collect commits with
respect to “fixing deprecation” by matching commit messages with
fix-related and deprecation-related keywords (i.e., fix and deprecat*).
For all the commits of selected Python projects, we observe that
commit messages mentioning deprecation only account for a very
small portion (less than 0.1%). Yet, the number of commit messages
mentioning both keywords (indicating possible fixes of deprecated
APIs) is even much smaller.

DLocator for Locating Deprecated APIs.
Motivated by this finding, for which Python developers are rarely

fixing deprecated library APIs from the commit messages point of
view, we go one step deeper to directly look at the evolution of
Python code, since commit messages may not necessarily reflect the
exact changes of the code due to the diversity of human language
(e.g., word choices, or presentation styles) for conveying the knowl-
edge. To this end, we propose to the community a prototype tool
called DLocator5, which takes as input a Python Git repository and
a set of deprecated APIs and outputs the set of deprecated APIs that
are currently used by the project. To resolve the challenges demon-
strated in Figure 4, DLocator implements the API call formatting
algorithm (as shown in Algorithm 1) as one of the core contribu-
tions to locate the usage of APIs. By looking at the evolution of the
project (e.g., visiting all the commits), DLocator can further spot
all the historical deprecated APIs that are no longer presented at
the lasted version of the project, and are hence regarded as fixed
ones.

Table 8 summarizes the usages of deprecated APIs in the lat-
est version of all client Python projects, where the “Threshold-X”
columns mean that the client project using the deprecated APIs for

5Available at https://github.com/dlocator-dev/dlocator

240

https://github.com/dlocator-dev/dlocator

Exploring How Deprecated Python Library APIs Are (Not) Handled ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

23

8

28

62

5

7

0

1

3

31

0

1

0% 20% 40% 60% 80% 100%

Seaborn
SciPy

Scitkit-learn
Pandas

Matplotlib

NumPy

Non-decreased Decreased

Figure 9: Distribution of projects with respect to the evolu-
tion of deprecated API calls.

at least X times is considered. “# Projects” columns list the number
of projects that are using the deprecated/any API calls. For example,
the cell (8/181 in column-3 and row-3) shows that in 181 client
projects of NumPy library, 8 of them are using the deprecated APIs
for at least one time in their latest version. Columns “# deprecated
API calls” list the number of distinct/all deprecated API calls used
in the client projects. For example, the cell (5/20 in column-4 and
row-3) presents that 5 distinct deprecated APIs are used 20 times
in those 8 client projects.

We observe that overall, 119 out of 717 deprecated APIs of six li-
braries are still used in 18%(=169/916) client projects for 1,584 times.
From the aspect of spread that the number of client projects using
deprecated APIs, the deprecated APIs of Pandas are most widely
(55%=93/169) by its client projects, which is followed by Scikit-learn,
and Seaborn. From the aspect of depth that the times of used depre-
cated APIs, the deprecated APIs in Pandas are most (40%=638/1584)
recurrently used in client projects, which is followed by Scikit-learn
and SciPy. While from the aspect of the number of distinct used
deprecated APIs, the main merchants of deprecated APIs swift to
SciPy, Scikit-learn and Matplotlib. When increasing the threshold to
10, 20 and 50, deprecated API usages present the same distributions
as the Threshold-1. These results indicate that the recurrent usages
of deprecated APIs mainly focus on some specific API deprecations.

Figure 9 presents the distribution of the 169 client projects with
respect to changing deprecated API calls, where “Decreased” repre-
sents that the number of deprecated APIs called in the present
versions of all client projects is decreased comparing with the
deprecated APIs invoked in the whole evolution histories of all
client projects. “Non-decreased” denotes that opposite situation. As
shown in Figure 9, the majority of client projects do not remove
any deprecated APIs during their evolution process, which suggests
that Python developers do not pay enough efforts to address the
deprecated API calls.

Figure 10 further illustrated the times of the deprecated APIs
invoked by the client projects in the present time (i.e., “Present”
bars) and their whole histories (i.e., “Present” and “Historical” bars).
Note that, “Historical” bars show the numbers of deprecated APIs
that are called in the old versions of client projects and have been
removed from the latest versions. Comparing with the deprecated
APIs currently used by client projects, only a small part (19%) of
deprecated API usages have been resolved in the evolution process.

