
PCA: Memory Leak Detection using Partial Call-Path Analysis
Wen Li

Washington State University, USA
li.wen@wsu.edu

Haipeng Cai
Washington State University, USA

haipeng.cai@wsu.edu

Yulei Sui
The University of Technology Sydney, Australia

yulei.sui@uts.edu.au

David Manz
Pacific Northwest National Laboratory, USA

David.Manz@pnnl.gov

ABSTRACT

Data dependence analysis underlies various applications in software
quality assurance, yet existing frameworks/tools for this analysis
commonly suffer scalability challenges. We present PCA, a static in-
terprocedural data dependence analyzer for real-world C programs.
PCA performs interprocedural points-to and data-flow analyses
with a lightweight design. Most of all, it features a partial call-path
(PCA) analysis that consists of optimization options to further speed
up data dependence computation. As an example application of it,
PCA readily supports memory leak detection, for which it helps
achieve close or better performance and precision relative to the
same application based on a state-of-the-art value flow analysis. In
particular, it found four more memory leaks in an industry-scale
system which have been fixed by the developers. Through the data
dependence it computes, PCA can enable other applications (e.g.,
impact analysis and taint analysis).

A demo video for PCA can be found here and tool package here.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Theory of computation → Program analysis.

KEYWORDS

LLVM, static analysis, data dependence, efficiency, scalability
ACM Reference Format:

Wen Li, Haipeng Cai, Yulei Sui, and David Manz. 2020. PCA: Memory
Leak Detection using Partial Call-Path Analysis. In Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’20), November 8–13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3368089.3417923

1 INTRODUCTION

With their growing size and complexity, modern software systems
are increasingly challenging to check against desired properties
(e.g., correctness and security). One main approach to this task is
to reason about program behaviors with respect to how data are
computed and accessed (e.g., in terms of data dependence) in the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3417923

program [5, 6]. This approach, as an underlying technique, supports
a range of applications in software quality assurance, such as bug
detection [7, 19] and security vulnerability discovery [16, 17].

There are tools that implement this underlying technique or
facilitate such implementations. As a recent work, PhASAR [15]
provides a generic framework for static interprocedural data flow
analysis. Yet rather than a specific tool, it offers building blocks
of static analyzers (e.g., call graphs, points-to information) via a
set of APIs that tool developers may use to develop their own
analyzers (e.g., for computing data dependence). Moreover, based on
the IFDS/IDE algorithmic framework [14], PhASAR targets highly
precise data flow analyses. For large, complex software systems,
efficiency barriers due to its heavyweight nature may not be well
paid off by the level of precision it offers—other cost-effectiveness
tradeoffs might be more desirable to users [8].

Analyzers of value flow, such as SVF [17] and Pinpoint [16],
provide a potential alternative. While a conventional value flow
analysis would be built on data dependence analysis hence pro-
vide data dependence, these state-of-the-art tools focus on sparse
value flow analysis. They focuses on precise computation of value
flow information necessary for applications that need it, primarily
applicable to source-sink problems such as detecting memory de-
fects. As a result, these frameworks/tools may not provide the best
cost-effectiveness tradeoffs for particular dependence-based appli-
cations that do not need the information. Commercial tools like
CodeSonar [1] and Coverity [2] do so. Yet they are closed-source
hence may not be sufficient for research purposes.

Therefore, in this paper, we develop PCA, an open-source static
interprocedural data dependence analysis tool that scales to industry-
scale C software with a practical cost-effectiveness tradeoff that
complements to what existing alternatives offer (i..e, primarily
focusing on precision or not providing desired balance between
analysis cost and effectiveness [15–17]), particularly for solving
source-sink problems (e.g., memory leak detection). PCA is built
on top of LLVM [13]. It uses the LLVM gold plugin to generate
the intermediate representation (IR) code for each module of a
given input program and computes interprocedural points-to sets
using Andersen’s algorithm [4] and LLVM’s basic, built-in anal-
ysis capabilities. With such information, it then computes data
flow facts (e.g., reaching definitions) using a classical fixed-point
iterative data-flow analysis algorithm [3]. Finally, it produces the
interprocedural data dependence graph. Then in its practical use
scenarios, for both practitioners and researchers, PCA enables dif-
ferent (e.g., data dependence based) application/client analyses and
tools through its analysis results (e.g., interprocedural control flow
and data dependencies).

