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ABSTRACT

As in other software domains, information flow security is a
fundamental aspect of code security in distributed systems.
However, most existing solutions to information flow security are
limited to centralized software. For distributed systems, such
solutions face multiple challenges, including technique
applicability, tool portability, and analysis scalability. To overcome
these challenges, we present DistTaint, a dynamic information
flow (taint) analyzer for distributed systems. By partial-ordering
method-execution events, DistTaint infers implicit dependencies
in distributed programs, so as to resolve the applicability challenge.
It resolves the portability challenge by working fully at application
level, without customizing the runtime platform. To achieve
scalability, it reduces analysis costs using a multi-phase analysis,
where the pre-analysis phase generates method-level results to
narrow down the scope of the following statement-level analysis.
We evaluated DistTaint against eight real-world distributed
systems. Empirical results showed DistTaint’s applicability to,
portability with, and scalability for industry-scale distributed
systems, along with its capability of discovering known and
unknown vulnerabilities. A demo video for DistTaint can be
downloaded here or viewed here online, and the tool package here.
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1 INTRODUCTION

With increasing demands for computation at large scale,
distributed software has been increasingly developed. As other
domains of software applications, distributed software also suffers
from varied security vulnerabilities. For example, a real-world
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distributed system, Apache Zookeeper [6], had a security
vulnerability as reported in CVE-2018-8012 [1]: "No
authentication/authorization is enforced when a server attempts to
join a quorum in Apache ZooKeeper......". With this vulnerability,
attackers might easily gain access to a server of Zookeeper, and
might lead to severe damages or losses. Especially, compared to
centralized programs, distributed systems usually have larger code
sizes, with their decoupled components running at physically
separated machines without a global timing mechanism. These
characteristics, among others, contribute to the greater complexity
of distributed software, making it even more difficult to defend the
code security for these systems.

Taint analysis is a popular technique [19] used for defending
against these vulnerabilities. It helps users identify where their
sensitive data may be leaked to untrustworthy parties as revealed
by tainted information flow paths (or taint flow paths). A number
of static taint analysis tools have been developed over the past
decades, including JFlow [20], Jif [21], FlowCaml [23], and SPARK
Examiner [4], among others. However, as static (conservative) taint
analyzers, these tools suffer from possible unsoundness due to
the use of dynamic language constructs (e.g., reflective calls and
dynamic code loading) in modern software.

In contrast, dynamic taint analysis (a.k.a dynamic information
flow analysis) has been regarded as a powerful technique for
software security that is more precise than static approaches, since
it monitors and/or computes taint flows that are actually exercised
during the program executions [22]. Many dynamic taint analyzers
exist, (e.g., RIFLE [25], Panorama [26], TaintBochs [13], Dytan [14],
Suh [24], Privacy Oracle [18], and TaintEraser [27]). Unfortunately,
they were mostly developed for centralized software and cannot be
immediately applied/adapted to common distributed systems. A
major reason for this applicability issue lies in that these tools
compute (both implicit and explicit) information flows based on
explicit dependencies, which do not exist among distributed
(decoupled) components in common distributed software.

Other existing dynamic taint analyzers, such as Panorama [26]
and TaintDroid [15], may not be subject to the applicability barrier
yet typically rely on the underlying runtime platform (e.g.,
operating system) being modified (e.g. instrumented). These tools
thus suffer from portability problems—for each of the updated
versions of the runtime platform, the tool may also need to
modified, which may require substantial effort and not always be
possible. To support information flow security defense for
distributed software, we have developed DistTaint, a dynamic
taint analyzer that addresses both the applicability and portability
challenges to existing peer solutions.

In particular, to overcome the applicability challenge,
DistTaint infers and reasons about (statically implicit)
inter-process dependencies based on a global partial ordering of
methods across the system execution via monitoring
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Figure 1: An overview of DistTaint architecture featuring a refinement-based, three-phase analysis scheme.

happens-before relations among execution events of the methods.
Secondly, it resolves the portability challenge by working purely at
application level without requiring any change of the underlying
platforms or other elements of the run-time environment.

However, overcoming these challenges come at the cost of
suffering from an even greater scalability challenge, relative to that
faced by a typical dynamic analysis (due to their commonly
non-trivial overheads). This scalability challenge is only
aggravated in the context of distributed systems due to their larger
code sizes and greater complexity, especially when a practical level
of precision and (fine-)granularity is required by an attractive tool
option for realistic adoption. To address this issue, DistTaint
features a multi-phase analysis strategy to reduce its overheads. In
particular, it computes the final (statement-level) taint paths in its
fine-grained dynamic dependence analysis phase (Phase 3) that
utilizes statement coverage information collected in another phase
(Phase 2), as guided by the results of a rough but rapid
(method-level) taint analysis in the preliminary phase (Phase 1).