Table 9 further shows that top-3 most recurrently used API
deprecation in the whole evolution history are equivalent to the

57

305

456

638

108

20

1

9

41

294

14

14

0% 20% 40% 60% 80% 100%

Seaborn
SciPy

Scikit-learn

Pandas
Matplotlib

NumPy
Present Historical

Figure 10: Distribution of deprecated APIs that are present-
ly/historically used by the client projects.

Table 9: The top-3 most recurrently used APIs in the presen-
t/historical versions of client projects.

Present History
numpy.loads numpy.loads

Numpy numpy.asscalar numpy.asscalar
numpy.mirr numpy.mirr

matplotlib.cbook matplotlib.cbook
.is_string_like .is_string_like

Matplotlib matplotlib.cbook.dedent matplotlib.cbook.dedent
matplotlib.mlab.prctile matplotlib.mlab.prctile

pandas.concat pandas.concat
Pandas pandas.to_datetime pandas.to_datetime

pandas.DataFrame.astype pandas.DataFrame.astype

sklearn.linear_model.lars_path sklearn.preprocessing.Imputer
Scikit-learn sklearn.utils.mocking sklearn.linear_model.lars_path

.CheckingClassifier sklearn.utils.mocking
sklearn.preprocessing.Imputer .CheckingClassifier

scipy.misc.comb scipy.misc.comb
Scipy scipy.diag scipy.diag

scipy.stats.chisqprob scipy.stats.chisqprob

seaborn.factorplot seaborn.factorplot
Seaborn seaborn.despine seaborn.despine

seaborn.tsplot seaborn.tsplot

usages of deprecated API calls in the latest version of client projects.
These results further confirm that Python developers are not willing
to address the deprecated API calls.

Python projects indeed use deprecated library APIs, for which the
usage is positively correlated with the number of total accessed
library APIs. Unfortunately, the usages of deprecated library APIs
are rarely changed during the evolution of Python projects.

5 DISCUSSION
5.1 Implication
Based on our empirical findings, we now discuss possible impli-
cations that our community could build upon for appropriately
handling deprecated Python library APIs.

Built-in PythonModule to Handle API Deprecation. Over-
all, our investigations reveal that in popular Python libraries, dep-
recated APIs are generally declared through three categories: Dec-
orator, Hard-coded warning, and Comments. Yet, the library con-
tributors do not follow the same paradigm but resort to different
strategies to deprecate APIs, which makes it more complicated to
maintain the deprecated APIs in Python libraries than the depre-
cation of many other programming languages. To mitigate this
problem, we argue that there is a strong need to invent a generic

241

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai

deprecation paradigm that is acceptable to all the Python devel-
opers and library contributors. Ideally, it would be great if such a
paradigm can be provided as a built-in Python module and thereby
contributing to the long-term health of third-party libraries in the
Python ecosystem.

Enforce Consistency among the Complementary Depre-
cation Strategies.As discussed earlier, the three deprecation strate-
gies currently leveraged by library contributors are complementary
to each other. Indeed, the strategies provide different functions to
the deprecation of Python APIs. Therefore, we suggest that Python
library contributors should declare deprecated APIs with all the
three strategies simultaneously and should make efforts to ensure
consistency among the declarations.

Structured Rules to Generate andMaintain the Documen-
tation of Python (Deprecated) APIs. The fact that Python li-
brary’s official documentation, including its API references, has
undocumented a significant number of deprecated APIs, and some
of the explanations for the documented APIs are vague and even
incorrect, suggests that automated approaches are demanded to
manage the documentation of (deprecated) Python APIs. In Java,
developers use the Javadoc mechanism with structured keywords
(such as @deprecated) to automatically generate and maintain the
documentation of (deprecated) APIs, which has been demonstrated
to be effective and useful. In C++, attribute ([deprecated]) can
be leveraged to tag an entity as deprecated in the source code [9],
which subsequently will allow the compilers to capture such depre-
cations. In C#, ObsoleteAttribute class can be placed to mark the
program components that are no longer supported [11] Therefore,
in the realm of Python, we believe similar strategies should also be
introduced to manage the documentation of Python APIs, including
the deprecated ones. And similar to that of API deprecation, such
strategies should be generic and in the best scenario provided as a
built-in Python module.

Automated Toolchain to Pinpoint (and fix if possible) the
usage of Deprecated APIs. Last but not least, no matter how well
the deprecated library APIs managed (e.g., with a clear method-
ology and support of automated toolchain), library users, in any
case, will likely still access into deprecated APIs. Therefore, we be-
lieve that it is not only important to propose automated toolchains
for helping library contributors better manage their deprecated
APIs, but also essential to develop automated toolchain for helping
Python developers avoid the usage of such deprecated APIs (e.g.,
providing real-time alerts when developers are programming with
Python IDEs).