1

https://youtu.be/tPy9dcSVzd8
https://github.com/Daybreak2019/PCA
https://doi.org/10.1145/3368089.3417923
https://doi.org/10.1145/3368089.3417923
https://doi.org/10.1145/3368089.3417923

Program IR
Phase 1: LLVM
module linking

Phase 2:
points-to analysis

IR per function and
global variable points-to sets

Phase 3: call graph
construction

whole-program
call graph

Phase 4: data flow
analysis

whole-program
DDG

PCA's
input

PCA-MemPCA
applications

PCA-DIA

...

PCA's output

Figure 1: An overview of PCA’s architecture, including its input, four phases, output, and applications.

The key merit of PCA is that it offers practical efficiency and
scalability for real-world, industry-scale software systems while
maintaining a practically useful level of effectiveness in terms of
precision. To that end, PCA features a partial call-path analysis
(hence our tool name) during the interprocedural data dependence
computation, as defined by two levels of performance optimiza-
tion. First, in the data-flow analysis algorithm, PCA adopts a user-
customizable partial flow sensitivity at function level (i.e., via the
call graph) when computing variable definitions and uses while
referring to the points-to sets computed by the (Andersen’s) flow-
insensitive pointer analysis algorithm. This design substantially
reduces the overhead of an otherwise heavy (e.g., flow-sensitive)
points-to analysis to save the total time cost of PCA while com-
pensating the precision loss from that underlying analysis later
(during the dependence computation). Second, PCA opts to ignore
constant strings in the points-to analysis to reduce its time and
space costs; it further uses integer encoding in storing definitions
when performing the data flow analysis to reduce memory use.

To demonstrate the usefulness of PCA, we built PCA-Mem as its
example application, a static memory leak detector using the partial
call-path analysis. We then evaluate PCA through PCA-Mem by
applying it to a standard suite of (small) benchmarks (SPEC2000
C programs) and an industry-scale, high-performance computing
system Slurm [20]. We assessed its efficiency and effectiveness in
terms of memory leaks found in comparison to Saber [18], the same
application but of the state-of-the-art value flow analysis SVF [17].
On the small SPEC2000 benchmarks, PCA-Mem was close to Saber
in both metrics, while on the large system Slurm, PCA-Mem per-
formed better by finding more memory leaks at lower time and
space costs. PCA can support more applications than analyzing
memory defects through the dependence information it offers.

2 ARCHITECTURE

PCA’s architecture is depicted in Figure 1. As PCA’s input, the
per-module IR files of the given program are generated using the
LLVM gold plugin [17]. Optionally, users may provide a function
blacklist to specify the functions (e.g., those for debugging purposes
only) to be skipped by the analysis for better efficiency.

With these user inputs, PCA performs its data flow analysis with
optimizations in four phases. In the first phase (LLVM module

linking), PCA links the per-module IR files together and parses
the functions and global variables of the program, and returns
the separated IR for each function and global variable to be used
by other phases. The IR code is the output of the LLVM C fron-
tend (Clang) applied against the program, where the gold plugin
allows for generating cross-compilation-unit IR code. By preparing
the cross-unit IR, this phase is key for the analyses in PCA to be
interprocedural. In the second phase (points-to analysis), PCA
performs an interprocedural points-to analysis for global, heap,

Load IR of
executable

Preload: generate mapping between
functions and modules

Load IR of dependent
libraries

Collect global
variables

Program IR

IR per function and
global variable

Figure 2: Module linking workflow of PCA.

Initialize
constraint graph

Collect
constraints

Resolve
constraints

IR per function and
global variable

Points-to
set

Figure 3: Points-to analysis workflow of PCA.

and local variables, using the Andersen’s algorithm [4]. During the
third phase (call graph construction), PCA resolves call targets
for direct calls with explicit callees and for indirect calls according
to the points-to sets returned by the points-to analysis phase. In the
last (fourth) phase (data flow analysis), PCA first constructs the
interprocedural control flow graph (ICFG) from the given call graph
and the LLVM instructions of each function, and then computes
data dependence based on the ICFG and the points-to sets. This
last phase produces the interprocedural data-dependence graph
(DDG) as the final PCA’s output. Based on this output, various
PCA applications (e.g., taint checking, testing) can be developed.
Currently, our tool package includes two applications: PCA-Mem, a
static memory leak detector; and PCA-DIA, a dynamic impact anal-
ysis tool. For demo purposes, this paper only elaborates PCA-Mem.