We have implemented DistTaint for working with real-world,
enterprise-scale distributed systems mainly written in Java. To
validate its merits over existing peer tools, we also have applied
DistTaint to eight distributed software systems of different
architectures, applications domains, and scales, including
Zookeeper [6] and Voldemort [5]. DistTaint worked successfully
with all these diverse systems. More importantly, it was able to
discover both known and unknown information flow security
vulnerabilities in these systems, with promising scalability,
efficiency, and effectiveness (precision). We have shared the entire
tool package of DistTaint, including its source code and usage
documentation, found here, along with a demo video here.

2 ARCHITECTURE

An overview of DistTaint’s architecture is given in Figure 1. To
balance its cost and effectiveness, DistTaint has three phases for
its analysis: pre-analysis, coverage analysis, and refinement. It
takes three user inputs: the distributed program D under analysis,
the arbitrary run-time input set I for D, and the user configuration
C. This configuration specifies the sources and sinks of user
interest and a list of message-passing APIs that DistTaint probes
for monitoring and profiling inter-process communication events.

With these user inputs, DistTaint computes the taint flow
paths between any source and any sink of C with respect to I, in
three phases. In the first phase (pre-analysis), DistTaint
computes method-level flow paths to avoid otherwise expensive
computation (overcoming the scalability challenge) of the next two
phases by narrowing down their analysis scope. Then, in the
second phase (coverage-analysis), the tool only calculates the
statement-level coverage for methods on any of the method-level
flow paths, as found in the first phase. The coverage information is

later used in a statement-level taint analysis of the last phase. In
this last (third) phase (refinement), DistTaint computes the
statement-level information flow paths as the final DistTaint
output (i.e., fine-grained sensitive flows) through a hybrid dynamic
dependence analyses as guided by the pre-analysis result.

3 PHASE 1: PRE-ANALYSIS
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Figure 2: Pre-analysis (Phase 1) workflow of DistTaint.

The goal of this phase is to provide a coarse (method) level of
analysis result, via a rough (conservative) and rapid analysis, that
will reduce the costs of the next two phases hence enabling the
overall scalability of our tool. Particularly, in this phase, DistTaint
computes method-level taint flow paths between each source-sink
pair defined before (in configuration C), in three major steps as
shown in Figure 2.

In the first step, DistTaint produces the instrumented version
D ′ of program D, by inserting probes to monitor the (entry and
returned-into) method-execution events of each method and each
(sending a message or receiving a message) message-passing event.
To identify where to probe the message-passing events, DistTaint
refers to the message-passing API list in C. If it is not provided by
the user, DistTaint would use a default list of the most commonly
used APIs in the Java SDK.

In the second step, DistTaint records the first entry and last
returned-into events for every method. The reason only these
events are monitored is because they suffice for inferring the
happens-before relations among all method-execution events,
hence the approximate (control-flow-based) dependencies among
associated methods [11] across all processes. Meanwhile,
message-passing events, albeit themselves not traced, are handled
during this step to partial-order method-execution events based on
the Lamport time-stamping algorithm [2, 12], so as to determine
the happens-before relation between any two method-execution
events later. In the last step, DistTaint computes method-level
taint flow paths as the output of this phase, by identifying the
sequence of methods between any source and any sink exercised
during the execution. DistTaint uses by default the lists of
sources and sinks we manually curated according to the official
documentation of the security-relevant APIs in the Java SDK.

https://www.dropbox.com/sh/kfr9ixucyny1jp2/AAC00aI-I8O-d4ywZCqwZ1uaa?dl=0
https://youtu.be/fy4yMIaKzPE


A Dynamic Taint Analyzer for Distributed Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Instrument branches and 
compute control dependencies

only in the tainted methods 

Instrumented 
Program D’’

Run D’’ on I
Tracing covered 

branches

Phase2  Output
Set of covered 

statements

D

I

Phase 1 result (tainted methods)
Relevant 
control 

dependencies

Covered 
branches

Infer 
statement 
coverage

Figure 3: Phase 2 workflow of DistTaint.

4 PHASE 2: COVERAGE ANALYSIS

DistTaint utilizes statement-level coverage data to refine (in Phase
3) the method-level taint paths resulted from Phase 1. Thus, the
objective of this phase is to produce the statement coverage, also
in three steps as depicted in Figure 3. Guided by the pre-analysis
result, only the coverage of statements in the methods on any of
the method-level taint paths (i.e., tainted methods) is monitored.