5.2 Threats to Validity
Internal validity. The major threat to the internal validity of our
study lies in possible errors in the implementation of our experi-
mental scripts and tools. To mitigate this threat, we have carefully
reviewed the toolchains and manually validate partial experimental
results against selected benchmarks. Furthermore, our static ana-
lyzer DLocator currently only locates deprecated APIs at the func-
tion, parameter level and will ignore such deprecation caused by
parameter due to the lack support of constant propagation. There-
fore, it will likely yield false positives results when locating dep-
recated APIs in open-source Python projects. We plan to mitigate

this problem in our future work. Finally, as a significant amount
of tasks that are conducted by the authors manually, yet human is
prone to making mistakes, the experimental observations thereby
may also contain mistakes. The authors have hence cross-evaluated
the experimental results to mitigate this potential threat.

External validity. The primary threat to the external validity
of our study concerns the choice of selected Python libraries and
their client Python projects. In this work, we only consider third-
party libraries and have only selected six libraries. For each library,
we have only considered 200 Github projects. Therefore, all the
findings might only be valid to those libraries and Python projects,
and cannot be generic to all the other Python libraries and projects.
Nevertheless, our experiments are conducted based on the most
popular third-party libraries (In total, the six libraries are used by
more than 70K Python projects, based on the records of Github) and
top-ranked Github projects. The actual situation on how Python
library APIs are deprecated may be even worse in the Python com-
munity. We plan to continue exploring towards this direction in
our upcoming works.

6 RELATEDWORK
As the evolution of software programs, the deprecation of APIs
arises as an inevitable circumstance for developers and practitioners.
Nevertheless, the deprecated APIs can have a huge impact on the
ecosystem, either considered in terms of projects or developers that
are impacted by the change, or measured by the overall amount of
changes [43, 56]. In the literature, various studies on deprecated
APIs for different ecosystems have been conducted to boost the
momentum of characterizing API deprecations.

Robbes and his colleagues [43] reported an empirical study on
the ripple effects as a result of API deprecations across an entire
Smalltalk ecosystem, to investigate how developers react to the
API deprecation. Espinha et al. [13] performed a semi-structured
interview with six developers to understand the distress caused
by the evolution of web APIs, and further explored how four web
API providers organize their API evolution and the impact of web
service API evolution on their clients. Sawant et al. [45, 46] investi-
gated the effect of deprecations of five Java APIs on 25,357 clients.
Later, they further conducted semi-structured interviews [44] with
17 third-party Java API producers and survey 170 Java developers
to gain a deep understanding of the requirements regarding dep-
recation from API producers and consumers. More recently, they
extracted the patterns of reaction to API deprecation to ascertain
the scale of reactions or non-reactions of users to deprecated enti-
ties [47]. These workmainly focused on analyzing the impact of API
changes [16, 17, 25, 26, 28], but they did not investigate how API
contributors handle (i.e., declare and document) API deprecations
explored in our work.

Ko el al. [22] pointed out that 61% of deprecated APIs are offered
with replacements after examining 260 deprecated APIs from 8
Java libraries and their documentation. Brito et al. [6] also have a
similar observation that 64% of deprecated APIs are provided with
alternatives for users, after analyzing 661 real-world Java systems.
According to the analysis of replacement messages of deprecated
API elements in 622 Java and 229 C# systems, Brito et al. [7] found

242

Exploring How Deprecated Python Library APIs Are (Not) Handled ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

that 66.7% and 77.8% of the API elements are deprecated with re-
placement messages per project. From the aspect of replacement
offers, the deprecated APIs in Java and C# programs outperform
the deprecated APIs in Python programs studied in this work.

Raemaekers et al. [42] observed that developers do not follow
deprecation patterns as suggested by semantic versioning, after
conducting an investigation of deprecation patterns in 22,205 Java
libraries.

Zhou et al. [62] conducted a retrospective analysis of API dep-
recations in 26 open-source Java systems over 690 versions and
reported that API deprecation messages are not well maintained
by API producers and only a small part of deprecated APIs are
specified with related replacements. In our study, we observe that
the deprecated APIs in Python libraries are documented without
a unique style as well, which could impede the identification of
deprecated APIs for users.