3 LLVM MODULE LINKING

To enable interprocedural analysis based on LLVM, PCA needs
to first link the IR of all the modules of the given input program.
Specifically, PCA retrieves all global variables and the definition of
all functions in the executable and its dependent libraries, in four
major steps as shown in Figure 2 and as elaborated below.

In the first (preload) step, PCA traverses all the (per-module) IR
files of the input program, and parses each module to create a map-
ping between each function defined in the module to the module
itself (i.e., its IR). Second, PCA loads the IR of the executable which
contains the entry function of the program. It then parses each
callsite in this function to check whether there is a callee for which
merely the declaration is included in the current module—that is,
whether the callee is defined in an external module. If so, PCA re-
trieves the module (i.e., its path) that defines the function (according
to the mapping created before) and inserts the module path into a
on-demand list for later loading. Third, PCA loads modules in the
on-demand list and identifies functions defined in these modules
the same way as functions are discovered in the previous step. To
deal with circular library dependencies, PCA ensures each module
is loaded once. Finally, PCA collects all global variables defined in
the modules that are loaded in the previous two steps, and produces
the set of function definitions and global variables (i.e., the IR of
each) in the input program.

2

4 POINTS-TO ANALYSIS

In this phase, PCA takes the IR of each function and global variable
from the previous phase to perform interprocedural points-to anal-
ysis of the program in three steps as outlined in Figure 3. The alias
analysis implementations in LLVM are intraprocedural.

PCA first collects the constraints of stack and heap variables
from each function, and also parameters and return values for
each call instruction. It models each function in standard C library
(libc) as an identity function but allows users to model library
function effects differently. Second, from the collected constraints,
PCA constructs a constraint graph and initializes a points-to set for
each memory object. PCA uses SparseBitVector [10] data structure
for efficient set operations. In the next step, PCA adopts the hybrid
cycle detection technique [11] for efficient constraint resolution. The
technique utilizes both an offline pre-analysis and online detection
of strongly connected components to achieve high efficiency. In all,
we adopted the fast and imprecise Andersen’s algorithm [4] for a
flow- and context-insensitive points-to analysis to trade precision
in the resulting points-to sets for the efficiency of computing them.
Optimization. To further reduce its overheads, PCA has the de-
fault option of ignoring constant strings in this phase. Including
these constants would in general significantly increase the size
of the resulting points-to sets hence slow down the analysis due
to their prevalence in C programs. For example, these constants
account for over 80% of all global variables in Slurm.

5 CONTROL AND DATA FLOW ANALYSIS

With the results from the previous phases, PCA now constructs the
whole-program call graph, identifying all possible callees according
to the points-to information. It performs function-level reachability
analysis through a (BFS) traversal of the initial call graph and prunes
nodes unreachable from the program entry.

From the resulting call graph and per-function IR, PCA then
builds the (intraprocedural) control flow graph (CFG) for each func-
tion hence the interprocedural CFG (ICFG) for the entire program
as in [12]. To construct the interprocedural data dependence graph
(DDG), PCA collects both definite and possible (induced by pointer
aliasing) definitions/uses of variables at each instruction of every
reachable function. Then, it follows the classical fixed-point iter-
ative data flow analysis algorithm [3] to compute the reaching
definitions and build intraprocedural DDGs. Finally, based on the
ICFG, PCA computes interprocedural data dependence by adding
transitive edges (e.g., actual/formal parameters linkage) among in-
traprocedural DDGs as in the classical interprocedural slicing [12].

*Fb = 1
Fb -> (S, b, a)

void FB(int *Fb){
 int b = 0;
 Fb = &b;
 *Fb = 1;
 FA(&Fb);
}

void FA(int **Fa){
 int a = 0;
 *Fa = &a;
}

int main (){
 int S = 0;
 FB (&S);
 return 0;
}

Call path:
main -> FB

*Fb = 1
Fb -> (S, b)

Figure 4: Illustrating part of the partial call-path analysis.