In the first step, DistTaint computes control dependencies for
the tainted methods and inserts probes for each branch (rather than
for every statement, in order to reduce the monitoring cost). In the
second step, DistTaint executes the instrumented program D ′′

using the same input I as in Phase 1 and records covered branches.
In the last step, statements that are control dependent on a covered
branch are regarded as covered. Thus, all covered statements are
computed, as the eventual output of this phase.

5 PHASE 3: REFINEMENT

The objective of the third phase is to compute statement-level
(fine-grained) taint paths via refining the method-level (coarse)
results computed in the first (pre-analysis) phase. In this phase,
DistTaint balances the analysis overhead and precision by
utilizing static information (i.e., data/control dependencies) at
statement level along with dynamic information at both method
(i.e., partial-ordered method-execution event sequences) and
statement (i.e., statement coverage) levels. This phase consists of
three key steps as shown in Figure 4.

The first step is mainly a static analysis that builds a static
dependence graph of the program D, but it also instruments D for
monitoring the full sequence of method-execution (i.e., entry and
returned-into) events. The static dependencies are computed at
statement level, to be used as an essential type of information by
the hybrid data flow analysis in the last step. Specifically,
DistTaint computes data/control dependencies [17] within and
across threads. DistTaint does not explicitly separate or
recognize decoupled components in terms of their functionality
roles (e.g., a server component versus client components). Thus,
during this static dependence computation, it does not compute
the implicit dependencies among processes—interprocess
dependencies are later inferred from the the global partial ordering
of method-execution events. As a result, the fixed-point iteration
of the data flow analysis automatically stops at component
boundaries, recognizing the components in an implicit manner. On
the other hand, when computing such static dependencies, in
order to cover all of the components in D, the static analysis
searches all possible entry points (i.e., all classes containing the
main method) of D and starts the data flow computation from each
of the entry points found. All the control dependencies have been
computed in Phase 2, which are simply reused here.
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Figure 4: Phase 3 workflow of DistTaint.

Another task of the first step is to instrument the program D by
which probes are inserted such that every single instance of
method entry and method returned-into event will be traced at
runtime. The reason that this fine-grained method execution
tracing is instrumented is because DistTaint employs a precise
activation-based hybrid dependence analysis algorithm [8] for
each component. The key idea is that the algorithm carefully
propagates data flow facts (i.e., forward dynamic dependencies
here [10]) from one method to another based on the semantics of
each method-execution event (e.g., static dependencies induced by
parameter passing are exercised/activated only by the calling
method’s entry event being immediately followed by the callee’s
entry event). As such, only the first and last events as used in the
first phase (which suffice for inferring roughly approximated
dependencies purely based on happens-before relations) are not
sufficient for the precise analysis here; instead, the full sequence of
(instance-level) method-execution events is needed [9].

It is important that in the first step both the static dependence
computation and instrumentation are limited to the tainted
methods only (i.e., the methods found on any method-level taint
flow path as a result of the first phase)—hence the partial static
dependence graph, and partial instrumentation. This is the key for
DistTaint to achieve practical efficiency and scalability—a
whole-system statement-level static dependence analysis would
not be practical in terms of its time cost, according to our
empirical experience with large distributed systems. For example,
such a whole-system analysis for ZooKeeper did not finish after 12
hours in our experiment environment (see Section 6).

In the second step, DistTaint runs the instrumented program
D ′′′ using the same input I as used before to generate traces in all
processes to record the instance-level method-execution events.
We note that in our implementation of DistTaint, we merged the
profiling steps of Phases 2 and 3. That is, although technically
statement coverage is a separate analysis, instrumentation for
branch coverage is merged into the instrumentation for this phase.
This makes one pass of execution produce both the covered
branches and the instance-level method-execution events (for the
tainted methods only). The merging is possible because there is no
dependency between Phase 2 and Phase 3—albeit both depend on
Phase 1. The benefit of the merging is to avoid possible under-
and/or over-tainting caused by deviations between the otherwise
two separate executions for Phases 2 and 3 due to potential
non-determinism in the execution of D. In the last step,
DistTaint takes as inputs multiple forms of data, including the
set of covered statements, the full sequence of method-execution
events, and the partial static dependency graph. Then, DistTaint
computes statement-level taint flow paths with respect to the
sources and sinks specified in C, both intraprocess and
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Figure 5: Numbers of taint paths found by DistTaint.

interprocess ones, as the final output of DistTaint, through the
activation-based hybrid dependence analysis mentioned above.

6 APPLYING DISTTAINT

This section describes two use cases of DistTaint and presents its
efficiency and scalability results. We then discuss its limitations.