Mirian et al. [31] presented the analysis of web feature depre-
cation through the lens of the Chrome browser and revealed six
reasons behind the fact that developers would want to deprecate
web features. Li et al. [23, 24] proposed to characterize the depre-
cated APIs in Android ecosystems with a systematic code mining
of 10,000 Android applications. In this study, we focus on charac-
terizing the API deprecations in Python third-party libraries, to the
best of our knowledge, that is not explored in the literature.

on Python API deprecation less studied.
Besides characterizing the API deprecations, reactions with re-

spect to API deprecation/evolution have been studied in various
scenarios [54, 55]. Montandon et al. [32] studied a lesson-learned
approach to documenting APIs with examples. Hou et al. [19] ex-
plored developers’ intent behind API evolution. Xavier et al. [58]
analyzed the impact of API breaking changes with a large-scale
study for historical changes of APIs. Various approaches (e.g., deep
learning based [2, 3, 27], model based [5] and dictionary based [21])
have been studied in the literature to refactor the inaccurate API
names [18]. Henkel and Diwan [15] proposed a lightweight ap-
proach for capturing and replaying refactorings to support API
evolution. Our work is to analyze the characteristics of deprecated
APIs in Python libraries, which can build knowledge for the study
scenarios similar to previous works.

7 CONCLUSION
We presented an exploratory study on how deprecated APIs are
currently declared and documented by Python library contributors
and how Python developers react to such API deprecations. To
answer these research questions, we have manually dug into the
implementation of six reputed Python libraries and empirically
found that API deprecation in Python libraries is currently handled
in chaos, i.e., declared with ad-hoc strategies and lacking proper
documentation. By further looking into the usage of deprecated
APIs in 1,200 popular Python projects, we experimentally reveal that
Python developers have not paid much attention to the deprecation
of library APIs. These findings strongly suggest that our community
should take immediate actions to invent reliable approaches for
helping both library contributors and users to appropriately handle
the deprecation of library APIs.

ACKNOWLEDGEMENTS
This work is supported by the Project 1015-YAH20102, the Na-
tional Natural Science Foundation of China (Grant No. 61802180),
the Natural Science Foundation of Jiangsu Province (Grant No.
BK20180421), the National Cryptography Development Fund (Grant
No. MMJJ20180105) and the Fundamental Research Funds for the
Central Universities (Grant No. NE2018106).

REFERENCES
[1] [n.d.]. 5. The import systemÂű. https://docs.python.org/3/reference/import.html
[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. 38–49.

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
conference on machine learning. 2091–2100.

[4] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.
SOTorrent: reconstructing and analyzing the evolution of stack overflow posts.
In Proceedings of the 15th International Conference on Mining Software Repositories.
319–330. https://doi.org/10.1145/3196398.3196430

[5] Gabriele Bavota, Rocco Oliveto, MalcomGethers, Denys Poshyvanyk, and Andrea
De Lucia. 2013. Methodbook: Recommending move method refactorings via
relational topic models. IEEE Transactions on Software Engineering 40, 7 (2013),
671–694.

[6] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2016. Do
developers deprecate apis with replacement messages? a large-scale analysis on
java systems. In Proceedings of the IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, Vol. 1. IEEE, 360–369.

[7] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2018. On
the use of replacement messages in API deprecation: An empirical study. Journal
of Systems and Software 137 (2018), 306–321.

[8] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. 2018.
Sentiment polarity detection for software development. Empirical Software
Engineering 23, 3 (2018), 1352–1382.

[9] cppreference. [n.d.]. C attribute: deprecated (since C 14). https://en.cppreference.
com/w/cpp/language/attributes/deprecated

[10] Danny Dig and Ralph Johnson. 2005. The role of refactorings in API evolution.
In 21st IEEE International Conference on Software Maintenance (ICSM’05). IEEE,
389–398.

[11] Microsoft Docs. [n.d.]. ObsoleteAttribute Class (System). https://docs.microsoft.
com/en-us/dotnet/api/system.obsoleteattribute?redirectedfrom=MSDN&view=
netframework-4.8

[12] IEEE Spectrum: Technology Engineering and Science News. Last Accessed: March
2020. Interactive: The Top Programming Languages. https://spectrum.ieee.org/
static/interactive-the-top-programming-languages-2019.

[13] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API growing
pains: Stories from client developers and their code. In 2014 Software Evolu-
tion Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE). IEEE, 84–93.

[14] Glossary. Last Accessed: March 2020. Argument. https://docs.python.org/2/
glossary.html#glossary.