Optimizations. PCA improves its efficiency and scalability in the
data flow analysis here through two optimizations, as the main part
of our partial call-path analysis.

The first is to reduce the effects of false positives in the points-to
sets by considering function-level control-flow reachability (i.e.,
on the call graph) to a certain depth. The partial flow sensitivity

compensates the precision lost in the flow-insensitive points-to
analysis without incurring much cost.

To illustrate the idea, consider the example in Figure 4. When
identifying possible definitions at *Fb = 1, based on the points-
to results, the definitions of {𝑆 , 𝑏, 𝑎} will be identified. However,
considering control-flow reachability with respect to call paths of
depth 2 (e.g., main− >FB), it is clear that the definition of 𝑎 should
not be included in the set of possible definitions at *Fb = 1. To
prune such false definitions, PCA collects the set of definitions
(including those in stack, heap, and global data area) along the call
paths considered; it then takes the intersection of this set and the
original points-to set at the target node (e.g., the node for Fb in this
example), resulting in the reduced set of possible definitions (e.g.,
{𝑆 , 𝑏} in this case). With this reduced set, the following iterative
data flow analysis can converge faster hence be accelerated while
producing more precise dependence analysis results. PCA allows
users to customize this call-path depth threshold as an option based
on program complexity. In essence, the optimization safely prunes
spurious aliasing-induced data dependence according to control
flow up to the given depth on the call graph. Thus, this optimization
does not affect the soundness of our analysis.

The second is to use integer encoding in storing data flow facts
(variable definitions in particular) to reduce memory usage. As
per the algorithm we use, each definition would be conventionally
represented as a 2-tuple (instruction, variable), which would
take 16 bytes (on a 64bit machine). And four sets of definitions (IN,
OUT, GEN, KILL) for each ICFG node need to be maintained during
the iterative analysis until the fixed point is reached. For one of
the functions in Slurm, for example, the total number of definitions
maintained is 17,097,929, thus computing the reaching definitions
in this function alone would consume at least 256MB memory. PCA
encodes definitions with a simple (short) integer index which only
takes 4 bytes per definition. This reduces 75% of the peak memory
usage of the data flow analysis—for the same example, only about
64MB memory is needed.

6 EXAMPLE APPLICATION: PCA-MEM

We developed PCA-Mem based on PCA to demonstrate its use
(for statically detecting memory leaks). Using the interprocedural
DDG from PCA, PCA-Mem addresses this use case as a source-sink
problem, with each allocation site considered a source and each
free site as a sink. The idea is to check reachability from a source to
each corresponding sink against data and control flow conditions.

First, PCA-Mem collects the set (N) of nodes reachable from the
source on the DDG through any realizable path by considering
different calling contexts leading to each call. Let S be the set of
sinks in N—the memory allocated at the source can have more than
one free site. If S is empty, then the memory is never freed.

If S is not empty, PCA-Mem will employ both control flow and
data dependence information for detecting partial memory leaks
along some program paths. A heap object 𝑜 allocated at a memory
allocation site ℓ is treated as deallocated if (1) there is a free site (sink)
ℓ ′ ∈ 𝑆 that is control-flow reachable from ℓ along the ICFG, and (2)
the object freed at ℓ ′ must be object 𝑜 or its alias as determined by
our reaching definition analysis. Otherwise, 𝑜 is treated as a leaked
object. PCA-Mem reports both never freed cases and partial leaks.

3

Table 1: Memory leak detection results of PCA-Mem versus Saber on ten SPEC2000 benchmarks.