6.1 Use Cases

We have successfully applied DistTaint to eight distributed Java
programs, most of which are real-world industry-scale systems.
These programs cover various architectures, domain, code sizes,
and message-passing protocols, including a peer-to-peer system
OpenChord [7], a distributed datastore Voldemort [5] (used at
LinkedIn for highly-scalability storage services [3]), and a
commonly used distributed coordination service Zookeeper [6] (by
Yahoo! and Apache Hadoop). As run-time inputs, we used varied
types of test cases that come with these subject systems [16],
including integration tests, load tests, and system tests. Our
experiments were all performed on Ubuntu Linux 16.04
workstations with an Intel 2.27GHz CPU and 32GB RAM.

Case 1: general effectiveness. Figure 5 shows the number of
flow paths (y axis) for each subject and execution (listed on the x
axis, with abbreviations of Chord for OpenChord, V for Voldemort,
Z for ZooKeeper, In. for integration test, and Sys. for system test).
For each subject, DistTaint computed the total (#Path) and
unique (#UniquePath) number of paths from valid user-defined
source/sink pairs—the latter is essentially the number of
source/sink pairs having at least one taint flow path in between.
Our manual inspection revealed that among all these reported flow
paths, there were no false positives, showing the promising
precision of our tool. Yet, without the ground truth for these
systems, we were unable to assess the recall of our tool.

Case 2: finding real vulnerabilities. From varied sources
(e.g., bug repositories and CVE database), we collected 10
real-world vulnerability cases: 7 for Voldemort and 3 for
ZooKeeper, and checked whether our tool can discover these real
vulnerabilities. Our results were highly promising: among these 10
cases, DistTaint successfully discovered 9—the only one it missed
was a case with Voldemort. We manually looked into this failure
case and found that the reason was because the vulnerability was
not exercised in the executions we considered. We also found that
all the successfully identified cases involved interprocess
information flows. Thus, conventional taint analyzers limited to
centralized software would miss these vulnerabilities.

6.2 Efficiency and Scalability

For the total costs on static analysis and instrumentation,
DistTaint took 19 minutes by average over the eight subjects and

their test cases, with a maximum of 113 minutes on Voldemort due
to its greatest complexity. The run-time slowdown ranged from 9%
to 74% across the three phases. DistTaint took 7 seconds to
analyze one pair of source and sink on average in the last phase.
The storage cost of DistTaint was small, 138MB on average with
a maximum of 243MB. While we were not aware of a baseline tool
suitable for a fair comparison, these numbers suggest the highly
promising efficiency and scalability of our tool.

6.3 Limitations

As a purely application-level approach, DistTaint relies on
instrumenting the given system for its dynamic analysis. Thus, for
systems that do not allow for instrumentation, the tool would not
apply. Also, the effectiveness of DistTaint can be immediately
affected by whether the message-passing events are completely
captured. If a system uses non-standard APIs (not from Java SDK)
for interprocess communication, the APIs would need to be added
to the list of message-passing APIs as part of the configuration C.

As a dynamic tool, DistTaint naturally suffers from
under-tainting since it only analyzes the specific executions given;
the underlying static analysis used may also be unsound due to
uses of dynamic language constructs (e.g., dynamic code loading)
in the subject system. Another limitation is that, although it
purposely merges the Phase 2 and 3 executions into one to avoid
non-determinism induced execution deviations, it is subject to the
same concern for the possible deviations between this (merged)
single execution and Phase-1 execution. As a result, DistTaint
may suffer additionally from over-tainting issues. One way to
overcome this limitation is to profile all the dynamic data needed
(including those by Phase 3) at once (in Phase 1 execution), at the
cost of losing the benefit of reducing instrumentation scope in
Phase 2 and method-execution tracing scope in Phase 3. Losing
this benefit may not compromise the scalability of our tool, though,
since the overall cost is dominated by that of the static dependence
analysis, which is not affected by the non-determinism issue.

7 CONCLUSION AND FUTUREWORK

We developed DistTaint, an application-level dynamic taint
analysis tool for distributed systems that overcomes several
practicality challenges to existing peer tools. It transparently
works on distributed systems without changing underlying
platforms to avoid portability issues. It approximates interprocess
dependencies based on happens-before relations among methods
to address the dependence implicity challenge that constitutes a
major applicability barrier for existing solutions. Finally,
DistTaint resolves the scalability challenge by using a
multi-phase analysis strategy with which coarse yet cheap
pre-analysis results are used to narrow down the scope of later
fine-grained analyses. We implemented DistTaint for Java and
applied it to several large-scale distributed software against
diverse executions, and demonstrated its promising scalability and
effectiveness, along with its capability of discovering various
known and unknown vulnerabilities. Based on DistTaint, we
plan to develop a distributed, online dynamic analysis framework
for continuously running distributed services.
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