[15] Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and replaying
refactorings to support API evolution. In Proceedings of the 27th international
conference on Software engineering. 274–283.

[16] André Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,
and Marco Tulio Valente. 2015. How do developers react to API evolution?
The Pharo ecosystem case. In 2015 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 251–260.

[17] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stéphane Ducasse. 2018. How do developers react to API evolution? A
large-scale empirical study. Software Quality Journal 26, 1 (2018), 161–191.

[18] EinarWHøst and Bjarte M Østvold. 2009. Debugging method names. In European
Conference on Object-Oriented Programming. Springer, 294–317.

[19] Daqing Hou and Xiaojia Yao. 2011. Exploring the intent behind api evolution:
A case study. In 2011 18th Working Conference on Reverse Engineering. IEEE,
131–140.

[20] John D Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in
science & engineering 9, 3 (2007), 90–95.

[21] Suntae Kim and Dongsun Kim. 2016. Automatic identifier inconsistency detection
using code dictionary. Empirical Software Engineering 21, 2 (2016), 565–604.

[22] Deokyoon Ko, Kyeongwook Ma, Sooyong Park, Suntae Kim, Dongsun Kim, and
Yves Le Traon. 2014. Api document quality for resolving deprecated apis. In 2014
21st Asia-Pacific Software Engineering Conference, Vol. 2. IEEE, 27–30.

243

https://docs.python.org/3/reference/import.html
https://doi.org/10.1145/3196398.3196430
https://en.cppreference.com/w/cpp/language/attributes/deprecated
https://en.cppreference.com/w/cpp/language/attributes/deprecated
https://docs.microsoft.com/en-us/dotnet/api/system.obsoleteattribute?redirectedfrom=MSDN&view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.obsoleteattribute?redirectedfrom=MSDN&view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.obsoleteattribute?redirectedfrom=MSDN&view=netframework-4.8
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://docs.python.org/2/glossary.html#glossary
https://docs.python.org/2/glossary.html#glossary

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai

[23] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising Deprecated Android APIs. In The 15th International Conference on
Mining Software Repositories (MSR 2018).

[24] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2019.
CDA: Characterising Deprecated Android APIs. Empirical Software Engineering
(EMSE) (2019).

[25] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and fault
proneness: a threat to the success of Android apps. In Proceedings of the 2013 9th
joint meeting on foundations of software engineering. 477–487.

[26] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How do api changes trigger stack overflow dis-
cussions? a study on the android sdk. In proceedings of the 22nd International
Conference on Program Comprehension. 83–94.

[27] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-young Kim, Kisub Kim, Anil
Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and refactor
inconsistent method names. In Proceedings of the 41st International Conference on
Software Engineering. IEEE, 1–12. https://doi.org/10.1109/ICSE.2019.00019

[28] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of
API stability and adoption in the android ecosystem. In 2013 IEEE International
Conference on Software Maintenance. IEEE, 70–79.

[29] Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.

[30] Collin McMillan, Mario Linares-Vasquez, Denys Poshyvanyk, and Mark
Grechanik. 2011. Categorizing software applications for maintenance. In Proc-
ceedings of the 27th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 343–352.

[31] Ariana Mirian, Nikunj Bhagat, Caitlin Sadowski, Adrienne Porter Felt, Stefan
Savage, and Geoffrey M Voelker. 2019. Web feature deprecation: a case study for
chrome. In Proceedings of the 41st International Conference on Software Engineering:
Software Engineering in Practice. IEEE Press, 302–311.

[32] João Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Valente.
2013. Documenting apis with examples: Lessons learned with the apiminer
platform. In 2013 20th Working Conference on Reverse Engineering (WCRE). IEEE,
401–408.

[33] Marius Nita and David Notkin. 2010. Using twinning to adapt programs to
alternative APIs. In Proceedings of the ACM/IEEE 32nd International Conference
on Software Engineering, Vol. 1. IEEE, 205–214.

[34] Stack Overflow. Last Accessed: March 2020. Get fully qualified class name of
an object in Python. https://stackoverflow.com/questions/2020014/get-fully-
qualified-class-name-of-an-object-in-python.

[35] Stack Overflow. Last Accessed: March 2020. Where Developers Learn, Share, &
Build Careers. https://stackoverflow.com/.

[36] Chris Parnin and Christoph Treude. 2011. Measuring API Documentation on the
Web. In Proceedings of the 2nd International Workshop on Web 2.0 for Software
Engineering. ACM, 25âĂŞ30. https://doi.org/10.1145/1984701.1984706

[37] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[38] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A large-scale study about quality and reproducibility of jupyter notebooks.
In Proceedings of the 16th International Conference on Mining Software Repositories.
IEEE Press, 507–517.