Program Size (KLOC) #Functions PCA-Mem Saber
Time (seconds) Peak Memory (GB) #Leaks (#GV) #False Alarms Time (seconds) Peak Memory (GB) #Leaks #False Alarms

art 1.2 29 0.5 0.04 1 (9) 0 0.2 0.05 2 1
bzip2 4.7 77 1.5 0.07 1 (9) 0 0.5 0.09 1 0
crafty 21.2 112 15 0.35 0 (12) 0 2.3 0.6 0 0
equake 1.5 30 3 0.16 0 (29) 0 0.5 0.07 0 0
gzip 8.6 113 1 0.05 3 (0) 1 0.6 0.1 3 1
mcf 2.5 29 0.3 0.03 0 (3) 0 0.3 0.05 0 0

parser 11.4 327 10.2 0.2 0 (10) 0 3 0.3 0 0
twolf 20.5 194 70 0.8 3 (46) 1 7 0.7 3 1
vpr 17.8 275 6.6 0.16 1 (19) 0 2.6 0.38 1 0
mesa 61.3 1109 5.9 0.3 12 (4) 7 108 4.1 10 5
total 150.7 2295 114 2.16 21 (141) 9 125 6.44 20 8

7 EVALUATION

We evaluate PCA via PCA-Mem against SVF’s Saber as the base-
line, using 10 SPEC2000 C programs and Slurm (v15.8.7) [20], a
real-world, industry-scale workload manager that includes 21 sub-
systems (with sizes ranging from 186KLOC to 257KLOC). We then
manually checked and compared all the detected memory leaks,
including never-free and partial leaks. Our experiments ran on an
Ubuntu 16.04 server with 2.40G CPU and 512GB DDR3.

7.1 Efficiency and Effectiveness

Table 1 summarizes the accuracy and time/memory costs of both
tools against the SPEC2000 benchmarks. PCA-Mem found 161 leaks
with 9 false alarms in about 114 seconds, consuming 2.16 GB mem-
ory. In comparison, Saber found 20 leaks with 8 false alarms in
about 125 seconds, consuming 6.44 GB memory—the true positives
it found were all part of those found by PCA-Mem. As an implemen-
tation merit here, PCA-Mem handles global variables and it thus
found associated memory leaks (noted as "#GV" in the parentheses).
Saber dismisses the GV cases [17]. Excluding such cases, PCA-Mem
appeared to be very close to the baseline in effectiveness (in terms
of the number of leaks reported and that of false positives)—there
were no false alarms among the GV cases.

For almost all of the benchmarks, PCA-Mem took longer time
than Saber. This was expected and can be explained by the fact that
the underlying analysis of Saber provides information (i.e., sparse
value flow) that is lesser and cheaper to compute as in [9], compared
to PCA (which underlies PCA-Mem). As mentioned earlier, PCA
chooses this relatively heavier analysis to compute information
for broader applications. The only exception was with mesa, for
which Saber was much slower, mainly because its interprocedural
analysis is context-sensitive and the value flow computation is fully
flow-sensitive. This design incurs especially high costs when there
are a large number of functions that form a very deep call graph,
which is the case with mesa. In contrast, the partial flow sensitivity
of PCA-Mem’s underlying analysis saved greatly in such cases. As
a result, the total costs were close between the two tools.

For the largest benchmark Slurm (v15.8.7), PCA-Mem reported 21
leaks including 10 GV cases. Four of these have been confirmed and
fixed by the developers (in v18.8.7): never freed memory allocated
at hostlist.c:3802 and that at hostlist.c:3803; partial leaks of memory
allocated at hostlist.c:1328 (leak branch: hostlist.c:2253), and that at
hostlist.c:1335 (leak branch: hostlist.c:2253). Saber did not find any
of these four—the 10 leaks it reported were all false alarms.

Figure 5 and Figure 6 compare the tools on peak memory usage
and time cost (𝑦 axes), respectively, for the 21 Slurm subsystems (𝑥

0
2
4
6
8

10
12

sa
cc

t

slu
rm

ctl
d

sb
atc

h
sin

fo

sq
ue

ue
sa

llo
c

sb
ca

st

sre
po

rt

slu
rm

db
d

ss
ha

re
sd

iag

sa
tta

ch
sp

rio

sc
on

tro
l

sa
cc

tm
gr

slu
rm

ste
pd

slu
rm

d
sru

n
ss

tat

sc
an

ce
l

str
igg

er

PCA-MEM SABERMemory Usage (GB)

Figure 5: Comparison on peakmemory usage against Slurm.

0

100

200

300

400

sa
cc

t

slu
rm

ctl
d

sb
atc

h
sin

fo

sq
ue

ue
sa

llo
c

sb
ca

st

sre
po

rt

slu
rm

db
d

ss
ha

re
sd

iag

sa
tta

ch
sp

rio

sc
on

tro
l

sa
cc

tm
gr

slu
rm

ste
pd

slu
rm

d
sru

n
ss

tat

sc
an

ce
l

str
igg

er

PCA-MEM SABERTime Cost (Seconds)

Figure 6: Comparison on time costs against Slurm.

axes). PCA-Mem finished analyzing the entire system (4,079KLOC)
in 40mins with peak memory usage of 2.8GB, while Saber finished
in 58mins with peak memory usage of 11.6GB. The reason was
similar to that for the mesa case in the SPEC2000 benchmarks. As
for those benchmarks, PCA-Mem had higher memory efficiency
because of its integer encoding of variable definitions.

7.2 Limitations

We made design decisions that lead to imprecision (flow-, field-,
and context-insensitivity in computing and using points-to sets)
to trade for scalability and efficiency. Thus, the data dependence
computed by PCA suffers imprecision. Accordingly, PCA-Mem can
give false alarms (as our evaluation results confirmed). Like peer
tools (e.g., PhASAR [15]), PCA as a static analyzer does not handle
dynamically loaded code.

8 CONCLUSION

We presented PCA, a static interprocedural data-flow analyzer for
C programs that offers several efficiency optimization options and
different cost-precision tradeoffs from peer tools. Based on PCA we
further developed PCA-Mem, a static memory leak detector as an
example application of our tool. Through PCA-Mem, we empirically
demonstrated PCA’s merits in efficiencywith practical effectiveness
against both standard benchmarks and an industry-scale real-world
system. PCA and PCA-Mem are open source and publicly available.

ACKNOWLEDGMENTS

This work was supported by DOE through PNNL (No. 379101).
4

REFERENCES

[1] August 2018. CodeSonar. https://www.grammatech.com/products/codesonar.
[2] August 2018. Coverity. https://scan.coverity.com/.
[3] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.
[4] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Pro-

gramming Language. (1994).
[5] Haipeng Cai. 2018. Hybrid Program Dependence Approximation for Effective

Dynamic Impact Prediction. IEEE Transactions on Software Engineering (TSE) 44,
4 (2018), 334–364.

[6] Haipeng Cai and Raul Santelices. 2015. Abstracting Program Dependencies using
the Method Dependence Graph. In International Conference on Software Quality,
Reliability, and Security (QRS). 49–58.

[7] Haipeng Cai, Raul Santelices, and Siyuan Jiang. 2016. Prioritizing Change Impacts
via Semantic Dependence Quantification. IEEE Transactions on Reliability 65, 3
(2016), 1114–1132.

[8] Haipeng Cai, Raul Santelices, andDouglas Thain. 2016. DiaPro: UnifyingDynamic
Impact Analyses for Improved and Variable Cost-Effectiveness. ACM Transactions
on Software Engineering and Methodology (TOSEM) 25, 2 (2016), 18:1–18:50.

[9] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang.
2019. Smoke: scalable path-sensitive memory leak detection for millions of lines
of code. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 72–82.

[10] Ben Hardekopf and Calvin Lin. [n.d.]. Flow-sensitive pointer analysis for millions
of lines of code. In CGO.

[11] Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In ACM SIGPLAN Notices,

Vol. 42. ACM, 290–299.
[12] Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing

using dependence graphs. ACM Transactions on Programming Languages and
Systems (TOPLAS) 12, 1 (1990), 26–60.

[13] Chris Lattner and Vikram Adve. [n.d.]. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO.

[14] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural
dataflow analysis with applications to constant propagation. Theoretical Computer
Science 167, 1-2 (1996), 131–170.

[15] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019. Phasar: An
inter-procedural static analysis framework for c/c++. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
393–410.

[16] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: Fast and precise sparse value flow analysis for million lines of
code. In ACM SIGPLAN Notices, Vol. 53. ACM, 693–706.

[17] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
ACM, 265–266.

[18] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software Engineering
40, 2 (2014), 107–122.

[19] Yichen Xie and Alex Aiken. 2005. Saturn: A SAT-based tool for bug detection. In
International Conference on Computer Aided Verification. Springer, 139–143.

[20] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on Job Scheduling Strategies for
Parallel Processing. Springer, 44–60.