[39] PyPI. Last Accessed: March 2020. Find, install and publish Python packages with
the Python Package Index. https://pypi.org/.

[40] Python. Last Accessed: March 2020. https://www.python.org/.
[41] Python.org. Last Accessed: March 2020. Quotes about Python. https://www.

python.org/about/quotes/.
[42] Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2014. Semantic ver-

sioning versus breaking changes: A study of the maven repository. In 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation.
IEEE, 215–224.

[43] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers
react to API deprecation? The case of a Smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering. 1–11.
[44] Anand Ashok Sawant, Mauricio Aniche, Arie van Deursen, and Alberto Bacchelli.

2018. Understanding developers’ needs on deprecation as a language feature.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 561–571.

[45] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2016. On the
reaction to deprecation of 25,357 clients of 4+ 1 popular Java APIs. In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
400–410.

[46] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2018. On the
reaction to deprecation of clients of 4+ 1 popular Java APIs and the JDK. Empirical
Software Engineering 23, 4 (2018), 2158–2197.

[47] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2019. To react,
or not to react: Patterns of reaction to API deprecation. Empirical Software
Engineering 24, 6 (2019), 3824–3870.

[48] Seaborn. Last Accessed: March 2020. Seaborn: statistical data visualization.
http://seaborn.pydata.org/.

[49] NASA Software. Last Accessed: March 2020. Swim: A Software Information
Metacatalog for the Grid. https://software.nasa.gov/software/ARC-15469-1.

[50] Roman Štrobl and Zdeněk Troníček. 2013. Migration from deprecated API in
Java. In Proceedings of the 2013 companion publication for conference on Systems,
programming, & applications: software for humanity. 85–86.

[51] TIOBE. Last Accessed: March 2020. TIOBE Index for January 2020. https://www.
tiobe.com/tiobe-index/.

[52] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. 2020. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[53] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22–30.

[54] JiaweiWang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Assessing and Restor-
ing Reproducibility of Jupyter Notebooks. In The 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2020).

[55] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Restoring Repro-
ducibility of Jupyter Notebooks. In The 42nd International Conference on Software
Engineering, Invited Poster (ICSE 2020).

[56] Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better Code, Better Sharing: On
the Need of Analyzing Jupyter Notebooks. In The 42nd International Conference
on Software Engineering, NIER Track (ICSE 2020).

[57] Witowski and Sebastian. Last Accessed: March 2020. Python at CERN. https:
//cds.cern.ch/record/2274794.

[58] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: A large-scale study. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 138–147.

[59] Yun Zhang, David Lo, Pavneet Singh Kochhar, Xin Xia, Quanlai Li, and Jianling
Sun. 2017. Detecting similar repositories on GitHub. In Proceedings of the IEEE
24th International Conference on Software Analysis, Evolution and Reengineering.
IEEE, 13–23.

[60] Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei
Xiong. 2020. How Do Python Framework APIs Evolve?. In 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE.

[61] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In
Proceedings of the IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 913–923.

[62] Jing Zhou and Robert JWalker. 2016. API deprecation: a retrospective analysis and
detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
266–277.

244

https://doi.org/10.1109/ICSE.2019.00019
https://stackoverflow.com/questions/2020014/get-fully-qualified-class-name-of-an-object-in-python
https://stackoverflow.com/questions/2020014/get-fully-qualified-class-name-of-an-object-in-python
https://stackoverflow.com/
https://doi.org/10.1145/1984701.1984706
https://pypi.org/
https://www.python.org/
https://www.python.org/about/quotes/
https://www.python.org/about/quotes/
http://seaborn.pydata.org/
https://software.nasa.gov/software/ARC-15469-1
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1038/s41592-019-0686-2
https://cds.cern.ch/record/2274794
https://cds.cern.ch/record/2274794

	Abstract
	1 Introduction
	2 Motivation
	2.1 Deprecation in Developer Discussions
	2.2 Developers' Sentiment Reaction to Deprecation

	3 Study Design
	3.1 Subject Selection
	3.2 Methodology

	4 Study Results
	4.1 RQ1: Declaration of Deprecated APIs
	4.2 RQ2: Documentation of Deprecated APIs
	4.3 RQ3: Usages of Deprecated APIs

	5 Discussion
	5.1 Implication
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	References