5

https://www.grammatech.com/products/codesonar
https://scan.coverity.com/

APPENDIX: PCA DEMOWALKTHROUGH

In this section, we walk through how the key ((operational) portion
of our demo for PCA is conducted by using illustrative screen-shots
to show the installation and usage of the tool.

1. Install PCA

Here we present two ways to get and install PCA. Many of the
detailed steps have been included in scripts referred to below, which
makes the installation highly automated and easy to do.

1.1 For Using PCA through Virtual Machine.

• Step 1. Download PCA-VM.zip (the virtual disk image) through
this link.

• Step 2. Launch the virtual machine in VirtualBox (username/-
password: pca/pca, root/pca).

• Step 3. Open a terminal, and go to the directory /home/p-
ca/PCA.

1.2 For Using PCA through source code compilation.

• Step 1. Check prerequisites. We need to first make sure that
the following prerequisite environments are set up in order
for PCA to be installed and run successfully.
– UNIX (Ubuntu 16.04 LTS or Ubuntu 18.04 LTS)
– LLVM (v7.0.0) — we provide a script to assist with this
(see Step 3 below)

• Step 2. Download the source code of PCA through this link.
• Step 3. Enter directory PCA/llvm7 and run installLLVM.sh,
which will install LLVM7 and configure environment vari-
ables automatically.

• Step 4. Enter directory PCA and build PCA with the script
build.sh.

2. Use PCA

In this section, we demonstrate a case study of PCA, PCA-Mem,
and introduce how to run PCA-Mem against a subject program for
memory leak detection.

2.1 Compile the subject program. To enable data-dependence analy-
sis based on LLVM, the subject program needs to be compiled with
clang and gold-plugin (refer to here for details).

For the simple subject used in the demo, the command line for
this step is:

clang -flto leak.c -c -o leak.bc

For the Slurm system subject used in the demo, the command
line for this step is:

1. Specify environment variables for the compiler:
export CC="clang -flto"
export CXX="clang++ -flto"
export RANLIB=/bin/true

2. Compile Slurm: ./configure && make

2.2 Run PCA-Mem against simple program. In this step, we present
how to runmemory leak detection with PCA-Mem and generate the
data-dependence graph (DDG) (for visual understanding purposes).

Figure 7: A simple example program for demo purposes.

A small test case (leak.bc) is shown as Figure 7, where there are
two partial free defects obviously. Both are detected by PCA-Mem
(with command: PCA-Mem -file leak.bc) as shown (Figure 8).

We then present the use of an option (–dump-DDG) that gener-
ates DDG.dot, which can be then opened by GVEdit as shown in
Figure 11 (ICFG is shown in black color while DDG in red). In this
case, we may use this visualization to help verify the correctness
of the DDG manually while debugging.

2.3 Run PCA-Mem against Slurm. For a large-scale program like
Slurm (Version 15.08.7), which usually contains multiple modules,
PCA-Mem performs its analysis in two steps:

• Pre-process: Compute dependencies between modules (e.g.,
PCA-Mem -dir Slurm -pre=1, as shown in Figure 9).

• Program analysis: Link all necessary IR of modules for the
target executable and perform data dependence analysis and
memory leak detection in sequence (e.g., PCA-Mem -file
Slurm/salloc.bc; part of the result is shown in Figure 10).

6

https://drive.google.com/file/d/12eMHiYnqYPwjgpd6BjKtmmiT73y9lGC4/view?usp=sharing
https://github.com/Daybreak2019/PCA
https://llvm.org/docs/GoldPlugin.html

Figure 8: Memory leak detection result for the simple program leak.bc produced by PCA-Mem.

Figure 9: The pre-process step for Slurm by PCA-Mem.

Figure 10: Part of the memory leak detection results for the scallocmodule of Slurm produced by PCA-Mem.

7

Figure 11: ICFG, DDG of the simple example program leak.bc as generated by our tool.

8

	Abstract
	1 Introduction
	2 Architecture
	3 LLVM Module Linking
	4 Points-to Analysis
	5 Control and Data Flow Analysis
	6 Example Application: PCA-Mem
	7 Evaluation
	7.1 Efficiency and Effectiveness
	7.2 Limitations

	8 Conclusion
	Acknowledgments
	References

